 bring to engineers of "What can be done." A large pari of UTC production, 'owever, is on catalogued and special material of more standard nature. UTC quality compons wide recognition ole All types of transformer components.

for filters

BROAD BAN
SHARP CUTOIF FILTER

ATTENUATES
10KC TO 30 MEGACYCLES

LOW FREQUENCY

- LOW PASS FIITER

This high gain transformer is used in a 60 cycle chopper circuit for measuring small DC voltages-primary inductance 10 Hys. Ratio 250:1 - 100 DB of shielding.

This unit weighs but 1.3 oz . The rectifier in which it is employed delivers 2000 V DC with vibrator-battery input.

This input transformer was the perfect answer for an amplifier with a difficult hum problem. The locking universal joint mounting permits orientation to point of minimum hum level.

This pulse transformer has tight requirements. Frequency response is $\pm \mathbf{3 D B}$ from 80 KC to 4 MC .

electronics

SEPTEMBER • 1948

THE CRYSTAL TRIODE Cover
Revolutionary Transistor containing second cat whisker serving as control element provides power gain of 100 up to 10 megacycles. Bell Laboratories team William Shockley, John Bardeen and W. H. Brattain examine their important development (story on page 68)
THE TRANSISTOR—A Crystal Triode. 68Science adds crystal triode to family of electronic devices; it operates on newly discovered principle
JTAC—Its Purpose and Program 72New group, replacing RTPB, will advise government and industry on allocations and standards
TELEVISION FRONT ENDS, by A. D. Sobel...! 76Current trends in r-f amplifier, oscillator and mixer design
HIGH-SPEED REVOLUTION COUNTER, by Alvin B. Kaufman 80Aircraft cabin supercharger performance is checked without adding impeller load
DIELECTRIC HEATING OF THIN FILMS, by Theodare C. Gams 83
Using novel electrodes, high power of low frequency is delivered to load
TRANSCRIPTION RECORDINGS FOR THE HOME 86Close-cut grooves, plus $331 / 3$-rpm speed, achieves long playing time
TRANSDUCTOR FUNDAMENTALS, by Sven-Eric Hedstroem and Lennart F. Borg. 88Analysis of magnetic amplifiers shows amplification and response time that can be obtained from them
DRY-CLEANING ELECTRONIC EQUIPMENT, by Joseph Albin 94Dirty chassis are cleaned by air pressure and solvent
SUPERREGENERATIVE DETECTION THEORY, by William E. Bradley 96Bandwidth and signal-noise ratio are shown to depend on shape of quenching wave
SUPERREGENERATOR DESIGN, by Alan Hazeltine, D. Richman and B. D. Loughlin 99
Method of deriving selectivity curve from quenching waveform is developed
CIRCULAR POLARIZATION IN F-M BROADCASTING, by Carl E. Smith and Robert A. Fouty 103Novel transmitting technique makes placement of receiver antenna less critical
LOW-FREQUENCY OSCILLATOR, by Joseph F. Keithley 108Stable circuit comprises a tapped variable high resistance and nonlinear negative feedback
DIGITAL COMPUTER SWITCHING CIRCUITS, by C. H. Page 110Basic operational requirements and switching techniques are described

BUSINESS BRIEFS	64	ELECTRON ART	24		NEW BOO
CROSSTALK	67	NEW PRODUCTS	128		BACKTALK
TUBES AT WORK	120	NEWS OF THE	132	INDEX TO	VERTISER

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Frank H. Rockett, A. A. McKenzie, Associate Editors; William P. O’Brien, Assistant Editor; Hal Adams, Jean C. Brons, Elaine Weber, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keezer, Director Ecoriomics Department

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; D. H. Miller, H R. Denmead, Jr, New York; Wm. S. Hodgkinson, New England; F. P. Coyle, Warren Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

Contents Copyright 1948, by McGraw-Hill Publishing Company, Inc. All Rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCORPORATED, JAMES H. McGRAW (1860-1988), Founder P PUBLICATION OFFICE $99-129$ North Broadway, AIbany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42 nd St., New York 18, N. Y., U. S. A.-Member A. B. P. Member A. B. C.
James H. McGraw, Jr., President; Curtis W, McGraw. Vice-President and Treasurer; Eugene Duffield, Executive Assistant for Publications; Nelson Bond, Director of Advertising: Joseph A. Gerardi. Secretary: and J. Eublished monthly, with an additional issue in June, price 75 c a copy for U . S. and possessions, and Canada; $\$ 1.00$ for
ELECTRONICS, September, 1948 , Vol. 21 ; No. 9 . Pult
 should be addressed to the Director of Circulation. Subscription rates-United States and possessions, $\$ 6.00$ a year, $\$ 9.00$ two years, $\$ 12.00$ for three years. Canada (Canadian funds accepted), $\$ 7.00$ a year, $\$ 11.00$ for two years, $\$ 14.00$ fior three yoars. Latin American countrios $\$ 10.00$ for one year, $\$ 16,00$ for two years, $\$ 20.00$ for three years.
 Street, San Francisco 4; Aldwych House, Aldwych, London, W.C 2; Washington, D. C. 4; Piniladelphia 3; Cleveland 15; Detrolt 26; St. Lauls 8; Boston if; Atlanta 3, Street,
Ga.; 621
So. Hope St., Los Angeles 14;

EL-MENCO'S NEW CM 15

miniature capacitor
9/32" $\times 1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$

This tiny capacitor for radio, television and other electronic applications combines compact design with proven performance. Molded in low-loss bake lite the CM 15 is famous for dependability. Impregnated against moisture, it delivers at maximum capacity under extreme conditions of temperature and climate.

CM 15 FEATURES

- 500 D.C. working voltage
- 2 to $\mathbf{4 2 0}$ mmf. capacity af 500v. DCA
- 2 to 525 mmf. capacity af 300 v . DCA
- Temperature co-efficient 0 ± 50 parts per million per degree C. for most capacity values
- 6-dot color coded to Joint Army-Navy Standard Specifications JAN-C-5

SPECIFY EL-MENCO for your product . . .

from the Tom Thumb CM 15 to the CM 40, all El-Menco capacitors give you - and your product - dependable performance, endurance, and accuracy.
Send for catalog - Specify El-Menco Capacitors.

MOLDEDMKCA
the electro motive mfg. co., Inc. WILLIMANTIC, CONNECTICUT

El-MEñoMICA TRIMMER CAPACITORS

new, beffer BLACK line prinis

- Here are positive line working prints that are amazingly clear and easy to read. Every detail on the original pencil drawing is reproduced in crisp, dense black lines that stand out in sharp contrast against the white background.
It has been the goal of $K \& E$ in developing Heliost, to bring you a better, more dependable line of dry diazo reproduction materials than had ever been made before. To achieve this, K\&E established a new, modern plant for the manu. facture of Helios materials exclusively. We not only make the finished products -but we manufacture, to our own exacting standards, the required color-forming components. You see the results whenever you make prints on Helios papers, cloths or films-for their consistently high quality is due to the fact that, from

partners in creating

You can make positive line working prints on black line, blue line or maroon line opaque Helios papers or cloth directly from original drawings, layouts, letters, documents, forms. Or you can save your originals and reproduce positive line working prints directly from positive line intermediate originals on Helios transparent papers, cloth or films. For samples, write Keuffel \& Esser Co., Hoboken, N. J., or ask your K \& E Dealer or K \& E Branch for a demonstration. Remember . . .
 you're positive with Helios!

Draf img. Reprodither,
Simeying Jruipment and Alaterials. Sirde Z-les. Measurimer Tapes.

tReg. U. S. Pef. Off. start to finish, Helios materials are made with the skill, care and vigilance characteristic of K\&E throughout 81 years of making drafting and reproduction materials and equipment.

LaMINATED or MOLDED

A DEPENDABLE NAME IN PLASTICS

INSUROK is a registered trade-mark of The
Richardson Company.
When it comes to serving industry through plastics, the names of Richardson and INSUROK command respect and attention in high places.

To our old friends, we offer assurance that past high standards of quality and materials and skilled workmanship will be zealously protected.

To new prospects, we offer an invitationlet us prove our claim that Richardson experience, talents and facilities can mean worthwhile benefits for you in meeting your plastics requirements.

The RICHARDSON COMPANY
LOCKLAND. OHIO - FOUNDED IN 1858
Sales Headquarters: MELROSE PARK, ILLINOIS

ayou can control MULII-TOWER ARRAYS thls smple war

1

 Use one Antenna Control Unit for two towers

The Western Electric 33C Antenna Control Unit includes a branching circuit and two phase shifters, and permits adjustment of the rucrent ratio and phase relation leetween the element currents of two towers. This unit handles up to 10 hw.

2 Add a compact Phase Control Unit for each additional tower

Does your pattern call for an array of 4 or even 6 towers? Then merely or der the neressary number of compact $3+A^{\prime}$ Ambenna

Phase Control Units to be commected to taps on the bramehing transformer of the 33C. The 34A handles up to 10 kw .

TYPICAL CIRCUIT DIAGRAM SHOWING TWO 34A ANTENNA PHASE CONTROL UNITS CONNECTED TO BRANCHING TRANSFORMER OF 33C ANTENNA CONTROL UNIT FOR CONTROL OF 4-TOWER ARRAY. ADDITIONAL 34A'S MAY BE CONNECTED AS NEEDED FOR AS MANY AS 6 TOWERS.

You can use Western Electric Antenna Control Equipment to good advantage in controlling current ratios and phase relationships. The master 33C Antenna Control Unit is styled to harmonize with cabinet design of Western Electric AM Transmitters. The 34A Phase Control Unit measures only 2^{\prime} high, $3^{\prime} 子^{\prime \prime}$ wide, 2^{\prime} deep, and requires no front-of-panel line-up space.

-QUALITY COUNTS-

For complete information on Western Electric Antenna Contral Equipment, send the coupon below.

120 Levington Avemur, New York 17, N. Y.
Contlemen: Please send me Bulletin T-2513,
H'estern Electric Antennu Control Equipment.
Name
Company
Address
City

Western Electric

[^0]

Lower production costs, design flexibility, resistance to rust and corrosion... you get them ALL when you use INCO Nickel Alloy precision castings!

Casting, instead of forging, forming or machining saves shop time and tool costs. INCO precision castings of Monel ${ }^{*}$, Nickel, and Inconel* can usually be used just as they come from the foundry. The sand blast finish is so fine that additional machining is rarely required.

And as for accuracy .. $\pm .005^{\prime \prime}$ per inch is the common production tolerance. Even closer limits can often be maintained when needed. Add to accuracy the fact that intricate contours are more easily produced by casting than by any other method-and you have a combination that will solve many a tough design problem.
Another important advantage...Inco Nickel Alloys can be used to greatly extend the life of
a product. These rustless, strong materials are highly resis:ant to heat, corrosion, abrasion and fatigue.

Check w.th INCO if your machining costs are running high. If modern precision casting techniques aan solve your problems, you will be assured of mass-production economies plus a dependable source of supply.

Simply send a print and a sample, if available, with the quantities needed. We will be glad to tell you whether or not precision casting is practizal for your problem.

Meanwhile, perlaps you have other metal problems. Our newest publication "66 Practical Ideas for Metal Problexis in Electrical Pronucts" shows how other manufacturers have solved scores of tough design questions. Send for it today.

The International Virlial Company. Inc.

Wide band sharp cutoff band pass. Size: $2 \times 31 / 2 \times 65 / 8$.
Spass Band

Tone channel filter for extremely high crossover attenuation requir Tone crossover a
high cres. Size: $21 / 2 \times 2 \frac{1}{2} \times 5$.
ment.

Cycles Devial for extremely
Burnell \& Company
YONKERS 2, NEW YORK
cable aboress "buraell"

KARP METAL PRODUGTS CO., INC.

124-30th Street, Brooklyn 32, New York Custom Craftrmen in Sheet Metal

POWERSTAT VARIABLE TRANSFORMERS

FOR
 HEAVY DUTY

POWERSTAT
Type 1256

POWERSTAT variable transformers are not limited to laboratory, test panel or low power applications. As single units or as ganged assemblies, POWERSTAT types 1156 and 1256 provide smooth, precise, continuously adjustable variable a-c voltage for heavy duty requirements.
Type 1156 operates from a 115 volt, single phase, 50/60 cycles source to deliver $0-135$ volts, 45 amperes output. Type 1256 delivers a variable output of $0-270$ volts, 28 amperes from a 230 volt, single phase, 50/60 cycles line.

To obtain higher single phase ratings, types 1156 and 1256 are series, parallel or parallel-series connected, in ganged assemblies of $2,3,4$ and 6 - operating on a common shaft. POWERSTATS in this arrangement can be supplied in 115,230 or 440 volt ratings with output currents as high as 270 amperes. Three phase units are available in the same ratings. As many as 18 individual POWERSTAT types 1156 or 1256 can be employed in a three phase assembly. Type 1256-18Y (18 POWERSTATS with a single control) delivers 0.515 volts, 168 amperes from a 440 volt, three phase 50/60 cycles source.

Motor drive is recommended for heavy duty POWERSTATS. It gives finger-tip operation from a conveniently located push-button station, with the same smooth control found in the smallest manually-operated unit.
Whether your variable voltage requirement is 1 or 150 KVA, there's a POWERSTAT variable transformer to do the job.

The Superior Electric Co., 409 Meadow St., Bristol, Conn.

POWERSTAT
Type MW 1156-6Y

THE SUPERIOR ELECTRIC co
 BRISTOL, CONNECTICUT

Superior Electric cotalag - Bullefin 547 - is yours far the asking. Write todoy.

 Lower capacities also available.

400-800 Cycle line INVERTER AND GENERATOR REGULATORS FOR AIRCRAFT.
Single Phase and Three Phase LOAD RANGE *REGULATION MODEL VOLT-AMPERES ACCURACY

D500	$50-550$	0.5%
D1200	$120-1200$	0.5%
3PD250	$25-250$	0.5%
3PD750	$75-750$	0.5%

Other capacities also available

The NOBATRON Line

Output Voltage DC	Locd Range Amps.
6 volts	$15-40-100$
12	"
28	15
48	11
125	11
150	

- Regulation Accuracy 0.25% from $1 / 4$ to full load.

SOBFIISEN

The First Line of standard electronic AC Voltage Regulators and Nobatrons

GENERAL SPECIFICATIONS:

- Harmonic distortion max. 5% basic, 2% " c " models
- Input voltage range 95-125: 220-240 volis $\mathbf{- 1}-2$ models)
- Output adjustable bet. 110-120: 220-240 (-2 models)
- Recovery time! 6 cycles: $*(9$ cycles $)$
- Inpul frequency range: 50 to 65 cycles
- Power facior range: down to 0.7 P.F.
- Ambient temperature range: $-50^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ All AC Regulators \& Nobatrons may be used with no load. *Models availeble with increased regulation accuracy.
Special Models designed to meet your unusual applications.
Write for the new Sorensen catalog. It contains complete specifications on standard Voltage Regulators, Nobatrons, Increvolts, Transformers, DC Power Supplies, Saturable Core Reactors and Meter Calibrators.

$$
\begin{gathered}
\infty \int \operatorname{STAMFORD} \\
\text { STAT } \\
\text { CONNECTICUT }
\end{gathered}
$$

Whistler Iolustable dies...USEÕ bY OVER 1000 MANUFACTURERS

Simplifing
 Cominicitad Piecring

Operations...

EADING manufacturers find it fast, simple, accurate, and economical to use Whistler adjustable dies for the tough jobs. Complicated patterns can be set up quickly. It's easy to change hole arrangements too... without waiting and at no extra die cost. New HU-50 units, that pierce at 90° angle, can be used in conjunction with standard perforating equipment. Fewer press operations are necessary.
Savings, through continued re-use of the same dies in different arrangements on many jobs, are mcst important.
Whistler adjustable dies can be used in practically every type press. Standard sizes of punches and dies up to $3^{\prime \prime}$ are available in a hurry. Only a few days are necessary to get special shapes made to order.

S. B. WHISTLER \& SONS, INC.
 742 Military Road Buffalo 17, N. Y.

\&HU. 50 Perforating unit used in conjuction with standard Whistler adjustable dies on the same job.

Zor more dedade on this modern way to speed production and save money, write for your copies of the Whistler cataloss.
See us af Booth 1502 National Meral Exposition
October 25 to 29-Convention Hall-Philadelphia

Watch
 Master
 \section*{Frequency Standards}

GUARANTEED
 ACCURACY

1 part in 100,000
(.001\%)

American Time Products, Inc., 580 Fifth Ave., New York 19, N. Y.
Gentlemen:
Please send descriptive folder, No. 2121A.

Name...	
Company	
Address	
City	State

$U_{\text {ses }}$

Time bases, rate indicators, clock systems, chronograplis, geo-physical prospecting, control devices and for running small synchronous motors.

7 eatures

1. Bimetallic, temperature-compensated fork, no heating or heat-up time is required.
2. Fork is hermetically sealed, no barometric effects on frequency.
3. Precision type, non-ageing, low coefficient resistors used where advantageous.
4. Non-linear negative feedback for constant amplituds control.
5. No multi-vibrators used.
6. Synchronous clock simplifies checking with time signal.

Specifications

Accuracy-l part in 100,000 (. 001%).
Temperature coefficient-1 part in 1,000,000 per degree centigrade (or better).
Outputs-

1. 60 cycles, sine wave, $0-110$ volts at 0 to 10 watts (adjustable).
2. 120 cycle pulses, 30 volts negative.
3. 240 cycle pulses, 30 volts positive and negative. Pulse duration, 100 micro-seconds.

product of

AMERICAN TIME PRODUCTS

 580 Fifth Avenue IN(. New York 19, N. Y.Operating under patents of the Western Electric Company

(20ct weduris SELEGT CLARE...

.. A relay they could "install
and forger" . . . for protection

of Electron Microscope

RCA's new Electron Microscopes present many advanced features in this remarkable scientific .nstrument. Designed for simplicity of operation, :eliability and operator convenience, these inst:uments retain the high resolving power and useful magnification of earlier models with fewer mechanical components.

CLARE Relays were selected by RCA engineets as a protective device to prevent the high voltage from being connected with the electron tujes before the evacuation of the column is completed.

This application called for use of a relay designed for a long and reliable operating life ... a relay that could be "installed and forgotten". . . no further maintenance or attention required.

Selection of CLARE Relays by RCA engineers for this exacting service is typical of the increaring reliance placed in the ability of CLARE engineers to provide a CLARE Relay to meet specific job requirements. CLARE sales engineers are located in principal cities for your convenience. Whatever your relay problem, you will find them capable, experienced, and anxious to be of service.

Look up the nearest CLARE sales engineer in your classified telephone directory . . . or write: C. P. Clare \& Company, 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Iine Materials Ltd., Toronto 13. Cable Address: CLARELAY.

CLARE

RELAYS

First in the Industrial Field

Forid view of RCA Elec- $>$ tor Microscope chassis, shewing CLARE Type 'CMS d-c Relay. This reliay makes it impossible to cernect the high voliage to the vacuum tubes before the pressure is reduced to the reauired minimum. It is zomezted to the output of aา auxiliary tube which כevents the passage of

sufficient current to the relay coil before this poin s reached. When pressure is reduced to a sa"e level, the relpy actuates two snap-action switchas to place the micioscope ir operating condit on.

Centralab reports to

Beltone Hearing Aid Co. combines $\mathbf{4 5}$ parts, including capacitors and resistors, into © smaller, lighter chassis.

Standard Coil Products ases one "Filpec" to take the place of two capacitors and one resistor - save space and simplify production of \mathbf{I}. F . Transformers.

Sentinel Radio Corp. uses "Filpec" and "Couplate" for production savings on small receiver circuits.

1
Yes, here are three practical commercial applications of Centralab's Printed Electronic Circuits! These illustrate just a few of the many uses to which this exciting new electronic development is being and can be applied - with important savings in produc-
tion and space. No matter what your application - hearing aid, radio, industrial - it will pay you to get in touch with your Centralab Representative or write us for all the facts on how you can use Printed Electronic Circuits.

Electronic Industry

2CRL's Couplute consists of a plate load resistor, grid resistor, plate hy-pass capacitor and coupling capacitor. Write for Bulletin 943.

3 Centralab's rialper is fur use as a balanced dionde load filter. It combines up to three major components into one tiny filter unit, lighter and smaller than one ordinary capacitor. Also available for other applications. W'rite for complete information about Filpec, as well as other Printed Electronic Circuits.

4Centralab's revolutionary, new Slide Stuitch offers inmproved AM and FM performance! Flat, horizontal design saves valuable space, allows short leads, convenient location to corils, reduced leald inductances for increared efficiency in low and high frequencies. Rugsed, efficient. W'rite for bulletin 953.

5 High quality, long life, dependability -that's the reason more manufacturers are switching to CRL's IIi-Kap Ceramic Capacitors.

LOOK TO CENTRALAB IN 1948! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!

Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

4 problems 4 answers

> You, as a Communications Engineer, will be interested in the four Aerocom products illustrated below. They are designed and built to solve your communications problem. They are the result of engineering knowledge and experience gained during 18 years of manufacturing communications equipment for more than 200 installations throughout the world.

Weatherproof Low Frequency Antenna Tuner. Sturdily constructed; using heavy aluminum sheet and rustless hardware. Ample ventilation provided, yet insect and vermin proof. Suitable for $1-2 \mathrm{kw}$ carrier, $200-415 \mathrm{kcs}$; coupling coil matches either coaxial or 2 wire line. Illustration shows cabinet with prorective and weatherproof (no gaskets) covers removed. Locking facility provided.

AUTOMATIC KEYER provides continuous or interrupted identification signals for beacon or aerophare service. Small, compact ($6-\frac{5}{8 \prime \prime} \times 9^{\prime \prime} \times 7^{\prime \prime}$) and fully enclosed, this keyer will give long trouble-free service. Two synchronized cams, which can be milled to your specifications, provide several keyer combinations. Motor-. 105/115 v-50/60 cy.

METEOROLOGICAL INSTRUMENTS .. Aerocom's group assemblies; anemometer and wind direction indicator on mast for outside installation, and reading instruments in cabinet or standard rack panel, give constant and reliable weather information. Instruments available: wind direction, wind speed, Kollsman station barometer (altimeter), 24 hour clock, or any combination thereof. Mast assembly
 may be remotely located from instruments.

LINE MATCH INDICATOR: Made in two models (a) LMI-72 for coaxial lines and frequencies from 0.2 to 10 mcs ; (b) LMI-500 for balanced pair lines and frequencies from 0.2 to 2 mcs ., or 2 to 20 mcs . These instruments permit adjustment of load for optimum line match. Sturdy and rugged, engincered for ficld use.

FOR OVER EIGHTEEN YEARS CONSULTANTS, DESIGNERS, AND MANIFACTURIRS OF STANDARD OR SPECIAL ELECTRONIC, METEOROLOGICAL AND COMMUNICATIONS EQITPMENT.
 Brasil \star Henry Neuman, Jr., Apartado Aereo l38, Barranquilla, Colombia
for strength, light weight; wear resistance and anti-frictional qualities.

Most important of Synthane's advantages is its unusual combination of chemical, electrical and mechanical properties.

Siructural strength, moisture and corrosion resistance and light weight are only a few of these characteristics that fit Synthane for so many applications. An excellent electrical insulator, our type of laminated plastics is hard, dense, durable, quickly and economically machined . . . if's the set plastic, stable over wide variations in temperature.
Synthane's versatility is demonstrated by its use for seven different parts and purposes in this Second Operation Machine.

The High Speed Precision Second Operation Machine (above), plays an important role in the high speed finishing of automotive accessories, aircraft fittings and fine instrument parts. In the rotating members especially, Synthane's light weight means quicker starting and stopping and higher speeds with less friction.
If these few of Synthane's many properties suggest its use in your product, lef us help you with design, materials or completely fabricated parts. Write today for complete Synthane plastics catalog. 6 River Road, Oaks, Pa.
design • materlats • fabrication • shets • rods • tubes fabricated parts - molded-macerated . molded.laminated

you're safer with Synthane

A desirable property of Sinthane Laminated Plastics is the ability to withstand comparatively high concentrations of many common corrosives over long periods of time. While not 100% corrosion proof, Symthane is used in hundreds of applications because it often retains its shape, size, and strength for a longer time, and has a longer life per dollar invested, than other materials.

Parts fabricated from Sywthane resist the action of cor-
rosive waters and atmospheres, chemical salts and solutions, gasoline and wther petroleum products. In addition, Synthane is light in weight, mechanically strong, an excellent electrical insulator and easy to machine.

If these properties suggest new uses for Sinthane lel us help you before you design; we may be able to save you time, trouble and money. Send for your free copy of the Synthane Plasics Catalog. Use the hamly coupon

Please send me without obligation a complete catalog of SYNTHANE technical plastics.
Name \qquad
Company
Address

City
PLAN YOUR PRESENT AND FUTURE WITH SYNTHANE TECHNICALPLASTICS SHEETS RODS TUBES FABRICATED PARTS MOLDED-LAMINATED MOLDED-MACERATED

After more than a decade or proven service these Eimac triodes are still the workhorses of electronic equipment . . . from communication to industrial applications.

Recently improved by post-war developments, these tubes provide a big plus in performance, dependability and life expectancy.

As future replacements in the hundreds of thousands of applications in which they now
function and as components in new equipment yet to be developed Eimac triodes are the wise buy. Remember when you specify an Eimac tube you don't gamble . . . their performance is proven and guaranteed, and future procurement is assured ... they're carried by better dealers everywhere.
Eitel-McCullough, Inc. 202 San Mateo Ave., San Bruno, California EXPORT AGENTS: Frazar Hentenm 301 Clay St.-Sen Francices, Callf.

Tube Data

NOW WITH . . Pyrovac Plates • Processed Grids

in assemblies that must stand the gaff... day-in-and-day-out ...for months and years to come:

- Component-breakdown insurance. That's precisely why assemblies that must stand up-regardless of humidity, heat, cold, mechanical or electrical abuse are featuring Duranite capacitors.

Duranite means different. Not just another plastic tubular. Not just an improvement over previous paper tubulars. Duranite stands for an entirely new concept
of the capacitor art - new impregnant, Aerclene, doing the work of both wax and oil; new casing material, Duranite, providing rock-hard, non-varying, impervious sealing throughout; new processing methods insuring quality with economy. You will never know how dependable radio-electronic components can be unfil you have tried Duranite capacitors.

- Write on your business letterhead for samples. Detailed
literafure on request. Let us quote on your requirements.

as New as THE FUTURE!

the only transformer line of its kind

SEALED IN STEEL CONSTRUCTION

Chicago Transformer's drawn steel cases provide convenient, compact mountings; seamless steelwall protection against atmospheric moisture and corrosion; unsurpassed strength and rigidity to withstand shock and vibration; clean, streamlined appearance that adds eye-appeal to any equipment.

2

CHOICE OF CONNECTORS

Solder lugs or wire leads. Most units are available with identical ratings in two base styles to fit your price and/or wiring preference.

2 CHARACTERISTICS KEYED TO MODERN TUBES

Voltage, current, and output ratings have been designed for one purpose only-to fill the requirements of the receiving, transmitting, and industrial electronic tubes currently most in demand. No listings wasted on obsolete circuit needs. Resulta condensed, yet comprehensive, line that's right in step with today's new circuit designs.

4 exact matching of reactors

with power transformers. Current ratings of plate and filament supply transformers and of the high voltage plate transformers are matched by choke capacities specially designed for the purpose. Mountings match, as well, for uniform, "tailored" good looks.

5 TRUE HIGH FIDELITY THROUGHOUT 3 RANGES

Frequency response within $\pm 1 / 2 \mathrm{db}$; distortion exceedingly low, even at low frequencies. These are the characteristics of the input and output transformers. Driver and modulation transformers provide response within $\pm 1 \mathrm{db}$. All audio units are designed for frequency ranges that fit three classes of up-to-date audio application. Full Frequency Range: 30-15,000 cycles (good up to 20,000 cycles, where required). Public Address Range: 50-10,000 cycles. Communications Range (voice): 200-3,500 cycles.

WHAT WHAT MAKES AGOOD CORDING BLANK
 GOOD ?

CENTER-HOLE SCIENCE

Thanks to progress in stand. ardization of disc recording equipment, it is seldom necessary to ream out the center hole of a disc, nor, on the other hand, to tolerate an unduly sloppy fit. Most recording and playback machine manufacturers provide either NAB standard turntable pins or slightly smaller ones. Sounderaft, therefore, makes the disc center-hole to the NAB standard and holds such a tolerance that
 clearance on a standard pin is less than $.00 l^{\prime \prime}$.

