Engineering and the Modern World

Transformation of Society by Engineering

CEE 102: Prof. Michael G. Littman

Course Administrator: Hiba Abdel-Jaber hiba@princeton.edu

Computers allowed for NOTETAKING ONLY Please - NO Cell Phones, Texting, Internet use

Language, History, and Meaning of Engineering

Scientific: formulas

relationships

Social: innovators

changes in society

Symbolic: images

changes in vision

Language, History, and Meaning of Engineering

Scientific: formulas

relationships

Social: innovators

changes in society

Symbolic: images

changes in vision

Symbolic

Transformation of Vision

Thomas Cole 1828 - 1846

Steamboat – artist to landscape

Steam Tractor – tames nature

Steamboat – artist to landscape

Steam Tractor – tames nature

Building an Urban Society

structures

machines

networks processes

Building an Urban Society

structures

machines
networks
processes

Scientific

Transformation of Nature

Thomas Telford 1814-1826

Scientific

Transformation of Nature

Thomas Telford 1814 - 1826

Structures: Cable or Arch

Vertical Deck Weight: q l

Transformed by Form : l/d

Into Horizontal Force: H

George Washington Bridge - 1931

Structures: Cable or Arch

Vertical Deck Weight: q l

Transformed by Form : l/d

Into Horizontal Force: H

George Washington Bridge - 1931

P = pressure

L = stroke

A = area

N = frequency

Thermodynamics: Heat to Work

Machines: Piston Engine

P = pressure

L = stroke

A = area

N = frequency

Piston Force: PA

Maintained at Speed: L N

Transformed to Horsepower: Hp

Thermodynamics: Heat to Work

Machines: Piston Engine

Piston Force: PA

Maintained at Speed: L N

Transformed to Horsepower: Hp

Coal-Fired Steam to Electricity

Coal-Fired Steam to Electricity

Networks: Electric Generator

 $\mathbf{P}_{\text{Watts}} = \mathbf{V} \mathbf{I}$

Generator Voltage: V

Maintained at Current: I

Transformed to Power: P_{Watts}

Networks: Electric Generator

 $\mathbf{P}_{\mathbf{Watts}} = \mathbf{V} \mathbf{I}$

Generator Voltage: V

Maintained at Current: I

Transformed to Power: P_{Watts}

Coal-Fired Hematite (Fe₂O₃) to Iron

Process: Blast Furnace

 $\overline{\text{Fe}_2\text{O}_3 + 3\text{C} + (3/2)\text{O}_2} \Rightarrow 2\text{Fe} + 3\text{CO}_2$

Iron Ore: Fe₂O₃

Heated with Coal (Coke): C

and Air : O₂

Transformed into Iron: Fe

Coal-Fired Hematite (Fe₂O₃) to Iron

Process: Blast Furnace

 $\overline{\text{Fe}_2\text{O}_3 + 3\text{C} + (3/2)\text{O}_2} \rightarrow 2\overline{\text{Fe} + 3\text{C}\text{O}_2}$

Iron Ore: Fe₂O₃

Heated with Coal (Coke): C

and Air : O₂

Transformed into Iron: Fe

Transformation of Society

Structures and Machines

Politics of Public Works
Economics of Private Enterprise

Transformation of Society

Structures and Machines

Politics of Public Works
Economics of Private Enterprise

Transformation of Society

Networks and Processes

Industry Restructures Regions
Public Resources and Private Profit

Transformation of Society

Networks and Processes

Industry Restructures Regions
Public Resources and Private Profit

Transportation: River to Rail

Transformation of Society

Networks and Processes

Industry Restructures Regions
Public Resources and Private Profit

Resources: Oil to Wealth

Transformation of Society

Politics: Territorial Development

Resources: Oil to Wealth

Age of Iron and Steel

- 1. Independence, Iron, and Industry: 1776 1855
- 2. Connecting the Continent: 1830 1876

Age of Power and Speed

- 3. The Rise of the Great American Industries: 1876 – 1939
- 4. Regional Restructuring: 1921
 1964
- 5. Information and Infrastructure: 1946 –

Social

Transformation of Society

Politics: Territorial Development

Age of Iron and Steel

- 1. Independence, Iron, and Industry: 1776 1855
- 2. Connecting the Continent: 1830 1876

Age of Power and Speed

- 3. The Rise of the Great American Industries: 1876 – 1939
- 4. Regional Restructuring: 1921- 1964
- 5. Information and Infrastructure: 1946 –

Independence, Iron, & Industry 1776 - 1855

Fulton, Livingston and the steamboat

Lowell, Francis and textiles

Stephenson, Thomson and railroads

"The whole of France fits into the Mississippi Basin six times over."

