Henry, Morse and the Telegraph

Discovery by Scientist – Design by Artist-Entrepreneur Wire Services: Instant news from around the Globe

Many dates – pay attention only to those in boxes

CEE 102: Prof. Michael G. Littman

Course Administrator: Motuma Tulu mt2593@princeton.edu

Computers for note-taking and course-related searches only

Connecting the Continent 1830 – 1883

Information - Transportation

Edward Hopper's "Railroad Sunset"

Connecting the Continent 1830 – 1883

Information - Transportation

Edward Hopper's "Railroad Sunset"

Electricity

Morse - intelligence at a distance

Edison - lighting a city

Westinghouse - power at a distance

Marconi – wireless global telegraphy

Morse by Morse

Electricity

Morse - intelligence at a distance

Edison - lighting a city

Westinghouse - power at a distance

Marconi – wireless global telegraphy

Morse by Morse

Jed Morse (Father - Geographer) by Morse

Morse by Morse

West by West

Morse by Morse

Lucretia Morse (his wife) by Morse

Morse by Morse

Samuel Morse

1825: painter - president, National Academy of Design

1835: Professor of Art, NYU

1840: engineer - telegraph patent

Aside – in 1840 Morse also introduces Photography into America

Morse daguerreotype at the Metropolitan Museum of Art

20-30 minute exposure of unknown sitter

Morse's painting of his Yale geology professor Benjamin Silliman

Samuel Morse

1825: painter - president, National Academy of Design

1835: Professor of Art, NYU

1840: engineer - telegraph patent

Aside – in 1840 Morse also introduces Photography into America

Morse daguerreotype at the Metropolitan Museum of Art

20-30 minute exposure of unknown sitter

Morse's painting of his Yale geology professor Benjamin Silliman

4-315

HE

AMERICAN JOURNAL

OF

SCIENCE AND ARTS.

CONDUCTED BY

BENJAMIN SILLIMAN, M. D. LL. D.

Prof. Chem., Min., &c. in Yale Coll.; Cor. Mem. Soc. Arts, Man. and Com; und For. Mem. Guol. Soc., London; Mem. Ruy. Min. Soc., Dreaden; Nat. Hist. Soc., Halle; Imp. Agric. Soc., Moscow; Hon. Mem. Lin. Soc., Paris; Nat. Hist. Soc. Belfast, Iro.; Phil. and Ltt. Soc. Bristol, Eng.; Mem. of various Lit. and Scien. Soc. in America.

VOL. XXIL-JULY, 1832.

NEW HAVEN:

Published and Sold by HEZEKIAH HOWE & Co. and A. H. MALTSY.

Baltimore, E. J. COALE & J. S. LITTELL.—Philadelphia, E. LITTELL and

CAREY & HART.—New Pork, G. & C. & H. CARVILL.—Beston, HILLIARD, GRAY, LITTLE & WILKINS.

PRINTED BY HEZEKIALI HOWE & CO.

Silliman's Journal of Science

High School Teacher Joseph Henry holding sounding telegraph 4-315 THE

AMERICAN JOURNAL

OF

SCIENCE AND ARTS.

CONDUCTED BY

BENJAMIN SILLIMAN, M. D. LL. D.

Prof. Chem., Min., &c. in Yale Coll.; Cor. Mem. Soc. Arts, Man. and Com; and For. Mem. Gool. Soc., London; Mem. Roy. Min. Soc., Dreaden; Nat. Hist. Soc., Halle; Imp. Agric. Soc., Moscow; Hon. Mem. Lin. Soc., Paris; Nat. Hist. Soc. Belfast, Ire.; Phil. and Lit. Soc. Bristol, Eng.; Mem. of various Lit. and Scien. Soc. in America.

VOL. XXIL-JULY, 1832.

NEW HAVEN:

Published and Sold by HEZEKIAH HOWE & Co. and A. H. MALTSY.

Baltimore, E. J. COALE & J. S. LITTELL.—Philadelphia, E. LITTELL and

CAREY & HART.—New York, G. & C. & H. CARVILL.—Beston, HILLIARD, GRAY, LITTLE & WILKINS.

PRINTED BY HEZEKIALI HOWE & CO.

Silliman's Journal of Science

High School Teacher
Joseph Henry holding
sounding telegraph

APPLICATION OF ... GALVANIC MULTIPLIER TO ELECTRO -MAGNETIC APPARATUS ...

