
Arduino-Based M&M Sorting Machine

MAE 412 Final Project
Princeton University, Spring 2021

Jack Monaco



Abstract:
The prompt for this project was to use a limited assortment of sensors, electrical components,
and motors to design a project that uses sensing, actuation, sequencing, and control to complete a
task of our choice autonomously. This machine was designed to sort m&m candies by color. The
system uses a combination of an RGB LED and a photoresistor to measure each m&m’s
response to several wavelengths of light. Code running on an Arduino Uno associates the
response with a color, and a combination of mechanisms, driven by a stepper motor and a servo
motor, sorts the m&m into one of six compartments.

Design Description:
The central functions of this machine include singling out one m&m from an m&m reservoir,
performing the sensing sequence on that m&m (using the photoresistor to measure the intensity
of the reflection of red, green, and blue light), and sorting the m&m into a compartment based on
the result. In order to use this sensing setup to collect reliably comparable photoresistor values,
the lighting and positioning had to be very consistent for each m&m being tested.

Mechanism 1
The first mechanism was designed to perform the majority of these tasks. The mechanism
consists of two circular pieces (Parts 2 and 3) that lock together to rotate on the top and bottom
surface of Part 1. The top disk (Part 2) has a hole to select one m&m from a reservoir above the
mechanism, as well as a small cam. The bottom disk has a platform that drops off into two
ramps. The pieces are oriented to one another as shown in the assembly.

This system of two disks rotates within Part 1, which has the main chamber for m&m sensing. It
is driven from above by a stepper motor mounted in Part 5. Part 5 also mounts a limit switch that
rides up against the cam on the top disk.

Part 2: m&m Selector Disk and Center Pin Part 3: Double Ramp Disk
(can be printed as 1 or 2 parts)



Part 1: Central Sensing Compartment Rotator Assembly

Part 5: Stepper Motor and Limit switch mount Part 4: LED and Photoresistor housing

The rotation of Parts 1 and 2 performs several functions. First, the top disk selects an m&m from
the reservoir, and by rotating 180 degrees clockwise drops it into the sensing chamber and closes
the chamber on top and bottom. The chamber places the m&m in a controlled position where it
can be viewed from the side. Part 4 snaps onto the side of Part 1 and houses the RGB LED and
photoresistor. A white LED is also mounted into the back of the sensing chamber to, in
conjunction with the photoresistor, detect if an m&m is in the chamber.

If an m&m has been successfully loaded, the RGB LED and photoresistor will collect values and
then the mechanism will rotate 180 degrees to return to the loading position. Depending on the
direction of rotation, either clockwise or counter clockwise, the m&m will meet one of the two
ramps on the bottom disk, directing it either to the left or to the right. This constitutes the first
sorting action.



Parts 1-4 Assembly Order Parts 1-3 Assembled

Stepper Motor Installed in Part 5 Stepper Motor and Limit switch in Part 5

m&m loaded in sensing chamber, seen from side Part 4: LED and sensor housing



Mechanism 2
The second sorting mechanism is composed of Parts 7 and 8. The m&m dispensed from
Mechanism 1 falls into the left or right side of Part 7, which also holds a servo motor which faces
downward and rotates Part 8. Part 7 directs the m&m into one of two locations on opposite sides
of the servo motor. Depending on the rotation of Part 8, the m&m then falls either straight down
or encounters a ramp directing it 60 degrees clockwise or counterclockwise.

Part 7: 2-way funnel and servo mount Part 8: 2-sided final divider

Parts 7 and 8 with servo installed Part 9: Jar Lid

The entire sorter is mounted on top of Part 9, which is a lid that screws onto a mason jar outfitted
with 6 clear dividers. With the two sorting directions of Mechanism 1 and the three sorting
directions of Mechanism 2, the sorter can place the m&m in any of the six compartment colors.



Design Notes
My process for this design started with the concept for Mechanism 1, which I then constructed
and tested. Most of the parts for this project took about 4-5 iterations to get them working exactly
as I wanted. This was partially because as I was redesigning to include new features as I went.
For instance, when using the stepper motor I was having trouble with the motor skipping steps or
stalling at higher speeds. In a redesign I added the limit switch mount and cam so that I could
zero the position of the rotator effectively and reliably. I also had issues with the loading system
which led me to increase the area of the loading site and increase the angle of Part 6, which
funnels the m&ms into the site.

