# Engineering and the Modern World

**Transformation** of Society by Engineering

Prof. Michael G. Littman Princeton University

**VTEEA 2015** 

# Language, History, and Meaning of Engineering

Scientific: formulas

relationships

**Social:** innovators

changes in society

Symbolic: images

changes in vision



# Language, History, and Meaning of Engineering

Scientific: formulas

relationships

**Social:** innovators

changes in society

Symbolic: images

changes in vision



# **Symbolic**

Transformation of Vision

Thomas Cole 1828 - 1846







Steamboat – artist to landscape









Steamboat – artist to landscape



Steam Tractor – tames nature

#### **Building an Urban Society**

structures

machines

networks processes





# **Building an Urban Society**

structures

machines
networks
processes



# **Scientific**

### Transformation of Nature



Thomas Telford 1814 – 1826



## **Scientific**

## Transformation of Nature



Thomas Telford 1814 – 1826



# H d V

$$H = \frac{q \int_{0}^{x} dx}{8dx}$$

#### **Structures: Cable or Arch**

Vertical Deck Weight: q l

Transformed by Form : l/d

Into Horizontal Force: H

Economics – Art – Science



**Structures: Cable or Arch** 

Vertical Deck Weight: q l

Transformed by Form : l/d

Into Horizontal Force: H

George Washington Bridge - 1931 Economics – Art – Science



George Washington Bridge - 1931







P = pressure

L = stroke

A = area

N = frequency





Thermodynamics: Heat to Work



#### **Machines: Piston Engine**

P = pressure

L = stroke

A = area

N = frequency

Piston Force: PA

Maintained at Speed: L N

Transformed to Horsepower: Hp

Power – Speed – Progress

Thermodynamics: Heat to Work



#### **Machines: Piston Engine**

Piston Force: PA

Maintained at Speed: L N

Transformed to Horsepower: Hp

Power – Speed – Progress

Coal-Fired Steam to Electricity





Coal-Fired Steam to Electricity

#### **Networks: Electric Generator**

$$Hp = \frac{VI}{746}$$

Generator Voltage: V

Maintained at Current: I

Transformed to Power: Hp

Power – Speed – Progress



#### **Networks: Electric Generator**

$$Hp = \frac{VI}{746}$$

Generator Voltage: V

Maintained at Current: I

Transformed to Power: Hp

Power – Speed – Progress



Coal-Fired Hematite (Fe<sub>2</sub>O<sub>3</sub>) to Iron

#### **Processes: Blast Furnace**

Fe<sub>2</sub>O<sub>3</sub> + 3C + (3/2)O<sub>2</sub> → 2Fe + 3CO<sub>2</sub>Iron Ore : Fe<sub>2</sub>O<sub>3</sub>

Heated with Coal (Coke): C

and Air : O<sub>2</sub>

Transformed into Iron: Fe

Material – Form – Scale



Coal-Fired Hematite (Fe<sub>2</sub>O<sub>3</sub>) to Iron

#### **Processes: Blast Furnace**

 $\overline{\text{Fe}_2\text{O}_3 + 3\text{C} + (3/2)\text{O}_2} \Rightarrow 2\text{Fe} + 3\text{CO}_2$ 

Iron Ore: Fe<sub>2</sub>O<sub>3</sub>

Heated with Coal (Coke): C

and Air : O<sub>2</sub>

Transformed into Iron: Fe

Material – Form – Scale









Transformation of Society
Structures and Machines

Politics of Public Works
Economics of Private Enterprise



Transformation of Society
Structures and Machines

Politics of Public Works
Economics of Private Enterprise



Transformation of Society

Networks and Processes

Industry Restructures Regions
Public Resources and Private Profits





Transformation of Society

Networks and Processes

Industry Restructures Regions
Public Resources and Private Profits



Transformation of Society

Networks and Processes

Industry Restructures Regions

Public Resources and Private Profits

Resources: Oil to Wealth



Resources: Oil to Wealth

#### Social

Transformation of Society

Networks and Processes

Industry Restructures Regions

Public Resources and Private Profits



#### Age of Iron and Steel

- 1. Independence, Iron, and Industry: 1776 1855
- 2. Connecting the Continent: 1830 1876

#### Age of Power and Speed

- 3. The Rise of the Great American Industries: 1876 – 1939
- 4. Regional Restructuring: 1921- 1964
- 5. Information and Infrastructure: 1946 –

#### Social

Transformation of Society

**Networks and Processes** 

Industry Restructures Regions
Public Resources and Private Profits



#### Age of Iron and Steel

- 1. Independence, Iron, and Industry: 1776 1855
- 2. Connecting the Continent: 1830 1876

#### Age of Power and Speed

- 3. The Rise of the Great American Industries: 1876 – 1939
- 4. Regional Restructuring: 1921- 1964
- 5. Information and Infrastructure: 1946 –



#### Independence, Iron, & Industry 1776 - 1855

Fulton, Livingston and the steamboat

Lowell, Francis and textiles

Stephenson, Thomson and railroads





"The whole of France fits into the Mississippi Basin six times over."

Louisiana Purchase motives the development of the steamboat





"The whole of France fits into the Mississippi Basin six times over."