Although so close a fit helps assure consistently better recordings, it calls for special equipment. Flow-coated Soundcraft discs, unlike dip-coated blanks, are lacquer covered over the center. Holes must, therefore, be punched after coating and initial inspection. The design of the Sounderaft punch-and-die sets for this work is complicated by the fact that they must punch cleanly through both plastic-lacquer and aluminum without distorting and without throwing even one chip that could imbed between discs. In addition they must permit punch. ing of otherwise finished discs without scratching the high-gloss Sounderaft surface.

Drive-pin holes are punched simultaneously with center holes and are also NAB standard specification-three drive-holes for convenience on instantaneous Soundcraft types, one drivehole for better processing of Soundcraft 'Maestros'.

Sounderaft discs fit any machine, are tailor made for broadcasting and the record pressing industry.

* No. 8 of a Series

Th 'R leter The Pl l' Th

When the utmost in recording quality is needed, ask for the 'Broadcaster', a master-dise selection in instantaneous sizes at an "extra-fare" price.

For work-a-day broadeast quality recordings, the Soundcraft 'l'layback' offers superior cutting properties in competition with other "best-grade" blanks.

Soundcraft discs are sold by over 250 radio parts distributors in principle U.S. cities. Foreign sales by Reeves International, Inc., 10 East 52nd St., New York 22, N. Y. Cable REEVINTER.

THE-NEW -hp- 400C VACUUM TUBE VOLTMETER

Increased sensitivity. Wider range. Easy-to-read linear scale. Space-saving, time-saving versatility! Those are but a few of the many advantages of the new -hp- 400C Vacuum Tube Voltmeter.

30 times more sensitive than the $-b p-400 \mathrm{~A}$ voltmeter, the new -hp- 400 C accurately determines voltages from .1 mv to 300 v . Its measuring range is broad and new $3,000,000$ to 1 . And with it you can make split-hair measurements all the way from 20 cps to 2 mc !

The big, clearly-calibrated linear scale reads directly in RMS volts or db based on 1 mw into 600 ohms. Generous overlap makes possible more readings at mid or maximum scale, where accuracy is highest. A new output terminal lets you use the $-b p-400 \mathrm{C}$ as a wide-band stabilized amplifier, for increasing gain of oscilloscopes, recorders and measuring devices. As a voltmeter, the new instrument has still wider applicability - for direct hum or noise readings, transmitter and receiver voltages, audio, carrier or supersonic voltages, power gain or network response.

Naturally the new -hp- 400 C includes the familiar advantages of the $-h p-400 \mathrm{~A}$ voltmeter. Range switch is calibrated in 10 db intervals providing direct readings from -70 dbm to +52 dbm . Overall accuracy
is $=3 \%$ full scale to 100 kc . High input impedance of 1 megohm means circuits under test are not disturbed. And the rugged meter movement is built to safely withstand occasional overloads 100 times normal.

In every respect, the convenient, durable -hp- 400 C is the ideal new voltmeter for precision work in laboratory, plant or repair shop. Complete details are available at no obligation. Write today!

Hewleft - Packard Company

I556E Page Mill Road - Palo Alto, Calif.

CHECK THESE

 SPECIFICATIONSVoltage ranges
12 ranges. Full-scale readings.

12 ranges.	Full-scale readings.	
.001 r	.100 r	10.0 v
.003 v	.300 v	30.0 r
.010 v	1.00 r	100 r
.030 v	3.00 v	300 v

FREQUENCY RANGE: 20 cps to 2 mc ACCURACY:
$\pm 3 \%$ full scale 20 cps to 100 kc
$\pm 5 \%$ full scole 100 kc to 2 mc
INPUT IMPEDANCE:
10 megohms shunted by 15 uufd on 1.0×10 300 r ranges, 25 uufd on the $.001 \times 10.300 \mathrm{r}$ ranges.
METER SCALE:
$3^{\prime \prime}$ lineor. Voltage ranges related by 10 db steps. Db calibroted -12 to +2 db . Zero level 1 mw into 600 ohms.

OUTPUT CIRCUIT:
Moximum 0.5 f full scale. Internal impedance 1000 ohms.
POWER SUPPLY:
$115 \mathrm{v}, 50 / 80 \mathrm{cps}, 45$ watts.
CABINET SIZE:
81/2" high, $71 / 2^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep.

Ben－Har

does the jole

The makers of Duncan Electric Meters required an insulation able to withstand soldering temperatures up to $400^{\circ} \mathrm{F}$ ．Read what they say：
＂We selected Ben－Har Special Treated Fiberglas Tubing for the heater leads in our thermal demand meters because it withstands soldering on the lead wire without discoloration．Temperatures encoun－ tered in the soldering operation are 300 to 400 degrees 1 ：The results are completely satisfactory． ＂The smooth，attractive appearance of Bey－Har

$$
\begin{aligned}
& \text { BH } \\
& \text { SLEEVLR }
\end{aligned}
$$

and the fact that it does not unravel at the ends give extra value in our product．＂

See for yourself how Ben－Har speeds assembly because it cuts without fraying；prevents insula－ tion breakdown because it combines toughness and flexibility．Knot it，twist it，pound it with a ralw－ hide mallet－there＇s no loss of dielectric strength． fifyou require an insulation with these extra Hunantages，get a sample of Ben－Har without delay． Byytley，Harris Mifg．Co．，Conshohocken，Pa，
＊BH Non－Fraying Fiberglas Sleevings are made by an exclusive Bentley，Harri－process（ 1 ＂．s．l＇at．No．2393530）．＂Fiberglas＂is Reg．TM of Owens－Corning Fiberglas Coip
－ーーーーーーーーーーーーーーーーーーーーーー－USE COUPON NOW
Bentley，Harris Mfg．Co．，Dept．E－26，Conshohocken，Pa．
I am interested in Ben－Har Special Treated Fiberglas Tubing （size） for \quad（product） operating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$ ，at \qquad volts．Send samples so I can see for myself how Ben－Har will not crack in a bend，will not support combustion．

NAME \qquad COMPANY \qquad
ADDRESS \qquad
Send samples，pamphlet and prices on other BH Products as follows：Cotton－base Sleeving and Tubing
\square Non－fraying Fiberglas Sleeving

CENTRALAB ANNOUNCES A NEW AND REVOLUTIONARY ROTARY SWITCH WITH A MINIMUM LIFE TEST OF 150,000 CYCLES

New Coil Spring Design Means

 Smoother Action, More Positive Indexing, Longer LifeYou Asked for it - and here it is! Centralab's new Rotary Coil and Cam Index Switch sets an all-time record for ruggedness, long life, flexibility, installation and maintenance convenience. Check these design and operation features, and you'll see why this new switch is one of the important switch developments of the year! (1) 30° index with 11 indexing combinations permit handling up to three sections. (2) New, tested stop-strength of 48 inch pounds. (Standard RMA stop-strength only 24 inch pounds.) (3) Guaranteed minimum life - 150,000 cycles. (RMA Standard - 10,000 cycles.) (4) Only $1 / 4^{\prime \prime}$ spacing between front plate and first section gives you decreased depth behind panel. (5) Removable spring can be replaced without removing switch from chassis. Write today for complete information on this great new switch. Order Bulletin 995.

LOOK 10

Centralab

IN 1948

DIVISION OF GLOBE-UNION INC., MILWAUKEE

These general-purpose panel instruments are particularly suitable for use in radio equipment and industrial applications where accuracy and quality are required and space is at a premium. Many of the instruments have been newly styled
for better readability and for the smooth, modern appearance that will help give your panels a wellengineered lcok.

Thermozouple-type instruments, for measuremerts of high-frequency alternating current in radis or other electronic circuits, are available. The:e is also a complete line of rectifier types (a-f\% for measuritg alternating zurrent or voltage at h :gh frequencies or where the source is not sufficient to operate conventional a-c instruments. Typical applications include television transmitters, radar wave meters, testing equipment for electronic circuits. For a full story of G-E instruments, send for Bulletin GEC-227.

GENERAL (3) ELECTRIC

Clyen fin ratertio:

Suitable for wall or panel mounting, these cage-type, enameled resistor units employ a strong, high-heat-resisting silicate-compound body which withstands sudden and extreme temperature changes without weakening or in any

way being injured. The resistance wire has a low temperature coefficient so that the resistance remains nearly constant as the temperature increases. Ample protection to the units is provided by the perforated metal case. Each unit is rated at 85 watts and is available in resistance values from 0.5 to 100,000 ohms; one to four units in a cage. For more complete information please contact your G-E representative.

IIED A Mlay The
 M位位: simbitin?

General Electric's latest additions to its line of automatic voltage stabilizers are three 115 -volt, 60 -cycle designs in 15 -, 25 -, and 50 -va ratings. Check the low prices-you may now be able to utilize the advantages of an automatic voltage control for your application. The price consideration plus the low case height and small size will make these units especially applicable to radio chassis and other shallow-depth installations. Other features include totally insulated design, which is necessary where isolation is required between primary

construction which makes these units adaptable to various wiring and mounting arrangements. If you have an application problem, contact your G-E representative, or check bulletia GEA-3634B.

solimies ME im

dremin colimol Hivers

Simplify your circuit ciesigns by replacing complicated and costly components with simple, economical G-E Thermistors. These electronic semiconductors are unique in that the resistance changes rapidly with slight variations in temperature-electrical resistance decreases as temperature rises, and increases as temperature falls. G-E Ther-

mistors give you these five advantages: flexible in application, small in size, available in various shapes, indefinitely stable, and they are economical. These new circuit devices are esprecially adaptable as sensitive elements in flow meters, liquid-level gages, time-delay relays, vacuum gages, switching devices, and modulating thermostatic circuits. Check coupon for technical report CDM-9.

HEMEIC SEA Ellumutes fotule monite

The new cast-glass bushings with their sealed-in metal hardware can be readily welded, soldered, or brazed directly to the apparatus, thus eliminating gaskets and providing a better seal than ever before. The small, compact structure of the bushings often makes it possible to

reduce the overall size and weight of the electric apparatus. Bushings are practically unaffected by weathering, microorganisms, and thermal shock. Their great mechanical strength makes them well suited for use in airplanes, etc., where they are subject to continual vibration. Available in ratings up to 8.6 kv and for currents to 1200 amperes. Check bulletin GEA-5093.

G.E.'s midget soldering iron can do a big job for you with only one-fourth the wattage usually used. This handy 6 -volt, 25 -watt iron is only 8 inches long (with $1 / 8^{\prime \prime}$ or $1 / 4^{\prime \prime}$ tips) and weighs but $13 / 4$ ounces. It was especially designed for close-quarter, pin-point precision soldering. The "midget" offers you all these advantages: low-cost soldering; "fingertip" operation; quick, continuous heat; easy renewal; long life; low maintenance. The iron is a real aid in manufacturing radios, instruments, meters, electric appliances, and many other products requiring precision soldering. Irons and specially designed $115 / 6$-volt transformers are available from stock. Check bulletin GES-3488
 GENERAL ELECTEIC COMPANY, Section A642-18 Apparatus Department, Schenectady, N. Y. Please send me the following bulletins: \square GEC-227 Instruments
\square GEA-5093 Cast-Glass Bushings
\square GES-3488 Midget Soldering Iron \square CDM-9 Thermistors \square GEA -3634B Voltage Stabilizer

NEW INDIANA PERMANENT MAGNET MANUAL

Not a catalog. Not a reprint. It's an up-to-date DESIGNER'S HANDBOOK!

Here's a new reference book that you'll want within arm's reach. From front to back, it contains helpful information about permanent magnetswhat they are and how they're used. Air gaps and their functions... new magnet materials . . . energy curves and formulae . . . design procedure and construction data. All in simplified form for easy use.

This new 32 -page manual, complete with 92 illustrations and graphs, reflects the design experience of more than 25,000 different permanent magnet applications. Prepared for you by the research and design staffs here at INDIANA-world's largest exclusive permanent magnet manufacturer. A request on your company letterhead will bring a copy to your desk. Write today - ask for free book No. 4-E-9.

Speciby

Hi-Q temperature compensating capacitors

H_{1} - Q temperature compensating capacitors are available in three types. CN \& SI types with capacities from .25 mmf to 1830 mmf and CI types from .25 mmf to 59.5 mmf with a temprature coeflicient range from P 100 to N 1100 . All of these $\mathbf{H}_{1}-\mathbf{Q}$ styles are of tubular ceramic construction with pure silver electrodes precision coated. Style SI is insulated with a synthetic coating of Durez, style CN is of Styrene and CI is Steatite covered.

Hi-Q general purpose ceramic capacitors

H_{1} - Q General Purpose Ceramic Capacitors readily replace mica and paper condensers of corresponding values. Hi-a General Purpose Ceramic Capacitors should not be confused with the $\mathbf{H}_{1}-\mathbf{Q}$ line of close tolerance temperature compensating units. $\boldsymbol{H}_{\mathbf{1}}$ - Q General Purpose Ceramic Capacitors are available in capacity ratings from 5 mmf to $33,000 \mathrm{mmf}$.

Hi-Q stand-off capacitors

$H_{1}-\mathbf{Q}$ "stand-off" capacitors are basically tubular with a screw fixture for manting to the chassis or common gromul. Close coupling and their unique construction make them an excellent choice for by-passing RF in the high frequencies. Standard capacity tolerances are $\pm 10 \%$ and $\pm 20 \%$ for "stand-off" capacitors and -20% and $+30 \%$ for multiple tap units. Closer tolerances available wherever economical manufacturing permits. All units flash tested for 1000 volts DC with power factor under 3% maximum and insulation resistance is above 10,000 megohms. All units stamped for capacity.

Hi-Q feed-thru CAPACITORS

H_{1} - " "feed-thru" capacitors provide perfect transmission through the chassis or ground, as well as by-passing to ground. The high quality construction of $\boldsymbol{H}_{1}-\mathbf{Q}$ "feedthru" capacitors, is extremely rugged and will withstand severe vibration, making them ideal for use in mobile and aircraft applications.

HI-Q HIGH VOLTAGE CAPACITORS HI-Q DISC CAPACITORS

$\mathrm{H}_{1}-\mathrm{Q}$ HV Capacitors are a sturdy unit, capable of withstanding high voltages, operating at extreme humidity and raised temperatures. They are a natural television component. The basic dielectric is body 20 , encased in a low loss, mineral filled bakelite. Available in capacities 50 mmf to 1,000 mulf. Specify desired capacity after type IIV when ordering,

$H_{1}-\mathbf{Q}$ Disc Capacitors are high dielectric by-pass, blocking or coupling capacitors. Designed for application where its physical shape is more adaptable than tubular units. The placement of leads is such that close connections are easily made, thus reducing inductance to a minimum. a nuch desired feature in high frequency desisns, such as television and FM. Available in three types: BPD-5: . 005 MFD guar. min., BPD-10: . 01 MFD guar. min, and BPD-1.5: . 0015 MFD guar. min.

WRITEFOR FREE CATALOG

Introducing the Wear

 DU MONT
Catroderait Type 250

FEATURING...

\checkmark a-c and d-c amplifiers \checkmark Built-in voltage-calibrator \checkmark Three horizontal and three vertical input choices
\checkmark Recurrent or driven sweep \checkmark Z-axis modulation
\checkmark Provision for photography
\checkmark Brilliant traces
\checkmark Automatic beam bianking
\checkmark High-sensitivity amplifiers
\checkmark High-impedance input probe

TYPICAL APPLICATIONS REQUIRING TYPE 250...

Application No. 1: If a machine component is to be studied for its reaction under shock-load conditions, what characteristics must the oscillograph have?
Characteristics required:

1. Single sweep, variable in duration. The single sweep of the Type 250 is continuously variable from 1 second to 20 microseconds.
2. Adequate light output. The Type 5CP-A Cathode-ray Tube in the Type 250 operates at 3000 volts accelerating potential for brilliant traces.
3. High-sensitivity amplifier. Type 250 provides either d-c to 200 kc at $\mathrm{l} \mathrm{d}-\mathrm{c}$ volt/in. sensitivity, or 5 cps to 200 kc at .02 rms volt/in. sensitivity
4. Automatic beam blanking, so that the fluorescent screen is excited only when signal is present on driven sweeps. This too is a feature of the new Type 250.

Application No. 2: Quantitative measurements and permanent records are to be made of the waveforms at various points in an electronic circuit.
Additional characteristics required:

1. Built-in voltage-calibrator that can be switched in be-

fore attenuator and gain control of Y-axis amplifier - a feature of the Type 250
2. Provision for photography. Du Mont Types 271-A and 314 Oscillograph-record Cameras are designed to fit the Type 250.
3. d-c levels, a-c signals, or both, can be recorded with the new Type 250.

Other possible applications of the new Type 250.. Since the Type 250 was designed as a versatile general purpose oscillograph of laboratory quality, it therefore has a wide range of applications in such fields as medicine, biology, welding, mechanics, and many other fields where a high-quality instrument for medium and low frequency work is required.

- Why not consult us now about the possibility of applying the new Type 250 to your particular problem? Detailed specifications on request.
- PRICE: $\$ 635.00$ with Type 5CP1-A fube. Cat. No. 1303-E.
(C) allen b du mont laboratories. ing

Reliable, high-speed mass production of motors at low costthat's the big job at Alliance! Makers of mass consumer products need Alliance motors for their small load tasks. Noted for long life, they are compact and light weight. Many weigh less than a pound! Power ratings range from less than $1 / 400$ th h.p. to $1 / 20$ th h.p. Some are uni-directionalothers are reversible and can be made for continuous or intermittent duty.
Practical uses for Alliance motors are to power automatic controls, switches, valves, motion displays, movie projectors, vending and business machines, toys, record players, and radio tuning devices. The newer Alliance Model A and Model B motors are especially built for driving fan blades in air circulators, room heaters, hair dryers, coolers, and air conditioning appliances. Model B is also an excellent power source for sound recorders.

Alliance Motors pack more motion and automatic action into new products!

WHEN YOU DESIGN-KEEP

[^1]

ucts for television

MOLDED COIL FORMS

for choke and peaking coils

The advantages of Stackpole Molded Coil Forms as inexpensive mechanical supports for windings include: reduced space factor; easier assembly; point-to-point wiring with one-third fewer soldered connections; extreme flexibility of application and absolute minimum cost. Types include units with coaxial leads, single hairpin leads, single hairpin lead at one end with double hairpin lead at other end, and double hairpin leads at each end. Iron core sections can be incorporated in most types.

| Note: These ralues
 apoly to type DR
 coil forms only | Di-
 tlectric
 Constant | |
| :---: | :---: | :---: | :---: |
| 600 Kilocycles | 4.7 | 28 |
| 1000 Kilocycles | 4.7 | 36 |
| 2.3 Megacycles | 4.7 | 45 |
| 20 Megacycles | 4.7 | 118 |
| 48 Megacycles | 4.5 | 90 |

INEXPENSIVE SNAP

 SLIDE OR ROTARY ACTION SWITCHESThese popular Stackpole suitches add greatly to the sales appeal and convenience of almost an, electrical product. Standard, low cositspes are available for practically ary switch-

FIXED

RESISTORS

The result of more than 15 years specialized manufacturing experience, Stackpole Resistors meet modern television specifications -whether from a moisture. protection, insulation or overload standpoint, or satisfactory high frequency characteristic. Standard ranges are irom 10 ohms to 20 megohms in the customary \pm tolerances of $5 \%, 10 \%$ or 20%.

Write for this new stackpole ELECTRONIC COMPONENTS CATALOG

Fixed and variable resistors, switches, iron cores, molded coil forms, GA miniature capacitors and Polytite cores for high capacity stability under conditions of humidity and vibration in high frequency circuits when properly supported and insulated.

CARBONCO.•ST.MARYS, PA.

- Product faults found in minutes with IIB vibration exciters!

If your product has any vibration at allthis MB VIBRATION PICKUP will detect it!

There's no practical lower limit on the amplitude of vibration you can detect with the MB Vibration Pickup-it's that sensitive! And there's no engine it can't be used on - it's that durable under high-powered pulsations!
It is a velocity-type pickup, electri-
cally damped, with a range of 5 to 1000 c.p.s. and usable in any position. When the pickup's electrical output is fed to standard voltage measuring equipment, it can be used to check products for operating smoothness and for qualitycontrol.

Some time ago, a large automotive manufacturer was attempting to learn whether gas tanks could be strengthened.

They first used a mechanical shaker on a test tank in an attempt to discover possible troublebut days went by without signs of failure. However, when an MB Exciter was attached, the tank was vibrated to destruction in a matter of minutes! A repeat test produced a similar failure. Based on the visual evidence, which eliminated the need for any dynamic computations, the tank was redesigned, and it was made not only stronger, but materially lighter-cutting costs as well as saving steel.

In another case, where one manufacturer's headlight bulbs were failing in great numbers, an MB Exciter fixed the blame at once-on the filament supporting arm, which was resonating at a frequency within the operating range of the car.

These cases illustrate a technique of testing that you'll find increasingly valuable as experience shows you new applications for this product improver. MB vibration exciters are now being used by many of the country's largest companies -for fatigue testing, for location of noise sources, for determining the vibratory response of prod-ucts-and the corrective measures.

Would you like to know more about how to use this shaker in your own work? An MB engineer will be glad to give you the benefits of our specialized vibration experience.

WRITE FOR FREE BULLETINS
Ask for bulletin "Vibration Testing Technique" which describes how MB Exciters are used. And Bulletin 124A will give you more details on Pickup. Write Dep"t. D5.

HOW MANY OF THESE PRODUCTION PROBLEMS ARE YOURS

RADIO INSULATION

Looking for high insulation resistance, low radiofrequency losses, high mechanical strength, resistance to extremes of temperature or humidity? Note the following properties of Taylor Grade XXXP-1. 24 hour water absorption - $1 / 16^{11}$ thickness... 0.35% Loss Factor 10^{6} cycles-after 24 hours in water. 0.12 Dielectric Strength $-1 / 16^{\prime \prime}$ thickness (V.P.M.)
short time test
step by step test
Insulation Resistance 4 days at 90% R.H., $: 500,000$ Insulation Resistance $46^{\circ} \mathrm{F}$. (megohms)

CORROSION RESISTANCE

high strength plus heat resistance

Taylor Grade AAA asbestos mat laminate is offered
for applications requiring high heat resistance plus high mechanical strength, at a low cost.
Note these properties of Grade AAA:
Tensile Strength-Length wise 20,000 p.s. i.
Flexural Stre Crosswise 13,000 p.s.i.
Sirength-Lengthwise 25,000 p.s.i.
Compressive Strength Crosswise 19,000 p.s.i.
Heat Resistance-Continuawise 50,000 p.s.i.
For applications requiring high resistance to the chemical action of acids and alkalies, plus high mechanical strength ... such as barrels for plating solutions . . Taylor Grades C-5 and L-5 (fabric base Melamine Laminates) are outstanding. For moderate concentrations of acids or weak alkalies, Taylor Grades C-4 and L-1 (fabric base Phenol Laminates) are equally effective and cost less.

Taylor Phenolastic Fibre, Grade C-7, adapts easily
to and other intricate shaping operations... yet retains all the desirable physical properties of Taylor Grade C. Among these properties: high tensile, flexural, and impact strength; good resistance to wear; dimensional stability.

Regardless of the problem . . . if Laminated Plastics can help solve it, Taylor Fibre engineers are af your service. Please make your inquiry as specific as possible.

LAMINATED PLASTICS: PHENOL FIBRE • VULCANIZED FIBRE . Sheets, Rods, Tubes, and Fabricated Parts NORRISTOWN, PENNA. Offices in Principal Cities Pacific Coast Plant: la Verne, CAl.

Age-Resistant

 Wire Keeps Your Products Young ...and Keeps Your Customers

But after awhile wire-trouble rears its ugly head, performance goes haywire, again... and again.

Let's suppose you make a television set, a range, a waffle iron or some other electrical product . . . and Mrs. Jones buys one.

Her friends like its smooth modern design, dependable operation and enthuse over its novel features.

1. Magnet Wire. 2. Firewall Hookup Wire 3. Appliance Lead Wire 4. A.V.C. Switchboard Wire. 5. Thermostat Control Wire.

TOUGH BREAK?

Maybe . . . but it could have been prevented with wire designed for years of dependable operation under even the most severe conditions. For many products that means permanently insulated Rockbestos wires, cables and cords.

Rockbestos wires, cables and cords-insulated with impregnated felted asbestos and other enduring materials - are the best insurance you can buy against wire-failure caused by heat, flame, fumes, grease, oil . . . and age.

WRITE TODAY - for your copy of the new No. 10-F Catalog, sectioned for easy reference to Appliance, Aircraft, Electronic, Fixture, Lighting and Magnet Wires; Apparatus Wires and Cables; Power and Control Cables.

ROCKBESTOS PRODUCTS CORP.
463 NICOLL ST., NEW HAVEN 4, CONN.
New York
Cleveland
Los Angeles
Oakland, Calif

ROCKBESTOS

THE WIRE WITH PERMANENT INSULATION

Solar's new Type DY-TV series of dry electrolytic capacitors assures dependable operation under the severest conditions found in television receivers.

An especially developed Solar processing technique makes possible small yet sturdy capacitors designed for high temperature operation with no sacrifice in long life or electrical characteristics.

Because of the remarkable film stability of Solar's DY-TV series of electro. lytics, there is but an extremely small change in power factor and leakage current from room temperature to $85^{\circ} \mathrm{C}$.

Type DY-TV capacitors, with their special film formation, do not "run away" when voltage is applied after idling under no-voltage conditions at $85^{\circ} \mathrm{C}$. These characteristics are retained even after extended shelf life.

Investigate this remarkable achievement in capacitor design today! Write today for catalog.

SOLAR MANUFACTURING CORPORATION NORTH BERGEN, NEW JERSEY

Performance-PLUS Mainfenance - MINUS

Add hot-dip galvanizing to Blaw-Knox construction, and you've got the utmost in tower performance with maintenance costs close to zero. Illustrated is a new Blaw-Knox Type N-16 insulated, self-supporting tower with "lifetime" protection of a heavy zinc coating on all members as well as on inside climbing ladder and Electroforged Grating platforms. Painting to conform with CAA regulations is all that is required.

Hot-dip galvanizing is available on Blaw-Knox Antenna Towers of any height . . We invite discussion on your plans for future station improvement.

BLAW-KNOX DIVISION
of Blaw-Knox Company
2077 Farmers Bank Building • Pittsburgh 22, Pa.

BLAW-KNOX mantren

Far Quality and Performance Use FREED INSTRUMENTS and COMPONENTS

"Q" INDICATOR NO. 1030 by FREED

Frequency range from 20 cycles to 50 kilocycles. " φ " range from $\mathbf{. 5}$ to $\mathbf{5 0 0}$.
" P " of inductors can be measured with up to 50 volts across the coil.
Indispensable instrument for measurement of " φ " and inductance of cails, " Q ". and capacitance of eapacitors, dialectric losses, and power factor of insulating materials.

Low Frequency

HI "a" COLS

\#1900	100 HY
\#1901	75 HY
\#1902	50 HY
\#1903	25 HY
\#1904	10 HY

\#1905
\#1906

Available from stock in the indicated in1 HY ductance values

Filters

Narrow band pass filters for remote control and telemetering applications. elimination filters for pass and band and carrier systems.

For telemetering and remote control øp-

 plications using audio and supersonic frequency subcarriers.$$
\begin{gathered}
\text { FREED } \\
\text { TRANSFORMER CO., ING. } \\
\text { DEP'T SE } \\
72 \text { SPRNG ST. } \\
\text { HEW YORK 12, N. Y. }
\end{gathered}
$$

REVERE PHOSPHOR BRONZES OFFER MANY ADVANTAGES

Strength - Resilience - Fatigue Resistance - Corrosion Re-sistance-Low Coefficient of Friction-Easy Workability-are outstanding advantages of Revere Phosphor Bronzes, now available in several different alloys.

In many cases it is the ability of Phosphor Bronze to resist repeated reversals of stress that is its most valuable property. Hence its wide employment for springs, diaphragms, bellows and similar parts. In addition, its corrosion resistance in combination with high tensile properties render it invaluable in chemical, sewage disposal, refrigeration, mining, electrical and similar applications. In the form of welding rod, Phosphor Bronze has many advantages in the welding of copper, brass, steel, iron and the repair of worn or broken machine parts. Revere suggests you investigate the advantages of Revere Phosphor Bronzes in your plant or product.