"The whole of France fits into the Mississippi Basin six times over."

Mississippi River 1824

Economics versus Safety

Mississippi River 1824

Economics versus Safety

Boiler Explosions

Franklin Institute

STRESSES

Alfred Guthrie

STATISTICS

Mark Twain

STORIES

Boiler Explosions

Franklin Institute

STRESSES

Alfred Guthrie

STATISTICS

Mark Twain

STORIES

Connecting the Continent 1830 - 1876

Stanford

and the continental railroad

Henry, Morse and the telegraph

Carnegie, Holley and steel rails

Federal Highway Act - 1956

Transportation: Rail to Road

Federal Highway Act - 1956

The Rise of the Great Industries 1876 - 1939

SPEED

Ford and Model T

The Wright Brothers and Flyer

Douglas and DC – 3

Transportation: Rail to Road

The Rise of the Great Industries 1876 - 1939

SPEED

Ford and Model T

The Wright Brothers and Flyer

Douglas and DC – 3

The Rise of the Great Industries 1876 - 1939

POWER

Edison, Westinghouse and electricity

Rockefeller, Burton and oil refining

The Rise of the Great Industries 1876 - 1939

POWER

Edison, Westinghouse and electricity

Rockefeller, Burton and oil refining

Hoover Dam lit by its own Power

Hoover Dam lit by its own Power

Regional Restructuring 1921 - 1964

POWER

Morgan and Lilienthal

and Tennessee Valley Authority

Crowe

Hoover Dam and Los Angeles

Regional Restructuring 1921 - 1964

Regional Restructuring 1921 - 1964

SPEED

Ammann

and the Port Authority of NY & NJ

Douglas

Streamline, Shapes, and Style

POWER

Morgan and Lilienthal

and Tennessee Valley Authority

Crowe

Hoover Dam and Los Angeles

Regional Restructuring 1921 - 1964

SPEED

Ammann

and the Port Authority of NY & NJ

Douglas

Streamline, Shapes, and Style

Santa Clara Valley

Santa Clara Valley

Santa Clara Valley

Silicon Valley

Information and Infrastructure 1946 –

INFORMATION

Kilby, Noyce and the integrated circuit

Turing, Von Neumann and the computer

Silicon Valley

Information and Infrastructure 1946 –

INFORMATION

Kilby, Noyce and the integrated circuit

Turing, Von Neumann and the computer

The Microchip

1958—The monolithic idea:
Jack St. Clair Kilby
TEXAS INSTRUMENTS

1959—The integrated circuit:
Robert Noyce
FAIRCHILD

Infrastructure

- River and Rail
- Road and Airway
- Grid and Pipeline

The Microchip

1958—The monolithic idea:

Jack St. Clair Kilby

TEXAS INSTRUMENTS

1959—The integrated circuit:

Robert Noyce FAIRCHILD

Information and Infrastructure 1946 –

2003 – Northeast Blackout

2005 – New Orleans Flood

2007 – Minneapolis Bridge Collapse

2010 – Gulf Oil Spill

Infrastructure

- River and Rail
- Road and Airway
- Grid and Pipeline

Information and Infrastructure 1946 –

Information and Infrastructure 1946 –

Power: Smart Grid 2003 – Northeast Blackout

Energy: Wind, Solar 2005 – New Orleans Flood

Materials: Composites 2007 – Minneapolis Bridge Collapse

Information: GPS, Wi-Fi 2010 – Gulf Oil Spill

Information and Infrastructure 1946 –

2003 – Northeast Blackout

2005 – New Orleans Flood

2007 – Minneapolis Bridge Collapse

2010 – Gulf Oil Spill

Course Objectives

What are the great works of modern engineering?

Who are key innovators?

What are their contributions?

What was their experience?

What is a radical innovation?

How do innovations happen?

How has the modern world been transformed by engineering?