After designing Mechanism 1, I played around with several ideas to multiply the number of
colors the machine could sort. I ended up opting for the option that included the least number of
moving parts, so as to increase robustness and simplicity. I was also limited by the selection of
motors that I had available.
I was keeping my test m&ms in a small jam jar, and the parts for Mechanism 1 happened to fit
very nicely into the mouth of the jar, so I ended up deciding to lean into that idea and model the
whole machine to screw onto a jar. In keeping with the vertical design I modeled Parts 5 and 6 to
fit within a clear water bottle that I had.

Since I had limited access to basic tools during this build, including a drill, I tried to utilize my
one tool, the 3D printer, as much as possible. I did many test prints in order to be able to model
my parts for minimal cleanup. These included screw holes and mounting holes for the stepper
motor, servo motor, limit switch, and LEDs. I also iterated the pieces to fit the various physical
components that I was working with, including the jam jar and water bottle.

I was able to troubleshoot most printing issues quickly by releveling the bed and cleaning the
printer. I did encounter some issues with the bottom layer of a print melting a bit and flattening.
This was especially problematic when my parts had precise hole diameters on the bottom layer.
This is, for instance, why I ended up constructing Part 1 as two pieces, when it could have been
printed as one.

All parts in SolidWorks and printed them on the Ender 3 Pro, mostly at 0.28mm layer height,
with support as necessary. Parts 1-4 and printed in black PLA so as to keep the sensing chamber
as dark as possible. I chose to print all the other parts in black and white PLA, purely for
aesthetic reasons, so that the only color in the final machine was the color of the m&ms.



Full Assembly:
Mechanical
The Rotator (Parts 2 and 3) fits together snuggly and is assembled in Part 1 as shown. The lower
disk is held in place with a small screw from the bottom. The stepper motor (in this case the
28BYJ-48) snaps into Part 5 facing downwards with the wires exiting through the slot. Printed
spacers are used to offset each layer from the next as shown in the full assembly drawing.
Because combinations of spacers of many lengths were used, only included one exemplary
drawing has been included.

Part 6 fits snuggly onto the top of the stepper motor and directs m&ms in the reservoir towards
the loading site. Part 10 fits around the limit switch to be held in place on the edge of Part 5 with
two screws through the slots. The slots allow for the position of the limit switch to be adjusted.
The RGB LED is placed into the deeper section of Part 4 and hot glued in place. The
photoresistor is hot glued in place as well. Part 4 snaps onto the side of Part 1. A white LED is
also hot glued into the LED housing in the back of the chamber in Part 1.

The servo motor (an SG90) fits snuggly into Part 7 facing down with the shaft in line with the
center of the machine. Part 8 is designed such that one of the included servo motor attachment
arms snaps into the piece, and a small screw from the bottom holds the attachment arm and Part
8 to the servo shaft.

The entire machine (Parts 1-10) are assembled using three, 3” 6-32 machine screws and
corresponding nuts. Printed spacers separate each level the necessary amount (detailed in
assembly drawings).

Adding Spacers to Assembly Servo Attachment in Part 8

The plastic water bottle (brand: SmartWater) is cut using a razor blade to fit onto Parts 5 and 6,
with a hole cut in the top and a notch cut for the Stepper motor wires.



The dividers for the jam jar are made by scoring and snapping some 0.8mm plexiglass to make
pieces that fit within the jar to divide it into 6 sections. These are held in place with Parts 11 and
12 (not included in below assembly).

All 3D Printed parts in order of Assembly Fully Assembled Machine



Wiring
The machine is controlled by an Arduino Uno microcontroller. Pins 2,4,6, and 7 send digital
signals to a stepper motor driver board (in this case the ULN2003) which also receives 5 volts of
power. The servo motor is driven with PWM using pin 3. The RGB LED is also controlled using
PWM from pins 9, 10, and 11, and each LED, including the white LED in the back of the
chamber, is wired with a 220 Ohm resistor. The limit switch is wired to pin 13 and uses the
Arduino’s internal pullup resistor.
The final electrical component is the photoresistor, which is wired in a voltage divider with a 10
KiloOhm resistor. Analog pin A0 reads the intermediate voltage from the voltage divider.

Wiring Diagram



Coding:
Full code can be seen in the Appendix. Below is a description of each section.

Initialization/Setup
This code only runs once. In this section pins are assigned to input/output, libraries to run the
stepper motor and servo motor are loaded, and both the stepper and servo objects are created and
initialized.
A boolean variable SetUp is set to = false.
Also in this section seven arrays are created, six of which will serve to store the reference values
for the six m&m colors, and one of which will be reused for each m&m test. Each array holds
three photoresistor readings and a tally for how many m&ms that array has identified.