1 -Plunger gwide
2-Thermoitct spring
3-Internal lcck washers
4-Contacl springs
5-Externaillock washers
6-Operatinc lever
7-Cap wîh integral spr ngs in side
8-Refainitg spring
9-Countersenk external lock washer 10-Pressure spring for capacitor
11-Five-centact spring
12 -Contad spring for radio part
13-Pressure spring and terminal
14-Involute spring
15-Contart point for solenoid
16-Contakt springs
-made of Phosphor Bronze strip supplied by Revere

New Styling For Better Readability

The New DO-71 Panel Instruments are easy to read-correctly -because they have been designed specifically for that purpose. This new design has also resulted in a smooth, modern, appearance. Take a look at these features to see how these instruments will improve the appearance of your panels and at the same time assure you of easier more accurate readings:

Lance type pointer for rapid, precise reading. Absence of are lines make scale divisions stand out by themselves. Simplified scale layout for improved readability. Numerals shaped and sized for greater legibility.
New Engineering For Improved Performance
A new high in performance and readability has been achieved by the engineering
 advances in the DO-71 Panel Instruments. Depth behind the panel has been reduced to less than 1 inch. The use of high-strength Alnico magnets results in high torque, good damping, and quick response. This allows the use of larger radius pivots, giving the instrument a greater sturdiness. The large clearance between stationary and moving parts helps assure years of trouble-free performance. And, all main components are rugged integral units which mean fewer repairs and less servicing.
Now is the time to improve the quality and appearance of your products by the in corporation of these new panel instruments. And, you can do it right now, because the DO-71 line is in full production for quick delivery. Contact your nearest G-E Sales Office, or Apparatus Dept., General Electric Company, Schenectady 5, N, Y.

GENERAL (2) ELECTRIC

for mobile two-way radio

0
ALMED'S NTEN COOAXIAL RELAY

NEW RELAY GUIDE
This new folder shows 24 small, compact Allied Relays with a carafully detailed table of characteristics and specifications, Write for YouR free copy today.

The new Allied "RA" relay transfers 52 ohm antenna transmission line (type RG-8U Cable) from receiving to transmitting position. It is now used in police car radios and is highly recommended for both mobile and stationary applications.

This new relay is equipped with two Co-Axial cable fittings and one insulated transmitter line terminal. Co-Axial fittings for antenna and receiver connection are die cast as part of the metal housing. They will accommodate Signal Corps cable connector PL-259. Auxiliary double-pole, double-throw contacts can be supplied when specified?

ALLIED CONTROL COMPANY, INC. 2 EAST END AVENUE, NEW YORK 21, N. Y.

ENGINEERING FEATURES OF THE ALLIED TYPE "RA" RELAY
Contact Rating: Antenna transfer contacts will handle a maximam of 75 watts c radio frequency up :o 150 megocycle; when inserted in a properly terminated 52 ohm line. Auxiliary contacts tave a non-inductive rating of 1 ampere at 24 volts D.C. or 115 volts A.C.
Coil Rating: Up to 110 volts D.C. and 115 volts A.C. 60 cycles.

Coil	D.C.	D.C.	D.C. No.
Volts	Current	Res stance	
31	6.	.46	13.
34	12.	.22	54.
38	26.5	.083	320.
40	48.	.060	800.
43	110.	.026	4100.

(This table is based on an average power rating of 2.5 watts. Minimum operating voltages are 80% of voltages shown above.)
Dimenslons: $2^{\prime \prime} \times 27 / 8^{\prime \prime} \times 13 / 4$ ". Welghr: 4 ax.

Besides this great step of advance in the varnishing process of cotton sleeving, there are insured in this Turbo Varnish Impregnant topmost electrical insulating requisites-stabilized increased dielectric values, greater resistance to elevated temperatures, practical resistance to the effects of soldering-iron operations, acids, oils, alkalies, and electro-chemical influences.

Non-cracking, non-chipping, non-peeling regardless of angle of bend or twist. A knock-out to commonly encountered insulation failures accruing from embrittlement resulting due to the effects of aging.

Thermoplastic Insulated Wire; Thermoplastic Insulated Sleeving;

Mica, block, films; Mica-Plate, segments. Markers; Wire

WILLIAM BRAND \& COMPANY
276 fourth avenue, hew york 10, N. y.- 325 W. huron street, chicago 10, ill.

A NEW PURIFYING JET OIL DIFFUSION PUMP,

for electronic tubes and general laboratory use.

The blank-off pressure of this all-metal pump, untrapped, is $2 \times 10^{-7} \mathrm{~mm}$ of Hg , measured on an ionization gauge.

The speed and forepressure characteristics of the pump are remarkable. Speeds at three significant points follow 50 litres per second at $10^{-5} \mathrm{~mm} \mathrm{Hg} .60$ litres per second at 10^{-4} 35 litres per second at 2×10^{-3}
High Vacuum of $2 \times 10^{-7} \mathrm{~mm} \mathrm{Hg}$. is maintained when the forepressure is increased to 0.34 mm Hg .

This pump is designed for unlimited continuous service. The jet tube is so constructed that it may be completely disassembled in a few moments with an Allen wrench. This makes every part of the pump freely accessible for cleaning. The heater is buttoned to the bottom of the pump and can be replaced easily. The permanent maintenance of this pump in condition to achieve the pressures and speeds listed above is assured by its construction. Recommended particularly for the requirements of Cathode Ray Tube production. Special models for exhaust equipment will be made to customer's specifications. For further details, please write - Vacuum Engineering Division, National Research Corp., Cambridge 42, Mass.

 STANDARD GRADE for maximum flexibility, has little varnish and is recommended for high temperatures where dielectric strength is not a factor.

DOUBLE SATURATED has all qualities of the STANDARD GRADE but with additional coats of varnish to bring the dielectric rating up to 1500 volts.

TRIPLE STRENGTM is built up with coats of especially flexible insulation varnish for dielectric ratings up to 2500 volts and is particularly suited where assembly operations include the possibility of rough handling.
4.) IMPRECNATED is the Optimum in Superiority for high gloss, non-hydroscopic, resistance to high temperatures, oils, acids, etc. IMPREGNATED has a dielectric rating beyond 7000 volts and is unequalled for Long Life Under Most Severe Conditions. Write for Samples.

FOR USERS OF COTTON YARN VARNISHED TUBINGS The Mitchell-Rand MIRAC and hYGRADE Varnished Tubings of long staple fiber yarn are comparable to Fiberglas Tubings in dielectric ratings, tensile strength, flexibility and long life. Write For Samples.

Write today for your free copy of the M-R WALL CHART with its engineering tables, electrical symbols, carrying capacities of conductors, dielectric averages, thicknesses of insulating materials, tubing sizes, tap drills, etc.

MITCHELL-RAND INSULATION CO. Inc.
 SI MURRAY STREET - COrilandt $7-9264$ - NEW YORK 7, N. Y.

A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH - INSULATING PAPERS AND TWINES - CABLE FILIING AND POTHEAD COMPOUNDS - FRICTION TAPE AND SPLICE - TRANSFORMER COMPOUNDS - FIBERGLAS SATURATED SLEEVING - ASBESTOS SLEEVING AND TAPE - VARNISHED CAMBRIC CLOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH, TUBING - FIBERGLAS BRAIDED SLEEVING • COTTON TAPES, WEBINGS AND SLEEVINGS • IMPREGNATED VARNISH TUBING • INSULATED VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

Shaft, cover faceplate, and other ferrous parts are made of stainless steel.

The TYPE J BRADLEYOMETER

. . . an adiustable resistor of superior quality
for jobs that demand superlative performance

Allen-Bradley fixed and adjustable radio resistors are sold exclusively to manufacturers of radio and electronic equipment.

- When you have a circuit which requires a topquality adjustable resistor . . . rated at 2 watts with a big safety factor . . . with a solid-molded resistor element not affected by heat, cold, moisture, and age . . . then specify the Allen-Bradley Type J Bradleyometer.

The resistor element is molded as a single unit to provide any resistance-rotation curve. Insulation, terminals, faceplate, and threaded bushing are molded in one piece. There are no rivets, welded, or soldered connections.

Type J Bradleyometers are available in single-, dual-, and triple-unit constructions. Built-in line switch can also be furnished.

Send for dimension sheet and performance curves.
Allen-Bradley Co., 110 West Greenfield Avenue, Milwaukee 4 , Wisconsin

GET COSTS DOUTN

EuretheAti"
 and put a fresh breeze behind sales...

4-WINGED DRIVER CAN'T SLIP OUT

DEFLATE COSTS . . . like one of the largest refrigerator and air conditioner manufacturers... who says: "Our present high production would not have been possible without American Phillips Screws ... which permitted the efficient use of power drivers." And which did not permit any more driver sk ds, spoiled work, dropped screws, burred screw heads, slashed hands. Now, labor costs keep in line, as do material costs. And time savings run as much as 50%.
INFLATE SALES with the modern, inviting look of American Phil ips Screws. The clean-edged, tapered recess flashes the message of quality instant'y to the buyer's eye. And remember, too, that in any motorized merchandise, the special vibration-resistance of American Phillips Screws has a lot to do with keeping customers sold. Let American engineers translate these Phillips advantages in specific terms of your own product. Write.

AMERICAN SCREW COMPANY, PROVIDENCE 1, RHOEE ISLAND

Chicago II: $\mathbf{5 8 9}$ E. Illinois St.
Detroit 2: 502 Stephenson Building

HERE'S
On-the - Job Proof of Instrument Performance!

where Westinghouse reliaility and readability RENTI coulw

Westinghouse instrument specialists are available in the field for consultation on your instrument problems. Call your nearest Westinghouse office, or write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pa.

Send for Booklet B-2209-A, Communication Instrument Booklet B-3283, or Switchboard Instrument Booklet B-3363.

Radio stations can take no chances on "outages"-time off the air is costly. For split-second timing, efficiency, and continuity, all vital operating information must be readily available to the control engineer at a glance.
For these reasons, instruments of unfailing performance and quick readability are a must. The Westinghouse instruments at KMOX solved these problems. They also provide co-ordinated styling and smart appearance.

What are YOUR electrical measuring problems?

Would they include - reliable performance . . . styling . . . size . . . readability or different types of service . . . portable . . . switchboard . . . pancl . . . recording?
The vast lines of Westinghouse electrical measuring instruments provide you with the answers to all of these problems. Every Westinghouse instrument is backed up by more than 60 years of skill, "know-how", and experience in every field of industry.
J. 40362

Westinghouse Instruments Also Provide You With

- Dials that słay white under all conditions

Magnets that stay permanent

Pivots with high shock capacity and low friction

Springs that remain constant for life
Quick delivery of more different ratings and types Complete Nationwide Service

New 50,000-watt transmitter at station K MOX, St, Louis. This station is one of the important links in the Nation's vital educational, news, and entertainment industry.

A handiul of vhi Power

Over 1 kW soutput at $120 \mathrm{Mc} / \mathrm{s}$ from a valre only $5 \frac{1}{4}{ }^{\prime \prime}$ long! The 3J/160E incrporates a thoriated turgsten filament requiring low filament power and is air blast cooled, facilitating the design of simpler and smaller radio equipment.

These are the reasons for the consistent growth of Americon Lava Corporation:

RESEARCH. American Lava stands pre-eminent in its field in research. Here you are most apt to find the answer to any question involving technical ceramics.
ENGINEERING SERVICE. American Lava is long on engineering service. You will find one or more graduates of many leading engineering schools on our staff. Their specialized experience is freely available to you on selection and design of technical ceramics for your specific requirement.
EXCLUSIVE PROPERTIES. Constant development of special purpose ceramics has led to the production of many Alsimag compositions with advantages nat found in any other material.
DEPENDABLE QUALITY. Our customers know that Alsimag components are always well within the physical characteris tics specified. That is assured by alert Quality Control Supervisors and rigid final inspectlons.

ACCURACY. Already supreme in the field of accuracy, the many new precision machines installed in the past year achieve normal tolerances withou additional cost penalty. Alsimag can be held to almast ony folerance required at commensurate cost.
adVantageous Deliveries. Deliveries are not as good as we would like to have them-but, during the past year 84% of our deliveries were on time and a good percentage of the remainder followed rather closely. Factory expediting practices are being constantly improved and we pledge further improvements soward increasing the already favorable percentage of deliveries on time.

PROPERTY CHART. The more frequently used Alsimag compositions are shown in a Property Chart, sent free on request.

AN INVITATION. If you have a problem which might be solved by technical seramics, submit details and let our engineers make recammendetions withou cost or obligation

AMERICAN LAVA CORPORATION

CHATTANOOGA S, TENNESSEE

[^2]
ARNOLD

You would find it hard to set a requirement on Arnold magnets that is not already exceeded in our regular production procedure.
All Arnold products are made on a basis of 100% quality-control at every step of manufacture. These rigidly maintained standards cover all physical, magnetic and metallurgical characteristics. . . you can place complete confidence in the uniformty and dependability of Arnold Permanent Mag. nets, and their resultant performance in your assemblies.
Remember, too, that Arnold's service covers all types of permanent magnet materials, any size or shape of unit, and any field of application. Our engineers are at your command-write us direct or ask any Allegheny Ludlum representative.

a
 LORD VIBRATION CONTROL SYSTEM

REMOVABLE MOUNTING RELAYS

Eyelet terminal types for stud or compression plug monnting

Faster, casier relay installations All wiring confined to backs of panels
Wiring can be completed before relays are installed
Relays can quickly be removed or changed without disturbing wiring

Practically any Struthers-Dunn Relay having an insulated base can be supplied-At No Extra Cost-with eyelet terminals for quick, easy mounting on studs extending through the panel. Wiring is confined to the rear of the panel and the studs form the electrical connection to the relays, permitting fast installation, removal or change.
In installations where the relays are small and where no vibration exists, compression-type plugs may be used instead of studs and nuts. Then the relays are simply pushed into place on the plugs.

STRUTHERS-DUNN, INC., 150 N. 13th STREET; PHILADELPHIA 7, PA.

MIDGET THYRATRONS
 MEAN ECONOMY

THEY'RE DOING "EIG-TIME" WORK THROUGHOUT INDUSTRY

TOTs of performance in a tiny tube envelope, so L you can design for extreme compactness. . that's the GL- 5663 glass thytatron, only $11 / 4$ inches in seated height! For circuits requiring a larger tube current capacity, General Electric offers the self-shielding metal GL-502-A, $21 / 16$ inches high when seated. This space-saving type will replace the twice-as-large 2050.

Applications of General Electric's capable midget thyratrons? . . . Too many to specify here; however, these uses are frequent:

- Photoelectric-relay work . . . either to actuate a mechanical relay, or to drive a larger thyratron for that purpose.
- Timing and time-delay relay operation.
- Control of small aviation and other frac-tional-h-p d-c motors.
- Use in welder-control panels.
- Temperature-control work-in electric thermostats, and in the chemical and other industries where vats, retorts, and furnaces need automatic regulation. Note the wide ambient-temperature range of both tubes!
Much of the popularity of G-E midget thyratrons stems from General Electric's policy of continuously improving design. For instance, the GL- 5663 is a better tube than the GL-5 46 it supersedes, in that the new type will hold for life its initially low control-grid and shield-grid currents. This especially fits the GL-5663 for timing-circuit work, where a rise in grid current caused by electrical leakage would mean inaccuracy.

Now-while your new electronic-control circuit is in the planning stage-is the time to consider the saving in space, the economy of first cost, the low power requirements of G-E midget thyratrons! For full particulars phone your nearby G-E electronics office, or address General Electric Company, Electronics Department, Schenectady 5, New York.

What's your problem?
 Fine Wire? Tungsten? Molybdenum?

Problem 2

The firm of AL LOYS \& AL UMINUM were in urgent need of fine aluminum and aluminum alloy wire for a delicate production job. Fine Wire Headquarters assured them that it was no problem at all. The order was placed, the Fine Wire delivered, and it performed to the complete satisfaction of all concerned.

Problem 3

MR. MUST B. PLATED, who required metal-clad wire for a specific application, phoned Fine Wire Headquarters. We supplied the base material to provide the physical characteristics desired, and plated it to meet his exacting specifications for special surface qualities.

WHY not call Fine Wire Headquarters when you have a question about fine wire? We can't do the impossible, but we can do lots of things that can bring you the right fine wire for the job.

So-when you have a problem on Fine Wire, Tungsten or Molybdenum - wire, phone or write to North American Philips, makers of NORELCO Fine Wires, and ELMET Tungsten and Molybdenum products.

NORTH AMERICAN PHILIPS COMPANY, INC.

Dept. XT-9, 100 East 42nd Street, New York 17, N. Y.

Export Representative • Philips Export Corporation • 100 East 42nd Street, New York 17, N. Y.
 ference?" And in the answer to that question lies the secret for many more sales of your products.

Here at Cornell-Dubilier you'll find your answer - in a modern and complete laboratory, devoted to RADIO NOISE AND SPARK SUPPRESSION DEVICES - the industry's most experienced engineers - the thirty-seven-year C-D background, unequalled in the capacitor field. They're all at your disposal NOW. Whether you want to Radio Noise-Proof equipment already in production - or if you're enginecring a new product from the ground up - C-D Quietones will do the job efficiently and permanently. YOUR IN. QUIRIES ARE INVITED. CornellDubilier Electric Corporation, Dept. K9, South Plainfield, New Jersey. Other large plants in New Bedford, Worcester and Brookline, Mass., and Providence, R. I.

Make Your Products More Saleable with C-D Quietone Radio Noise Filters and Spark Suppressors

 Inductive Plaque Resistors wound with Nichrome V wire - used in telephone carrier circuits operating through rural power lines.

This is the story: Circuit breakers are installed in the power lines to protect them against "shorts" due to falling wires, etc. But the telephone carrier currents are blocked by the high impedance of the breaker solenoids. A low-impedance resistor is therefore used as a by-pass at each solenoid.

When a "short" occurs, the resistor must be momentarily able to carry amperage far in excess of its normal rating, because mechanical lag prevents the circuit breaker from opening instantly. The same applies when lightning, or accumulated static charges, discharge to the ground.

Tremendous strain is imposed upon the winding of the resistor during the instant of high current impact, yet it must stand up.

To assure maximum performance and dependability, Ward Leonard uses windings of Nichrome V. This superlative DriverHarris alloy sustains tremendous voltage surges without loss of characteristics, retains its superb stability in spite of severe thermal shock, stays on the job even though "jolted" again and again . . . when a breaker makes several attempts to restore an open circuit.

Whatever your electrical resistance problems - conventional, unusual, or seemingly impossible of solution - send your specifications to us. We manufacture and draw the most complete line of electrical resistance alloys in the world.

Designed to protect telephone circuits that utilize power supply lines. this resistor, rated at 50 ohms and 125 watts, is intended normally to carry a current of about 1.6 amperes. In the event of short-circuit, however, it will tolerate 16 times this amperage, and a voltage increase producing 35,000 watts, for the fraction of a second required by a power line circuit breaker to operate. Cooling in less than a second after sustaining such an abnormal current impact, the winding, of .010 in diameter Nichrome V wire, remains unimpaired. In fact, this severe treatment can be administered for $3 / 100$ ths of a second per second for 3 successive seconds without damage to the resistor. Made by Ward Leorard Electric Co., Mount Vernon, N. Y.

Nichrome is Manufactured only by
Driver-Harris Company
HARRISON, NEW JERSEY
BRANCHES: Chicago, Detroif, Cleveland, Los Angeles, San Francisco, Seatfle Manufactured and sold in Canada by
The B. GREENING WIRE COMPANY, LTD., Hamilton, Ontario, Canada

Yiewed from an tongle this molded case for Wilcolotor was a real challenge. Using stancard finishing techniques, 34 machining operations
 were molded eight-at-a-time in an enclosed type semi-automatic mold. would have been needed to produce the intricate pattern of holes, recesses, slots and lettering appearing on the topside alone! Not less than a dozen additional operations could have provided the fillets, bosses and stepped-plones of the inside contour. Yet by carefull engineering, this part was precision molded as it appears above without recourse to a single after-molding operation. To meet the demands of the application for a heat-resistant material, we used a compound, custum-formulated in our own plant. And for speed and economy in production the cases In baseball parlance, facing this "tough line-up" Consolidated came up with a perfect triple play from Custom-Mold to Custom-Material to Cus-tom-Processing . . . scoring complete cusfomer satisfaction. We will be glad to meet the challenge of your next plastics application with an equal display of brilliant teamwork. Inquiries invited!

PROLUCT DEVELOPMENT - MOLO DISIGN - MOLD CONSTRUCTION - PLUNGER MOLDING - -RANSFER MOLDING - INJECTION MOLDTNG - COMPRESSION MOLDING Branches: NEW YORK, 1790 Broadway - CHICAGO, S49 W. Randolph Sf. - DETROIT, S5O Mactabees Bldg. - CLEVELAND, 4614 Prospect AV. - BRIDGEPORT, 211 SiGe Sireel.

From this package

 come the finest recordings in the world
Presto

GREEN LABEL DISCS

ALSO AVAILABLEPresto Brown Label discs. They're one-side perfect... with a flaw on the other side you probably couldn'tfind. Perfect for one-side recordings, reference recordings and tests, and at greatly reduced cost.

Ftacle units, some of which are shown abone. Any number of contacts can be provided (in multiples of twelve). Male and female contacts are full-floating for casy alignment and positive contact. Contacts are silfer-plated, terminals tinned for soldering. Polarizing guide pins are provided where desired. Insulation is Steatite, the low-loss ceramic which is non-carbonizing even under leakage flashover resulting from contamination, moist ure or humidity. Write for complete electrical and mechanical specifications of available units or engineering recommendations for an efficient component for your product.

AlPEEIH

NEW WORD ON

TEEEPHONE CABLES

Lead makes an excellent sheath for telephone cables-sixty years and thousands of miles in service have well proven that. But lead is useful in other ways-storage batteries and paint, to name only two. So the telephone industry shares the limited available supply with other claimants.

Before the war when there was no lead shortage, Bell Laboratorics engincers sought to develop better and cheaper cable sheatlis. An ideal shath is strong, flexible, moistureproof, durable and must moet specific electrical requirements. No single material had all those virtucs, so thoughts turned to a composite sheath, each element of which should make a specific contribution to the whole.

Various materials and contbinations were studied. Desirable combinations that satisfactorily met the laboratory tests were made up in experimeintal lengths, and spent the war years hung on pole lines autd buried in the ground. After tlic war, with an unparalleled demand for cable and with lead in short supply, selection was made of a strong composite sheath of $A L$ uminum and PolyETHylenc. Now Western Electric is mecting a part of the Bell System's needs with "ALPETH" sheathed cable.

Mceting emergencies-whether they be storm, flood or shortage of materials - is a Bell System job in which the Laboratories are proud to take part.

BELL TEEPPHOVE LABORAOMNIES

- Exploring and inventing, devising and perfecting for

CONTINUED IMPROVEAENTS AND ECONOMIES IN TELEPHONE SERVICE.

TYPE 302-
SLIDE SCREW TUNER
TYPE 401 -
DIRECTIONAL COUPLER
($11 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ waveguide)
m fr aney sensitivity:
Minimum frequency sension
Broadband operation

- This unit is representative of a group - This unit is repal broadband couplers of mong in four waveguide sizes the frecovering in four wan 4000 to $10,000 \mathrm{mega}$ quency rangecond.
cycles per second.

The items presented above are representative of the complete I'RD line of precision microwave measurement and test equipment. These units embody basieally new design principles calculated to provide the microwave research engineer with the ultimate in accuracy and reliability. A skilled staff of engineers and physicists is constantly pioneering the advance to the higher frequency regions of the microwave spectrum and stands ready to assist in the solution of your microwave problems. An illusirated catalog nay be obtained by writing on company letterhead to Dept. E-6.

TYPE 169 - CALIBRATED VARIABLE AITENUATOR ($2^{\prime \prime} \times 1^{\prime \prime}$ waveguide)

Metallized glass attenuating element; Precise and permanent cal-
ibration; Negigible insertion loss ibration; Negligible insertion loss - A full complement of fixed and variable attenuators and broadband provides abions in standard waveguide sizes range from tions in stor the frequency range fromd. coverage for
2600 to 40,000 megacycles per seconate Fixed pads and terminations ission lines. Fixed padard coaxial transmission lumes. for

66 COURT ST., BROOKLYN 2, N.Y.
miniaturization of electronic equipment is a well-established trend today. For applications where saving in space and weight are of importance, Solar offers a wide selection of reliable capacitors. Among these are:

Type SL cardboard tubulars Type XTL metal-encased tubulars
Type QS solder-seal metalencased tubulars

PAPER CAPACITORS

Type TST Tiny Sealdtites ${ }^{\star}$ smallest series of molded tubulars available
Type TTR Tom Thumb* tubulars, minimum size paper "match-sticks"
Type TTF Flatpacks, minimum size rectangular sections Type QAIM miniature metal-encased hermetically sealed oil tubulars

DRY ELECTROLYTICS

Type LB miniature metalencased hermetically sealed tubulars

MICA CAPACITORS

Type MO molded 'half-
postage-stamps" in both foil-
mica and silvered-mica

If you've a problem in equipment design requiring unusually small paper, electrolytic, or mica capacitors, call on Solar. Descriptive literature upon request.
Solar Manufacturing Corporation 1445 Hudson Blvd., North Bergen, N. J.
\star Trode Mark

SOLAB
 SOLAR CAPACITORS
 "Quality Above Af!"

BUSINESS BRIEFS

By W. W. MacDONALD

Buttons, badges and keep-out signs are more in evidence in electronic equipment plants turning out military gear than at any time since the war.

Heater-Type subminiature tubes are not far away; at least one manufacturer is known to have them pretty well along in the design stage. Available with 6.3 -volt indirectly heated cathodes, such tubes should be useful for voltage amplification in equipment which must be compact, particularly in multistage devices.

Mail-Order Houses miss few bets. They are already advertising, in direct-mail flyers, dualspeed turntables operating at both $33 \frac{1}{3}$ and 78 rpm , hoping to cash in if and when Columbia's new Microgroove transcriptions for the home (see p 86) become popular.

Business Failures among radio equipment manufacturers in the fiscal year 1947-1948 totalled 29, according to RMA, approximately half having been in business 5 years or less. Of the 29,10 made radio sets, 5 communications equipment, 3 test equipment, 2 television receivers, 2 recorders, 2 radio parts, 2 phonographs, 1 sound equipment, 1 motors, and 1 projection equipment.

Causes contributing to failure included extensive inventories, excessive plant facilities, inadequate distribution, poor merchandise and inadequate production experience.

Immense Investment required for production of television receivers will change the character of the radio manufacturing industry, according to Zenith's H. C. Bonfig. The trend, he thinks, is toward a smaller number of larger manufacturers.

Stratovision demonstration out in Ohio brought one fact forcefully to our attention: there are hundreds of people in the hinterlands, away from reliable service, with
their antennas hanging out in the hope that they will some night pick up a good stray picture. While the program was in progress we heard several telephone calls come in reporting reception and asking when the Westinghouse-Martin B-29 would be up again. And since then we have seen many similar letters.

Klieg Lights needed by movie people more than by television men were responsible for excessive heat generated in Philadelphia at the recent political conventions and reported by many newspaper commentators. Most television pickup cameras used image or studio orthicons, and these tubes do a pretty good job even by the light of a kerosene lamp.

Acrylic Magnifiers (plastic shells filled with a mineral oil like Nujol) are being manufactured for television in substantial quantities, according to Hiram McCann of Modern Plastics, but the average price at the fabrication shop has gone from $\$ 30$ to $\$ 12$, with some production reported at $\$ 8$.

Sailboat Men are rarely surprised about anything the powerboat boys do, but we are forced to take note of the fact that out on Long Island Sound quite a few floating palaces are installing f-m sets, complete with elaborate folded dipoles mounted on cabin tops amid other chromium-plated gizmos. Just this last weekend we spotted two seagoing hotels sporting television arrays.

Definition: Radio is television without the pictures.

Britain's Exports are up; twice in the first quarter of this year radio equipment shipments exceeded the $£ 1,000,000$ monthly objective. High on the list of reasons is the fact that models are designed with particular overseas markets in mind; bandspread on shortwaves, high sensitivity, free-
dom from drift and tropicalization are contributing factors.

Australia had 1,737,152 licensed radio receivers on April 30, 1948, an increase of 607,366 since 1939. The ratio of licenses to population was 23.38 percent. More than 125,000 listeners had licenses for more than one set.

College Courses in engineering fully accredited by the Engineers Council for Professional Development in that organization's fifteenth annual report dated September 30, 1947 and released July 1, 1948, total 509, broken down as follows:

More men are still trying to break into our field than any other.

Fiscal Year Reports: Zenith, $\$ 79,406,133$ worth of business in the period ending April 30, 1948, up 38 percent over the previous 12 months.

