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The correspondence principle for atomic radiation is extended to all hydrogenic statesn andl .0. Lifetimes
and branching ratios are obtained using analytic calculations of the classical radiated spectrum for the elliptical
orbit corresponding to a particular quantum state. The polarization of the radiation is used to separate out the
angular momentum decreasing and increasing transitions. The lifetimes show excellent agreement with quan-
tum mechanics for all principal quantum numbersn and l ù1 se.g.,,100 parts per million forl ù30, ,0.1%
for l ù9, ,1% for l ù3d. The calculated branching ratios are in reasonable agreement with quantum results for
all n8, l8, n, and l ù1.
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Spontaneous radiative decay of even the simplest quan-
tum systems, such as atomic hydrogen, becomes difficult to
calculate in quantum mechanics if one is interested in high-n
Rydberg levels. The understanding of radiative cascades in
plasmas is of importance in astrophysics as well as in recent
laboratory experiments to form antihydrogenf1g. A classical
treatment of the problem on the basis of the correspondence
principle sCPd is desirable even from this practical point of
view. Such an approach will be even more useful when the
effects from external fields are to be included.

Heisenberg used the CP in this regardf2g and noticed that
the radial quantum transition matrix elements for transitions
to neighboring principal quantum number statesn→n−1
sand to a lesser extent forn→n−2d are described accurately
by the Fourier coefficents of the Bohr orbit trajectory. Kram-
ers f3g and collaborators worked out a theory of absorption
and emission of radiation, and van Vleckf4g formulated the
theory of Einstein coefficients and a CP for transition rates.
With the development of quantum mechanics, the classical
decay model was forgotten, and the usefulness of the classi-
cal picture was noted mostly in the context of near-circular
orbits f5g.

We take the point of view that the CP implies that there
should be a complete classical theory that is the analog of the
quantum field theoretic problem of a spontaneously radiating
atom. This theory consists simply of classical Kepler-
Coulomb orbits, as well as the classical Larmor radiated
power for the accelerated charges. The rate of radiation is
sufficiently slow such that averaging over Keplerian orbits is
permissible.

Recently Flannery and Vrinceanuf6g showed that the
classical evolution of a givensn, ld Rydberg orbit describes
the average properties of the quantum-mechanical cascades.
The authors also obtain an estimate of radial matrix elements
by multiplying the Fourier coefficients for the initial and
final orbits, obtaining good approximations for the quantum-
mechanical matrix elementsf2g even for largeDn. The re-
sulting decay rates are accurate over a significant range of
transitions, but fail for largeDn for initial states withl /n
,1/3.

The purpose of the present paper is to show that a
straightforward treatment of the simple problem of a classi-

cally radiating elliptical orbit leads to accurate estimates for
lifetimes and branching ratios. In particular, we show that
these quantities can be deduced from the rate of classical
radiation, and from the spectrum and polarization of this ra-
diation. Both the lifetimes and the branching ratios are ob-
tained directly from the classical properties of the initial or-
bit, without the need to invoke the properties of the final-
state orbit. This direct approach yields very accurate
lifetimes and branching ratios that are a good approximation
of the quantum results for alln, l .0.

It is remarkable that this work appears so much later than
the original semiclassical and quantum developments. We
note, however, that in the context of semiclassical approxi-
mations to the Clebsch-Gordan coefficients, there has also
been a recent revival of interest in this fieldf7g.

An elliptical orbit is characterized by energyE and angu-
lar momentumL, or alternatively by the semimajor axis

a =
− Ze2

2E
=

n2"

mZac
, s1d

and eccentricity

e =Î1 +
2EL2

Z2a2mc2"2 =Î1 −
sl + 1

2d2

n2 , s2d

wherem is the electron mass andZe is the nuclear charge.
The semiclassical quantization ruleL2= sl + 1

2
d2

"2 is used.
This quantization of angular momentum is necessary in order
to obtain classical orbits whose energies are consistent with
the Schrödinger eigenenergiesE=−Z2a2mc2/ s2n2d, and fol-
lows from the Einstein-Brillouin-Keller approach. It is also
used in the semiclassical wavefunction-based WKB method
as postulated by Langerf8g. The connection of this quanti-
zation prescription to the quantum result ofL2= lsl +1d"2 was
investigated recentlyf9g.

To calculate the spectrum of the classical radiation, it is
necessary to decompose the position vector for the elliptical
orbit into a Fourier series. For an orbit in thexy plane and
the perihelion aligned with the positivex axis,
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where

v =Î − 8E3

Z2mc2"2a2 =
Z2a2mc2

"n3 s4d

is the fundamental frequency of the orbit. The Fourier coef-
ficients are given asf10g

bk =
2

k
Jk8sked, ck =

2

k
Îe−2 − 1Jksked, s5d

where the Bessel functionsJk and their derivativesJk8 depend
on the eccentricitye.