Louisiana Purchase motives the development of the steamboat



Mississippi River 1824

Economics versus Safety







Mississippi River 1824

Economics versus Safety



# $f_1 = \frac{Pr}{h}$

# **Boiler Explosions**

Franklin Institute

**STRESSES** 

Alfred Guthrie

**STATISTICS** 

Mark Twain

**STORIES** 



Edward Hopper: Railroad Sunset

# **Boiler Explosions**

Franklin Institute

**STRESSES** 

Alfred Guthrie

**STATISTICS** 

Mark Twain

**STORIES** 



Edward Hopper: Railroad Sunset

# **Connecting the Continent 1830 - 1876**

**Stanford** 

and the continental railroad

Henry, Morse and the telegraph

Carnegie, Holley and steel rails



Edward Hopper: Railroad Sunset







Federal Highway Act - 1956

Transportation: Rail to Road







Federal Highway Act - 1956

# The Rise of the Great Industries 1876 - 1939

#### **SPEED**

Ford and Model T

The Wright Brothers and Flyer

Douglas and DC – 3

Transportation: Rail to Road



# The Rise of the Great Industries 1876 - 1939

#### **SPEED**

Ford and Model T

The Wright Brothers and Flyer

Douglas and DC – 3









Luigi Russolo: Dynamism of Auto

# The Rise of the Great Industries 1876 - 1939

#### **POWER**

Edison, Westinghouse and electricity

Rockefeller, Burton and oil refining



# The Rise of the Great Industries 1876 - 1939

#### **POWER**

Edison, Westinghouse and electricity

Rockefeller, Burton and oil refining





















Hoover Dam lit by its own Power





Hoover Dam lit by its own Power

# Regional Restructuring 1921 - 1964

**POWER** 

Morgan and Lilienthal

and Tennessee Valley Authority

Crowe

Hoover Dam and Los Angeles

## Regional Restructuring 1921 - 1964

# SPEED

#### Ammann

and the Port Authority of NY & NJ

## **Douglas**

Streamline, Shapes, and Style

### Regional Restructuring 1921 - 1964

#### **POWER**

## Morgan and Lilienthal

and Tennessee Valley Authority

#### Crowe

Hoover Dam and Los Angeles

# Regional Restructuring 1921 - 1964

#### **SPEED**

#### Ammann

and the Port Authority of NY & NJ

# **Douglas**

Streamline, Shapes, and Style





Santa Clara Valley





Santa Clara Valley





Santa Clara Valley



Silicon Valley
from Agriculture to Industry

# Information and Infrastructure 1946 –

#### **INFORMATION**

Kilby, Noyce and the integrated circuit

Turing, Von Neumann and the digital computer

Jobs, Gates and the personal computer



Silicon Valley

from Agriculture to Industry

### The Microchip

# Information and Infrastructure 1946 –

#### **INFORMATION**

Kilby, Noyce and the integrated circuit

Turing, Von Neumann and the digital computer

Jobs, Gates and the personal computer

1958—The monolithic idea:

Jack St. Clair Kilby

TEXAS INSTRUMENTS

1959—The integrated circuit:
Robert Noyce
FAIRCHILD





# The Microchip

1958—The monolithic idea:
Jack St. Clair Kilby
TEXAS INSTRUMENTS

1959—The integrated circuit:
Robert Noyce
FAIRCHILD





# Infrastructure

- River and Rail
- Road and Airway
- Grid, Pipeline, Net

### The Microchip

1958—The monolithic idea:
Jack St. Clair Kilby
TEXAS INSTRUMENTS

1959—The integrated circuit:
Robert Noyce
FAIRCHILD





# Information and Infrastructure 1946 –

2003 – Northeast Blackout

2005 – New Orleans Flood

2007 – Minneapolis Bridge Collapse

2010 – Gulf Oil Spill

2013 – Leak of Information

### Infrastructure

- River and Rail
- Road and Airway
- Grid, Pipeline, Net

# 1946 –

## Information and Infrastructure Information and Infrastructure 1946 –

Power: Smart Grid 2003 – Northeast Blackout

2005 – New Orleans Flood Energy: Wind, Solar

Materials: Composites 2007 – Minneapolis Bridge Collapse

Information: GPS, Wi-Fi 2010 – Gulf Oil Spill

2013 – Leak of Information



Piet Mondrian: Composition

# Information and Infrastructure 1946 –

2003 – Northeast Blackout

2005 – New Orleans Flood

2007 – Minneapolis Bridge Collapse

2010 – Gulf Oil Spill

2013 – Leak of Information





Piet Mondrian: Composition



Piet Mondrian: Composition

Broadway Boogie Woogie

# Course Objectives

What are the great works of modern engineering?

Who are key innovators?

What are their contributions?

What was their experience?

What is a radical innovation?

How do innovations happen?

How has the modern world been transformed?



Broadway Boogie Woogie

# Course Objectives

What are the great works of modern engineering?

Who are key innovators?

What are their contributions?

What was their experience?

What is a radical innovation?

How do innovations happen?

How has the modern world been transformed?

# Educational Philosophy

- teach fundamentals keep it simple
- radical innovations change the world
- less is more stay out of the weeds
- engineering design is work of individuals
- tell them, show them, have them do it
- and right after it is presented
- make connections to the modern day
- have fun