Functions
Brief overview of each function and when it is used.

MovetoLimit()
This function moves the stepper motor clockwise until the limit switch is hit. It also uses
a basic for loop to time how long the stepper has been moving. If too much time has
passed, that means the top disk has gotten jammed, in which case the function will briefly
reverse the stepper direction and then continue clockwise. This does an excellent job of
catching mechanical jams. Function is called by Sort() and SetupSort().

setLED()
Function sets the RGB LED to a set of three PWM values. Function is called by
CollectColor().

CollectColor(int samples, int ColorArray[])
Function takes a color array and int samples as arguments. When called, function flashes
the white LED and takes a photoresistor value to determine if the chamber is loaded. If
so, the function shines red, blue, and green light from the RGB LED, takes corresponding
photoresistor values, and stores them in the array. With samples > 1, each photoresistor
value is an average of (samples) readings. This feature may not have a significant effect
on accuracy. If no m&m is detected, Array is set to zeros. Function is called by
CollectReferences().

Sort(int ID)
Function controls servo motor and stepper motor to dispense m&m into one of
compartments 1 through 6, depending on ID. If fed zero, stepper continues clockwise to
load another m&m.



SetupSort(int ID)
Has the exact same function as Sort() but with slightly different rotation values calibrated
for the expectation that there is only one m&m in the loading site. Only called during
CollectReferences()

CollectReferences(int Color1[] … int Color6[])
Function takes all reference arrays and, using SetupSort() calls CollectColor() to collect
initial references for the six colors, based off of the first six m&ms it sees.

FindMatch(int TestColor[], int Color1[] … int Color6[])
Function takes the test array and compares it to the reference values in the six reference
arrays using a least squares approach. For the closest array, the function returns an int
with the corresponding ID, if no m&m was detected (ie. TestArray = [0,0,0,..]), function
returns zero. FindMatch also calls UpdateReference() with the ID of the identified color.

UpdateReference(TestArray[], ColorArray[])
Function takes the test array and the color reference of the identified color. Then, using
the tally for that color (the fourth value of the reference array) it updates the reference
values for that color to be an average of all identified m&ms of that color, including the
one just identified (TestArray[]). This feature was added to correct for some occasional
misidentifications and has increased robustness dramatically. Function is called by
FindMatch().

EndScript(int match, int VoidTally, int TestArray[], int Color1[] … int Color6[])
This function keeps track using the variable VoidTally of how many consecutive times
the machine has failed to load an m&m into the chamber. If that number reaches 10, it is
assumed that the m&m reservoir is empty and the function prints the statistics for the run
and ends the program using exit(0);

Main Loop
The main loop starts by checking if boolean SetUp == false. If so, it calls CollectReferences() to
collect initial reference reference values and sets SetUp = true.

With an m&m now loaded, the loop calls CollectColor() to sense the loaded m&m.
Then, FindMatch() identifies the m&m and updates the associated reference values.
Using Sort() the program sorts the m&m and simultaneously loads another.

The identification ID is fed to EndScript() so that if the chamber has been empty ten times in a
row, the program will terminate.



Results and Future Improvements:
This machine is a very successful proof of concept.
For those curious, testing for this project has suggested that blue and orange are the most
common m&m colors, showing up with nearly twice the frequency of the other colors. This is
consistent with published data from the Mars New Jersey Factory.

A full run of sorting can fit about 150 m&ms. This design is definitely not the most efficient, but
it can sort around 10 m&ms per minute, and can be left alone while doing so. It does a great job
of catching jams using the MovetoLimit function. When the reservoir is fully loaded, the m&ms
have a harder time loading because of the increased vertical pressure, and occasionally this will
mean the mechanism rotates several times before successfully loading. In testing this has only
once come close to accidentally triggering the EndScript function, but in the future this could be
corrected using an improved feeder system, or even an auger in the reservoir.

Most importantly, the color sensing system now works flawlessly. Since implementing the
method to update the reference values, no m&ms have been misidentified. The only error that
does occasionally happen has to do with Part 8, the final rotating piece. Part 8 is modeled to be
compact, and in retrospect it is a bit too shallow. When rotated to direct the m&m clockwise or
counterclockwise, the m&m does not have a lot of space to slide through and so occasionally it
will get stuck and not slide through Part 8. Then, when the servo returns to the middle position,
that m&m will fall through the center channel and be missorted. This can sometimes be corrected
by adjusting how far Part 8 rotates, but this poses additional problems, and in a run of 150
m&ms, there are still typically 1-3 missorts.

