Henry, Morse and the Telegraph

The Scientist and The Artist - Discovery and Design

CEE 102: Prof. Michael G. Littman
Course Administrator: Hiba Abdel-Jaber hiba@princeton.edu

Computers allowed for NOTETAKING ONLY
Please - NO Cell Phones, Texting, Internet use
Connecting the Continent
1830 – 1883

Information - Transportation

Edward Hopper’s “Railroad Sunset”
Connecting the Continent
1830 – 1883

Information - Transportation

Edward Hopper’s “Railroad Sunset”

Electricity

Morse - intelligence at a distance

Edison - lighting a city

Westinghouse - power at a distance

Marconi – wireless global telegraphy
Morse by Morse

Electricity

Morse - intelligence at a distance

Edison - lighting a city

Westinghouse - power at a distance

Marconi – wireless global telegraphy
Morse by Morse
Morse by Morse
Morse by Morse

Samuel Morse

1825: painter - president, National Academy of Design

1835: Professor of Art, NYU

1840: engineer - telegraph patent
Eli Whitney

Samuel Morse

1825: painter - president, National Academy of Design

1835: Professor of Art, NYU

1840: engineer - telegraph patent
Albany

Buffalo
Dewitt Clinton

Buffalo

Albany

Dewitt Clinton
Prof. Benjamin Silliman

Dewitt Clinton
THE
AMERICAN JOURNAL
OF
SCIENCE AND ARTS.

CONDUCTED BY

BENJAMIN SILLIMAN, M. D. LL. D.
Prof. Chem., Min., &c. in Yale Coll.; Cor. Mem. Soc. Arts, Man. and Com.; and
Mem. of various lit. and scien. Soc. in America.

VOL. XXII.—JULY, 1832.

NEW HAVEN:
Published and Sold by HEZEKIAH HOWE & Co. and A. H. MALTRY.
Baltimore, E. J. COALE & J. S. LITTELL.—Philadelphia, E. LITTELL and
CAREY & HART.—New York, G. & C. & H. CARVILL.—Boston, HILLIARD, GRAY, LITTLE & WILKINS.

PRINTED BY HEZEKIAH HOWE & CO.
THE
AMERICAN JOURNAL
OF
SCIENCE AND ARTS.

CONDUCTED BY

BENJAMIN SILLIMAN, M. D. LL. D.

Prof. Chem., Min., &c. in Yale Coll.; Cor. Mem. Soc. Arts, Man. and Com.; and
Mem. of various Lit. and Scien. Soc. in America.

VOL. XXII.—JULY, 1832.

NEW HAVEN:

Published and Sold by HEZEKIAH HOWE & Co. and A. H. MALGREY,
Baltimore; E. J. COALE & J. S. LITTLE;—Philadelphia; E. LITTLE and
CAREY & HART,—New York; G. & C. & H. CARVILL,—Boston; HILLIARD, GRAY, LITTLE & WILKINS.

PRINTED BY HEZEKIAH HOWE & CO.
Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Telegraph
Demonstration of compass needle deflection by electric current

Telegraph - Discovery

- 1820: Electricity linked to Magnetism
- 1825: First Horseshoe Electromagnet
- 1831: Henry’s Strong Electromagnet and Telegraph
Demonstration of compass needle deflection by electric current

Why is this demonstration important?

Telegraph - Discovery

- 1820 Electricity linked to Magnetism
- 1825 First Horseshoe Electromagnet
- 1831 Henry’s Strong Electromagnet and Telegraph
Electromagnet in circuit with copper-zinc batteries and on-off switch

Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Telegraph
Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Telegraph
Telegraph - Discovery

1820 Electricity linked to Magnetism
1825 First Horseshoe Electromagnet
1831 Henry’s Strong Electromagnet and Telegraph
Ohm's Law

\[I = \frac{V}{R} \]

Resistance

\[R = \frac{\rho L}{A} \]
Ohm's Law

$$I = \frac{V}{R}$$

Resistance

$$R = \frac{\rho L}{A}$$
How does Henry’s sounding telegraph work?

Pole-reversal
• Demo of telegraph and weakening effect of a long line

• Multiple batteries in series compensate for long line

• Earth as return conductor – allows for single wire telegraph

\[I = \frac{V}{R} \]

Ohm's Law

\[R = \frac{\rho L}{A} \]

Resistance
How Ohm’s Law helps us to understand Henry’s experiment?

- Demo of telegraph and weakening effect of a long line
- Multiple batteries in series compensate for long line
- Earth as return conductor – allows for single wire telegraph

Ohm’s Law

\[I = \frac{V}{R} \]

The greater the voltage, the greater the current

Resistance

\[R = \frac{\rho L}{A} \]

The longer the path, the greater the resistance
How Ohm’s Law helps us to understand Henry’s experiment?

• Demo of telegraph and weakening effect of a long line
• Multiple batteries in series compensate for long line
• Earth as return conductor – allows for single wire telegraph

Parallel – more available current
Series – greater voltage

1 volt and up to 1 amp
The electro-magnetic telegraph was invented by me in Albany in 1830.

I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire signals were sent from time to time from my house to my laboratory.

- Joseph Henry
“The electro-magnetic telegraph was invented by me in Albany in 1830.”

“I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire signals were sent from time to time from my house to my laboratory.”

