Henry, Morse and the Telegraph

Discovery by Scientist – Design by Artist-Entrepreneur

Many dates – pay attention only to ones in boxes

CEE 102: Prof. Michael G. Littman
Course Administrator: Arianna Sherman ariannas@princeton.edu

Computers for NOTETAKING ONLY
Please - NO Cell Phones, Texting, Internet use
Connecting the Continent
1830 – 1883

Information - Transportation

Edward Hopper’s “Railroad Sunset”
Connecting the Continent
1830 – 1883
Information - Transportation

Edward Hopper’s “Railroad Sunset”

Electricity

Morse - intelligence at a distance
Edison - lighting a city
Westinghouse - power at a distance
Marconi – wireless global telegraphy
Electricity

Morse - intelligence at a distance
Edison - lighting a city
Westinghouse - power at a distance
Marconi – wireless global telegraphy
Morse by Morse

Jed Morse (Father - Geographer) by Morse
Morse by Morse

Lucretia Morse (his wife) by Morse
Samuel Morse

1825: painter - president, National Academy of Design

1835: Professor of Art, NYU

1840: engineer - telegraph patent

Morse by Morse
Samuel Morse

1825: painter - president, National Academy of Design
1835: Professor of Art, NYU
1840: engineer - telegraph patent

Eli Whitney by Morse
Eli Whitney by Morse
Buffalo

Albany

Dewitt Clinton by Morse
Samuel Morse painting of his Yale geology teacher, Benjamin Silliman

Dewitt Clinton by Morse
Samuel Morse painting of his Yale geology teacher, Benjamin Silliman
Science and Math HS Teacher
Joseph Henry holding the first sounding telegraph

Silliman’s Journal of Science
Science and Math HS Teacher
Joseph Henry holding the first sounding telegraph
Telegraph - Discovery

- 1820: Electricity linked to Magnetism
- 1825: First Horseshoe Electromagnet
- 1831: Henry’s Strong Electromagnet and Sounding Telegraph
- 1832: Henry comes to Princeton

Science and Math HS Teacher
Joseph Henry holding the first sounding telegraph
Demonstration of compass needle deflection by electric current

Telegraph - Discovery

- 1820 Electricity linked to Magnetism
- 1825 First Horseshoe Electromagnet
- 1831 Henry’s Strong Electromagnet and Sounding Telegraph
- 1832 Henry comes to Princeton
Demonstration of compass needle deflection by electric current.

Why is this demonstration important?

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1820</td>
<td>Electricity linked to Magnetism</td>
</tr>
<tr>
<td>1825</td>
<td>First Horseshoe Electromagnet</td>
</tr>
<tr>
<td>1831</td>
<td>Henry’s Strong Electromagnet and Sounding Telegraph</td>
</tr>
<tr>
<td>1832</td>
<td>Henry comes to Princeton</td>
</tr>
</tbody>
</table>
Electromagnet in circuit with two copper-zinc-acid batteries and on-off switch

Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Sounding Telegraph
1832 Henry comes to Princeton
B = k I N
Magnetic Field

Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Sounding Telegraph
1832 Henry comes to Princeton
B = k I N
Magnetic Field

\[R = \frac{\rho L}{A} \]
Resistance

\[I = \frac{V}{R} \]
Ohm's Law
$B = k I N$

Magnetic Field

$R = \frac{\rho L}{A}$

Resistance

$I = \frac{V}{R}$

Ohm's Law
How does Henry’s sounding telegraph work?

Poles in horseshoe electromagnet reverse when current is reversed

\[\mathbf{B} = \mathbf{k} \mathbf{I} \mathbf{N} \]

Magnetic Field

\[R = \frac{\rho L}{A} \]

Resistance

\[I = \frac{V}{R} \]

Ohm’s Law
B = kIN
Magnetic Field

- Demo of telegraph and weakening effect of a long line
- Multiple batteries in series compensate for long line

\[R = \frac{\rho L}{A} \]
Resistance

\[I = \frac{V}{R} \]
Ohm's Law
The greater the voltage, the greater the current.

The longer the path, the greater the resistance.

\[R = \frac{\rho L}{A} \]

Resistance

Long-path magnetic force can match short-path by using a greater voltage.