Magnavox, $\$ 27,434,019$ for the period ending February 29, 1948, as against $\$ 24,013,812$ in the preceding fiscal year.

Judging a contest for Hytron, we note with interest that a large number of radio servicemen have designed their own trick tube-pullers. Manufacturers, it seems, have mastered the technique of designing tubes that will stay in sockets. Someday they may find it desirable to equip them with wings, or lugs, or handlebars that permit the repairmen to get the things out.

Rose Buss Korsgren, formerly with Hallicrafters and now with Alaska Radio Supply, writing from Anchorage, says it seems to her that nearly everyone she's met is either a radio man or connected with the airlines in some way. That would be natural in a territory in which both communications and transportation involve unus-
ua) terrain difficulties.
There are 458 amateurs to 80,000 people in Alaska. In the States there are about 6 hams to that many.

It's A Long Way back, but people around New York are still talking about how perfectly f-m performed when local electrical storms blotted out regular broadcasting the night of the Louis-Walcott fight. This sort of experience does more to sell the new service than any amount of industry propaganda.

Coming Attractions: As promised, we're presenting quite a few articles about computers in the feature pages of Electronics this year. The latest appears on page 110 of this issue.

Transductors are also considered of sufficient importance to keep the editorial heat on. See page 88 There will be more.

The ultimate importance of superregeneration is a matter of speculation, but it is about time somebody separated fact from fiction. Two articles in this issue, on pages 96 and 99 , do it.

Speaking of hard, cold facts, we hope to have some in print soon concerning Stratovision.

Wondering what goes on at G-E's ambitiously named "Electronics Park"? Read about it next month in these columns and you'll know more about the setup than many of the people who work in Syracuse.

Story Of The Month: It's late for this one, but only now can it be told.

During the war, a friend of ours who silk-screens panels received an order for a few and started to turn them out on AAA1 priority. Then he learned they were part of a classified item and that a 24 -hour guard would be required at the plant.

Several months went by, with production hanging fire, while our friend explained that the cost of the guard would exceed the price of the panels. Finally, the go-ahead was given when government officials reluctantly agreed there was scarcely need for security measures in connection with a panel lettered, simplyPower. On-Off.

AVAILABLE IN ALL POPULAR TYPES!

TYPE 103J58A

OOD purchasing calls for G-E sockets along with General Electric tubes. That way you have one convenient source of supply-one manufacturer responsibility-one high standard of quality.

Also . . . these heavy-duty sockets are designed to work in harness with G-E power tubes, rectifier types, thyratrons, and others. Depend on General Electric sockets to accent efficient, dependable tube performance; to underscore long service life.

Stocked widely, G-E sockets are easy to obtain. Your nearest G-E electronics office gladly will give you prices and full information. Or write Electronics Department, General Electric Company, Schenectady 5, N. Y.

GENERAL ELECTRIC

Mallory Presents the First

ILL new

Variable Resistor in Years!

When we call this $15 / 16^{\prime \prime}$ Mallory Midgetrol new, we mean entirely new inside and out-with new design and new features achieved by new production methods. It's the first really new control to appear in years.

EXTREMELY LOW NOISE LEVEL - STAYS QUIET, TOO

Both mechanically and electrically, you'll find the new Mallory Midgetrol the quietest, smoothest control you ever handled-with greater uniformity and balanced contact pressure. The new carbon element, contact and 2-point, wobble-freeshaft suspension combine to make it so. Better still, it stays quiet! Our tests and customers' laboratory tests prove that after tens of thousands of cycles, the Midgetrol still has an amazingly low noise level.
Behind the new Mallory Midgetrol are many years of Mallory experience and widely diversified manufacturing facilities in metallurgy and electronics. You can specify the Midgetrol with the utmost confidence. Write today for Technical Information Bulletin and Specification Sheets.

other all new features . . .

- Higher standardization-faster delirery schedulesthanks to the Midgetrol's new design.
- You can bend or twist theterminals without breaking then.
- Terminals are farther anay from the mounting surfare . . . elimintutes need for extra insulation.
- Has coltage rharacteristics that make it especially adaptable for television receirers as well as radio sets.
- Sares precious space-can be sperified where a 11/8" diameter control ordinarily would be required.
- Lightness makes it ideal for portable radio applications.
- Flat shaft for standardization and miformity in prodac-tion-for radaptation to fit any type knob now in use.
- Specially designed suitrh for long, tronble-free life.
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6 , INDIANA

CROSS

TALK

- OBIT . . . The death of Harry Diamond, at the height of his career, is a severe loss to the profession and to the Bureau of Standards, where he headed the Electronics Division. His work on radio range beacons, the instrument landing system, the radiosonde and the proximity fuze, are outstanding contributions to aviation and military science. They are matched by an equal contribution to the training of young radio scientists, many of whom received their first inspiration from Mr. Diamond. He saw electronics clear and he saw it whole. One of his last speeches contained a breakdown of the field of electronics:

This was his business; he served it well:
(1) Radio communication and broadcasting, including television and facsimile.
(2) Electronic ordnance, including radar fire control, electronic controls for guided missiles, proximity fuze, and electronic controls for underwater torpedoes.
(3) Radio navigational aids, including radar, loran, and other sea and air navigational aids.
(4) Electronic power conversion, including dielectric and inductive heating.
(5) Electronic instrumentation and controls, including special instruments for physical, chemical, medical and biological research and practice, and the general concept of the servomechanism.
(6) Electronic devices for mathematical computation.

- TELE-QRN . . . For years the fight against manmade interference has been conducted by the men of radio against the great outside world, the non-radio domain of electric shavers, telephone dials, ignition systems, and similar impulsive characters. More lately, the battle has assumed the character of a civil war.

In television engineering, at least, the arms of brothers are raised in conflict. A television set lives on impulses, at high level in the scanning and videoamplifier circuits, and these pulses, uncontrolled, raise lots of hob with other radio and television sets
in the vicinity. An RMA Committee has given wide circulation to this fact, and urged that adequate shielding be employed to cure the interference. But most sets employing magnetic scanning (the majority at present) are still very noisy out to 10 or 20 feet, much more than the thickness of the wall between apartments. This nuisance, if unabated, threatens to unsell a lot of equipment. Like the oscillator radiaiion problem, it remains a solvable problem on which not enough money and manpower have yet been spent.

A related miscellany is a letter from the city fathers of Garden City, N. Y., sent to all residents, asking them kindly to refrain from erecting television antennas on the roofs of that as-yet-unspoiled village. Seems they have gone so far as to ask experts, who tell them that the flat terrain of Long Island, close to New York, with no high buildings in the vicinity, is ideal for aerials inside attics.

- SEMICONS . . . From audion to orthicon (not forgetting pliotron, kenotron, thyratron, and ignitron) it has been customary to coin names for the vacuumtube family ending in "on". Now comes another family, practitioners of the art without benefit of vacuum. These are the solid-state cousins, the crystal brethren, the germanium, silicon, copper oxide, selenium boys. For years these crystals have rectified, detected, responded to light and to heat. Now, with the coming of the transistor (described in this issue), they amplify. Seems like the country cousins ought to have a name.

Since these crystals are electronic by occupation, if not by constitution, we beg leave to suggest a namein the vacuum-tube tradition. To wit, semicon: a device employing a semiconducting material in the solid state, through which flows a current capable of being varied by external physical influences. The crystal detector current varies with the direction of the applied potential; it rectifies. The barrier-layer ${ }^{\prime \prime}$ photocell current responds to light, the thermistor current to heat. The transistor current responds to the magnitude of an applied voltage; it amplifies. Respectable brethren, these semicons, and welcome.

Dr. Williarm Shockley, who directed the sesearch, Dr. John Bardeen, who developed the theory, and Dr. W. H. Brattain, whose experiment verified it discuss physics of Transisfor

The TRANSISTORA Crystal Triode

Germanium crystal with two cat-whisker contacts has characteristics of grounded-grid triode amplifier, provides 20 db gain, 25 milliwatts output at frequencies up to 10 megacycles. IIt will replace vacuum tubes in many applications and open new fields for electronics

ANEW DEVICE, operating on an entirely new principle and capable of many functions of the electronic vacuum tube, but having neither an evacuated envelope nor a hot cathode, was announced early in July by scientists of the Bell Telephone Laboratories. Known as a TRANSISTOR (TRANSfer resISTOR), the device is essentially a triode form of the well known germanium crystal diode.

In its present experimental form the Transistor is a metal cylinder :3/16 inch in diameter and $\frac{5}{8}$ inch long, as shown in Fig. 1. Inside the cylinder, Fig. 2A, is a block of germanium soldered to a metal disc to which it makes low resistance contact and that grounds it to the
cylinder. Two 2-mil tungsten wires make contact with the upper face of the germanium at points about 0.002 inch apart.

An input signal, Fig. 2B, in series with a small positive bias voltage, is applied between the grounded face and the input cat whisker (emitter). A large negative bias voltage is applied between ground and the output (collector) point contact. The output signal appears across a load resistor in series with the negative bias. In this manner a power gain of $100(20 \mathrm{db})$ is obtained between input and output of a Transistor. The terminal characteristics of an experimental Transitor are shown in Fig. 2C (see the Phys. Rev. p 230, July 15, 1948.)

This is an early unit having a gain of about 15 db . The characteristics are typical of later units having ar average gain of 20 db .

Because of its unique properties, the Transistor is destined to have far-reaching effects on the technology of electronics and will undoubtedly replace conventional electron tubes in a wide range of applications. The Transistor requires no heater or filament power and uses the power supplied by its bias sources with high efficiency. Under typical operating conditions it draws only 0.1 watt from the bias sources (about a tenth the power consumed by a flashlight bulb) and delivers 25 milliwatts of usefut output, thus having an overall efficiency

FIG. 2 -Crysal triode (A) consists of two cat whiskers connected to separate input and output circuits (B) to give characteristics (C) that produce high amplification
of 25 percent.
The Transistor is smaller than a subminiature vacuum tube. It seems likely to have a useful life of many thousands of hours because of its simple, sturdy construction. Where portability and low battery drain are essential, as in hearing aids and personalized radios, the Transistor appears ideal. In equipment using large numbers of amplifiers, large-scale computers being an extreme example, the absence of a heater makes it possible to place many Transistors in confined space without creating difficulties in heat dissipation.

Although cost factors have not been thoroughly explored, Transitors should be no more costly to
manufacture at present than the 1N34 (high back-voltage) germanium diode, which lists for replacement at $\$ 1.20$ and is obtainable in large lots by equipment manufacturers at $\$ 0.53$ apiece. These prices are slightly higher than the prices of a corresponding vacuum diode (6 H 6). However, present costs of crystal diodes are not representative of inherent costs. The industry has spent about 40 years mechanizing production of vacuum tubes and has written off engineering and plant costs over that time. If crystal devices (diodes and Transistors) prove as successful in practice as they now appear to be, they too will be put into mechanized production and their cost reduced. Ultimately they should be cheaper than comparable vacuum tubes because of their simplicity and because they do not require evacuation, which is the most difficult step in producing vacuum tubes.
There are limitations to the use of Transistors in their present state of development. The power output is restricted to about 25 milliwatts per unit, or 50 mw from a push-pull statre. A Transistor capable of developing several watts output does not seem feasible at present. Parallel operation of two or more units is possible, however, and could be used to increase the power to a load several fold. The upper frequency of operation is limited to about 10 megacycles by transit time within the germanium. Thus the Transistor is at present useful at audio, video, and the lower radio frequencies, but is unsuited to vhf and uhf applications. Furthermore, the noise generated within a Transistor is appreciably greater than that produced in vacuum triodes.

If the requirements of an application for which the properties of Transistors are suitable justify their cost when they first become commercially available, there remains a temporary obstacle to their immediate use, namely engineering this new device into the circuit. One of the principle problems requiring development is matching the input and output impedances of the Transistor to the circuit. The input impedance of the Transistor is low because the bias in the input circuit causes current to flow in the forward direction through the point
contact of the emitter. On the other hand, the output impedance of the Transistor is about a hundred times higher than the input impedance because its bias causes current to flow in the reverse direction through the point contact of the collector. These impedance levels are the opposite of those for vacuum tubes and require a new approach to the coupling circuits between amplifier stages. Intensive work on this problem is underway. The Transistor thus opens new fields for clever design and inventive talent.

Illustrative Applications

In announcing the Transistor, BTL scientists demonstrated several typical electronic devices in which it was used. A booster amplifier for telephony illustrated its application to voice-frequency amplification. A similar video amplifier was also demonstrated. Its low power-supply drain makes it suitable for telephone and television repeater service. In fact, it requires no more power than that usually available at a subscriber's set from the central office batteries that are connected to the line. Use of a Transistor as an oscillator showed the versatility of the unit. Use in a radio receiver for the standard broadcast band illustrated its practicality.

The radio receiver contained no tubes. It consisted of a broad-band r-f amplifier, a tuned r-f stage, local oscillator, mixer, three stages of i-f, second detector, and four stages of a-f amplification, the last being push-pull. A total of 11 Transistors were used in the amplifier stages, with 2 germanium diodes for the mixer and detector stages, and 2 selenium rectifiers for the power supply. The receiver brought in local stations, delivering 25 mw of audio power to its loudspeaker.

At low power levels crystal diodes and triodes, in conjunction with printed circuits, make possible the extension of electronic techniques. Existing equipment can be made more compact. Transistors, having no filament, are operative the instant power is applied.

Research Background

Research work in semiconductor materials began at least 24 years ago. Germanium and other semi-
conductors have been used as rectifiers because of their unilateral conductivity. These employ a single point contact; the input and output circuits are not separated. The twocontact arrangement is the practical outcome of a long program of scientific research on semiconductors.

Although investigation of semiconductors at BTL dates back a number of years, with the end of the war a concentrated basic research program was undertaken. Groups in the Physics Department were reorganized. Additional personnel were taken on, particularly theoretical specialists. The groups consisted of paper-work men and laboratory experimentalists who could pass problems from office desk to lab bench and back as the program unfolded. The fact that pure research paid off relatively quickly, in so spectacular a way, is testimony to the ability of the men who carried out the program and to the facilities with which they worked.

The group on semiconductors, led by William Shockley, one of this country's leading solid-state physicists, was seeking answers to three basic questions: (1) physically, what is a semiconductor, (2) how does its physical nature produce its observed properties, and (3) how does the fabrication and processing of the material affect its physical nature? Among the semiconductors studied were silicon, copper oxide, and germanium.

A great deal of empirical information had been amassed on these substances during their use, particularly as detectors in microwave equipment ("Crystal Rectifiers," H. C. Torrey and C. A. Whitmer, McGraw-Hill, 1948). In particular it was known that their resistivities were determined chiefly by impurities, and furthermore that their resistivities could be varied over wide ranges by applying various external influences (light in the case of photocells, electric potential in the case of rectifiers and detectors, or temperature in the case of Thermistors).

Theory of Conduction

Modern physics has developed a detailed concept of the construction of matter and consequently an understanding of the
mechanism of conduction. In metals there is approximately one free electron that can be used for carrying current for every atom; in insulators there are practically no free electrons. By free electrons is meant electrons so loosely associated with their atoms that they can easily be induced to move to adjacent atoms.

In semiconductors there is only about one current-carrying electron for every millions atoms, but this number of carriers can be varied 1,000 -fold by changing the physical environment of the material. Such a change in the number of carriers is effectively a change in the resistance of the material. For example, light falling on a barrier layer changes its resistance. Alternating voltage applied to a selenium rectifier or a germanium diode changes its resistance so that current flows predominantly in one direction. Likewise, a high potential applied externally (without making contact) to a semiconductor should change its resistivity. Using a sheet of germanium as one plate of a capacitor, Shockley and his colleagues measured the change in resistance produced by changing the voltage across the capacitor. The change in resistance was much smaller than anticipated in the light of prevailing theory. Conclusion: something wrong with theory. So John Bardeen, a theoretical physicist in the group, devised a theory of surface states that would account for the measured change as well for older known effects unexplained by previous theories.

To review the old theory for a moment, it was known that conduction in semiconductors could take place by two mechanisms, operating either separately or simultaneously. In some types of semiconductors the electrons, as usual, moved under the influence of applied voltages and thus provided a current flow. Such semiconductors are called N-type because conduction is by negative (electron) charges. In other types of semiconductors, in which there is a deficiency of electrons, the current flow consists of the movement of virtual positive charges (images of electrons) that are actually empty places from which electrons have been removed. Such semicon-
ductors are called P-type because conduction appears to be by positive charges, are shown in Fig. 3.

The two types of conduction had been identified with impurities. For example, as shown in Fig. 3B, silicon alloyed with a minute percentage of phosphorus is an N-type (electronic) conductor. Physically, the effect is explained by the fact that phosphorus has five valence electrons. Four of these form bonds with the four valence electrons in a silicon atom (thus binding the atoms together), leaving one electron free for carrying current.

If the impurity is boron (Fig. 3 C), which has only three valence electrons, there is one incomplete bond between each boron and its neighboring silicon atom, leaving a hole in the structure. Because the percentage of boron impurity is very low, not many silicon atoms are so bound. Hence the hole in the bond of one silicon atom with a boron atom can be filled with an electron from an adjacent silicon atom under the influence of an external electric field. However, this action leaves a hole from which the electron came. This hole is free to be passed from atom to atom and hence to carry current. Whereas a negative electron will migrate from a negative region toward a positive region when voltage is applied, a hole will migrate from a positive region to a negative one. (In P-type -hole-conductors the electrons would have no place to go if it were not for the hole, so, although the electrons do move when current flows, it is the presence of the hole that makes their motion possible. Thus, to physicists, conduction is by (owing to the presence of) holes. Such action takes place in germanium.

The new theory suggested new experiments, which, when performed, called for refinements in the theory. While W. H. Brattain and John Bardeen were following up the consequences of the refined theory of surface states they invented the Transistor. With it they discovered a surface layer having peculiar characteristics.

To account for these characteristics, they postulated and later showed by experiment that there is a thin layer of electrons at the
surface of germanium. This surface layer would prevent the penetration into the body of the semiconductor of an externally applied field and thus account for the smallness of the changes in resistance observed in the capacitor experiment. The field created by these surface electrons causes the formation of holes in the adjacent material, and these holes conduct current. The conducting layer may be caused by an excess of impurities near the surface such as boron that accept electrons into bonds and thus create holes, or by a space-charge barrier layer. Between this P-type layer and the N interior is a rectifying barrier.

When a single point contact is made, the surface layer determines the conductivity for reverse currents or small forward currents. For large forward currents there is an increase in the concentration of carriers (electrons and holes). In either case (forward or reverse current) a large part of the current is carried by the surface conducting layer within an area of interaction very close to the point. Within this area the conductivity, which is mainly by holes, is much greater than elsewhere in the semiconductor. The second point contact for the Transistor is added within this area of interaction.

Transistor Characteristics

In a Transistor, the positive point contact causes the release of holes in the surface layer of the germanium, which is prepared in a similar manner to a high back-voltage rectifier. These holes spread away from the point, flowing in all directions along the surface (but not into the body of the semiconductor). The holes reach the other contact point 0.005 cm away, in less than a ten-millionth of a second. This is the transit time that limits present performance to frequencies below about ten megacycles. From this observation, it is estimated that the holes travel at the order of $100,-$ 000 centimeters per second. Higher applied potentials and smaller spacings, as used in vacuum tubes to increase high-frequency performance, may reduce this transit time. That there are holes capable of moving from 10 to 100 times this speed is

FIG. 3-Conduction within a semiconductor depends on the interatomic bonds formed by the electrons. Current flow in a pure semiconductor is difficult to produce (A). If an impurity having an excess electron (B) is added then that electron can carry current. On the other hand, if the impurity lacks the required number of electrons for the bonds (C) the hole thus created also makes conduction possible
known from estimates of their thermal velocities.

The negative bias applied to the collector causes a very small current to flow from the germanium in the absence of hole conduction produced by the emitter. When the positive bias is applied to the input, however, holes are attracted to the output point contact, which is biased negatively, and these are absorbed, thus increasing the current in the output circuit. Variations in the input current change the number of holes released toward the collector and thus vary the output current proportionately. The Transistor circuit thus closely resembles a grounded-grid triode circuit.

In a grounded-grid vacuum triode the current from the cathode is controlled chiefly by the potential between it and the grid (ground) ; the plate potential has little effect. In the Transistor the positive bias (about 1 volt) of the emitter (cathode) causes a small current to flow into the semiconductor. The negative bias (up to 50 volts) of the collector (anode) is made large enough so that it withdraws about the same current (a few milliamperes) from the semiconductor. While the collector is a poor emitter of electrons, it is a good collector of holes. A variation of the number of holes in the surface around the two point contacts is produced by changes in the input voltage of the emitter. This variation changes the current (carried by holes) to the collector by a factor of from one to two times the change in emitter current, depending on the operating bias. Furthermore, this change in current flows in the high impedance
of the output circuit, of the order of 10,000 to 100,000 ohms. The voltage change produced in this high-impedance circuit by the change in current is thus proportionally large, of the same order of magnitude relative to the signal voltage input as the ratio of reverse to forward impedance of the point contact. There is a corresponding power amplification of the signal.

Because the output circuit can influence the input circuit only by e'ectronic conduction, for which the surface resistance is high, there is little coupling from output to input, and the circuits, one of low impedance (low power) and one of high impedance (high power), are properly isolated for use in unilateral amplification.

The d-c characteristics of a typical experimental Transistor, Fig. 2 C , show the interrelation of the four variables, the two currents and the two voltages. If two are specified the other two are determined. The effect depicted by these characteristics shows that, in addition to the forward amplifying action, the collector current lowers the potential of the surface in the vicinity of the emitter in proportion to the collector current times a constant internal resistance, and thus increases the effective bias on the emitter. This describes the nature of the back coupling that exists. Under certain operating conditions this coupling, which represents positive feedback, can cause instability. Thus, although the principle of operation is vastly different, the Transistor has the properties of vacuum tube amplifiers in many respects.-D.G.F. and F.H.R.

Its Purpose and Program

The Joint Technical Advisory Committee, eight engineers appointed by RMA and IRE, has the important job of advising government bodies and industry groups on the wise use and regulation of the radio spectrum

THe Central problem of the radio industry is the fact that its domain, the radio spectrum, must be administered and policed by agencies subjected to commercial and political pressures, while the by-laws governing the domain are based on technicalities which cannot be changed by commercial or political argument. In each of the major forms of broadcasting for examp!e, this funda-
mental conflict has led to an improper use of the spectrum, or to faulty administration of it.

Standard broadcasting, put on an orderly basis first in 1925, has suffered ever since from a channel separation too narrow to permit high-fidelity transmission, and the multiple assignment of frequencies (to approximately 2,000 stations at present) has so congested the spectrum that serious interference is
the rule in all but urban areas. Television, ready to start in 1939 on standards not radically different from those now used, was stopped dead in its tracks in 1940 by an intra-industry fight which the FCC was unwilling to referee. Frequency modulation was first assigned a band from 44 to 50 mc , and later moved wholesale to $88-108 \mathrm{mc}$, to the consternation of broadcasters and set owners alike. Whatever the

JOHN V. L. HOGAN
(Interstate Brocdcasting)

PHILIP F. SILING
(RCA Frequency Bureau)

EWELL K. JETT
(Baltimore Sun;

DAVID B. SMITH
(Philco)

HARADEN PRATT
(Macsay Radio)

LAURENCE G. CUMMING
Secretary (IRE)
merits of the arguments in each case, the fact remains the public has suffered from an inadequate understanding of the radio spectrum and its standards of use, on the part of regulating bodies and their advisers.

One of the first attempts to rectify this situation was the formation in 1940 of the National Television System Committee, to advise the FCC on television standards.

The success of this effort led to an extension to cover additional classes of radio service. This was the Radio Technical Planning Board, which presented evidence to the FCC on the post-war allocation of frequencies. Other groups, notably the Radio Technical Commission for Aeronautics and similar groups for marine (RTCM) and land-mobile (RTCLM) services have been formed to study the problems of
particular services and to recommend standards and allocations for them.

On July 1st, 1948, the RTPB was dissolved, and its panels were absorbed in the comnittee structures of the RMA and the IRE. This action was based on the realization that the administration of the spectrum could no longer be guided solely by groups devoted to particular services, as were the RTPB
panels. The competition for additional ether space had reached fever pitch and the FCC despaired of refereeing between panels recommending opposed allocations based on conflicting technical evidence. What was needed was an impartial committee to act as a buffer between the regulating body and the proponents of individual services.

Formation of JTAC

The signal for the formation of such a group came soon after the appointment of Wayne Coy to the chairmanship of the FCC. At the IRE annual convention in March 1948, Mr. Coy pointed to the FCC's need for assistance in arriving at an adequate national allocation of television facilities, and mentioned the needs of other services, notably the land-mobile service, as conflicting factors.

At that time the IRE was considering the formation of a technical committee on spectrum utilization, which would gather evidence on the characteristics of different portions of the spectrum and correlate them with the needs of particular classes of service. This committee was the brainchild of the incoming IRE president, B. E. Shackelford. Acting on Mr. McCoy's request, Shackelford met with W. R. G. Baker, outgoing IRE president and Director of the RMA Engineering Department. Together these men roughed out the plan for a joint IRE-RMA committee to consider problems of spectrum utilization and to assist the FCC as required. The idea was presented to the Boards of Directors of the IRE and RMA, and received their blessing.

Two men were appointed to the committee initially, Philip F. Siling, representing IRE, to serve as the first chairman, and Donald G. Fink, representing RMA, to serve as vice chairman. These men met with a group of interested engineers on May 12 th to develop the basic philosophy of the new committee. Based on this discussion a charter was drawn up, amended and finally approved by IRE and RMA June 20th.

The charter, the full text of which is appended here, establishes a committee of eight members, each to serve for two years. While JTAC
will find that, most of its actions relate to FCC activities, it will assist other government bodies, such as the Interdepartment Radio Advisory Committee, and the Civil Aeronautics Authority, on request, and is also available to industry groups, such as railroad, aviation and marine interests. If the load gets too heavy, JTAC has the power to decide on its own motion what problems it will tackle first.

Established IRE and RMA technical committees will be called on to supply information and make detailed studies for JTAC, and special ad hoc committees may be appointed to do so. Other groups or individuals who may have information will be encouraged to pass it to the JTAC. To this end, notices of problems under consideration will be published regularly in the technical press. JTAC's findings will be available to all who request them.

The basic information collected by JTAC will thus come from informed sources, including recognized specialists in particular fields. JTAC's overriding responsibility will be to sift the information for internal inconsistencies or conflicts, to separate facts from opinions, and to remove commercial bias. To - assist in this job, it has the power to appoint technical consultants. Moreover, the JTAC members are chosen as individuals of high professional standing, and are expected to conduct themselves completely outside the sphere of company politics and commercial interest. In fact, it is only by so operating that the JTAC can earn the reputation for complete objectivity, impartiality and accuracy which its charter sets up as a goal.

Television Hearing

The need for the JTAC is underlined by the fact that before its charter was approved and the membership assembled, an urgent request for assistance was presented by the FCC. Early in May, the FCC announced that it would hold a hearing beginning September 20th on the question of utilizing the television frequencies in the region from 475 to 890 mc . These frequencies are currently available for experimentation in improved systems of television, and are reserved
for future commercial use when such an improved system is ready for the public. But pressure for additional television channels, plus the demands of other services for space, had forced the FCC to step up its schedule and to inquire, at once, how this space might be used. Accordingly, the FCC requested the JTAC to provide authoritative information on the ways in which these uhf channels might be employed. Questions relating to available equipment and propagation characteristics, were prepared by Commission engineers and were circulated through the JTAC secretariat to the television system committees of the RMA and IRE for detailed study. Reports from these committees, and from other interested groups, were available in midAugust for the critical scrutiny of the JTAC members and their consultants in time for presentation at the hearing in September.

JTAC Charter

The text of the JTAC charter, excepting the preamble and portions relating to administrative procedure, is as follows:
Objective. The JTAC shall obtain and evaluate information of a technical or engineering nature relating to the radio art for the purpose of advising Government bodies and other professional and industrial groups. In obtaining and evaluating such information, the JTAC shall maintain an objective point of view. It is recognized that the advice given may involve integrated professional judgments on many interrelated factors, including economic forces and public policy.