After inserting the Fourier expansion of the trajectory into
the Larmor formula for classical radiation

Pr =
2a"

3c2 ur̈ u2, s6d

and averaging over time we find

kĖl = − S2a"

3c2 D1

2
a2v4o

k=1

`

k4sbk
2 + ck

2d. s7d

To understand how this radiated power changes the angu-
lar momentum of the classical orbit, we rewrite Eq.s3d in
terms of spherical vectors.r std /a is the real part of

−
3e

2
x̂ + Fo

k=1

`

e−ikvtSdk
+ x̂ + i ŷ

Î2
+ dk

− x̂ − i ŷ
Î2

DG , s8d

wheredk
±=sbk±ckd /Î2. The contributions fromdk

+ lead only
to radiation with angular momentum in the same direction as
the orbiting electronf11g, and thus represent angular momen-
tum decreasing transitions. Similarly thedk

− contributions
represent angular momentum increasing transitions. It is thus
possible to separate each term in Eq.s7d into two separate
terms

kĖl =
− a"a2v4

3c2 o
k=1

` Fk4

2
sbk + ckd2 +

k4

2
sbk − ckd2G , s9d

where the first representsDl =−1 transitions and the second
representsDl = +1 transitions.

In quantum mechanics, the time evolution of an initial
state sn, ld is determined by the partial transition rates
rn,l→n8,l8, which in the dipole approximation are given by

rn,l→n8,l8 =
a7m3c4Z6 maxsl,l8d

6"3s2l + 1d
uknlur un8l8lu2S 1

n82 −
1

n2D3

.

s10d

The rate of energy loss is just

Ėqm = −F o
Dn=1

n−l−2

rDn,+
qm + o

Dn=1

n−l

rDn,−
qm G"vDn

qm, s11d

where rDn,±
qm =rn,l→n8=n−Dn,l8=l±1, and vDn

qm=sEn−En8d /" is the
angular frequency of the radiation.

By analogy, the classical energy loss can be written as

Ėcl = − o
k=1

`

frk,+
cl + rk,−

cl g"vk
cl, s12d

where therk,±
cl are the classical rates for increasing or de-

creasing angular momentum by" while decreasing energy
by "vk

cl, wherevk
cl=kv is the angular frequency of thekth

harmonic.
From Eq.s9d, we see that these rates are given by

rk,±
cl =

aa2

6c2 sbk 7 ckd2svk
cld3. s13d

Since ckøbk swith equality when e=0d, rk,+
cl ø rk,−

cl . This
shows that the classical rates for angular momentum increas-
ing transitions are lower than those for angular momentum
decreasing transitions.

Using the partial rates defined above, the quantum me-
chanical lifetime is given by

tqm = Fo
Dn

srDn,+
qm + rDn,−

qm dG−1
. s14d

Similarly, the classical estimate of the lifetime is given by

tcl = Fo
k=1

`

srk,+
cl + rk,−

cl dG−1

, s15d

which using Eqs.s13d and s5d can be expressed as

tcl = F4Z4a5mc2

3n5"
o
k=1

`

kSJk8
2sked +

1 − e2

e2 Jk
2skedDG−1

.

s16d

This classical estimate is remarkably successful in pre-
dicting the actual quantum mechanical lifetime. The contour
graph over the plane of initial state quantum numberssn, ld
given in Fig. 1 shows that this estimate is good to 30 parts
per million sppmd for l .55, to,100 ppm forl ù30,,0.1%
for l ù9, ,1% for l ù3, and,5% for l ù1. Equations16d
fails for l =0 states, for which quantum mechanics forbids the
dominantl-decreasing transitions included in the derivation
of that equation. Furthermore, the highly elliptical classical
orbits of thesel =0 states radiate appreciably at very high
harmonics of the orbital frequency, and these frequencies
would correspond to decays down to energies below those
allowed for in quantum mechanics. Figure 1 also shows that
Eq. s16d forms an upper bound for the quantum mechanical
lifetimes.

An approximationsgood to 10% for alln, l .0d to our
lifetime expression Eq.s16d is given by

tcl
0 =

3n5"

2Z4a5mc2s1 − e2d =
3n3"

2Z4a5mc2Sl +
1

2
D2

. s17d

This approximation has been discussed in detail in Ref.f12g,
and has been usedf13g to explain many experimental data.
The formula was derived in Ref.f12g from the rate of change
of angular momentum. To compare to that derivation, we
note that, by the definition ofrk,±

cl , the rate of decrease of
angular momentum is
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− kL̇l = "o
k=1

`

srk,−
cl − rk,+

cl d. s18d

Using Eqs.s13d ands5d, this expression can be summed ana-
lytically to get

− kL̇l = S2a"

3c2 D a2v3

1 − e2 =
"

tcl
0 , s19d

in exact agreement with the expression forkL̇l obtained di-
rectly from averaging the equations of motionf11,12g. Note
that whereas −rk,+

cl appears in Eq.s18d, +rk,+
cl appears in Eq.

s15d, causing the estimate of 1/tcl
0 from Ref.f12g to miss two

times thel-increasing rate. Because thisl-increasing rate is
small s,5% of the l-decreasing rated, Eq. s17d is a reason-
able approximation and forms an upper boundf13g to the
lifetimes. Our use of the polarization of the emitted radiation
to separate outDl = +1 andDl =−1 rates allows us to include
the l-increasing rate with the correct sign and leads to the
high accuracy of Eq.s16d.