Silliman 's American Jour. of Science, January, 1831, vol.xix, pp.400 - 408.)

High School Teacher Joseph Henry holding sounding telegraph

Telegraph - Discovery

1820	Electricity linked to Magnetism
1825	First Horseshoe Electromagnet
1831	Henry's Strong Electromagnet and Sounding Telegraph
1832	Henry comes to Princeton

Demonstration of compass needle deflection by electric current

Telegraph - Discovery

1820 Electricity linked to Magnetism
 1825 First Horseshoe Electromagnet
 1831 Henry's Strong Electromagnet and Sounding Telegraph
 1832 Henry comes to Princeton

Demonstration of compass needle deflection by electric current

Telegraph - Discovery

Why is this demonstration important?

→1820	Electricity linked to Magnetism
1825	First Horseshoe Electromagnet
1831	Henry's Strong Electromagnet and Sounding Telegraph
1832	Henry comes to Princeton

Telegraph - Discovery

1820	Electricity linked to Magnetism
→1825	First Horseshoe Electromagnet
1831	Henry's Strong Electromagnet and Sounding Telegraph

Henry comes to Princeton

1832

Electromagnet in circuit with two copper-zinc-acid batteries and on-off switch

B = k I NMagnetic Field

Telegraph - Discovery

1820 Electricity linked to Magnetism
 1825 First Horseshoe Electromagnet
 1831 Henry's Strong Electromagnet and Sounding Telegraph

B = k I N

Magnetic Field

$$R = \frac{\rho L}{A}$$
Resistance

$$I = \frac{V}{R}$$
Ohm's Law

$$\mathbf{R} = \frac{\rho \mathbf{L}}{\mathbf{A}}$$
Resistance

B = k I N

Magnetic Field

$$I = \frac{V}{R}$$
Ohm's Law

$$\mathbf{R} = \frac{\rho \mathbf{L}}{\mathbf{A}}$$
Resistance

$$B = k I N$$
Magnetic Field

How does Henry's sounding telegraph work?

Poles in horseshoe electromagnet reverse when current is reversed

$$I = \frac{V}{R}$$
Ohm's Law

$$\mathbf{R} = \frac{\rho \mathbf{L}}{\mathbf{A}}$$
Resistance

B = k I NMagnetic Field

$$I = \frac{V}{R}$$
Ohm's Law

- Demo of telegraph and weakening effect of a long line
- Batteries in series to compensate

$$B = k I N$$
Magnetic Field

The greater the current, the stronger the strike – high voltage overcomes high resistance of the long lines

- Demo of telegraph and weakening effect of a long line
- Batteries in series to compensate

$$\mathbf{R} = \frac{\rho \mathbf{L}}{\mathbf{A}}$$

Resistance

The longer the path, the greater the resistance

$$\mathbf{I} = \frac{\mathbf{V}}{\mathbf{R}}$$

Ohm's Law

The greater the voltage, the greater the current

B = k I NMagnetic Field

The greater the current, the stronger the strike – high voltage overcomes high resistance of the long lines

- Demo of telegraph and weakening effect of a long line
- Batteries in series to compensate

B = k I NMagnetic Field

The greater the current, the stronger the strike – high voltage overcomes high resistance of the long lines

- Demo of telegraph and weakening effect of a long line
- Batteries in series to compensate

"The electro-magnetic telegraph was invented by me in Albany in 1830."

"I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire, signals were sent from time to time from my house to my laboratory."

- Joseph Henry

Philosophical Hall Library

Joseph Henry's House in 1836

"The electro-magnetic telegraph was invented by me in Albany in 1830."

"I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire, signals were sent from time to time from my house to my laboratory."