Duties. The duties of the JTAC shall be as follows:
(a) To consult with Government bodies and with other professional and industrial groups to determine what technical information is required to insure the wise use and regulation of radio facilities.
(b) To establish a program of activity and determine priority among the problems selected by it or presented to it in view of the needs of the profession and the public.
(c) To establish outlines of the information required in detailed form. These outlines will be submitted to qualified groups, as hereinafter defined, who shall study the requirements and supply the required information.
(d) To sift and evalute information thus obtained so as to resolve conflicts
of fact, to separate matters of fact from matters of opinion, and to relate the detailed findings to the broad problems presented to it.
(e) To present its findings in a clear and understandable manner to the agencies originally requesting the assistance of the Committee.
(f) To make its findings available to the profession and the public.
(g) To appear as necessary before Government or other parties to interpret the findings of the Committee in the light of other information presented.

Membership. The JTAC shall consist of eight (8) members.

The members shall be chosen on the basis of professional standing, integrity, and competence to deal with the problems to be considered by the Committee. The members shall be chosen from among all qualified engineers irrespective of the organizations to which they belong or the companies by whom they are employed and shall operate without instruction. Half of the members shall be nominated by IRE and half by RMA, and the appointment of all members shall be confirmed by both bodies. None of the members shall receive any regular compensation for services from the National or any State Government. There shall be no alternate members.

Members shall serve for a term of two (2) years, commencing July 1 and terminating June 30. To assist in maintaining the continuity of action of the Conmittee, half the initial roster of members of the Committee shall be appointed to serve two consecutive terms.

Officers. The officers of the Committee shall be a Chairman, a ViceChairman, and a Secretary. The Chairman and Vice-Chairman shall be appointed from among the eight members of the JTAC by the Boards of Directors of the IRE and of the RMA on alternate years and will serve for a term of one year, except as may be otherwise determined by the Boards.

The Secretary shall be a qualified individual appointed by the members of the JTAC and shall serve for a term of one year. The Secretary shall not be a member of the Committee.
Committees and Consultants. The JTAC shall make use of existing committees in the IRE and RMA organizations wherever possible. Where a qualified group does not exist, the JTAC shall appoint ad hoc committees to study and report on particular subjects. Such ad hoc committees shall be disbanded upon completion of their assignments. The Committee shall also make use of qualified sources of information outside the IRE and RMA organizations, including the engineering staffs of Government bodies as well as professional, educational, and industrial groups qualified to assist in its program. Technical consultants may be invited to assist upon occasion, by the Committee as a whole.

JTAC'S FIRST ASSIGNMENT

The FCC hearing scheduled for September 20th, 1948, has the following objectives:

(A) To obtain full information concerning interference to the reception of television stations operating on channels 2 through 13 resulting from adjacent-channel operation of other services, from harmonic radiations, and from man-mode noise.
(B) To receive such additional data as may be available since the close of previous hearings (Dockets 6651 and 7896) concerning the propagation characteristics of the band 475 to 890 mc .
(C) To obtain full informotion concerning the state of development of transmitting and receiving equipment for either monochrome or color television broadcasting, or both, capable of operating in the band 475 to 890 mc .
(D) To obtain full information concerning any proposals for the utilization of the band 475 to 890 mc , or any part thereof, for television broadcasting and the standards to be proposed therefor.

At the request of JTAC, members of the Commission staff prepared the following list of detailed questions:

(1) What is the present state of development of equipment in the band 475 to 890 mc , in regard to (a) transmitters, tubes and components, (b) receivers and components, (c) antennas, transmission lines and related equipment for transmission and reception?
(2) How much experimental work has been undertaken in television systems in this band, with respect to field operation (transmitter hours operated, number and distribution of receivers, and propagation tests) and laboratory work (development of receivers, transmitters and tubes)?
(3) What consideration has been given to the costs of television systems for this band, particularly to the reduction of receiver costs, and the transter of cost burdens to the transmitter?
(4) What areas of service might be expected in this band, based on the following assumptions: (a) a particular system, using one of the following typical bandwidths: $6 \mathrm{mc}, 13 \mathrm{mc}, 20 \mathrm{mc}$; (b) radiated power, available now and expected to be available, say, 10 years in the future, (c) receiver sensitivity, and (d) at each of the following typical frequencies: 475, 600 and 890 mc ?
(5) What co-channel and adjacent-channel separations would be appropriate under the assumptions made in item 4, above?
(6) How many channels would be available in the band 475.890 mc , on the assumptions of item 4. above, and how might they be allocated among the 140 metropolitan districts of the United States?

JTAC has transmitted these questions to RMA and IRE committees as well as many other groups, such as NAB and TBA, who may contribute to the store of knowledge. Any reader of Electronics who has information on these matters is urged to communicate it at once to the JTAC Secretary, L. G. Cumming, care of the Institute of Radio Engineers, 1 East 79th Street, New York 21, N. Y.
-THE EDITORS.

TElevision receiver front-end design is one of the most difficult problems engineers face today. The quality and cost of receivers depends to a large extent upon its solution.

Front ends must have sufficient bandwidth for acceptance of both picture and sound on each of the twelve available channels; almost everything else is optional and at the discretion of the designer.

R-F and Converter

There is, first, the question of gain; this is at present achieved by the inclusion of a stage of r-f amplification.

A triode used in the r-f stage gives a better signal-to-noise ratio than a pentode but provides less isolation; there is a possibility of more oscillator voltage passing through the tube and appearing across the antenna terminals. There is, therefore, a trend toward the use of pentodes. The 6BH6 provides adequate gain on the seven highestfrequency channels and also reduces circuit loading.

Theoretically, the greater the number of tuned circuits the better the performance. However, mul-tiple-tuned circuits cannot always be used due to mechanical design considerations and cost, so either grid or plate-circuit tuning is currently employed. Where grid tuning is used, separate antenna coils must be provided for each channel, with the disadvantage that more switch points are needed. Where plate tuning is used the transmission line must be fed into the grid and cathode of the r-f tube, inasmuch as an input circuit balanced for both signal and noise is essential.

A gain of 6 db is considered satisfactory at the present time for the r-f stage of a television receiver designed for use in the average location. An image-rejection ratio of 40 db can readily be maintained on all channels.

Conversion can be achieved with a triode, pentode, diode, or even a crystal. The 6AG5 pentode performs well as a converter. The oscillator circuit must be chosen carefully; a plate circuit grounded with respect to $\mathrm{r}-\mathrm{f}$, with a floating cathode and tuned grid, is probably

RCA rotary-switch type front end uses transmission lines and push-pull circuits

Television

FRONT ENDS

> R-f, oscillator and mixer problems are discussed. and current design trends noted. Suggestions for measuring performance are given, and tuning methods at present in use and on the drawing boards are covered in detail

By A. D. SOBEL

Vice-President. Television Engineerin! Hranklin Airloop Covp Neu Fork, N.
the easiest to use as there is only one switch point involved.

Some sort of vernier appears to be essential, unless automatic frequency control is incorporated into
the design. This is not too difficult to add if a dual triode such as the 12 AT 7 is used. One half of the tube functions as the oscillator and the other half is used as a reactance

Franklin rotary-switch assembly with die-stamped ransmission lines

GE rotar-witch arrangement has conventional inductances
tube. Control voltage is taken from the discriminator or ratio detector in the sound i-f section of the receiver.

An excellent and recommended
way to make front-end gain measurements is to figure gain to converter piate, on the basis of gain per 1,000 ohms of converter plate load.

Possibly the greatest drawback today in making accurate measurements is mismatch due to the feeding of a signal from an unbalanced signal generator or sweeper into the balanced input circuit of a receiver.

Measurements

To observe and adjust r-f gain, bandwidth, and coupling, the author feeds a suitable sweeper into the antenna terminals through a correct match for 300 ohms. The output is taken at the converter grid or, better still, at its screen, and connected to an oscilloscope. If the inductances are correct for the different channels a curve can be observed on the oscilloscope screen and frequency markers inserted. Coupling can be adjusted while observing the curve on the oscilloscope.

Drift measurements on a frontend unit should never be made in the open. The unit should be installed on the chassis with which it is to be used and in the cabinet in which the chassis is to be placed. The proper temperature-coefficient capacitors can then be incorporated into the design to counteract the effects of heating.

In designing a tuner the most unexpected conditions are encountered at frequencies between 50 and 250 megacycles. All sorts of resonances can be expected. These frequently manifest themselves as absorption circuits, cutting gain or actually blotting a frequency out entirely. An oscillator may refuse to operate entirely at certain frequencies. Probably the worst offenders in this respect are heater chokes which, with their by-pass capacitors, of ten resonate in the television band. Switch shafts and plates, frameworks, wiring, and other innocentlooking items also give trouble.

Tuning Methods

There are several methods of tuning television receiver head ends, and sometimes they are used in combination. Typical methods are enumerated in the following paragraphs.

Rotary Switch. The rotary switch has met the needs of radio design engineers for nearly twenty years. It has successfully been applied to

Hazeltine sliding turret has individual inductances
television, sometimes using conventional inductances and sometimes resonant transmission lines.

On the plus side of the ledger, rotary-switch advantages include low cost, sturdy construction, and noise-free operation. The spacing between the contacts is small, lending itself to high-frequency operation. Switches of this variety are compact and therefore keep the overall size of a unit to a minimum. But this is the very feature that sometimes causes trouble. Because of its compact construction, the average rotary switch is not too accessible in production. Also, the concentration of conventional inductances in a small enclosed area in which there are warm resistors and hot tubes contributes to the drift problem. Use of printed or stamped inductances as shown in the upper photograph on the preceding page eliminates most of this trouble.

Rotary Turret. Theoretically, the rotary turret represents excellent television head-end design. By rotating coils, lead lengths can be kept constant for all channels, providing a good LC ratio. But this system, too, has disadvantages. Contacts are difficult to design and, if satisfactory, are generally very expensive. Also, size easily gets out of bounds if all twelve channels are provided. Some manufacturers circumvent this by providing eight
channels, leaving it to distributor or retailer to make a station selection satisfactory to the consumer.

Sliding Turret. The sliding turret is essentially a rotary turret that has been flattened out so that it can be moved sideways over or under a set of stationary contacts.

Among turrets, it is probably a good type as contacts are not too difficult to design. However, it has still greater size and more complex mechanical structure.
Permeability Tuning. Perméability tuners have been used successfully for years in radio receivers, and there is no reason why they cannot be adapted for television if the designer is willing to take the disadvantages along with the advantages.

To begin with, in order to cover the entire television band, the tuming spectrum has to be divided into at least two bands, with some method of switchover provided. Such a system could be used in two different versions, the first as a continuous-tuning device and the second with a detent and individual channels. The first system has the advantage of smooth operation but it will also tune through all kinds of interferences. Placing a detent in the system eliminates this trouble but complicates the problem of resetting. Inasmuch as permeability tuning in most cases depends on very small inductance changes, the problem of bringing slugs back to exactly the same position for given

Franklin push-button-type tuner formed of stampings
channels is very difficult indeed.
Inductive Tuning. Inductive tuning has the advantage of smooth operation. On the other hand, it is mechanically complex and expensive. The idea ordinarily involves use of a rotating cylinder upon which wire is wound in grooves. A small contact wheel engages the first turn when the coil form rotates, and travels over its entire length as the cylinder is turned.

Variable Capacitance. The old reliable workhorse of radio, the variable capacitor, has not been forgotten. Although most designers have not employed such devices because of the wide frequency range that must be covered in a television head end, one has actually been developed. The unit referred to requires a high-low bandswitch.

Pushbutton. Tivo different pushbutton tuners have been developed. The first uses a conventional pushbutton switch and the three associated tubes are mounted on the main television receiver chassis rather than in the head-end unit. To overcome the normal high inductance of the contacts, a series capacitor is placed in the transmission line and a small variable capacitor at each
pushbutton position to ground. The capacitors act as padders. For 12 channels, 36 trimmers are thus used.

The second pushbutton switch referred to comprises a framework designed to accommodate tubes and wiring. Space is provided near the converter tube for the first i-f coil or trap, while more space is available for broadcast or f-m components. Contacts are large and heavy and their inductance at the frequencies used is low. The moving contacts are welded to the pushrods and are self-aligning. Incorporated in this unit, and an important part of its design, are die-stamped circuits.

Pushbutton Tuner Details

In the Franklin Airloop Corporation pushbutton tuner referred to above only four adjustments are necessary. Three coils have an in-ductive-tuning arrangement consisting of a $4 / 32$ brass screw with a $\frac{3}{8}$ head. Moving the head of the screw closer to or farther away from the die-stamped coil provides necessary frequency adjustment. A similar device in the oscillator circuit tunes the low-frequency channels.

The oscillator has a vernier ca-

Philco rotary turret using replaceable coil assemblies
pacitance adjustable through the front of the tuner. In cases where automatic frequency control is used the vernier becomes an internal adjustment to compensate for different tube capacitances when and if the oscillator tube is replaced.

A 6BH6 tube is incorporated in the r-f stage. The antenna input is between grid and cathode terminals and is balanced and matched for a 300 -ohm line. The grid of the tube may be used with automatic gain control. The plate is tuned and overcoupled to the grid of the converter, which is a 6AG5. The grid of the converter is tuned and the two circuits are coupled with fixed capacitors before channel 13 and at channel 7. Injection voltage at the grid averages 3 volts.

The oscillator is a conventional 6 C 4 with plate grounded with respect to r-f and a choke in the cathode circuit. The grid of the oscillator is tuned.

The heavy framework of the tuner readily dissipates heat, while the stamped inductances are comparatively far away from the heat sources. Oscillator drift is readily compensated for by means of tem-perature-coefficient capacitors when the tuner is used in different chassis and cabinets. Should a situation arise in which spurious signals are received in particular locations a trap for the offending signal, or an additional tuned circuit to bring up the wanted signal, or both, can be readily added. Threaded holes are provided on the rear of the switch for this purpose. However, no spurious responses have been found so far.

Future Trends

Present-day tuners serve their purpose well, considering the economics of the market, but already new and better front ends are on the drawing boards for 1949 and 1950. It will take time to complete design, field test and tool up.

The trend is toward more gain, greater stability and, particularly, greater freedom from interfering signals. Multiple stages of r-f are possibly in the offing. Certainly more tuned circuits are coming.

Reference
(1) Stamped Wiring, Elbctranics, 1) 82. June 19!7.

High-Speed
 Revolution Counter

FIG. 1-Pickup unit, showing dural vanes

Supercharger impellers for DC-6 and DC-9 aircraft cabins are tested up to $30,000 \mathrm{rpm}$ by means of a capacitance pickup, a transducer, and a frequency meter. No mechanical connection is made to the impeller shaft, and no load is added to the system

By ALVIN B. KAUFMAN

momblas Aircraft Company
Los Angeles, California

THERE has long been a need for a revolution counter for highspeed machinery which does not attach to the rotating shaft or load it in any way. A device which fulfills these requirements and which is particularly suited for indicating rpm or rps of rotating fan, propeller or impeller blades is described.

The units illustrated are presently employed for determining the rpm of engine-driven cabin superchargers. The impe!ler of such superchargers operates at $30,000 \mathrm{rpm}$ or more. Similar units can be adapted for use with turbines, or any rotary-blade machinery, without altering or adding anything to the machine.

Three items of equipment are required. These are: the pickup, a capacitance transducer, and an electronic frequency meter or tachometer. The pickup consists of one or more insulated vanes, located adjacent to the rotating shaft or attached blades so as to vary its capacitance to ground with rotation of the shaft. The capacitance-transducer supplies an alternating voltage whose frequency is proportional to shaft rpm. The alternating voltage is applied the electronic fre-

Test stand for an aircraft cabin supercharge:
quency meter or tachometer which employs a scale calibrated in terms of rpm revolutions per minute.

Pickup

As the pickup works on a capacitance principle, it is necessary to use a connecting cable whose capacitance is low and yet constant despite movement or vibration. A suitable cable is RG8/U coaxial.

The variation of pickup capacitance should be at least five percent of the total input capacitance, but operation on smaller percentages is possible under low vibration conditions. A one-vane pickup was originally used and proved satisfactory up to $10,000 \mathrm{rpm}$, but was later discarded in favor of a for-vane pickup pictured in Fig. 1. It should be noted that the number

Control panel for the revolution counter
of pickup elements does not change the output frequency, which is determined by the number of vanes or blades on the rotating shaft. However, under extremes of vibration or weaving of the rotating blades a high degree of hash may be produced. These stray variations in capacitance are corrected by the use of a multielement pickup which automatically balances them ont. As one blade weaves closer to a vane its increase in capacitance is balanced by another blade, 180 degrees away, moving away from a vane or pickup element. With the four-element pickup, good waveform is delivered to the electronic frequency meter.

There are several other factors that must be considered in the design of the pickup. In theory it is nothing but an insulated metal plate. The size and shape is not critical, but is chosen so that the impeller blade is not under the plate for more than 50 percent of its travel before the next blade passes under the plate. This gives reughly a 1 -to- 1 low to high capac-
itance cycle, delivering through the traneducer a substantial sine wave. The electronic frequency meters or tachometers require an on-to-off or vice-versa alternation of input voltage preferably 1 to 1 but not to exceed 4 to 1 for a highly accurate indication.

The spacing of the plate or pickup vane to the element depends upon input cable capacitance, spac-
ing between impeller blades, and transducer sensitivity. Using a twofoot $\mathrm{RG} 8 / \mathrm{U}$ cable with the pickup illustrated, spacings up to one-quarter inch have been employed. Spacing may best be determined by test, but in any case close tolerances are unnecessary. Airflow restriction may be limited to a low value by proper design of the pickup. This again hinges upon use of the pickup in different fields.

Transducer

The transducer unit changes variation in pickup capacitance into useful audio-frequency voltage suitable for application to the electronic frequency meter or tachometer. It consists of the familiar capacitance relay or radio-frequency oscillator, a detector and a one-tube amplifier, as shown schematically in Fig. 2.

The r-f oscillator is adjusted to uscillate feebly. The pickup is connected so that every time its capacitance increases it shunts the oscil-lator-feedback circuit more, and thus causes the oscillator to drop its r-f output voltage. The r-f carrier is rectified and the a-c component caused by variations in signal due to changing pickup-plate capacitance is amplified. Output must be over two volts, but not over two hundred, to operate the frequency meters or tachometers in use. As the output voltage is not critical and does not affect the rpm indication, the transducer requires no gain stabilization.

The oscillation frequency of the

FIG. 2-The capacitance transducer. Plate series capacitor is variable

FIG. 3-Circuit of Hewlett-Packard frequency meter and tachometer used as a speed indicator for testing cabin superchargers
transducer is not critical and for this reason the oscillator coil is not tuned. Where the particular coil specified in the drawings is not available, the oscillator should preferably be set to operate between 500 and 2,000 kilocycles. This, in part, depends upon the capacitance change available in a particular application. Input capacitance as well as the size of the feedback variable capacitor determines optimum frequency.

The setting of the variable capacitor will depend upon three feedback functions: frequency of oscillation, feedback ratio in tank coil, and cable and pickup shunting capacitance. Optimum capacitor setting may best be determined experimentally for each individual application. The capacitor is adjusted to the point where the oscillator is not oscillating strongly. This is accomplished with the aid of the $1.5-\mathrm{ma}$ meter, which indicates rectified r-f current from the detector. The output winding on the tank coil is wound so as to give a 1.0 to $1.5-\mathrm{ma}$ indication on the meter when the oscillator is functioning correctly.

The output impedance of the original transducer was not considered critical, as the output voltage was high and a shielded cable was to be used. However, this de-

FIG. 4-Redrawn frequency-meter scale, giving rpm directly
veloped into a critical point because of the high output frequency. A sixteen-blade impeller, rotating at $30,000 \mathrm{rpm}$, has an output frequency of 16 times 30,000 divided by 60 . This gives an output frequency of 8,000 cycles. Therefore, in the first units is was necessary to use RG7/U cable (14 u.f per ft.) to connect the transducer to the frequency meter. The amplifier tube and circuit components were then changed to give lower output impedance.

It would be desirable, in new units, to use a plate-to-500-ohm-line transformer in the transducer and a 500 -ohm line to grid transformer at the frequency meter or tachometer. Thus there would be no limitations on cable length between the two units.

The rpm may be read directly on the electronic tachometer diagrammed in Fig. 3. One cycle is produced per revolution at the pickup. Where many-bladed devices are used it is preferable to use an electronic frequency meter. In this case, rpm may be read by using the calculation rpm $=$ freq. $\times 60 \div$ no. blades. This calculation may be reduced to chart form, but it is preferable to draw a new scale to be used with the instrument, as shown in Fig. 4.

Acknowledgment

The author wishes to thank Bruce Duncan of Douglas Aircraft for his cooperation in the mechanical designs and helpful criticism leading to the successful completion of this device.

Dielectric Heating of Thin Films

Development of electrode structures for applying high power to dielectric films is described. Limitations imposed by air gap for usually encountered applications are analyzed. It is also shown that average power should be close to instantaneous peak power

By THEODORE C. GAMS

ALTHOUGH DIELECTRIC HEATING has established itself as an industrial process, its application in some fields has been limited by difficulties in load matching; that is, the design of appropriate electrode structures for the efficient transfer of power to the work to be heated.

One field of application in which load matching has been particularly troublesome is the heating of thin films or sheets of either liquid or solid material. This field embraces a large group of industrial processes, as shown in Table I.

Difficulties of Heating Films

To appreciate the problems presented by loads consisting of thin films. consider Fig. 1A. A typical film. often less than $\frac{1}{16}$-inch thick

TABLE I—Principal Applications

```
Drying Plastic Coatings
    Waterproofing textiles
    Manufacturing artificial leather
    Glazing cloth and paper
Drying Liquid Films
    Baking paint and lacquer
    Drying printing inks
    Heating adhesive films (such as book-
        binding and adhesive topes)
    Setting flocked coatings
Heating Solid Films
    Curing sheets of resin (such as gutta percho)
Heat-sealing laminates (such as glass to paper, paper to wood, paper to paper and cloth to paper)
Drying Impregnants
Sizing cloth and yarn
Setting impregnated paper and cloth
```


Solvent, used to flow film onto a cellulose backing, is preheated before being removed in an oven. Using the electronic preheater increased productivity of the plant 40 percent
and several feet long and wide, constitutes the dielectric of a flat-plate capacitor. The dielectric constant of the load material is rarely less than four, and the power factor is generally not very high, perhaps five percent. If the film remains dry and solid during the heating process, so that it may touch the electrodes, the electrodes may be of the conventional parallel-plate type.

An examination of such a load shows: (1) high capacitance, due to close spacing and large area of the plates, (2) short air gap between plates, (3) necessity for flat, rigid, and parallel electrodes (to avoid air spaces which cause cold spots in the load). (4) loss of heat because the electrodes have high thermal capacity, (heating the plates by external means helps in eliminating this problem), (5) necessity for a high frequency to obtain rapid heating, because the short plate-to-plate spacing will not permit the use of high voltages, (6) difficulty of obtaining uniformity of field with h-f
and long dimensions due to standing waves across the electrodes. Stubbing is helpful in reducing nonuniformity, but does not eliminate the problem. If the load is moving through the electrodes, standing waves in that one direction are unimportant (7) generation of sufficient power at h-f required by a short cycle may be difficult (8) transmission of power to, and establishment of voltage across such a low capacitance at the desired h-f is often impractical (resonating the load by parallel stub inductances is sometimes possible), and (9) circulating currents required are often prohibitively high, because these loads raise allowable minimum generator tank-circuit current.

Air Gap Lowers Load Voltage

The parallel-plate problem is even more severe in loads which may not be touched on one or both surfaces by the electrode plates. There are several reasons for such a restriction. The surfaces may be wet, as

FIG. 1-Heating thin films by making them the dielectric of parallel plate capacitors (A) is difficult if there is an air gap (B) comparable to the thickness of the film, the ratio of applied voltage to load voltage is rising rapidly (C) with gap width. If it were not for excessive leakage (D) the electrodes could be placed at the edge of the film
in the case of adhesives and paints. The surfaces may give off water or other solvent rapors while heating which must escape freely. In the case of curing sheets of natural resins, the material is often too fragile to withstand pressure.

In the above examples, an air gap (Fig. 1B) must be maintained between load and one or both electrodes. This air gap creates further load-matching problems. In both Fig. 1A and 1B the minimum voltage V_{B} at which ionization will occur in the air space extending from the edge of one electrode plate to the edge of the opposite plate is $V_{B}=K_{B} D$ where D is the spacing between plates and K_{B} is the dielectric strength of air, which is nearly constant for well-rounded plates spaced fairly close together.

The load voltage V_{b} required to accomplish the desired heating (at any one frequency) is $V_{L}=(P / \omega$ $\left.C_{b} \cos 0\right)^{1 / 2}$ where P is the average power required by heating cycle plus losses, ω is $2 \pi \times$ frequency of operation, C_{L} is capacitance represented by the load itself, and $\cos \theta$ is the power factor of the load.

In Fig. 1A, V_{L} is equal to the plate-to-plate voltage V_{P} because there is no airgap. In Fig. 1B it is V_{P} is somewhat higher than V_{t}, due to the series air-gap capacitor C_{G} of thickness G, the same area as C_{L}, but having a dielectric constant of only unity.

Neglecting the effect of the resistive component of the load R_{L} the plate-to-plate voltage must be at least $V_{P}=V_{L}\left(C_{L} / C_{P}\right)$ where $C_{P}=$ $C_{L} C_{G} /\left(C_{L}+C_{G}\right)$, the equivalent capacitance of the load capacitor
and air-gap capacitor in series.
Because air has a dielectric constant of unity, and the lowest dielectric constant commonly encountered for film materials is about four, it is apparent that, if G is made equal iof F (and it often must be ten or more times as large) the plate-toplate capacitance C_{P} is no more than $C_{L} / 5$.

The required plate-to-plate voltage V_{P} has thus been increased, by the presence of the air gap for $G=F$ to $5 V_{L}$, or five times the plate-to-plate voltage required with no air gap. This illustrates the fundamental difficulty introduced by air gaps. In the above example, the minimum breakdown voltage with air gap is only twice the minimum without air-gap, because $F=G$.

Of course, when the dielectric constant of the load is nearly that of air, or when the spacing is very small compared to the film thickness, the effect of an air gap may be small. Figure 1 C is a plot of V_{r}, V_{t} vs G / F for different values of K, the dielectric constant of the load.

The above analysis holds for any load in which the power factor is low enough so that the resistive component of the load may be neglected. The difficulty increases if the power factor is high, because the ratio V_{p} / V_{L} becomes even larger.

Some advantage is obtained because the air gap reduces the heat losses to the electrode plates, and thus reduces the required load voltage. This advantage does not, in general, compensate for the rise in V_{r}, except for very small air gaps.

The basic limitation inherent in the parallel-plate method arises from attempting to heat the material through its thin dimension. Most of the difficulties outlined above would disappear if it were possible to cause large r-f currents to flow through one of the long dimensions of the film

There are two methods of achieving longitudinal currents: (1) by direct connection to the edges of the film, and (2) by stray-field configurations. Figure 1D shows that the aspect ratio of the capacitor formed by the direct-connection method is extremely high, thus causing very low efficiency; electrical and thermal radiation losses and fringing are high, and the apparent power factor of the load is many times lower than the actual power factor of the load material. The only applications in which a high aspect ratio is acceptable are those in which both power factor and dielectric constant of the load material are very high, as in the case of thin films of water-borne adhesives, although even then aspect ratios greater than 100 are to be avoided.

Stray-Field Heating

The stray-field method of causing longitudinal currents to flow is generally superior to the parallel-plate method. A number of practical configurations are shown in Fig. 2. The field intensity due to any of these electrodes is nonuniform across the length of the film, which requires that, if the film does not normally move continuously past or through the electrodes, it (or the electrode structure) must be moved

FIG. 2-Arranging electrodes of opposite polarity adjacent to each other along the film (A) or on opposite sides of it (B) minimizes the effect of air gap. The technique can be applied in various ways (C) and (D) depending on requirements
by a suitable oscillating or continuous conveyor system. However, at least 80 percent of the thin-film loads encountered in h-f heating are incorporated in continuous-production processes which not only require very little mechanical revision for the use of the electrodes of Fig. 2 but also provide the motive power for the film.

Electrodes of the type illustrated have none of the disadvantages outlined previously. Furthermore: (1) the capacitance represented by the electrodes (with the load in place) is relatively small, (2) the air-gap between electrodes is relatively large, and the electrodes themselves are generally cylindrical or of a similar shape which discourages arcing, (3) exact alignment of the electrodes is unnecessary because the relative motion between the film and the electrodes tends to cancel misalignment errors, (4) little or no heat loss occurs because the electrodes may be designed with small mass, and, even when in direct contact with the film, present a very small area of contact, with a consequently small conduction loss, (5) the field intensities required to perform a given job of heating are generally lower than those required by parallel-plate electrodes, (6) by means of relatively simple coupling networks it is possible to feed long sections of these electrodes with h-f power without difficulty due to standing waves, (7) because voltage requirements are not as restrictive, and because arcs are discouraged by this type of electrode, most work can be done below 30 mc , which simplifies the power generation
problem, (8) the transmission of power to and the establishment of voltage across these electrodes may be accomplished by ordinary methods, and (9) the circulating currents required by loads of this type are not excessive, and conventional generators will readily handle them.
The disadvantages of maintaining an air gap have not been eliminated by selecting this different method of introducing r-f currents into the load. But selecting this type of electrode permits a wider margin of safety between required plate-to-plate voltage and the minimum breakdown voltage of the structure.

