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The correspondence principle for atomic radiation is extended to all hydrogenicrstaid$> 0. Lifetimes
and branching ratios are obtained using analytic calculations of the classical radiated spectrum for the elliptical
orbit corresponding to a particular quantum state. The polarization of the radiation is used to separate out the
angular momentum decreasing and increasing transitions. The lifetimes show excellent agreement with quan-
tum mechanics for all principal quantum numbarandl =1 (e.g.,<100 parts per million fot =30, <0.1%
for 1=9, <1% forl=3). The calculated branching ratios are in reasonable agreement with quantum results for
alln’, l’, n, andl = 1.
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Spontaneous radiative decay of even the simplest quargally radiating elliptical orbit leads to accurate estimates for
tum systems, such as atomic hydrogen, becomes difficult thfetimes and branching ratios. In particular, we show that
calculate in quantum mechanics if one is interested in high- these quantities can be deduced from the rate of classical
Rydberg levels. The understanding of radiative cascades ifadiation, and from the spectrum and polarization of this ra-
plasmas is of importance in astrophysics as well as in recentiation. Both the lifetimes and the branching ratios are ob-
laboratory experiments to form antihydrogld. A classical  tained directly from the classical properties of the initial or-
treatment of the problem on the basis of the correspondengsit, without the need to invoke the properties of the final-
principle (CP) is desirable even from this practical point of state orbit. This direct approach vyields very accurate
view. Such an approach will be even more useful when théifetimes and branching ratios that are a good approximation
effects from external fields are to be included. of the quantum results for afi,| >0.

Heisenberg used the CP in this regf2¢land noticed that It is remarkable that this work appears so much later than
the radial quantum transition matrix elements for transitionshe original semiclassical and quantum developments. We
to neighboring principal quantum number states:n-1  note, however, that in the context of semiclassical approxi-
(and to a lesser extent for—n-2) are described accurately mations to the Clebsch-Gordan coefficients, there has also
by the Fourier coefficents of the Bohr orbit trajectory. Kram-peen a recent revival of interest in this figld.
ers[3] and collaborators worked out a theory of absorption  An elliptical orbit is characterized by energyand angu-

and emission of radiation, and van VleK formulated the  |ar momentuni, or alternatively by the semimajor axis
theory of Einstein coefficients and a CP for transition rates.

With the development of quantum mechanics, the classical —7& 2
, 4 Nt
decay model was forgotten, and the usefulness of the classi- a=——= , (GB)]
cal picture was noted mostly in the context of near-circular 2B pZac
orbits [5].

We take the point of view that the CP implies that thereand eccentricity
should be a complete classical theory that is the analog of the
quantum field theoretic problem of a spontaneously radiating 2EL2 (| + ;)2
atom. This theory consists simply of classical Kepler- e=\/1+t55 5511 ——22, (2
Coulomb orbits, as well as the classical Larmor radiated Zia"uch n
power for the accelerated charges. The rate of radiation is
sufficiently slow such that averaging over Keplerian orbits iswhereu is the electron mass ark is the nuclear charge.
permissible. The semiclassical quantization rulé=(l+%)zi’z2 is used.
Recently Flannery and Vrincean] showed that the This quantization of angular momentum is necessary in order
classical evolution of a givem,l) Rydberg orbit describes to obtain classical orbits whose energies are consistent with
the average properties of the quantum-mechanical cascadége Schrodinger eigenenergiEs ~Z2a?uc?/(2n?), and fol-
The authors also obtain an estimate of radial matrix elementows from the Einstein-Brillouin-Keller approach. It is also
by multiplying the Fourier coefficients for the initial and used in the semiclassical wavefunction-based WKB method
final orbits, obtaining good approximations for the quantum-as postulated by Lang¢8]. The connection of this quanti-
mechanical matrix elemenfg] even for largeAn. The re-  zation prescription to the quantum resulidf=I(l +1)%2 was
sulting decay rates are accurate over a significant range afivestigated recentl{9].
transitions, but fail for largeAn for initial states withl/n To calculate the spectrum of the classical radiation, it is
<1/3. necessary to decompose the position vector for the elliptical
The purpose of the present paper is to show that arbit into a Fourier series. For an orbit in thkg plane and
straightforward treatment of the simple problem of a classithe perihelion aligned with the positiveaxis,
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rt) -3e. o & _ By analogy, the classical energy loss can be written as
% = TX +R>, b, cogkwt) + yE ¢ sinkmt), (3)
k=1 k=1
Eq= 2 [l’k+ + I’k ]ﬁw (12
where
— 8E3 220212 where therﬁfi are the classical rates for increasing or de-
w= Z2uch2a? = P (4) creasing angular momentum iy while decreasing energy

by %S, where wf =k is the angular frequency of tHeh
is the fundamental frequency of the orbit. The Fourier coefharmonic.