We expect that our very accurate expression for hydro-
genic lifetimes for states of highn and l, for which the cal-
culation of exact quantum results is computationally very
difficult will lead to more accurate simulations of radiative
phenomena.

The quantum-mechanical branching ratio for a statesn, ld
to a statesn−Dn, l ±1d is given by

bDn,±
qm =

rDn,±
qm

oDn
srDn,+

qm + rDn,−
qm d

= rDn,±
qm tqm. s20d

These are plotted forn=30, l =18, Dl =−1 in Fig. 2. The
classical analogs,rk,−

cl tcl, are plotted as squares in the figure.
For k=1 there is reasonable agreement withr1,−

qmtqm sas
pointed out by Heisenbergd, but the approximation becomes

poorer for largerk. The problem for higherk is that the
classical radiation occurs at equally spaced frequency inter-
vals, whereas the quantum-mechanical radiation occurs at
increasingly spaced frequency intervals. If we correct for this
discrepancy and compare the total branching ratio per unit of
frequency, the classical results show much better agreement
with the quantum rates. This correction can best be done by
noting that

vDn
qm =

En − En−Dn

"
= kDnv, s21d

wherekDn is thesnonintegerd effective harmonic index and is
given by

kDn =
n

2
fs1 − Dn/nd−2 − 1g. s22d

The density of classical frequencieskv is larger than the
quantum density of radiated frequencies by a factor of

dkDn

dDn
= s1 − Dn/nd−3. s23d

Therefore, a classical estimate of theDn transition rate is
given by

RDn,±
cl = rkDn,±

cl s1 − Dn/nd−3. s24d

The fact thatkDn is not necessarily an integer is not a prob-
lem, since

FIG. 1. Relative error between the classical lifetime as calcu-
lated from the Fourier spectrum and the quantum lifetimes as a
function of then and l quantum numbers in parts per million.

FIG. 2. Branching ratios vs radiation frequency for then=30,
l =18 initial state.h: classical harmonic spectrum;1: quantum
branching ratios;s: present classical estimates for the branching
ratios.
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rk,±
cl =

2a5Z4mc2

3n5"
kSJk8sked 7Î 1

e2 − 1 JkskedD2

s25d

can easily be evaluated at noninteger valuesk=kDn. By anal-
ogy to Eq.s20d, a classical estimate of theDn branching ratio
is given by

bDn,±
cl =

RDn,±
cl

oDn
sRDn,+

cl + RDn,−
cl d

. s26d

In Fig. 3sad we show the branching ratios for radiative
decays of then=90, l =15 Rydberg state going to alln−Dn,
l8=14 states. Our classical estimates of branching ratios
show the same basic pattern as the quantum branching ratios.

As expected, the method of Ref.f6g fails for this example of
low l /n. Our classical estimates are excellent at small fre-
quenciesf, somewhat small at intermediatef, and somewhat
too high at largef.

For the much smallerDl = +1 branching ratios shown in
Fig. 3sbd, our classical calculations do well in the most rel-
evant part of the spectrum. For higherf our data again some-
what overestimate the branching ratios, while the model of
Ref. f6g again shows a significant drop.

From Fig. 3 it can be seen that all of the branching ratios
for this initial n=90, l =15 state agree with our classical es-
timate to an absolute accuracy of 0.25%. A better figure of
merit is the difference between the classical estimate and the
quantum branching ratio divided by the maximum branching
ratio for the state. It can be seen from the figure that for all
Dn, the discrepancies between the classical estimates and the
quantum calculations are less than 10% of the maximum
branching ratio, with the majority showing much better
agreement than this. For higher-l initial states, the agreement
becomes even better, scaling approximately as 1/l. Even for
lower-l initial states, the discrepancy between our classical
estimate and the quantum branching ratio is less than 35%
for all branching ratios from any initial statesn, l .0d to any
final statesn8 , l8d, with the vast majority being estimated by
the classical formula to within a few percent of the maxi-
mum branching ratio.

In summary, we have presented an extension of the cor-
respondence principle for radiative transitions based on solv-
ing the problem of a radiating hydrogenic Bohr atom in clas-
sical electrodynamics. It is shown that the radiative lifetimes
agree extremely well with the quantum results. The branch-
ing ratios also agree reasonably well, which means that the
model should work for cascade models of Rydberg transi-
tions. The lifetimes and branching ratios are presented as
simple expressions involving Bessel functions, and are there-
fore easily computed.

Although this paper considered only hydrogenic atoms,
the results are also relevant to highly excitedsRydbergd
states of any atom or molecule, since these are well approxi-
mated by hydrogenic states. Inclusion of a polarizable core
and a charge distribution in the center of the classical orbit
may allow the result to be extended to include the most
important nonhydrogenic features and thus also describe
lower excitation states.
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