All of the electrodes illustrated in Fig. 2 are practical. Selection of the proper one for a given problem is dictated by such factors as: (1) whether or not the electrodes may touch the load, (2) the type of mechanical structure permitted by the process to which h-f heating is being added, and (3) the power factor, dielectric strength, and mechanical characteristics of the film to be heated.

FIG. 3-Arcing at the applicator electrodes limits the peak voltage that can be applied. By filtering the power supply the effective rate of heating can be about doubled

Because of the shape of the electrodes, they tend to radiate considerably, and must be shielded. Tunnel shields which fit around the electrodes snugly and extend some distance beyond them are quite effective. Radiation losses under shielded conditions are negligible. It is important that all surfaces of the electrode structure, particularly the ends of the electrode bars, be well rounded and polished. It is best to use large diameter rods with halfsphered ends.

Design engineers will find that there is an optimum ratio of spacing of the electrodes to their diameters for any given configuration and load. This ratio is often affected by the number of electrode pairs used in an array. Arrangements which permit the electrodes to acquire a coating of any foreign substance, such as adhesive drippings or bits of plastic film should be avoided. Such particles encourage arcs.

Filtered Power Supply

In dielectric heating applications where the power to the load is limited by the arcing voltage dictated by the electrode shape, the maximum average power transmitable to the load may be increased up to 100 percent by filtering the plate supply to the oscillator tubes, if it is not already a pure d-c. That this is so may be seen from Fig. 3.

The author is indebted to John F. Dreyer, Jr., consulting engineer, and Ernst Massey, who devised the arrangement of Fig. 2B, for their cooperation and collaboration in various phases of this development.

Peter C. Goldmark of CBS microscopically examines a new long-playing disk while Rene' Snepvangers looks on

William S. Bachman (standing) discusses one phase of the manufacturing process

Transcription Recordings

New 33-1/3 rpm recording system, cuts up to 300 grooves per inch, achieves low noise with Vinylite and pre-emphasis, Result: a six-record album on a single 12 -inch pressing

ANEW APPROACH to satisfy the public demand for long-playing recordings has been jointly announced by Columbia Records Inc., a CBS subsidiary, and the Philco Corporation.

The new recording system, developed by Peter C. Goldmark, René Snepvangers, and William S. Bachman of Columbia, achieves a six-fold increase in recording time per disk by combining $33_{\frac{1}{3}}$ rpm transcrip-tion-standard turntable speed with an extremely fine pitch of approximately 260 grooves per inch. The decrease in turntable speed from the home standard of 78 rpm introduces a time factor of 2.35 , while the larger number of grooves, compared with 85 to 100 per inch typical of conventional home records, provides an additional factor of about 2.6 times. The net result is that as much as 50 minutes of recording time can be accommodated on the
two sides of a 12 -inch disk, compared with 8 minutes on the older type. The records are known as LP, for long playing.

This is not the first time that $33^{\frac{1}{3}}$ rpm disks have been produced for the home market, but it is the first in which a system has been primarily engineered for this market. Earlier attempts failed because the groove pitch could not be made fine enough to secure a substantial increase in recording time, and the noise and distortion were high. Also, home-type turntables of earlier days tended to have excessive wow when operated at $33 \frac{1}{3} \mathrm{rpm}$. These problems were attacked by Peter Goldmark, well known for color-television developments, and his associates. The Philco Corporation undertook the design of a record reproducer which would meet the stiff requirements of low-speed service and still be marketable at a
reasonable domestic consumer price.
Philco has also designed a twospeed turntable with a separate arm for the LP records.

Keys to the success of the new system are the use of Vinylite plastic for the pressings, the development of a new, efficient, light-weight reproducing arm and cartridge and mechanical refinements in the turntable driving mechanism. A pre-emphasis characteristic designed especially for the system, resembling closely the NAB standard transcription curve, was introduced to achieve high signal-to-noise performance. Also, many unconventional techniques have been adopted, including a degree of over-cutting which would not be acceptable in making conventional recordings.

Design Details

The grooves are about 0.003 inch in width, roughly one third the size

FIG. l-Characteristics of new long-playing (LP) record, NAB transcription standard. and one having constant amplitude

for the Home

of the standard record groove. Consequently, it is not possible to record at as high a level, by about 9 db as if the cut were held proportional to the groove width. Actually, the level recorded is about 4 db below the usual reference. The $4-\mathrm{db}$ loss in level would not be acceptable if the record material were of the shelac type, but the low-noise properties of Vinylite together with the lightweight pickup permit a highly acceptable noise level to be achieved while maintaining a dynamic range in the order of 45 db . The consequent smaller excursion of the reproducing needle reduces the cartridge output by 4 db , but an efficient crystal has been developed which provides 0.7 -volt output at reference level. Accordingly, no high-gain preamplifier is needed in the reproducing system.

The groove shape has an included angle of about 90 deg , and the tip radius is under 0.0002 inch. Accordingly, it is not possible to reproduce the new pressings with a standard 0.003 -inch stylus. The cartridge
perfected by Philco engineers, uses a balanced Rochelle-salt crystal and a groove pressure of only 6 grams (one-fifth ounce). It employs a semipermanent metal stylus lapped to a tip of 0.001 inch radius. The light pressure and small radius permits the stylus to follow the fine groove with tracking distortion lower than conventional practice. The stylus may be replaced without replacing the cartridge, if desired. To keep distortion at a low level, the diameter of the innermost groove has a minimum value of $5 \frac{3}{4}$ inches, which is almost two inches greater than that of conventional commercial domestic $78-\mathrm{rpm}$ pressings.

The practice of pre-emphasis has been standardized in the new records, using the characteristic shown in Fig. 1. Above 200 cps , the curve is identical with the standard NAB transcription characteristic, reaching 16 db pre-emphasis at 10 ,000 cps , relative to the $900-\mathrm{cps}$ value. Below 200 cps the characteristic is higher than the NAB, being about 7
db above constant amplitude at 50 cps. The similarity of LP and NAB curves makes it possible to use the LP recordings on standard broadcasting transcription tables with no change in equalizing, although simple RC circuits suffice for equalizing in any event.

Turntable Requirements

The wow problem assumes a seriious aspect at 33 rpm , since the speed ratio (1 in 2.35 relative to 78 rpm) requires that variations in turntable speed be reduced by the same amount. The turntables thus far used are of the rim-driven type. Care has been taken in centering the inner edge of the table, and in balancing the motor. Use of a high-grade rubber rim on the idler wheel is mandatory. Moreover, the edge of the rubber rim must be mechanically ground to assure near perfect circularity. In the Philco turntable, the idler wheel is withdrawn from the motor shaft when the table is not turning, to prevent developing a flat in the rubber. The design of the table is such that no appreciable wow was discernible.

Releases and Results

The early releases of the new records consist of rerecordings from existing masters in the Columbia files. Fortunately, in recent years these masters have been made on lacquer, rather than wax, so they may be dubbed without damage directly to the $33 \frac{1}{3}$ master. More than usual care is required, however, to exclude dust and other foreign matter at every stage in the production of master, mother, and pressings, and the difficulty of securing freedom from blemishes for a 25 min ute period (one side) is considerably greater than for 4 minutes. Before release, pressings are checked for technical excellence by engineers on the Columbia staff, a revolutionary procedure in the recording business.

The results, as judged by critical listeners, both technical and nontechnical, are excellent. In frequency range, dynamic range and distortion, the LP records outdistance shellac pressings and, with the possible exception of noise surpass 78 -rpm Vinylite pressings.-D.G.F.

FIG. 2-Simple transductor connection (A) can be analyzed using portion of idealized magnetization curve (B). Voltage-time curves show action during operating cycle with zero

Transductor

By SVEN-ERIC HEDSTROEM and LENNART F. BORG

Requlator Dent . $\mathrm{N} E \mathrm{~A}$ T Tosteros.

Wectifier Bept.
ASEA Ladaitad
sucodru

IF A Low alternating voltage is applied to a coil wound on an iron core the coil acts as an inductance the value of which is determined by the permeability of iron.

If the operating position on the curve is displaced by applying direct current through a separate winding the incremental permeability then acting diminishes as the position approaches saturation. In this way it is possible to vary the inductance between wide limits.

Because comparatively small direct control current is required the losses incurred in regulating large power are small. Thus a large power amplification is obtained.

In practice, efficient operation of a direct-current presaturated reactor necessitates employing wide variations of flux. Under such conditions it is inappropriate to base investigations on incremental permeability. Work carried out by Boyajian, ${ }^{1}$ Kramer ${ }^{2}$ and Lamm ${ }^{8}$ has paved the way for an appreciation of the mode of operation and that
indicates the basis for calculation and design. On this basis Lamm ${ }^{\text {a }}$ and others have investigated different couplings and dynamic properties. Instead of studying variations of permeability, variations of flux are investigated and an idealized magnetizing curve having constant slope and abrupt complete saturation is used.

To obtain an indication of flux variations, consider Eq. 1 where ϕ represents the flux in a coil, N the number of turns, and e_{I} the induced voltage. From Eq. 1 we can write Eq. 2

$$
\begin{align*}
& e_{t}=N d \phi / d t \tag{1}\\
& f e_{r} d t=\phi_{2}-\phi_{1}
\end{align*}
$$ flux corresponds to an area (voltage times time) on the voltage-time oscillogram. Using this principle, properties and operation of the d-c presaturated reactor can be analyzed. In this way the mode of operation is found to be different from what is generally termed a reactor, justifying another name.

FIG. 1-Windings can be on one core (A) and (B), or on separate cores (C) to (F)

resistance in a-c circuit (C), with moderate load resistance (D) and with high load resistance (E). In the latter case the control range reaches a limit as shown by the graph (F)

Fundamentals

Magnetic amplifiers are analyzed on the basis of voltage oscillograms, which facilitates interpreting laboratory measurements. Results of the analysis show the effect of load impedance on mode of operation and of supply frequency and inductance on speed of response

These controlled reactors are therefore called transductors.

To avoid the voltage that would be induced in the d-c control winding from the a-c power winding if the two windings were arranged on a single core, a symmetrical arrangement has to be used. Three or four-legged cores could be used. However, the three legged core shown in Fig. 1A has the drawback that its leakage flux impairs the transductor properties. On the other hand the four legged core of Fig. 1B is expensive to manufacture. A simpler arrangement is shown in Fig. 1C in which two separate cores are used. The induced voltages in the d-c windings of the connection shown in Fig. 1D do not counteract each other, but the connection has other advantages and interesting properties. Naturally the windings may be arranged in many ways. Especially, the need for $d-c$ excitation can be minimized if the alternating current is rectified and used to excite
the transductor by additional windings as shown in Fig. 1E. This is called a self-excited arrangement. Oscillograms of currents in the a-c and self-excitation windings of Fig. 1 E show that the resultant ampere. turns every moment are the same as would be obtained by means of only one winding connected in series with a rectifying element. The arrangement thus deduced is shown in Fig. 1F and is called simplified self excitation. By using this connection, winding space is saved in the same way as in an autotransformer. Simplified selfexcitation connections can be varied in numerous ways. ${ }^{5}$ Single and multiple phase connections are used; the three-phase connections have been treated by Lamm. ${ }^{4,6}$

Mode of Operation

The mode of operation of the connection shown in Fig. 2A can be explained simply if certain assumptions are made: (1) the magnitude of the control circuit current I_{s} is

UTILITY OF TRANSDUCTORS

Transductors can be self-excited and made to operate as trigger circuits. Thus they can be employed as relays; their opening and closing values are set by applying counter-biasing ampere turns.
Like the electronic amplifier, the transductor can also be made to oscillate. Low-frequency oscillations can be obtained readily.
Electronic amplifiers possess speed that is difficult to obtain with transductors. On the other hand, transductors provide stable low-frequency a-c and d-c amplification with a minimum of equipment. Where loads inherently have long time constants, as in many regulators, inertio of the transductor is negligible.
Transductors require current, whereos electron tubes require voltage for control. A combination of the two may provide excellent solutions of difficult problems. For instance, the transductor may supply voltage for controlling tubes, or tubes may supply current for controlling tronsductors effectively despite the induced voltages in control windings-
the authors
constant and independent of time, represented in the diagram by a large series inductance, (2) the magnetizing curve possesses the ideal shape, (3) the resistance of the a-c circuit may be neglected, and (4) the number of turns on the a-c and $d-c$ windings are the same.

The control current I_{N} gives element A the initial flux position P_{2} shown on Fig. 2B and gives element B a corresponding position on the negative side. Fig. 2C shows the time variations of the characteristic magnitudes. The impressed alternating voltage Esina must be fully balanced in the circuit by variations in the flux in the two transductor elements. However, a change in flux is only possible when the number of ampere turns of one or both elements is zero, which means that an alternating current of the same magnitude but directed against the control current must pass continuously. Owing to the counter connection of the control windings on the two elements, this is not possible unless the alternating current commutates between positive and negative values in zero
time, the values being of the same magnitude as the control current. No other current combinations are possible. Thus this transductor has a typical current-transformer characteristic, the linear relations between alternating and direct currents being independent of the magnitude of the alternating voltage. The phase of the a-c is determined by the requirement that the voltage across the transductor element cannot include any d-c component. In reference to Fig. 2C this means that the voltage-time areas M and N must be equal, making the control angle a_{0} equal to 90 degrees.

It must further be observed that an alternating voltage at twice the supply frequency appears across the d-c terminals. The reactor L prevents this voltage from passing a superimposed current that would altogether change the mode of operation of the transductor.

When there is resistance R as load in the a-c circuit of the trans; ductor, it might be expected that the current-transformer characteristic would be impaired. However, this is not the case, as shown in

Fig. 2D. Also in this case the transductor element can only absorb voltage when the alternating and direct currents are of equal magnitude, and, as the resistive voltage drop is assumed to be insufficient to balance the supply voltage, the latter voltage will be split between the resistance and the element (area M) in the time interval x_{0} to x_{1}, as indicated in the figure.
The lowest point P_{1} on the magnetizing curve is reached at α_{1} and a change in the current still cannot take place because, for it to do so, the magnetic state of the element from P_{1} up to the saturation point would have to change by an amount requiring a voltage-time area just as large as that previously required to bring it down from the saturation point to P_{1}. Thus commutation will take place first when the area M becomes equal to N. When x_{0} at an increased resistance drop reaches such a low value that $R I$, becomes equal to $E \sin \alpha_{0} i$ deviates from the rectangular shape as shown in Fig. 2E and $R i$ coincides for a time with the sine wave. The current-transformer characteristics are thereby jeopardized and,

FIG. 3-Operation of a single element of a transductor with an ideal core

FIG. 4-Analysis similar to that of Fig. 3 but for imperfect core material

Dry-Cleaning

FIG. l-In well-ventilated working areas, a source of compressed air, gun, tray, Ventari fitting and a solvent can be used for dry cleaning of chassis

FIG. 2-Construction of simple fitting for air gun to provide fine spray of solvent under pressure

By JOSEPH ALBIN

New lork. N. Y.

Solvent-spray cleaning is one of the maintenance operations undergone by all aircraft and ground radio equipment that is sent to the American Airlines radio overhaul base at La Guardia Field, New York. Overhaul is scheduled after 90 days (average of 900 hours) of operation even though the equipment is operating perfectly. The types of electronic gear cleaned by the spray method include h-f and vhf communication units, adf receivers and indicators, marker, range, glide path and localizer receivers.

A member of the maintenance crew is shown in Fig. 1 going over the chassis of a ground transmitter in one of the hangars. He uses an improvised spray gun constructed as shown in principle in Fig. 2 and connected to a compressed-air line. Solvent contained in the can feeds to the nozzle of the air gun and is sprayed as a fine mist. Because of the pressure, hard to reach places such as capacitor plates and tube sockets are quickly cleaned.

The chassis is supported on blocks in a tray which serves to catch the dirty solvent. As this operation is done in an open space within the hangar, ventilation does not become a problem. To air-dry the equipment after cleaning, it is only necessary to lift the rubber hose out of the solvent can.

The nozzle for the air gun operates on the Venturi principle and consists of a section of metal tubing through which the solvent is aspirated by the air blast. A connection for a rubber hose for insertion in the liquid solvent is made on the side of the tubing a few inches from

FIG. 5-Analysis like that of two-element transductor shows commutation of current from one element to the other

According to Fig. 5C the rela- to the circuit of Fig. 1F. It is tion between the voltage areas is

$$
\begin{equation*}
I=T \text { and } O=U=S=M \tag{4}
\end{equation*}
$$

Furthermore, because the reactor voltage cannot contain a direct component

$$
\begin{equation*}
P=Q \tag{5}
\end{equation*}
$$

By comparing the voltage areas between, for instance α_{3} and $\alpha_{3}{ }^{\prime}$, the magnitude of the direct voltage D can be determined

$$
\begin{align*}
& D\left(\alpha_{3}{ }^{\prime}-\alpha_{3}\right)=D \pi= \\
& \int_{\alpha_{3}}^{\pi} E \sin \alpha d \alpha-P+Q \tag{6}
\end{align*}
$$

but from Eq. 5 and the relation

$$
\int_{\alpha-}^{\pi} E \sin \alpha d \alpha=E_{M}-E_{T}
$$

whert E_{y} represents the mean value of the alternating voltage and E_{T} the mean value of the transductor voltage, Eq. 6 becomes

$$
\begin{equation*}
\nu=E_{甘}-E_{T} \tag{7}
\end{equation*}
$$

Thus the wation is of the first power, and not of the second as might be expected.

Dynamic Response

The preceding analysis has shown that the static conditions in a transductor are determined by the control current, which in effect governs the average flux. The average flux is also the deciding factor in determining how the transductor will momentarily follow the control current until the latter attains a new stationary value. However, the manner in which the control current behaves to a voltage impulse in the control circuit depends on the actual amplification and frequency. Different connections behave differently.

The scope of this article prohibits analyzing all connections, so the following discussion will be limited
assumed that a voltage impulse Δd is impressed on the control winding, which, under steady-state conditions, would cause an alteration ΔI_{s} in the control current. At the same time the lowest value of flux would be changed from ϕ_{1} to ϕ_{2}, both values being below saturation. The problem is to find the manner in w'ich the load voltage D changes with time ($\perp D=D_{1}-D_{2}$).

The average load voltage during a half cycle corresponds to the difference between the supply and the transductor voltages so that

$$
\begin{align*}
& D_{1}=E-2 N_{\nu j}\left(\phi_{\phi_{j}}-\phi_{1}\right) \\
& \left.D_{2}=E-2 N_{r j}=\phi_{0}-\phi_{2}\right) \tag{8B}
\end{align*}
$$

f representing the supply frequency, N_{v} the number of turns on the a-c winding. Hence

$$
\begin{equation*}
\Delta I=D_{1}-D_{2}=2 N_{v} f\left(\phi_{2}-\phi_{1}\right) \tag{8C}
\end{equation*}
$$

but the control current must change the average flux from ϕ_{14} to $\phi_{2 y}$ so

$$
\begin{align*}
& \phi_{1 M}=\left(\phi_{0}-\phi_{1}\right) / 2 \tag{9~A}\\
& \phi_{2 M}=\left(\phi_{0}-\phi_{2}\right) / 2 \tag{9~B}\\
& \Delta \phi_{M}=\phi_{1 M}-\phi_{2 M}=\left(\phi_{2}-\phi_{1}\right) / 2 \tag{9C}
\end{align*}
$$

If the fictitious inductance of one control winding is L_{s} and the number of control turns is N_{s} then

$$
\begin{equation*}
L_{s}=\frac{N_{s} \Delta \phi_{v}}{I_{s}}=N_{s} \frac{\phi_{2}-\phi_{1}}{2 \Delta I_{s}} \tag{10}
\end{equation*}
$$

and the time constant of the complete transductor is

$$
\begin{align*}
\tau= & \frac{2 L_{s}}{R_{s}}=N_{s} \frac{\phi_{2}-\phi_{1}}{R_{s} / I_{s}}= \\
& \frac{N_{s} \Delta D\left(\phi_{2}-\phi_{1}\right)}{2 N_{v} f\left(\phi_{2}-\phi_{1}\right)} \frac{1}{R_{s} \Delta I_{s}} \tag{11}
\end{align*}
$$

but because $\left.R_{s}\right\lrcorner I_{s}=\Delta d$ Eq. 11 simplifies to ${ }^{\circ}$

$$
\begin{equation*}
\tau=(\Delta D / \Delta d)\left(N_{s} / N_{V}\right)(1 / 2 f) \tag{12}
\end{equation*}
$$

which gives the time constant for the rise in load voltage in response to a voltage step in the control circuit. Thus, if the amplification re-
mains constant, the time constant can be reduced either by increasing the frequency of the supply voltage or by selecting a magnetic-core material possessing properties that allows N_{s} to be reduced. The three properties, power amplification, power sensitivity, and time constant, of a self-excited transductor depend on each other in such a way that one of them can be improved only at the expense of the other two. The rapidity of the transductor is limited by the fact that the control current cannot exert any influence on the transductor during the interval when any of the elements carry the main current; that is, between α_{0} and π.

The development of the transductor techniques of which this article is a brief review has been carried forward especially by A. U. Lamm and U. H. Krabbe and by many collaborators. The authors are indebted to ASEA for permission to publish this article.

References

(1) A. Boyajian, Theory of D. C. Excited Iron Core Reactors and Regulators. AIEE Trans, 43, $\mathrm{p} 919, \mathrm{p} 940,1924$.
(2) W. Kramer, Ein einfacher Gleichstromwandler mit echten Stromwandlereigenschaften. Wlektrotechnische Zeitschrift, 58, $\mathbf{p} 1304,1937$.
(3) A U. Lamm, The Transductor and Applications, ASEA Jour, 16, p 66, 1939 (4) A. U. Lamm, "The Transductor D. C. Pre-Saturated Reactor with Special Reference to Transductor Control of Rectifiers," Dissertation Stockholm, 1943 (2nd Ed Acta Polytechnica, Academy of Engineering Science, Stockholm, May 1948).
(5) U. H. Krabbe and S. E. Hedstroem The Design of Transductor Circuits, ASEA Jour, 21, p 3, 1947
(6) A. U. Lamm, Some Fundamentals of a Theory of the Transductor or Magnetic Amplifier, AIEE Proc, Tech Paper 7141.
(i) Improved material for magnetic amplitiers, Electronics p 128, Aug., 1948 (8) U. H. Krabbe, The Transductor Amplifier, Dissertation Copenhagen (to and Application, ASEA Jour, :0, p 119 1947 .
is set by means of the control current I_{s} giving an initial position P_{1}, which represents the lowest possible value of flux because the alternating current will be prevented by the rectifier from passing through the transductor in such a direction as to force the flux still lower. In relation to the rectifier, the alternating voltage will be negative immediately before the point $a=0$. At that time no current i can pass, but after the voltage has changed sign at $\alpha=0$ it can pass in the forward direction of the rectifier, producing not only a voltage drop in load R but also a change in flux in the transductor element.

It is now of great importance to assume that the voltage drop in R is small as long as $i<I_{S}+i_{R}$ and consequently may be neglected. The entire voltage-time area between the zero axis and the sine wave can therefore produce change in the flux as long as the magnetizing curve permits. The knee of the curve is reached at α_{0} and further area beyond that of M of the same polarity cannot be absorbed by the transductor element. Instead, the entire voltage is transferred to the load, the current through R momentarily assuming a value at which the voltage balance; $R i=$ $E \sin \alpha_{0}$ and area N is swept out. When the voltage changes sign at $x=\pi$ and the diminishing current passes the knee at the same time, the element can again absorb voltage (area O). At α_{0}^{\prime} the current becomes zero and the remaining voltage-time area P acts across the rectifier until a becomes equal to 2π, whereafter the cycle is repeated. Because the voltage across the transductor element cannot contain a d-c component the areas M and O are equal and consequently areas N and P are equal.

Effect of Magnetizing Curve

Even if magnetizing curves of modern magnetic materials can be made to approach more nearly that of Fig. $3 \mathrm{~B}^{-}$it is of practical value to be able to predict the properties of a transductor whose magnetizing curve departs from the ideal. How this is done, in comparison to the technique described in connection with Fig. 3, is shown in Fig. 4.

At α_{0} the current cannot assume
a value that impresses the whole voltage across the load because a change in the flux continues to take place within the saturation range. Thus the voltage is divided between the load and the transductor element (areas N and O). At a_{1} however, the voltage across the element becomes zero, which means that the maximum point P_{2} of the flux has been reached and that the current has reached its maximum value. Because the negative area P depends upon the current from P_{2} falling off, the current will thereafter be maintained at a value exceeding that required by the alternating voltage. The relations between the areas (and as shown in Fig. 4B) are $M=Q$ and $N=P$, so that $O=S$.
Within the range α_{0} to α_{2} the current may be expressed as

$$
i=(E / R)[\cos \phi \sin (\alpha-\phi)-
$$

$\left.\sin \left(\alpha_{0}-\phi\right) \exp -\cot \phi\left(\alpha-\alpha_{0}\right)\right](3)$ where $\phi=\arctan X / R, X$ being the reactance, which is represented at the prevailing frequency by the slope of the magnetizing curve within the saturation range.

Multielement Transductors

The transductor connection just described, containing only one element, operates satisfactorily but in practice units comprising several elements are usually employed. There are two reasons for using at least two units: d-c excitation of the transformer feeding the transductor is avoided, and smoothing of the control current can be omitted because the voltages induced in the elements counteract each other in pairs.

The mode of operation and method of designing transductors comprising several elements can be predicted in the same manner as described above for one element. To show how this is done consider the connection of Fig. 5A, which is a widely used circuit in which the load is taken out as smoothed d-c. The magnetizing curve and oscillogram are also shown in the figure. The rectified current I_{L} is assumed to be smoothed to the extent that it is entirely relieved of pulsations. Within certain intervals the a-c will then be lower than the d-c and can pass through the rectifier without having to flow through the load.

This mode of operation is termed current-peak rectification and is analogous to voltage-peak rectification by means of a rectifying element and a capacitor.

If the resistance of the transductor elements is assumed to be zero, the rectifying elements will never be subjected to reverse voltage. Consequently a change in flux in one of the magnetic elements produces an equal but opposite change in the other one; the rectifiers determining the direction of the current. Figures $5 B$ and 5 C show the behavior of the A element. A magnetic displacement in this element produces an equally large but opposite displacement in the other one. After a has become zero the entire alternating voltage is impressed across the A element. A very small excitation current i_{1} passes through the rectifier that is carrying load current without causing any voltage drop. The knee of the magnetizing curve is reached at α_{0} and i_{1} rises more rapidly thereafter but still under the control of the magnetizing curve and the voltage areas M, N and O. At α_{3} the current i_{A} becomes equal to I_{L} and flows in branches 1 A and 2 A of the rectifier and to the load. The reactor then prevents any further increase in $i_{\text {, }}$ for a certain interval. Because no change in flux in the transductor can take place, the entire alternating voltage appears as a constant voltage D across the load and a voltage across the reactor corresponding to area P. Even after α_{4} when $E \sin \alpha$ becomes smaller than D, i_{A} retains its value because there is no voltage available that might produce a change in flux tending to lower the current. After $\alpha=\pi$ such a voltage becomes available as indicated by area S and i_{A} decreases. From a_{1}, D is maintained by the reactor voltage (area Q) which has changed sign due to the tendency of the current to decrease. At x_{3}^{\prime} current i_{4} regains the value corresponding to the lowest point on the magnetizing curve and the A element becomes inactive for the remaining half of the cycle. Because the connection is symmetrical, current in the B element begins to rise to rise at $\alpha_{0,}^{\prime}$ but does not affect the behavior of the A element.

TRANSDUCTOR APPLICATIONS

Transductors, like transtormers are basic components that can be applied in numerous ways.
One type transductor possesses characteristics of a current transformer. It can be used to measure heavy direct currents or high direct voltages as shown in the accompanying illustration. Measuring

transductors can be built from ordinary transformer laminations and have an accuracy sufficient for service supervision (± 2 percent). By employing special laminations, higher accuracy can be obtained. In addition to the feature of complete isolation between the main circuit and the metering circuit, the measuring transductor has the advantages that the quantity operating the indicating instrument is a-c and therefore can be transformed to any desired value; measurement of summation and differential quantities can be made simply because the quantity to be measured appears as ampere turns, current is measured directly and not translated into voltage as in using a shunt (particularly important with remote measurements), and the power consumption is exceedingly low.