- Joseph Henry
“The electro-magnetic telegraph was invented by me in Albany in 1830.”

“I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire signals were sent from time to time from my house to my laboratory.”

- Joseph Henry
“The electro-magnetic telegraph was invented by me in Albany in 1830.”

“I think that the first actual line of telegraph using the earth as a conductor was made in the beginning of 1836. A wire was extended across the front campus of the College grounds from the upper story of the Library building to the Philosophical Hall on the opposite side, the ends terminating in two wells. Through this wire signals were sent from time to time from my house to my laboratory.”

- Joseph Henry
Telegraph - Design

- 1832 – Morse’s shipboard idea
- 1836 – Gale and Vail help out
- 1838 – Morse shows Van Buren

Philosophical Hall

Library

Joseph Henry’s House in 1836
Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
181th Anniversary of Digital Code
31th Anniversary of CD

Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren
MORSE’S PRINTING TELEGRAPH

Telegraph - Design

- 1832 – Morse’s shipboard idea
- 1836 – Gale and Vail help out
- 1838 – Morse shows Van Buren
MORSE’S PRINTING TELEGRAPH

ARTIST’S CANVAS STRETCHER
Copper-Zinc Battery
MORSE’S PRINTING TELEGRAPH

ELECTROMAGNET

PEN HOLDER FRAME DEFLECTED BY E-MAGNET

MOVING PAPER TAPE
MORSE’S PRINTING TELEGRAPH

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY
DEMONSTRATION

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY
Judge Vail – Morse Investor
Alfred Vail – Morse Partner

MOVEABLE TYPE HOLDER

CONTACTS USING MERCURY
Telegraph - Design

1832 – Morse’s shipboard idea
1836 – Gale and Vail help out
1838 – Morse shows Van Buren

Judge Vail – Morse Investor
Alfred Vail – Morse Partner
MORSE PATENTS THE IDEA OF A BINARY INFORMATION CODE

Judge Vail – Morse Investor
Alfred Vail – Morse Partner
MORSE PATENTS THE IDEA OF A BINARY INFORMATION CODE

TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting Baltimore to Washington
TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting Baltimore to Washington

Telegraph Wires along B&O RR Right-of-Way
TELEGRAPH - Early

Congress - $30,000 to Morse
Morse - hires Vail & Cong. Smith
Smith - hires Ezra Cornell

38 miles connecting
Baltimore to Washington
May 24, 1844 at 8:45am

MORSE CODE – dots and dashes

Ezra Cornell
Discovery
Scientist and remote sounder

Development
Gov’t Grant, Private Company

Design
Artist plans whole network

May 24, 1844 at 8:45am

MORSE CODE – dots and dashes
Science and Engineering

Discovery
Scientist and remote sounder

Development
Gov’t Grant, Private Company

Design
Artist plans whole network

7th and E St, Washington, DC
7th and E St, Washington, DC

Telegraph Lines in 1853

CONNECTING CITIES
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

Telegraph Lines in 1853

CONNECTING CITIES
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph

CONNECTING THE CONTINENT
TELEGRAPH - Later

1845 – independent telegraph companies; patent disputes

1856 – Western Union – Cornell becomes the major stockholder

1861 – Western Union completes Transcontinental Telegraph Line

1872 – Stearns invents Duplex Telegraph
Christian Schussele’s “Men of Progress”
Joseph Henry

Samuel Morse

Christian Schussele’s “Men of Progress”
Joseph Henry

Samuel Morse

Telegraph Register

Christian Schussele’s “Men of Progress”

Stearns Duplex Idea-1872
TWO MESSAGES ON ONE WIRE

DEMONSTRATION

sounders

keys
Christian Schussele’s “Men of Progress”

Joseph Henry

Samuel Morse

Telegraph Register

Vail telegraph register at Cornell

SIBLEY COLLEGE at CORNELL
Vail telegraph register at Cornell

SIBLEY COLLEGE at CORNELL
Telegraphers

Morse telegraph
Carnegie steel industry
Bell telephone
Edison electric power
Marconi wireless
<table>
<thead>
<tr>
<th>Telegraphers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morse</td>
</tr>
<tr>
<td>Carnegie</td>
</tr>
<tr>
<td>Bell</td>
</tr>
<tr>
<td>Edison</td>
</tr>
<tr>
<td>Marconi</td>
</tr>
<tr>
<td>Telegraphers</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Morse</td>
</tr>
<tr>
<td>Carnegie</td>
</tr>
<tr>
<td>Bell</td>
</tr>
<tr>
<td>Edison</td>
</tr>
<tr>
<td>Marconi</td>
</tr>
<tr>
<td>Telegraphers</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Morse</td>
</tr>
<tr>
<td>Carnegie</td>
</tr>
<tr>
<td>Bell</td>
</tr>
<tr>
<td>Edison</td>
</tr>
<tr>
<td>Marconi</td>
</tr>
</tbody>
</table>
Telegraphers

Morse telegraph
Carnegie steel industry
Bell telephone
Edison electric power
Marconi wireless
Telegraphers

Morse telegraph
Carnegie steel industry
Bell telephone
Edison electric power
Marconi wireless
Key Ideas

Scientific
Electromagnetic Binary Code

Social
Public Investment
Private Industry

Symbolic
Artist as Innovator