In a future version, Part 8 could be redesigned to fix this problem. This improvement was not
made in this version due to time constraint and a limitation on the height of the machine given
the bolts being used. In the future the wiring could be moved off of the breadboard and onto
some type of circuit board or Arduino shield so that the whole contraption could be mounted on
the machine and battery powered. A future version of this project could also tackle the important
task of sorting Skittles.

For a video of the machine working, see www.jackmonaco.design



Appendix:
Additional Images

Machine Sorting Progression at 1 minute, 7 minutes, 15 minutes

Dividers held with Parts 11 and 12 Collapsed Assembly



White LED install into the back of the sensing chamber

Arduino Code

/////INITIALIZE///////////////////////////////////////////////////////////////////////////////////////////////////
int redPin = 9;
int greenPin = 10;
int bluePin = 11;
int whitePin = 13;
int limitPin = 8;
int servoPin = 3;

int Color1[] = {0,0,0,0};
int Color2[] = {0,0,0,0};
int Color3[] = {0,0,0,0};
int Color4[] = {0,0,0,0};
int Color5[] = {0,0,0,0};
int Color6[] = {0,0,0,0};

int TestColor[] = {0,0,0,6};
int VoidTally = 0;
boolean SetUp = false;

#include <Stepper.h>
Stepper myStepper = Stepper(2048,2,6,4,7);

#include <Servo.h>
Servo myServo;

/////SETUP////////////////////////////////////////////////////////////////////////////////////////////////////////
void setup() {
// set LEDs to output and limit switch to input w/ pullup resistor
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);



pinMode(whitePin, OUTPUT);
pinMode(limitPin, INPUT_PULLUP);

//Stepper motor, Servo motor, and serial port
myStepper.setSpeed(15);
myServo.attach(servoPin);
myServo.write(80);
Serial.begin(9600);

}

/////MAIN/////////////////////////////////////////////////////////////////////////////////////////////////////////
void loop() {

// startup routine for first 6 m&ms
if(SetUp == false){
CollectReferences(Color1,Color2,Color3,Color4,Color5,Color6);
SetUp = true;

}

// collect value for color being tested
CollectColor(5, TestColor);

// math to determine closest one
int match = FindMatch(TestColor,Color1,Color2,Color3,Color4,Color5,Color6);

// sorts based on result
Sort(match);

// ends sequence and prints stats if there have been 10 empty rounds in a row
VoidTally = EndScript(match, VoidTally,TestColor,Color1,Color2,Color3,Color4,Color5,Color6);

}

/////FUNCTIONS////////////////////////////////////////////////////////////////////////////////////////////////////

void CollectReferences(int Color1[],int Color2[],int Color3[],int Color4[],int Color5[],int Color6[]){

//stepper move to start position
MovetoLimit();
delay(1000);

//loads and stores data stepping through colors... trust me
myStepper.step(1400); //LOAD 1
MovetoLimit();
CollectColor(10,Color1);

SetupSort(1); //SORT 1, LOAD 2
CollectColor(10,Color2);

SetupSort(2); //SORT 2, LOAD 3
CollectColor(10,Color3);

SetupSort(3); //SORT 3, LOAD 4
CollectColor(10,Color4);

SetupSort(4); //SORT 4, LOAD 5



CollectColor(10,Color5);

SetupSort(5); //SORT 5, LOAD 6
CollectColor(10,Color6);

SetupSort(6); //SORT 6
}

void SetupSort(int ID){
// sorting function for first 6 m&ms
int m = 80;
int h = 43;
switch(ID){
case 1: myServo.write(m+h); myStepper.step(1400); myServo.write(m); MovetoLimit();
break;
case 2: myStepper.step(1400); MovetoLimit();
break;
case 3: myServo.write(m-h); myStepper.step(1400); myServo.write(m); MovetoLimit();
break;
case 4: myServo.write(m+h); MovetoLimit(); myServo.write(m);
break;
case 5: MovetoLimit();
break;
case 6: myServo.write(m-h); MovetoLimit(); myServo.write(m);
break;