Voltage and current regulation is the most important application of transductars. For simplicity in drawing diagrams of circuits using transductors, rectifier bridges and the several windings of the transductor elements are shown in abbreriated form.

A metallic rectifier can be controlled by a simple series resistance giving the characteristics shown below, or a series transductor can be used. In the latter case power required for regulation is small and the output current is more

perfectly determined by transductor control current. Until limited by voltage, the current is independent of load resistance. Such circuits are extensively used in battery chargers for trucks and other cases where constant current is required. (For clarity the control portion of the circuit is drawn in lighter lines than the power portions.)

In charging batteries where the voltage must be kept constant, as in broadcast stations and telephone exchonges, a slightly more complex circuit is used. A self-excited transductor provides the regulation. This transductor is, in turn, controlled by a smaller unit the output voltage of which is determined by the total number of ampere turns of its excitation windings. A constant current supplied to
one control winding in the same direction as the self excitation sets the regulated value. Another control winding fed

in opposition to the first carries the sensing current that is proportional to the load yoltage. Because two transductors are used, the regulation is high. A rectifier of this type which can operate on both constant current and constant voltage is called an avostat. Avostat-regulated rectifiers can be built for all outputs for which metallic rectifiers can be used.

When very little power is available from a quantity to be measured, the high amplification of self-excited transductors can be used. The accompanying circuit shows a push-pull connection giving an output voltage the polarity and magnitude of which are determined by the control

current. Power amplifications as high as a hundred million may be obtained from similar connections. If gain is sacrificed for stability, such transductor circuits are suitable for amplifying currents from photocelis and thermocouples-

THE AUTHORS
as shown in Fig. 2F, the relation between the currents follows a straight line only up to a certain point, whereafter it is deflected and asymptotically approaches a limiting value corresponding to the full alternating voltage being balanced by the resistance drop.

Transductor as Amplifier

For a transductor (Fig. 2A) with a resistive load in series with the a-c winding, amplification takes place because the a-c winding requires an input corresponding to
only half the copper losses, whereas the load may rise to a value corresponding to the entire transformer output of the transductor. The method, described previously, of decreasing the need for d-c ampere turns by rectifying the a-c and feeding it back by means of a separate winding, or by inserting rectifying elements in series with the a-c windings, is analogous to the feedback used in electronic amplifiers whereby amplification is increased at the expense of linearity. The connection providing simplified
self excitation (Fig. 1F) has advantages over that of Fig. 1E and is also easier to analyze. Therefore this connection will be treated in detail.

A transductor element and a rectifying element connected in series between two current-dividing points constitutes a common feature of all simplified self-excitation couplings. The connection, the assumed shape of the magnetizing curve and the mode of operation as represented by the oscillogram are shown in Fig. 3. A certain d-c bias

Electronic Equipment

Rapid removal of soot, dirt and grime is accomplished with pressurized air and a solvent. Used at an airline radio overhaul base, the method can be adapted to maintenance of other electronic equipment

the end. Pressure control is obtained by means of the valve on the air gun.

With a nozzle orifice diameter of 0.125 inch, and air pressure of 40 pounds, the discharge of free air amounts to 12.4 cubic feet per minute. At 90 pounds pressure, the volume is slightly less than double this figure. For an orifice diameter of 0.25 inch, the volume is roughly quadrupled.

An installation suitable for factory applications is shown in Fig. 3. A large container of solvent is attached to the side of the booth and replenished as required. The solvent fluid reaches the nozzle through one of the flexible hoses; the other is for compressed air. Pressure is regulated and monitored by a valve and gage mounted in front of the booth. The cylindrical section contains a filter unit to remove moisture and scale. If driven out by high air pressure, the scale is likely to abrade or otherwise damage the radio equipment.

The booth is similar in all respects to the type used in spray painting, and is vented in the upper rear portion. Used solvent flows down a drain into a receptacle located below the booth.

In cleaning the radio unit shown, the air pressure is between 30 and 40 pounds. To dry, the operator turns a valve which shuts off the flow of solvent into the nozzle. In the overhaul shop, each man cleans the particular piece of equipment he is assigned to service.

A few changes are necessary when cleaning parts having more tenacious deposits of dirt, hence requiring higher air pressure, some-
times as high as 110 pounds. An extra long nozzle is used as well as protective gloves for the operator. Higher pressures can be safely applied to motors and heavy equipment.

Dry-cleaning solvents are of comparatively low inflammability and are nonexplosive. They follow in general the specification for Stoddard solvent, a standard fraction of petroleum, having a flash point between 100 and 105 F . At this temperature sufficient vapor is given off to flash momentarily on the application of a small flame.

In the Airlines laboratory, the chief characteristic checked in solvents is a minimum flash point of 110 F , determined by the Cleveland
open-cup test. This is slightly higher than Stoddard solvent. Clarity and dryness are important factors. These flash points may be compared with that of ordinary gasoline at room temperature.

For regular production schedules, solvent-spray cleaning is best done for general comfort and health in a hood or booth that is vented to the outside atmosphere by means of a blower. Where the booth is lacking, the spraying should be carried out in an open and well-ventilated area. Ordinary fire extinguishers, such as those containing carbon tetrachloride, are precautionary equipment. A settling tank can be used for reclaiming a high percentage of the solvent.

FIG. 3-Solvent spray booth for permanent installation in a factory, shop or laboratory. Fumes are vented to the outside air and additional equipment provided for control of air pressure, filtering and safety

Superregenerative

FIG. 1--Chief element of superregenerative detector is resonant circuit with varying damping; the equations describe it

Ainvestigation into the operating mechanism of the superregenerative detector, has used physical reasoning and results of measurements.
The specific object of the investigation was to develop a theory that would identify the factors controlling selectivity, optimum quenching, signal-noise ratio, and account for the difficulty of reproducing a given response from one design to another. Because most superregenerative detectors combine in one tube at least four distinct functions, it is not surprising that the behavior of the circuit is complex.

A superregenerative detector, the elements of which are shown in Fig. 1, ordinarily consists of an oscillator having a resonant circuit tuned to the frequency of the desired signal. This circuit is fed from an r-f stage, converter, or an-

By WILLIAM E. BRADLEY

Director of Research
Philco corporation
philadelphia. P'a.
tenna, which can be considered a generator of current $i(t)$. The oscillator is caused to operate intermittently by means of a quenching signal supplied from an auxiliary oscillator or from low-frequency oscillation of the same tube. This quenching action can be represented by a varying conductance $g(t)$. The combination of resonant circuit and varying conductance constitute the active element. In addition there are the auxiliary elements, an oscillation detector and an audio or video amplifier. An automatic regeneration control feedback from beyond the oscillation detector to the active element may also be included.

The circuit performs four fundamental operations in sequence: (1) Quenching erases the effect of the previous cycle of operation, clearing the circuit for reception of new impressions; this is done by cutting off the oscillating tube or by damping the circuit. The varying conductance is positive during quenching. (2) Reception takes place when the incoming wave sets up a signal in the circuit as the quenching is withdrawn. (3) Amplification begins when the quenching is sufficiently withdrawn (conductance made negative) so that oscillations will grow in the circuit. This action continues until the overload level is reached or the circuit is again quenched. (4) Detection, usually in the form of a change in oscillator grid or plate current and sometimes using a separate crystal or vacuum diode or a change in quenching rate, produces an output that varies according to the rapidity with which full amplitude of oscillation is reached, and depends on the principle that the stronger the incoming signal the sooner the oscillation will reach full strength, usually several volts.

At the end of this operation the varying conductance may fall to zero and the oscillations cease to grow, but nevertheless the requisite energy is delivered to the detector and amplifier.

Of the four operations, least is generally understood of the reception action. It is not obvious at what instant and in what manner the forced oscillation of the circuit produced by the incoming signal changes to free oscillation of the resonant circuit. To determine this and other circuit actions, an approximate solution of the differential equation of a tuned circuit with varying damping was made. Another rigorous approach, based on the superposition integral, has verified the results and indicated the trivial nature of the error in the approximate solution.

Reception and Amplification

To obtain a detailed picture of the behavior of the active element during reception and amplification of an incoming signal consider that a current $i(t)=I \exp j \omega_{s} t$ is continuously applied. At negative time (during the quenching operation) the varying conductance $g(t)$ has a large positive value; it varies in some manner through zero at $t=$ 0 to a generally negative value for positive values of t. The problem is to find the level of oscillation during the amplification operation.

The problem involves the solution of a linear second order differential equation with the coefficient of the first derivative varying with time. This is Eq. 1 (Fig. 1); the primes indicate differentiation with respect to time. The instantaneous voltage on the resonant circuit is $e(t)$; incoming signal is $i(t)$.

The rigorous solution of Eq. 1 is difficult to obtain and use because, to be mathematically complete, it

Detection Theory

Abstract

Operation of the superregenerative detector is developed, leading to the concept of a time aperture function. Bandwidth, signal-noise ratio, and other circuit properties are shown to depend on this function, whose values in turn depend on the quenching waveform

must include the effect of the resistance on the resonant frequency and all of the phenomena that hold for large values of $P(t)$, the damping factor, including the transition between oscillating and nonoscillating states. For present purposes such a solution is unnecessary because, in the practical case $P(t)$《 $\omega_{0}{ }^{2}$ and, for quench frequencies low compared to the resonant frequency $P^{\prime}(t) \ll \omega_{10}{ }^{\text {. }}$.

Under these conditions a very similar second order equation (with its right hand member zero), Eq. 2, can be used for comparison. The first two coefficients of Eq. 2 are identical with those of Eq. 1 and the third is negligibly different; hence, over a limited time, the solutions of the two equations cannot be very different in nature. In fact in the practical case of a high-frequency superregenerative detector the third coefficients of the two equations differ by less than the error in measuring $\omega_{1 .}$. For the purpose of this analysis the solution of the comparison equation Eq. 2 differs negligibly from the correct solution of the reduced or homogenous form of the circuit equation.

Knowing the two functions e_{1} and e_{2} that satisfy the reduced
equation, the complete solution of the equation with right hand member can be found by the method of variation of parameters (Lester R. Ford, "Differential Equations", Mc-Graw-Hill Book Co., New York, 1933, p 75.) The solutions are Eq. 3,4 and 5.

Equations 3, 4 and 5 embody a complete solution to the problem. The function $F(t, \tau)$ is called the time aperture function and, as will be shown, is of basic importance in describing superregenerative detection. Equation 3 states that the voltage envelope amplitude across the resonant circuit at a particular instant of observation, t, depends on an integral of the product of the time aperture function and the input signal, the integration being performed over the preceding time, τ, so that each time element of input signal contributes to the output with a relative importance determined by the value of the time aperture function. Usually the time aperture function has one very large peak, at the moment when the damping passes through zero, and falls rapidly to small values on either side of this moment. Therefore the incoming signal at the moment of zero damping has the

FIG. 2-Variation with time of the damping and aperfure functions depends on the form of the quenching wave
greatest effect on the output. This behavior gives rise to the sensitive period of the detector.

Equation 4 expresses the output due to a carrier that remains substantially constant in frequency and amplitude during one quench cycle. The integral is of the same form as the Fourier analysis integral that gives the frequency spectrum of a pulse. As a consequence the time aperture function is related to the selectivity curve of the superregenerative detector in the same way that the wayeform of the envelope of a pulsed carrier is related to its spectrum. Thus, for example, a narrow time aperture function causes a broad band receiver and a broad function causes a narrow acceptance band.

The time aperture function is given by Eq. 5 provided the variation of damping with time is known; that is, when $P(t)$ is known. In geometrical terms, if a function of time is drawn having everywhere a slope of $0.5 P(t)$ and intersecting the time axis at time t of observation of the resonant circuit voltage, the curve for time prior to t is the natural logarithm of the time aperture function. This process is illustrated in Fig. 2.

Suppose that a sine wave is used for quenching, and that it cuts off the oscillator tube for a large part of the cycle; this sort of operation is usual in some of the older separately quenched superregenerative detectors. Then $P(t)$, the exponent gand $F(t, \tau)$ are shown in Fig. 2B.

By sketching the form of $F(t, \tau)$ for various values of t it is discovered that the area under $F(t, \tau)$ increases rapidly with increasing t, showing that $E(t)$ is growing rapidly with time during the amplification phase. It is also found that the peak of $F(t, \tau)$ as a function of τ occurs at the instant that

FIG. 3-Knowing the time variation of the damping, the aperture function and pass band can be determined. Optimum quenching waveform is given at (G)
$P(t)$ passes through zero.
The theory developed in the foregoing analysis can be applied exactly in a few interesting cases. Suppose that a square quenching wave is used such that $P(t)$ is positive and equal to P_{n} prior to τ $=0$ and that it is negative and equal to $-P_{1}$ thereafter. The quench waveform and time aperture func tion for this case are shown in Fig, 3 A and B . The relative amplitudes of the signal in the amplification phase are also shown (Fig. 3C); this later curve is effectively the selectivity curve of the detector.

For a sensitive, narrow-band detector with a square quenching wave, $-P_{1}$ should be made as small as is consistent with the chosen quench frequency. For thorough quenching in a short interval P_{*} must be large.

Another practical case is that of linearly changing $P(t)$. The commonly used sine wave quenching wave causes $P(t)$ to change from positive to negative nearly linearly. The bandwidth and time aperture function $F(t, \tau)$ depend on the rate of change of $P(t)$. If $P(t)$ has been changing linearly in a negative direction since $t=-\infty$ and at $t=0$ passes through zero, the voltage $E(t)$ at time t due to an input $I \cos \omega_{s} t$ can be found as outlined at Fig. 3D through 3F. For this special case both the time aperture and the frequency response have the shape of a probability function.

Requirements for Optimum Quenching

The almost proverbial poor sig-nal-noise ratio of superregenerative detectors is mostly due to the short effective duration of the time aperture function. In most cases the time aperture function has an effective duration, measured between points of half-peak sensitivity, much less than a tenth of the total quench period. Statistical theory indicates that the signal-noise ratio should vary directly as the square root of the ratio of the effective duration of the time aperture to the total quench cycle duration.
The narrowest band and greatest sensitivity as well as the best sig-nal-noise ratio appear to be obtainable when $P(t)$ has a large positive value during the quenching period (first operation), which is made as
short as is consistent with thorough quenching, followed by a value of zero during the entire reception period (second function), which is made as long as possible. The amplification (third function) and detection (fourth function) periods should be as short as is practical. To achieve this result, $P(t)$ should become quite negative so as to amplify quickly the voltage existing at the end of the reception period to a usable level. The required waveform is shown in Fig. 3G.
Certain additional precautions must also be observed in designing superregenerative detectors. The quenching must be complete, otherwise remnants of oscillation persist from the preceding cycle, spoiling the sensitivity of the receiver. Ringing or spurious modes of resonance associated with r-f chokes, quenching circuit coils, or other components can interfere with the quenching, retaining a remnent signal to compete with the new incoming one. Typical symptoms of this difficulty appear when a sharply resonant circuit such as a wavemeter is momentarily held close to the active element. Another effect, usually serious only in low-frequency superregenerative detectors, is shock excitation of the active element by the quenching wave. This action reduces the sensitivity; it is eliminated by restricting the frequency content of the quench.

A simple way of testing for the presence of any of these difficulties is to examine the shape of the selectivity curve with a weak incoming signal. The selectivity curve should be smooth and single peaked. Any of the above difficulties will cause peaks separated by an interval equal to the quench frequency.

Although superregenerative detectors may take a bewildering number of special forms depending upon application, the theory developed above has been found to explain the behavior of all forms investigated during the past five years in this laboratory. In each case the development centered around obtaining the prescribed aperture function. Once this had been accomplished the selectivity and signal-noise ratio measured on the detector agreed substantially with the calculations.

SUPERREGENERATOR Design

Gain and selectivity of superregenerative receivers can be predicted by the principles that are developed. Circuit operation and the efferts on operating characteristics of changing various components are explained. Effects of specific quenching waveshapes are discussed

By ALAN HAZELTINE, D. RIGHMAN and B. D, LOUGHLIN

Ho:rlling Elretronies ('orp., Little Neck, N. Y.

ASUPERREGENERATOR consists of a resonant circuit and an oscillator or regenerator tube, as shown in Fig. 1A. The resonator has a positive damping G_{+}consisting of the inherent and coupled losses of the tuned circuit. The resonator is also periodically supplied with an effective negative conductance (G $-G_{+}$) by regenerator tube, which is switched on and off by a quenching voltage to produce this effect.

Much prewar information on this circuit is vague, particularly that concerning gain and selectivity. Extensive war-time application of su-
perregeneration in IFF equipment required a thorough investigation. Late in 1942, H. A. Wheeler developed the basic concepts that lead to a clarification of the characteristics of this device. A summary of this theory is given and it is shown how it can be used as a guide in designing superregenerative receivers.

The Superregenerator

In the circuit described above, transient oscillations, excited by a signal in the tank (Fig. 1B), build up exponentially during the period of negative conductance. When the

INDEPENDENT INVESTIGATIONS

This and the preceding article present similar material. One might ask why the duplication. There are two reasons:
(1) Simultaneous investigations of the superregenerative circuit were made, each deserving recognition through publication.
(2) Use of this circuit has been hampered by lack of an adequate explanation of its operation. The subject might still be considered controversial had independent investigators not come to similar conclusions. It is important to progress that there be duplication of effort so the investigators will constantly be checking each other's results.

Now that some agreement has been reached on theory and design factors, numerous applications of the superregenerative method for obtaining stable and extremely high amplification will be found.

FIG. l-Superregenerative circuit (A) and equivalent circuit (B) and relation of oscillation amplitude to waveshape of conductance (C), (D) and (E) under various conditions
quench voltage turns off the regenerator tube, a period of positive conductance results during which the oscillations are quenched. In most applications it is desirable for the transient oscillations of one quench cycle to almost completely die out so that the transient of the next quench cycle is started mainly by the applied signal.

In the linear mode of operation (Fig. 1C) the regenerator tube is turned off and oscillations are quenched before they reach saturation. The oscillations at the end of the negative conductance period, which are generally fed to a peak detector, are linearly related to the applied signal amplitude.

In the logarithmic mode of operation (Fig. 1D) the regenerator tube stays on until the oscillations reach saturation. The duration of saturation varies with the amplitude of the applied signal, giving, for separately quenched operation, a saturation pulse width that is approximately a logarithmic function of signal amplitude. For selfquenched operation a quench rate that is approximately a logarithmic function of signal amplitude results. ${ }^{1}$ Detection of a-m in the logarithmic mode may be obtained by using a separate averaging detector or by using the variations in the regenerator tube electrode currents. The transient oscillation energy of a logarithmic-mode superregenerator has also been used to feed an f-m detector. ${ }^{2}$ For studies of gain and selectivity it is convenient to ignore the detection action, and to consider the superregenerator as merely a carrier-frequency amplifier.

Calculating Gain

Action of the superregenerator as an amplifier can be described by considering the tank with its inherent and coupled positive conductance as being shunted by a periodically varying negative conductance, representing the regenerator tube. A general shape of con-ductance-time variation is shown for the two operating modes in Fig. 1C and D.

For calculating gain and selectivity, it is convenient to consider that a cycle of quench operation starts at T_{A} when the oscillations of the
previous cycle are being damped out and the input current I begins to establish a normal signal in the tank, and that the cycle ends at T_{B} when the oscillations have again built up to maximum amplitude.

The superregenerative transient oscillation resulting from a short r-f pulse at $t=0$ (when $g=0$) has an amplitude at time T_{B} of

$$
\begin{equation*}
E_{B}=E_{0} \exp \left(-\frac{1}{2 \mathrm{C}} \int_{0}^{T_{B}} g d t\right) \tag{1}
\end{equation*}
$$

where E_{0} is the amplitude at $t=0$ and E_{B} is the amplitude at T_{B}. It is convenient to express the ratio of the superregenerative transient amplitude to the applied signal amplitude as a gain A in nepers (one neper equals approximately 8.7 db) so that

$$
\begin{equation*}
A=\ln \frac{E_{B}}{E_{0}}=-\frac{1}{2 C} \int_{0}^{T_{B}} g d t \tag{2}
\end{equation*}
$$

Thus, $1 / 2 C$ times the area under the negative conductance-time curve between $t=0$ and $t=T_{B}$ represents the gain in nepers to a short r-f pulse applied at $t=0$ and measured at $t=T_{r}$.

FIG. 2-Steps in the development of selectivity from waveform of conductance, as described in text, and, at bottom, effect of hangover on selectivity

For the linear mode the total superregenerative gain is given by integrating the total negative conductance area. For the logarithmic mode the effective superregenerative gain is obtained by integrating the negative conductance area up to the time of saturation. This is illustrated in Fig. 1D where T_{P} is the period of the constant amplitude (saturation) oscillations of the logarithmic mode of operation.
The superregenerative gain just described is not the total gain for a continuous carrier at the frequency of the resonator. Some further gain results because the r-f signal is present during the entire quench cycle. This produces a regenerative gain R which is generally considerably less than the superregenerative gain.

Sensitivity Limitations

The manner of decay of the oscillations during positive conductance is similar to the transient build-up during negative conductance, and the same equations hold for the transient amplitude in the positive conductance area. With repetitive quench, as shown in Fig. 1E, the net transient amplitude at T_{\prime}, due to the energy remaining in the tank from the previous transient of oscillation initiated in the tank at T_{C} is given approximately by $1 / 2 C$ times the net area under the conduc-tance-time curve between T_{c} and T_{b}. Thus, for the transient hangover to be less than the applied signal, the net area over a complete quench cycle must be positive. This excess damping, shown as A_{0} in Fig. 1E, should be at least 3 to 5 nepers for most applications.

Sensitivity of a superregenerative receiver is determined by the minimum usable signal level. For the logarithmic mode, sufficient superregenerative gain is obtained to amplify thermal noise to saturate the regenerator tube. In this case the sensitivity is limited by the sig-nal-noise ratio or by the signal level necessary to overcome hangover.
In a linear mode superregenerator, sensitivity may be limited by insufficient gain, as well as by sig-nal-noise ratio or hangover. This is particularly true in applications using a very high quench rate, low-transconductance regenerator
tubes, or high-capacitance resonators.

If a short r-f pulse is applied to a superregenerator, highest gain is realized if the pulse is applied when the conductance passes through zero going from positive to negative. If applied later, there is less remaining negative conductance area and thus less gain. If applied earlier, the oscillations decay again, giving less gain. Thus, the superregenerator can be considered to have a sensitivity which varies during the quench cycle, having a maximum at the time when $g=0$ and is going from plus to minus.

Variation of sensitivity in nepers with time can be found directly from the conductance-time function, and from this a linear sensi-tivity-time pulse can be calculated, as in Fig. 2. The magnitude of the superregenerative selectivity curve has the same shape as the frequency spectrum of this sensitivity-time pulse. The corresponding frequency spectrum can be found by Fourier analysis or by Campbell and Foster's tables. ${ }^{3}$ The four steps, ignoring effects of hangover and assuming high gain, in finding the bandwidth of a superregenerator with a known variation of conductance with time, are shown in Fig. 2; at the bottom of the figure the response in the presence of hangover is shown.

Design Data

To illustrate how these steps might be applied, consider the design of a superregenerator that is quenched as in Fig. 1A. From an assumed quench waveshape and a knowledge of the variation in transconductance with grid bias (as obtained from published tube data), the variation of transconductance with time can be found. By applying the equations of Fig. 1B, the variation of G_{T} can be found. This is subtracted from an assumed (or known) value of G_{+}for the resonator, giving the net conductancetime function needed for applying the steps of Fig. 2. The sensitivity function $l(t)$ in nepers can be obtained by integrating (graphically, if necessary) the conductance-time function and multiplying by $1 / 2 C$. The linear sensitivity-time pulse $s(t)$ is obtained by $\exp l(t)$, where

conductance vs time	SELECTIVITY	A	R	$F(\omega)$
(A)		$\frac{6-T_{0}}{2 C}$	$1+\frac{G_{+}}{G_{-}}$	$\frac{1}{\left(1+j \omega \frac{2 C}{G_{+}}\right)\left(1-j \omega \frac{2 C}{G_{-}}\right)}$
(B)	\underbrace{i}_{w}	$\frac{G_{-} T_{\theta}}{4 C}$	$G_{+} \sqrt{C \left\lvert\, \frac{\pi}{\left\|\frac{d G}{d t}\right\|}\right.}$	$\epsilon^{-\omega^{2} c /\left\|\frac{d G}{d t}\right\|}$
		$\frac{G_{-} T_{B}}{4 C}$	$G_{+} \sqrt{C \left\lvert\, \frac{\pi}{\left.\frac{d G}{d t} \right\rvert\,}\right.}$	$\epsilon^{-\omega^{2} c /\left\|\frac{d G}{d t}\right\|}$

FIG. 3-Conductance waveform controls selectivity, as these specific examples show
$l(t)$ is conveniently taken to be zero at $t=0$. The superregenerative selectivity shape is found from the frequency spectrum of $s(t)$. If $s(t)$ is not found in Fourier transform tables, an approximate answer may be obtained by graphical Fourier analysis.

If it is desired to calculate the selectivity of an existing superregenerator, it may be convenient to find the plate-current waveform of the regenerator tube (by inserting a small resistor in the plate circuit and observing the quench-frequency voltage waveform across it on an oscilloscope). Then the selectivity can be calculated as before.

Equations for Gain and Selectivity

The variation in superregenerative sensitivity with time means that the effect of the current supplied to the resonator varies with time. This is exactly equivalent to a variation in input current amplitude with time. It can be shown that the magnitude of the superregenerative selectivity response characteristic is equivalent to that of an unvaried and undamped resonator to which an a-m signal is applied. The spectrum of that a-m signal is continuous because each cycle of quench is independent of the others, if hangover is negligible. The selectivity characteristic of the superregenerator is exactly equivalent to the frequency spectrum of the amplitude modulated signal, or of the seasitivity pulse.

The sensitivity pulse is defined as
$s(t)=\exp \left(\frac{1}{2 C} \int_{0}^{t} g d t\right)$
where this relation holds for $T_{A} \leqq t \leqq T_{B}$, and $s(t)=0$ outside of these limits.

The gain of the superregenerator, H, is defined as the ratio of the voltage existing at the peak of a superregenerative cycle to the voltage which would be developed across the tank at resonance if the conductance had remained at the value G_{+}. That is

$$
\begin{equation*}
H=E_{B} /\left(I / G_{+}\right) \tag{4}
\end{equation*}
$$

It can then be shown (for example, by conservation of energy or by superposition of the effects of a series of impulses) that

$$
\begin{align*}
& H=\exp (A) \frac{G+}{2 C} \times \\
& \int_{T_{A}}^{T_{B}} \exp \left(\frac{1}{2 C} \int_{0}^{t} g d t+j \omega t\right) d t \tag{5}
\end{align*}
$$

If hangover is ignored and the superregenerative gain is large, Eq. 5 reduces to

$$
\begin{equation*}
H=\exp (A) \frac{G_{+}}{2 C} \int_{-\infty}^{+\infty} s(t) \exp (j \omega t) d t \tag{6}
\end{equation*}
$$

Equation 6, which ignores end effects, indicates that the selectivity of a superregenerator can be found from the inverse Fourier transform of the sensitivity-time pulse. The factor, $\exp A$, in Eq. 6 is the superregenerative transient gain where

$$
\begin{equation*}
A=-\frac{1}{2 C}-\int_{0}^{T} g d t \tag{7}
\end{equation*}
$$

The remaining factor, evaluated at resonance, defines the added gain
that is obtained by regeneration. The regenerative gain ratio is

$$
\begin{equation*}
R=\frac{G_{+}}{2 C} \int_{-\infty}^{+\infty} s(t) d t \tag{8}
\end{equation*}
$$

As before, these steps have ignored effects of hangover and assume that the superregenerative gain is large.

Effects of hangover can be computed from the net attenuation, A_{0}, and phase shift per cycle, exp $\left(-A_{0}-j \omega T_{\varphi}\right)$. The resulting selectivity is

$$
\begin{equation*}
S=F(\omega)^{\prime}\left[1-\exp \left(-A_{0}-j \omega T_{\psi}\right)\right] \tag{9}
\end{equation*}
$$

where $F(\omega)$ is the selectivity ignoring hangover. The curve at the bottom of Fig. 2, showing hangover, is plotted to a linear scale; the peaks are very nearly separated by $F_{Q}=1 / T_{\varphi}$ and the troughs are halfway between.