ficients are given agl0] From Eg.(9), we see that these rates are given by
2 2 —— ad’
b= "Ji(ke), c=-\e2-13(Ke), (5) 8, = S (b F 602w’ (13
k k 6¢
where the Bessel functiordg and their derivatives, depend  Since ¢, <by (with equality when e=0), r§f+$ rﬁf_. This
on the eccentricitye. shows that the classical rates for angular momentum increas-
After inserting the Fourier expansion of the trajectory intoing transitions are lower than those for angular momentum
the Larmor formula for classical radiation decreasing transitions.
oah Using the partial rates defined above, the quantum me-
P, = 3“ (6) chanical lifetime is given by
C

{2 (rim, + ] g (14)

and averaging over time we find

: 2ah
(B)=- <3C; )2 2 42 K*(bi + cf). (7

Similarly, the classical estimate of the lifetime is given by
-1
Tcl—|:z(rk++rk ] , (15)

which using Eqs(13) and(5) can be expressed as

To understand how this radiated power changes the angu-
lar momentum of the classical orbit, we rewrite E§) in
terms of spherical vectors(t)/a is the real part of

4 5 _ -1
—?X+ |:E —Ikwt( X+|y dk ’_Iy>], (8) Tl = |:4Z & He EK(J (ke) + 16262\]&“(6))] .

v 2 V2

wherediz(bkick)/\f'z. The contributions frondy, lead only (16
to radiation with angular momentum in the same direction as This classical estimate is remarkably successful in pre-
the orbiting electrof11], and thus represent angular momen-dicting the actual quantum mechanical lifetime. The contour
tum decreasing transitions. Similarly thdg contributions ~ graph over the plane of initial state quantum numbers)
represent angular momentum increasing transitions. It is thugiven in Fig. 1 shows that this estimate is good to 30 parts
possible to separate each term in Ef). into two separate per million (ppm) for | >55, to<100 ppm forl =30, <0.1%
terms for 1=9, <1% for =3, and<5% for | = 1. Equation(16)
b 4 fails for | =0 states, for which quantum mechanics forbids the
(E)= - aha‘w S [k—4(b 102+ k—4(b —c )2] 9) dominantl-decreasing transitions included in the derivation
32 o koK koK of that equation. Furthermore, the highly elliptical classical
orbits of thesel=0 states radiate appreciably at very high
where the first represents =-1 transitions and the second harmonics of the orbital frequency, and these frequencies
representa\l = +1 transitions. would correspond to decays down to energies below those
In quantum mechanics, the time evolution of an initial gllowed for in quantum mechanics. Figure 1 also shows that

state (n,) is determined by the partial transition rates gq. (16) forms an upper bound for the quantum mechanical
Fni—n 17, Which in the dipole apprOX|mat|on are given by  |ifetimes.

B o 13c*78 max(,1) A 1)\3 . An approximgtion(good_to _10% for alln, 1>0) to our
Mo onr 17 = 6732+ 1) [(nlfr|n’1")] g lifetime expression Eq(16) is given by
3n°k 3n’k 1\2
(10 °=—1—62:—<|+—>. 17
o 2 T T i\ T 2 A7

The rate of energy loss is just . . ) . -
e o This approximation has been discussed in detail in ReX,
[ :| An, (11)

S S and has been use[dS] to gxplain many experimental data.
= An+ = An— The formula was derived in R€f12] from the rate of change
of angular momentum. To compare to that derivation, we
whererd =1y _n=n-ani=1z1, and off=(E,~E,)/% is the  note that, by the definition of{,, the rate of decrease of
angular frequency of the radiation. angular momentum is
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FIG. 1. Relative error between the classical lifetime as calcu- 0 2 4 6

lated from the Fourier spectrum and the quantum lifetimes as a frequency of emitted radiation [THz]

function of then and|l quantum numbers in parts per million. . . .
q P P FIG. 2. Branching ratios vs radiation frequency for te30,

=18 initial state.[d: classical harmonic spectrumi: quantum

. * branching ratiosO: present classical estimates for the branching

cl cl
—-(Ly=h>, (M=) (18)  ratios.
k=1

Using Egs(13) and(5), this expression can be summed ana-P0Orer for largerk. The problem for highei is that the
lytically to get classical radiation occurs at equally spaced frequency inter-

vals, whereas the quantum-mechanical radiation occurs at

h increasingly spaced frequency intervals. If we correct for this

1-2° SO (19 discrepancy and compare the total branching ratio per unit of
o _ frequency, the classical results show much better agreement

in exact agreement with the expression by obtained di- With the quantum rates. This correction can best be done by

rectly from averaging the equations of motifiti, 1. Note ~ Noting that

that whereas rf, appears in Eq(18), +rf, appears in Eq.