}
}

void Sort(int ID){
// Sorting function controls dispensing sequence
int m = 80;
int h = 43;
switch(ID){
case 0: MovetoLimit();
break;
case 1: myServo.write(m+h); myStepper.step(1050); myServo.write(m); MovetoLimit();
break;
case 2: myStepper.step(1050); MovetoLimit();
break;
case 3: myServo.write(m-h); myStepper.step(1050); myServo.write(m); MovetoLimit();
break;
case 4: myServo.write(m+h); MovetoLimit(); myServo.write(m);
break;
case 5: MovetoLimit();
break;
case 6: myServo.write(m-h); MovetoLimit(); myServo.write(m);
break;

}
}

void MovetoLimit(){
// moves clockwise until limit switch is hit
// i provides failsafe for jamming
int i = 0;



myStepper.step(-200);
while(digitalRead(limitPin) == HIGH){
myStepper.step(-10);
if(i>200){
myStepper.step(300);
i = 0;

}
i++;

}
}

void setLED(int redValue, int greenValue, int blueValue){
// function writes three PWM values to RGB LED
analogWrite(redPin, redValue);
analogWrite(greenPin, greenValue);
analogWrite(bluePin, blueValue);

}

void CollectColor(int samples, int ColorArray[]){

//if the chamber is empty, return zeros
digitalWrite(whitePin, HIGH);
delay(50);
int check = analogRead(A0);
digitalWrite(whitePin, LOW);

if(check>15){
ColorArray[0] = 0;
ColorArray[1] = 0;
ColorArray[2] = 0;
return;

}
delay(300);

//collects photoresistor value from red, green, then blue light and stores average values in array
setLED(255,0,0);
int sum = 0;
delay(200);
for(int i=0;i<samples;i++){
int red = analogRead(A0);
sum = sum + red;

}
ColorArray[0] = sum/samples;

setLED(0,255,0);
sum = 0;
delay(200);
for(int i=0;i<samples;i++){
int red = analogRead(A0);
sum = sum + red;

}
ColorArray[1] = sum/samples;

setLED(0,0,255);



sum = 0;
delay(200);
for(int i=0;i<samples;i++){
int red = analogRead(A0);
sum = sum + red;

}
ColorArray[2] = sum/samples;

// turn LED off and update overall m&m counter
setLED(0,0,0);
ColorArray[3]++; //this updates color array counters only in the setup function

//during the main loop this only updates overall counter

//  Serial.print(int(ColorArray[0]));
//  Serial.print("   ");
//  Serial.print(int(ColorArray[1]));
//  Serial.print("   ");
//  Serial.println(int(ColorArray[2]));
}

int FindMatch(int TestColor[],int Color1[],int Color2[],int Color3[],int Color4[],int Color5[],int Color6[]){
// finds array of values closest to TestColor by least squares
// also calls UpdateReference() to update the reference values, once match has been identified

int match = 0;

// if compartment is empty return 0
if(TestColor[0] == 0){
return match;

}

long sums[] = {0,0,0,0,0,0,0};
for(int i=0;i<3;i++){
sums[1] = sums[1] + pow(TestColor[i]-Color1[i],2);
sums[2] = sums[2] + pow(TestColor[i]-Color2[i],2);
sums[3] = sums[3] + pow(TestColor[i]-Color3[i],2);
sums[4] = sums[4] + pow(TestColor[i]-Color4[i],2);
sums[5] = sums[5] + pow(TestColor[i]-Color5[i],2);
sums[6] = sums[6] + pow(TestColor[i]-Color6[i],2);

}

long closest = min(sums[1],min(sums[2],min(sums[3],min(sums[4],min(sums[5],sums[6])))));

if(closest==sums[1]){ match = 1;
UpdateReference(TestColor, Color1);
}
else if(closest==sums[2]){ match = 2;
UpdateReference(TestColor, Color2);
}
else if(closest==sums[3]){ match = 3;
UpdateReference(TestColor, Color3);
}
else if(closest==sums[4]){ match = 4;
UpdateReference(TestColor, Color4);
}



else if(closest==sums[5]){ match = 5;
UpdateReference(TestColor, Color5);
}
else { match = 6;
UpdateReference(TestColor, Color6);
}
return match;

}

void UpdateReference(int TestArray[], int ColorArray[]){
//updates the color reference array with newly associated values
for(int i=0;i<3;i++){
ColorArray[i] = ColorArray[i] + ((TestArray[i]-ColorArray[i])/(ColorArray[3]+1));

}
//increments the color array counter (how many of this color have been sorted)
ColorArray[3]++;