- Demo of telegraph and weakening effect of a long line
- Multiple batteries in series compensate for long line

\[I = \frac{V}{R} \]

Ohm's Law

The greater the voltage, the greater the current.
Parallel – more available current

Series – greater voltage

B = k I N

Magnetic Field

Long-path magnetic force can match short-path by using a greater voltage

- Demo of telegraph and weakening effect of a long line
- Multiple batteries in series compensate for long line

1 volt and up to 1 amp
“The electro-magnetic telegraph was invented by me in Albany in 1830.”

“I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire, signals were sent from time to time from my house to my laboratory.”

- Joseph Henry

\[B = k \, I \, N \]

Magnetic Field

Long-path magnetic force can match short-path by using a greater voltage

- Demo of telegraph and weakening effect of a long line
- Multiple batteries in series compensate for long line
“The electro-magnetic telegraph was invented by me in Albany in 1830.”

“I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire, signals were sent from time to time from my house to my laboratory.”

- Joseph Henry
Philosophical Hall

Library

Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
1842 – Henry helps Morse

Joseph Henry’s House in 1836
1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
1842 – Henry helps Morse
Digital signals in use today – WiFi, Ethernet

Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
1842 – Henry helps Morse
Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
1842 – Henry helps Morse
MORSE’S PRINTING TELEGRAPH

ARTIST’S CANVAS STRETCHER
Copper-Zinc Battery
MORSE’S PRINTING TELEGRAPH

ELECTROMAGNET

PEN HOLDER FRAME DEFLECTED BY E-MAGNET

MOVING PAPER TAPE
MORSE’S PRINTING TELEGRAPH

ELECTROMAGNET

PEN HOLDER FRAME DEFLECTED BY E-MAGNET

DEMONSTRATION

MOVING PAPER TAPE
MORSE’S PRINTING TELEGRAPH

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY
Judge Vail – Morse Investor
Alfred Vail – Morse Partner

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY
Judge Vail – Morse Investor
Alfred Vail – Morse Partner

Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
1842 – Henry helps Morse
Judge Vail – Morse Investor
Alfred Vail – Morse Partner

Morse patents a Binary Code
TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting Baltimore to Washington

Morse patents a Binary Code
TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting
Baltimore to Washington

Telegraph Wires along B&O RR
Right-of-Way
TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting Baltimore to Washington

Ezra Cornell
May 24, 1844 at 8:45am

MORSE CODE – dots and dashes embossed on moving tape

Ezra Cornell
May 24, 1844 at 8:45am

Science and Engineering

Discovery
Scientist rings bell

Development
Gov’t Grant, Private Company

Design
Artist plans network

MORSE CODE – dots and dashes embossed on moving tape
Science and Engineering

Discovery
Scientist rings bell

Development
Gov’t Grant, Private Company

Design
Artist plans network

7th and E St, Washington, DC
Morse idea - replace Post Office
Telegraph Lines in 1853
CONNECTING CITIES

7th and E St, Washington, DC
Morse idea - replace Post Office
TELEGRAPH - Later

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

Telegraph Lines in 1853

CONNECTING CITIES
TELEGRAPH - Later

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph
TELEGRAPH - Later

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

CONNECTING THE CONTINENT

Pacific Telegraph Act of 1860 (Pony Express ends service)
TELEGRAPH - Later

1845 – independent companies; wire services; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

US Capitol in 1861

Smithsonian Castle in 1862
Joseph Henry
Peter Cooper
Telegraph Register
Samuel Morse
Christian Schussele’s “Men of Progress”

US Capitol in 1861
Smithsonian Castle in 1862
Stearns Duplex Idea-1872
TWO MESSAGES ON ONE WIRE

DEMONSTRATION

sounders
keys

Joseph Henry
Peter Cooper

Telegraph Register

Samuel Morse

Christian Schussele’s “Men of Progress”
Christian Schussele’s “Men of Progress”

Joseph Henry

Peter Cooper

Telegraph Register

Samuel Morse

Vail telegraph register at Cornell

SIBLEY COLLEGE at CORNELL
Mathew Brady daguerreotype of his photography teacher, Samuel Morse

Vail telegraph register at Cornell

SIBLEY COLLEGE at CORNELL
Mathew Brady daguerreotype of his photography teacher, Samuel Morse
Key Ideas

Scientific
- Strong Electromagnet
- Binary (dot-dash) Code

Social
- Government Investment
- Private Telegraph Company
- Wire Services inform Public

Symbolic
- Artist as Innovator