- Joseph Henry

Philosophical Hall Library

Telegraph - Design

1832 – Morse's shipboard idea

1836 – Gale and Vail help out

1838 – Morse shows Van Buren

26

Telegraph - Design

→ 1832 – Morse's shipboard idea

1836 – Gale and Vail help out

1838 – Morse shows Van Buren

Digital signals in use today – WiFi, Ethernet

Telegraph - Design

→ 1832 – Morse's shipboard idea

1836 – Gale and Vail help out

1838 – Morse shows Van Buren

Morse's original telegraph on display at the Smithsonian

Telegraph - Design

→ 1832 – Morse's shipboard idea

1836 – Gale and Vail help out

1838 – Morse shows Van Buren

Telegraph - Design

1832 – Morse's shipboard idea

→ 1836 – Gale and Vail help out

1838 – Morse shows Van Buren

ARTIST'S CANVAS STRETCHER

Copper-Zinc Battery

ELECTROMAGNET

ELECTROMAGNET

MOVING PAPER TAPE

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY

Judge Vail – Morse Investor Alfred Vail – Morse Partner

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY

Judge Vail – Morse Investor Alfred Vail – Morse Partner

Telegraph - Design

1832 – Morse's shipboard idea

1836 – Gale and Vail help out

→ 1838 – Morse shows Van Buren

1842 – Henry helps Morse

Judge Vail – Morse Investor Alfred Vail – Morse Partner

Morse patents a Binary Code

TELEGRAPH - Early

Congress - \$30,000 to Morse

Morse - hires Vail & Cong. Smith

Smith - hires Ezra Cornell

38 miles connecting
Baltimore to Washington

Morse patents a Binary Code

TELEGRAPH - Early

Congress - \$30,000 to Morse

Morse - hires Vail & Cong. Smith

Smith - hires Ezra Cornell

38 miles connecting
Baltimore to Washington

Telegraph Wires along B&O RR Right-of-Way

TELEGRAPH - Early

Congress - \$30,000 to Morse

Morse - hires Vail & Cong. Smith

Smith - hires Ezra Cornell

38 miles connecting
Baltimore to Washington

Ezra Cornell

May 24, 1844 at 8:45am

Ezra Cornell

MORSE CODE – dots and dashes embossed on moving tape

May 24, 1844 at 8:45am

Science and Engineering

Discovery

Scientist rings bell at a distance

Development

Gov't Grant, Private Company

Design

Artist gives telegraph language and plans wide-area network

MORSE CODE – dots and dashes embossed on moving tape

7th and E St, Washington, DC Morse idea - replace Post Office

Science and Engineering

Discovery

Scientist rings bell at a distance

Development

Gov't Grant, Private Company

Design

Artist gives telegraph language and plans wide-area network

7th and E St, Washington, DC Morse idea - replace Post Office

Telegraph Lines in 1853

CONNECTING CITIES

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

Telegraph Lines in 1853

CONNECTING CITIES

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

THE ELECTRO-MAGNETIC TELEGRAPH.

A DEFENCE

AGAINST THE INJURIOUS DEDUCTIONS DRAWN FROM THE

DEPOSITION OF PROF. JOSEPH HENRY

(IN THE SEVERAL TELEGRAPH SUITS),

WITH A CRITICAL REVIEW OF SAID DEPOSITION, AND AN EXAMINATION OF PROF. HENRY'S ALLEGED DISCOVERIES,

BEARING UPON THE ELECTRO-MAGNETIC TELEGRAPH.

BY SAMUEL F. B. MORSE, LL.D.,

PROFESSOR IN THE NEW YORK CITY UNIVERSITY, &C., &C., &C.

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

CONNECTING THE CONTINENT

Pacific Telegraph Act of 1860 (Pony Express ends service)

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

US Capitol in 1861

Smithsonian Castle in 1862

Peter Cooper

Telegraph Register

Samuel Morse

US Capitol in 1861

Smithsonian Castle in 1862

Christian Schussele's "Men of Progress"

Joseph Henry Peter Cooper Telegraph Register

Stearns Duplex Idea-1872 TWO MESSAGES ON ONE WIRE

DEMONSTRATION

Christian Schussele's "Men of Progress"

Samuel Morse

Telegraph Register

Samuel Morse

Vail telegraph register at Cornell

SIBLEY COLLEGE at **CORNELL**

Christian Schussele's "Men of Progress"

Mathew Brady daguerreotype of his photography teacher, Samuel Morse

Vail telegraph register at Cornell

SIBLEY
COLLEGE at
CORNELL

Mathew Brady daguerreotype of his photography teacher, Samuel Morse

Telegraphers

Key Ideas

Scientific

Strong Electromagnet Binary (dot-dash) Code

Social

Government Investment
Private Telegraph Company
Wire Services inform Public

Symbolic

Artist as Innovator

Telegraphers