(15), causing the estimate of 2 from Ref.[12] to miss two I = En—En-an

times thel-increasing rate. Because tHisncreasing rate is An h

small (<5% of thel-decreasing raje Eq. (17) is a reason-

able approximation and forms an upper boJdgd] to the  wherek,, is the(nonintegey effective harmonic index and is

lifetimes. Our use of the polarization of the emitted radiationgiven by

to separate oukl=+1 andAl=-1 rates allows us to include

the l-increasing rate with the correct sign and leads to the n

high accuracy of Eq(16). Kan= E[(l —An/n)72-1]. (22)

We expect that our very accurate expression for hydro-

genig lifetimes for states of high andl, for WhiCh. the cal- The density of classical frequenciés is larger than the
culation of exact quantum results is computationally very

difficult will lead to more accurate simulations of radiative quantum density of radiated frequencies by a factor of

2 3
_<L>:(@)aw

3c?

=kKano, (21)

phenomena.
The quantum-mechanical branching ratio for a staté) dkan =(1-An/n)=3. (23)
to a state(n—An,l+1) is given by dAn
pam = Mins _pam (20) Therefore, a classical estimate of tha transition rate is
Ant ™ — 'An,t/‘gm-* .
Py i) given by
These are plotted fon=30, =18, Al=-1 in Fig. 2. The Rns = 1R, (1~ Anmn) ™2, (24)

classical analogsf(f_m, are plotted as squares in the figure.
For k=1 there is reasonable agreement w'r@fu‘_‘rqm (as  The fact thatk,, is not necessarily an integer is not a prob-
pointed out by Heisenbergbut the approximation becomes lem, since
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3 As expected, the method of R¢6] fails for this example of
n=90, =15 — n’, I'=14 (a) low I/n. Our classical estimates are excellent at small fre-

quenciest, somewhat small at intermediateand somewhat
too high at largef.

For the much smalleAl=+1 branching ratios shown in
Fig. 3(b), our classical calculations do well in the most rel-
evant part of the spectrum. For highfeour data again some-
what overestimate the branching ratios, while the model of
Ref.[6] again shows a significant drop.

O] From Fig. 3 it can be seen that all of the branching ratios

o for this initial n=90, | =15 state agree with our classical es-

+ 4 timate to an absolute accuracy of 0.25%. A better figure of
O merit is the difference between the classical estimate and the
+ 0 guantum branching ratio divided by the maximum branching

o ratio for the state. It can be seen from the figure that for all
o An, the discrepancies between the classical estimates and the
+ quantum calculations are less than 10% of the maximum
& 0 branching ratio, with the majority showing much better
. agreement than this. For highleinitial states, the agreement
0.16 becomes even better, scaling approximately dsHven for
lowerd initial states, the discrepancy between our classical
estimate and the quantum branching ratio is less than 35%
for all branching ratios from any initial state,| >0) to any
final state(n’,l’), with the vast majority being estimated by
0.04 the classical formula to within a few percent of the maxi-
mum branching ratio.

In summary, we have presented an extension of the cor-
frequency of emitted radiation [THz] respondence principle for radiative transitions based on solv-
ing the problem of a radiating hydrogenic Bohr atom in clas-
- 15 initial state for(a) Al=—1 transitions, andb) Al=+1 transi- sical electrodynamics. It is shown that the radiative lifetimes
tions. +: quantum branching ratios): present classical estimates; agree _extremely well with the quantum re_sults. The branch-
o classical model of Re{6]. ing ratios also agree reasonably well, which means that the

model should work for cascade models of Rydberg transi-
tions. The lifetimes and branching ratios are presented as
o _2a°Z%c% (1 2 simple expressions involving Bessel functions, and are there-
Mex= g8, K Jilke) T 4 2 1 J(ke) (25 fore easily computed.
Although this paper considered only hydrogenic atoms,
can easily be evaluated at noninteger vakreg,,. By anal-  the results are also relevant to highly excitéRydberg
ogy to Eq.(20), a classical estimate of then branching ratio  states of any atom or molecule, since these are well approxi-

branching ratio [ %]

n=90,1=15 - n',I'=16 (b)

0.12

0.08

FIG. 3. Branching ratios vs photon frequency for tie90, |

is given by mated by hydrogenic states. Inclusion of a polarizable core
R and a charge distribution in the center of the classical orbit

bS. .= ns . (26) may allow the result to be extended to include the most

' EAn(Riln,Jr‘*RZIn,_) important nonhydrogenic features and thus also describe

. . ) ~_lower excitation states.
In Fig. 3(@ we show the branching ratios for radiative

decays of thex=90, =15 Rydberg state going to ai-An, The support by the Natural Sciences and Engineering Re-
|’=14 states. Our classical estimates of branching ratiosearch Council of Canada and from a Canada Research Chair
show the same basic pattern as the quantum branching ratigs.gratefully acknowledged.
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