}

int EndScript(int match,int VoidTally,int TestColor[],int Color1[],int Color2[],int Color3[],int Color4[],int
Color5[],int Color6[]){
if(match == 0){ VoidTally++;
}
else{ VoidTally = 0;
}

if(VoidTally >= 10){
Serial.println("Sorting Complete!");
Serial.print("Total: ");
Serial.println(TestColor[3]);
Serial.print("Red: ");
Serial.println(Color1[3]);
Serial.print("Orange: ");
Serial.println(Color2[3]);
Serial.print("Yellow: ");
Serial.println(Color3[3]);
Serial.print("Green: ");
Serial.println(Color4[3]);
Serial.print("Blue: ");
Serial.println(Color5[3]);
Serial.print("Brown: ");
Serial.println(Color6[3]);

// ends program
delay(1000);
exit(0);

}
return VoidTally;

}



 15.00  19.00 

 99.50 

 11.00  4.00 TYP 

 29.00 
 35.00 

 44.00 

 20.00 

 45.00  45.00 

 56.50 

A A

B B

2

2

1

1

PLA PLASTIC

PART 1

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 7.50 

 R35.00 

 15.00 

 19.00 

 7.00 

 105° 

 30.50 

 R7.50 

A A

B B

2

2

1

1

PLA PLASTIC

PART 2a

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 14.00 

 6.50 

 6.00 

 10.40 

 6.75  4.80 

A A

B B

2

2

1

1

PLA PLASTIC

PART 2b

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 15.00 
 7.00 

 R35.00 

 R7.50  5.00 

 R2.78 

 3.20 

A A

B B

2

2

1

1

PLA PLASTIC

PART 3

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 R35.50 

 35.00 

 53.00 

 7.04 

 6.91 

 29.00 

 6.20 

 15.00 

 21.00 

 8.00 

 8.00 

 3.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 4

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 3.00  13.00 

 99.00 

 R36.25 
 R34.25 

 44.00 

 35.00 

 4.00 
 12.00 

 45.00  45.00 

 4.00 
 R4.50 

 R31.63 
 9.50 

 R1.10 
 8.50 

 140° 

 11.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 5

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 17.29° 

 9.00  6.00 

 R36.25 

 R14.00 

 R17.50 

 140.16° 

 18.73 

A A

B B

2

2

1

1

PLA PLASTIC

PART 6

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 21.00 

 99.00 

 35° 

 12.20 

 22.80 
 R35.00 

 R32.00 

 R33.50 

 44.00  29.29° 

 4.00 TYP 

 9.00 TYP 

 6.00 

 R11.31 

 10.00 
 16.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 7

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 15.00 

 R11.50 
 20.00 

 7.20 

 4.00 

 8.00 

 35° 

 60° 

 42.5° 

 R35.00 

BOTTOM VIEWA A

B B

2

2

1

1

PLA PLASTIC

PART 8

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 12.00 
 3.00 

 86.00 
 R41.20 

 44.00 
 4.00 

 R4.50 

 72.50 

 R10.00 

 49.25 

THICKNESS=3MM

4MM FILLET INSIDE
 86.00  5.00 

 14.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 9

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 12.00 

 24.40 

 20.40 

 2.00  2.00 

 9.50 
 2.00 

 3.00 

 10.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 10

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 30.00 

 6.00 
 2.00 

 1.00 

 R1.00 

 R1.00 
 10.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 11

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 6.00 

 2.00 

 1.00 

 R7.50 

 4.00 

 R1.00 

 R1.00 

A A

B B

2

2

1

1

PLA PLASTIC

PART 12

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 5:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



VARIABLE

 4.00 
 9.00 

A A

B B

2

2

1

1

PLA PLASTIC

SPACER 
EXAMPLE

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 5:1

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.



 13.00 

 8.00 

 4.00 
 1.00 

 1.00 

PART 6

PART 5

PART 4

PART 1

PART 2

PART 3

PART 9 PART 8

PART 7

A A

B B

2

2

1

1

PLA PLASTIC

ASSEMBLY OF 
PARTS 1-10

DO NOT SCALE DRAWING

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:
3D PRINTED, NO CLEANUP NECESSARY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

PRINT FINISH
FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN MILLIMETERS

SOLIDWORKS Educational Product. For Instructional Use Only.


	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View5

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View3
	Drawing View4
	Drawing View5

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View3
	Drawing View4
	Drawing View5

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3
	Drawing View4

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3

	Sheet1
	Drawing View1
	Drawing View2
	Drawing View3

	Sheet1
	Drawing View1
	Drawing View3