Effects of Special Waveshapes

Figure 3 gives examples of three conductance-time curves with their corresponding selectivities as calculated by the foregoing method, as well as the equations for superregenerative gain A, regenerative gain R and selectivity $F(\omega)$, ignoring hangover and end effects.

In the case of symmetrical squarewave quench (Fig. 3A), a selectivity equal to that of two cascaded, isolated single-tuned circuits (one having conductance G_{+}, the other G_{-}) is obtained. When $\left|G_{-}\right|$ $=G_{+}$the equivalent phase characteristic of the selectivity has no phase distortion. This distortionless phase characteristic is produced by all conductance-time functions which have skew symmetry about $g=0$ (Fig. 3A and 3B). When gain A is large, departure from exact skew symmetry in regions remote from $g=0$ can be neglected.

The triangular conductance waveform of Fig. 3B produces a selectivity having the form of a probability curve. (A probability curve plotted to a db scale forms a parabola.)

The conductance waveshape of Fig. 3C is similar to that found in the usual self-quenched superregenerator, particularly those using grid quench and having the grid leak returned to a positive bias. This waveform produces a selectivity following a probability curve, but considerably wider than that of Fig. 3B.

The reason for this is that, for the same quench frequency and gain, the shape of Fig. 3C has a greater rate of change of conductance with time, giving a narrower sensitivitytime pulse and thus a wider frequency spectrum.

When a converting superregenerator is used, such as the FreModyne circuit, an unusual result is obtained. The conversion efficiency varies during the quench cycle so that the r-f sensitivity-time pulse is the product of the i-f sensi-tivity-time pulse and the conversion efficiency pulse. This generally results in an r-f sensitivity-time pulse that is slightly narrower than the i-f pulse, and thus gives a slightly wider r-f bandwidth than i-f bandwidth.

In the foregoing discussion it has been assumed that the resonant frequency of the superregenerative tank circuit does not vary during the quench cycle. This gives symmetrical selectivity curves. If the superregenerative tank frequency varies appreciably during the period when the sensitivity-time pulse has significant amplitude, then a result much like a combination of simultaneous a-m and $f-m$ is obtained, which can produce unsymmetrical selectivity curves.

Practical Considerations

It can be shown that the shape of the selectivity curve near the nose of the curve is determined mainly by the shape of the conductancetime curve near the time when $g=0$. If the conductance waveshape is approximately a straight line in the vicinity of $g=0$, then the selectivity curve is a probability curve to approximately as many db of attenuation as are represented by the superregenerative gain obtained during the linearly sloping part of the conductance wave form. This leads to the useful approximation that the total bandwidth at one neper (8.7 db) from the peak is ${ }^{4}$

$$
\begin{equation*}
\left.f_{W}=(1 / \pi) \mathrm{i}(1 / c)|d G / d t|\right]^{1 / 2} \tag{10}
\end{equation*}
$$

where $d G / d t$ is the slope of the con-ductance-time curve at $g=0$.

In a separately quenched superregenerator, Eq. 10 shows that, in general, if the quench voltage amplitude is increased, the selectivity curve will become wider. Also, if
the quench voltage frequency is reduced, keeping the same waveshape, that the selectivity curve will become narrower. However, if the quench amplitude is increased, or the frequency decreases, the available superregenerative gain will be increased, producing more total gain for a linear mode operation or producing an earlier saturation in logarithmic mode. Thus for a given quench waveshape, and for a specified superregenerative gain, the narrowest selectivity is obtained by using the lowest possible quench frequency. However the minimum quench frequency should be at least equal to twice the maximum modulation frequency of the received signal.

The question frequently arises of how to measure the selectivity of an existing superregenerator. Conventional methods may be applied in certain cases, but are generally inadequate. With certain types of superregenerators the problem is like measuring the selectivity of a conventional receiver having a very flat ave that cannot be disconnected. The following method is suggested as being applicable to substantially all forms of superregenerators normally used.

The audio output noise of the receiver, without an applied signal, is meàsured by an output meter (rms type preferred). A signal is applied at resonance and adjusted in level until the noise is suppressed by some convenient amount such as 10 or 20 db . Then the signal is detuned and readjusted in level until the noise is suppressed by the same amount. The difference between the two levels is the attenuation or selectivity at the detuned frequency. By this method of constant noise suppression, the complete selectivity curve may be measured (assuming an adequate signal generator) to as much as 80 to 100 db of attenuation.

References

(1) F. W. Frink, The Basic I'rinciples of Superregenerative IReception, Froc. ORE, D 76 , Jan. 1938 . This paper gives a more complete description of the various a more complete desc
modes of operation.
(2) H. P. Kalmus, SuperregenerationIts Possibilities and Limitations proc. $\pi R E$, Oct. 1944 .
(3) Bell Telephone System Monogram B-584, Fourier Integrals for Practical Applications.
(4) MacFarlane and Whitehead, The Superregenerative Receiver in the Linear Node, Jour. IEE, Part III A, No. 1,1946 .

FIG. 1-Reception patterns of half-wave dipole in plane and circularly polarized fields

Circularly polarized antenna in use by radio station WHKX

Circular Polarization in F-M Broadcasting

Experimental field intensity measurements substantiate theoretical advantages to be gained over plane polarization. The high-gain omnidirectional broadeast transmitting antenna described allows most convenient location of home receivers

By GARL E, SMITH
rioe lresident in ('herrge of Enginecring Ulited Broadcasting Co. C'leveland. Ohio

and ROBERT A. FOUTY
 Research Assucialo
 Antemma Laboratory of The ohio Ntate Unitcrsity Reseurch Foumdration C'olumbuts, O7io

MORE than two years ago the United Broadcasting Company initiated an experimental program to investigate the use of circular polarization for $f-\mathrm{m}$.

The early experimental work was carried on with a prototype circu-lar-polarization antenna consisting of a vertical half-wave dipole and a horizontal loop, mounted on the same vertical axis. A report covering this work was furnished to the Federal Communications Commission in October 1946.. ${ }^{1}$ Within 30 days the Commission had
amended the Standards of Good Engineering Practice to permit the addition of a vertical component having the same magnitude as the horizontal component and thus making it possible to supply the service area with a diversely polarized signal from a circularly polarized f-m broadcasting antenna by radiating twice the power of either component operating alone. ${ }^{3}$

During the past year field measurements have been made on W8XUB and WHKX in Cleveland to determine quantitatively the im-

FIG. 2-Distribution of iield intensity with receiving antennas in random placements
provement of circular polarization over plane polarization, and a research program has been carried on by the Ohio State University Research Foundation in Columbus to develop a high-gain circularly polarized broadcasting antenna.

Theoretical Advantages

One of the principal advantages of circular polarization over plane polarization is that space is more completely filled with a diversely polarized signal. Figure 1 shows that in a plane-polarized field a simple receiving antenna can be placed in only one position for max-
imum signal pickup and in a whole plane of positions for zero signal pickup, while in a circularly polarized field a simple receiving antenna can be placed in a whole plane of positions for maximum signal pickup and in only one position for zero signal pickup.

It should be emphasized that although the radiated power can be doubled in going from plane to circular polarization the more important consideration is that the polarization changes from a single line or linear dimension to a surface or two-dimension phenomenon. The radiated power from many f-m sta-
tions using plane or horizontal polarization is limited to an equivalent 20 -kw, 500 -foot antenna in accordance with FCC allocation standards. All of these stations have the privilege of improving their service to the public by employing circular polarization and radiating up to an equivalent 40 kw, 500 foot antenna.

If reception patterns are investigated on a theoretical statistical basis by placing a half-wave receiving antenna at random the curves of Fig. 2 result. For a circularly polarized field with receiving antennas placed at random in space the median value is 82 percent. In a plane-polarized field with receiving antennas placed at random in the plane of polarization the median value is 63 percent. If the receiving antennas are placed at random in space when the field is plane polarized the median value is 48.7 percent.

If ratios between the curves of Fig. 2 are expressed in decibels of improvement the two theoretical curves of Fig. 3 result. The median improvement of circular polarization over plane polarization for antennas placed at random in space is 4.6 decibels, while the improvement of circular polarization over plane polarization when the receiving antennas are placed in the plane of polarization is 2.3 decibels. It should be observed that the improvement to 50 percent of the sets will be much more than this value, as indicated by the sharp upward

FIG. 3-Theorelical improvement of circular polarization over plane polarization

FIG. 4-Improvement of circular over horizontal polarization when receiving antennas are horizontal
curvature toward the right end of these curves.

Field Measurements

To determine quantitatively the improvement of circular polarization over plane polarization as it affects the average home receiver it was assumed that the f-m receiving antenna built into the home receiver must be served. Therefore, 372 carefully controlled field-intensity measurements were made in 36 typical homes throughout the service area of W8XUB.

Measurements in the home were made with a half-wave dipole placed six inches in front and with the center of the dipole level with the top of the home receiver. In other words, an effort was made to reflect into the results the effect of the position of the home receiver as selected by the housewife.

With the test half-wave dipole horizontal, the transmitting antenna was caused to radiate, first horizontal polarization and then circular polarization of equal maximum field intensities. The ratio of these measurements made in 36 homes shows in Fig. 4 that the median improvement is 3.71 decibels. The theoretical curve was also drawn in this figure for comparison purposes. It will be noted that the field measurements data is in fair agreement with the theoretical curve. It is believed that cancellations and reinforcements due to reflections from metalic plumbing and wiring in and around the
home cause the measured points to fall below the theoretical curve toward the left end and rise above the theoretical curve toward the right end.

If the receiving antenna is placed at random in space it should be possible to check the theoretical curve of Fig. 3. To accomplish this, measurements of circular polarization transmission with vertical receiving antennas were compared to both vertical and horizontal-polarized transmission with the same vertical receiving antennas. Then a similar set of ratio measurements were made with horizontal receiving antennas. Figure 5 presents 72 such ratio measurements with a median improvement of 4.87 decibels. This is in good agreement with the theoretical median improvement of 4.6 decibels. Again cancellations and reinforcements are believed to be the reason for the statistical data to fall below the theoretical curve at the left and rise above the theoretical curve at the right.

Another case of interest is the improvement that can be expected when the receiving antennas are vertical. A practical application is whip antennas on automobiles and power-cord antennas such as are commonly used on table-model receivers. The 21 statistical measurements for this condition are presented in Fig. 6, which shows a median improvement of 9.25 dec ibels. The improvement for three points was too great to plot; how-
ever, their effect is reflected by shifting the other points to the left.

Summarizing the results indicated by the above field measurements, it is more profitable for a broadcaster to divide the available power between the horizontal and vertical components and employ circular polarization even for serving only horizontal receiving antennas placed in the home. However, such division of total power is not necessary under the Standards of Good Engineering Practice for f-m broadcast stations. Under these standards the broadcaster can expect to more than double the power (3.71 db) in horizontal receiving antennas and increase the power more than eight times (9.25 db) in vertical receiving antennas within the service area.

Antenna Development

The program at the Ohio State Research Foundation embodied basic research on two methods of producing circular polarization. The first employed excitation of a single element geometrically shaped, such as spiral slots or helical antennas, to produce the desired polarization. The second group consisted of horizontal and vertical radiating elements, each fed with the proper proportion of energy to produce equal-magnitude fields and with the proper time-phase difference to produce circular polarization. ${ }^{4}$

In developing the antenna the

FIG. 5-Improvement of circular over plane polarization with randomly placed receiving antennas

FIG. 6-Impiovement of circular polarization over horizontal with vertical receiving antennas
problem was attacked theoretically and experimentally by means of model technique. ${ }^{5}$ The theoretical work was devoted to slots in cylinder s^{6} since it appeared early in the development that this type of antenna would probably be used as the radiating element to produce the horizontal polarized component of the circularly polarized antenna.

To produce circular polarization in the horizontal plane it should be remembered that both the horizontal and vertical radiating elements must have a uniform pattern in magnitude and phase. It has been shown ${ }^{8}$ that two diametrically opposed axial or longitudinal slots in a cylinder will satisfy the requirement for the horizontal component, as the magnitude was essentially uniform and the phase shift was less than three degrees through the $\mathrm{f}-\mathrm{m}$ broadcast band for cylinders whose diameters were 16 inches. By making the cylinder a half-wavelength long and feeding the slots at the center, the desired horizontal component can be produced. The vertical component can be obtained by feeding the half-wavelength cylinders as full-wavelength vertical dipoles. The 90 -degree timephase requirement was satisfied by using a phase control as shown in Fig. 7, which also shows the basic elements and how they were developed and combined to produce the circularly polarized experimental antenna as used by station WHKX, and illustrated on the cover of

FIG. 7-Development of the circular-polarized antenna from dipoles and a slof array

Electronics for April 1948.
Experimental data on the slots showed them to have vertical patterns which were similar to the vertical fat dipole and indicated that the units or full-wavelengths Jays could be stacked suitably for high gain. Vertical patterns at 100 mc for both elements are shown for half-wave cylinders 16 inches in
diameter, in Fig. 8. The horizon-tal-plane patterns for the two elements are quite uniform, as shown in Fig. 9. With this basic information a model for a circularly polarized antenna was constructed and tested. Pattern tests proved the antenna to be circularly polarized in the horizontal plane and that the units could be stacked for high

FIG. 8-Vertical field patterns for both vertical and horizontal-polarized elements at 100 mc , using $16-\mathrm{in}$. diameter cylinder

FIG. 9-Vertical and horizontal-polarization components of horizontal-plane pattern at 100 mc

FIG. 10 -Construction and feed details
gain. As a result of these studies the full-scale antenna was fabricated and installed for experimental operation.

The Antenna

One unit, or bay, of the antenna consists of two half-wavelength cylindrical sections with two diametrically opposed axial (longitudinal) slots cut in each section as shown in Fig. 10. For the vertical radiating element, the two cylindrical sections are fed at the center of a vertical full-wavelength fat dipole. Since the units are one wavelength long, the feeding problem is simple when the units are stacked in a vertical collinear array, to obtain a high-gain vertical pattern. The horizontally polarized component is obtained by feeding the axial slots, cut in each section of the cylinder, in phase with equal amplitudes of current so the circular pattern in the horizontal plane is obtained.

Feeding the antenna can be accomplished with a multiwire balanced transmission line as shown in Fig. 7 and 10, or a coaxial-line feed system can be employed
throughout. The full-scale model employs a balanced four-wire line. The copper-clad steel conductors are stretched from the top to the bottom of the supporting mast and on the inside of it. One pair of conductors is used to feed the vertical radiating elements and the other pair the horizontal radiating elements. The correct phase relationship for the two slots in each cylinder is obtained by properly crossing the connectors from the transmission lines to the slots as shown in Fig. 10. Since the feed points from one cylinder to the next cylinder are a half wavelength apart, altering the crossed connectors keeps the units in phase so they can be stacked. The feed points for the dipoles are one wavelength apart and can thus be fed in phase to produce a simple collinear array of stacked elements.

Each section of the galvanizediron cylinder shell is fastened to a standard 10 -inch steel mast with metal castings to support the shell to the mast. This is possible because the support point is at zero potential, being an odd quarterwavelength away from the verticalpolarization feed points and equidistant between the horizontal feed points. This keeps the entire antenna free of insulators. A quarterwavelength skirt is placed at the bottom of the antenna to minimize currents on the supporting structure. Bazookas are used to transform from balanced to unbalanced transmission lines as shown in Fig. 7.

With independent phase and power control it is easy to adjust for true circular polarization. The condition of polarization is determined at WHKX by a half-wave sampling dipole mounted level with the center of the circular-polarization antenna on a wooden pole at a distance of about 100 feet. This dipole can be rotated by a rope control to any position in a plane at right angles to the direction of propagation. The r-f meter at the center of the dipole can be observed by using a telescope mounted in the transmitter building.

The gain of the antenna is a function of the number of units or bays and may be determined by
the conventional method used in computing the gain of collinear arrays.

Commercial Antennas

For commercial antennas it may be more desirable to use a concentric transmission line harnesstype of feed throughout. By first resonating and then controlling the resistance magnitude at the various antenna-element feed points the standing waves on the feeder lines can be reduced to a minimum. The commercial broadcast antennas can be fabricated in this fashion. All openings in the cylinders will be covered with plastic to minimize effects from weather conditions. It will then be practical to bulk heat the antenna structure if icing is expected to be severe enough to require it. A ladder can be mounted on the cylinders without affecting the radiation pattern, thus making it easy to service the flasher beacon at the top of the antenna.

Acknowledgments

The authors wish to acknowledge the following assistance: H. K. Carpenter, executive vice president of United Broadcasting Co. for his sympathetic interest; George Sinclair of the University of Toronto for his invaluable contributions in the circular-polarization antenna development program; Robert Jacques, Research Supervisor of the Ohio State University Research Foundation Antenna Laboratory for his cooperation; A. O. Austin and Robert Indorf for directing the fabrication and construction of the ful'-scale developmental antenna.

References

(1) Carl ©. Smith, E. K. Ackerman and J. ${ }^{[F}$. Dobosv, Circular Polirization Tests, submitted to Federal Communications Commission Oct. 8. 1946.
(2) Carl E. Smith. Any Antenna Receives Circular Waves, Broadcasting, Oct 21,1946 . (This article gives some of the ighlights of Reference 1).
(3) Federal Communications CommisEnge dintindment ol Standards of Good brotdeast stations, Mimeograph rulease \therefore ㅇ. 533 , Nov. $7,1!46$; and - mendmant of Jngineering Standards concerning $\mathrm{F}^{2} \mathrm{M}$ Proadcasting, Public Notice Ň. 5:. Nov. 8, 1946.
(4) J. A. Stratton Electromagnetic Theory", rirst Edition, Mefiriw-Hill Book Company. Inc. 1941 p 279.
(5) George Sinclair, Edward C. Jordan and Eric W. Vaughan, Measurement of Direrait Antenna Paiterns Using Nodels, Joo IRE. p 1451 , Dec. 1947.
(6) George Sinclair, Slots in Cylinders, Presented at the National Electronit Con-
lerence. Nov. 94% and schedulud for publication in Iroc $/ R E$.

The low frequency oscillator showing range switch, step frequency selector, and level (gain) control

Top chassis view of the oscillator and conventional power supply. The two 6-watt lamps are in the feedback circuit

Low-Frequency

Stable oscillations from 0.3 to 252 cps are obtained in three ranges. The ganged vari-able-resistance tuning elements give small stepped increments of frequency. Lamps are used for nonlinear negative feedback

By JOSEPH F. KEITHLEY

Feithley Instruments
C7rribturl. Ohio

Oscillators in the frequency region below 20 cps have numerous laboratory uses, particularly in the study of vibration problems and in the design and testing of amplifiers which use a large amount of negative feedback.

The two major obstacles to be overcome in designing a satisfactory low-frequency oscillator are the large sizes of the components and the time required for transients to disappear. Because of the low impedance and low Q of inductors in this region, the frequency-controlling elements are almost always resistances and capacitances; and
with the comparatively low resistances of wire-wound resistors and potentiometers it is difficult to hold capacitors to a reasonable size. In oscillators with only vacuum tube nonlinearity controlling the amplitude, circuit changes in adjusting the frequency and selecting the range of frequencies cause transients lasting as long as 15 cycles, which is 30 seconds at 0.5 cps , making additional amplitude stabilization desirable. ${ }^{1}$

Beat-frequency oscillators, with the fixed frequency at $1,000 \mathrm{cps}$, have operated satisfactorily in the low-frequency regions. Time, however, is required to be certain that the zero-beat error is negligible; and a good quality filter is required to eliminate the unwanted modulation components from the desired signal.

The circuit diagram shown in Fig. 1 is fundamentally that of a resistance-capacitance oscillator with nonlinear feedback for stabilizing the amplitude. ${ }^{2}$ The fre-quency-controlling network is of the series R-C, parallel R-C type, and was chosen because only two variable elements are required. Resistance changes are used to control the frequency over a range of 10 to 1 , and the decades are selected by varying the associated capacitance. Resistors R_{2} and R_{2} are the variable parameters, and C_{1} through C_{5} are the fixed. They give an overall range from 0.32 cps to 252 cps . Negative feedback is controlled by R_{3}, R_{4} and R_{5}, with R_{4} and R_{5} the nonlinear resistors. Tube V_{1} is a voltage amplifier, and V_{2} drives the frequency-controlling and negative-feedback networks.

FIG. 1-Circuit diagram of the low-frequency oscillator. The stepped variable frequency control detail indicaied

Oscillator

Cathode-follower V_{3} isolates the output. The power supply is conventional.

In the circuit of Fig. $1, f=$ $1 / 2 \pi R C$, where f is the frequency of oscillation; R is the resistance of R_{1} or R_{2}, assuming them equal; and C is the capacitance of the associated capacitors, assuming they also are equal. Resistors R_{1} and R_{2} are controlled by a two-section, eleven-point frequency selector switch. At each range setting, if a factor of 10 in frequency is desired for a complete sweep of the frequency switch, along with a proportional increase in frequency with each step of the switch, then the ratio of increase is $10^{1 / 11}$, or approximately 1.23 per step. This relation, in turn, means a division of the previous value of R_{1} or R_{2} by 1.23 for each increasing step of the frequency switch. One megohm was a convenient value for the maximum of R_{1} and R_{2}. Using this, the incremental resistances were computed, and the nearest RMA-value resistor was selected. One halfwatt resistor was used for each incremental resistance; these
mount conveniently on the frequency switch, and result in a neat and compact control. The switch and resistor combination gives a stable, variable resistor with high resistance, so that only a 0.5 uf capacitance is required for the 0.3 cps to 2.5 cps range. The schematic diagram of R_{1} and R_{2} is shown at the bottom of Fig. 1 .

Capacitors C_{2} and C_{3}, C_{5} and C_{1} were selected and trimmed to fit the decade relationship with C_{1} and C_{4}, respectively. The capacitors C_{1} and C_{4} were chosen within 5 percent of each other.

Thermal Elements

The choice of the thermal characteristics of the nonlinear resistors in the feedback circuit is a compromise between two requirements. It is desirable that the thermal time constant be as short as possible, so that transients caused by changing the frequency or the range will be as short as possible. Yet there should be no appreciable change in resistance during a cycle of oscillation at the lowest frequency, or waveform dis-
tortion will result. Two 115 -volt 6 -watt candelabra-base lamps connected in series we re found experimentally to give acceptable waveform at 0.5 cps , damp transients quickly, and have satisfactory electrical characteristics.

The chief limitation of the oscillator is that the frequency cannot be varied continuously. In most work encountered, the steps have been adequately close. Additional increments, however, can be obtained by using a selector switch with more steps, using ranges of 3 and 30 in addition to 1,10 , and 100 , or by connecting auxiliary decade capacitors across the frequencycont:olling capacitors.

As noted previously, the lower frequency limit of oscillation is determined by the thermal elements in the feedback circuit. The upper limit, with R_{1} and R_{2} maxima of 1 megohm, is reached when the tube, switch, and wiring capacitances become appreciable compared with those of the oscillating circuit. A convenient limit for the present oscillator is 252 cps .

Accuracy

The finished oscillatur has been calibrated carefully, and the range capacitors adjusted so that the error in frequency is less than 2 percent of any given setting. The use of tubular paper capacitors and composition resistors in the fre-quency-controlling network, however, means that errors as great as 4 to 6 percent can be expected. This error can be reduced by the use of more stable elements; or a spot calibration can be made whenever a critical situation is encountered.

The low-frequency oscillator has given good service for several months, and seems to be a generally satisfactory instrument. Through the techniques of a switch-controlled variable high resistance and nonlinear negative feedback, a simple, stable, easy-to-use oscillator has been built in a frequency region once noted for its difficulties.

References

(1) L. Fleming, Thermistor-fiegulated bow Frequency Oscillator, Liscotionics, 1) 97 October $19+4 \%$.
(2) F, E. Ternian, K, R. Huss, W. R. lewlett, and F^{2}. C. Cahill, sumt Applications of Negative Feedback with Tarticular Reference to Sabroators Entuipment,

Digital Computer Switching Circuits

Abstract

Basic operational requirements of digital computers and fundamentals of the means for obtaining them are set forth. For the most part familiar switching circuits can be used but they must meet the special requirements of positive action that are described here

By C. H. PAGE
Chief, Electronic Computers Section National Bureau of Shanderis Department of Commerce Washington, $D . C$

AUTOMATICALLY-SEQUENCED digital computers are machines that have no intelligence, yet carry out, without intervention, lengthy routines of mathematical calculation. An understanding of general design considerations requires a survey of the procedures followed by a human computer using desk calculator.

A human computer does more than arithmetic; he not only carries out the elementary processes of addition, subtraction, multiplication, and division, but he also decides what numbers to add, multiply, etc., and what to do with his results. These results of his arithmetic are only stepping stones to his final goal, just as the numbers upon which he performs his arithmetic were previous stepping stones. Some problems require millions of arithmetic operations to arrive at a relatively small set of numbers representing the final answer.

If we reduce the human computer to an alutomaton having only the ability to read, write, and do arithmetic, we need to give him a very detailed set of working instructions. These instructions include original numerical data from which he works, and an explicit program of operations to be performed. He must be told, for example, to read numbers in two specified places, add them, and write the result in
a specified place. He must then be told where to find his next instruction, unless all instructions are serially listed and no variations in their order are to be made. Explicit instructions as to where to write partial results and when and where to refer back to them for further use comprise a sort of automatic memory. The sheets of paper, numbered for identification, form a storage for mumbers; his whole program is stored on paper before he starts to work.

Even the power of decision can be mechanized. If a human computer is supposed to compute one intermediate result to a specified degree of accuracy by a method of successive approximations, he must continue until further steps make insignificant changes. He is therefore instructed to keep repeating the procedure until a tentative answer, taken to ten places, equals the previous tentative answer, and then to proceed with the main program.

We see that our automaton must be given instructions, or orders, incorporating the following information: (1) where to find operands; that is, the two numbers to be combined by addition, multiplication, subtraction; or division, (2) which arithmetic operation to perform, (3) where to write the result, either in a specified place for furture reference or on his final answer sheet, and (4) where to find his next set of similar instructions.

An electronic computer operates on a similar routine. Machines being designed and built will perform this cycle of operations in a millisecond or less, working with num-
bers having ten decimal places. Such speed means that these machines will make it practical to solve problems requiring so many millions of arithmetic operations as not to be considered at present. Directing such a machine is a major administrative problem. As Dr. von Neumann of the Institute for Advanced Study expressed it, "Programming a problem for such a machine is equivalent to writing a detailed set of instructions for twenty automatons with desk calculators sufficient to keep them busy for two years, working a fortyhour week." These automatons have no ability to think for themselves!

Leaving the mathematical and administrative problems to others, we can proceed to the basic electronic problems. We must first have (A) an electronic alphabet for writing numbers and orders, (B) a medium on which to write, (C) means of writing and reading, and (D) means for interpreting the written word. These words may be numerical, as 3721499825 , or coded orders, as A0173Q75B6. When a number-word (number) is read, it must be translated into what the machine recognizes as numerical form. An order-word (order) must be interpreted by being converted to a set of voltages, to operate switches.

Reading a word consists in part of transmitting it to the organ which is to interpret and be affected by it. Thus numbers are transmitted from storage to arithmetic unit, or vice versa, and orders are sent from storage to the central control organ, or dispatcher. In ad-

FIG. 1-Pulses are stored statically in flip-flops, dynamically in delay lines
dition, both kinds of words are transmitted to storage from the input as needed, and final answers or desired partial results are transmitted to the machine output.

An order must not only tell the central control which numbers to dispatch to the arithmetic unit from storage, but must also tell centrol control which arithmetic operation is to be performed and where the result is to be sent.

In addition to the central control organ, there must be various local control stations. The arithmetic unit itself, for example, is primarily a traffic unit such that the ar-
rival of two numbers causes the transmission of a third number. Whether this third number is the sum, difference, product, or quotient of the other two depends upon the dispatching system of the arithmetic unit. Separate arithmetic units can be built for the four cases, but it is also feasible to make a universal arithmetic unit which will perform any one of the four processes upon request of the central control. Hence the central control must not only dispatch numberwords and orders, but must also interpret orders and actuate circuit changes.

Transmission and Representation

A number, say 43712, can be read and transmitted in two fundamentally different ways. If one transmission channel is used for each column, we can simultaneously transmit a 2 along the first channel, a 1 along the next, 7 along the next, etc. This simultaneous transmission of the digits of each position along their appropriate channels is a parallel operation. Its characteristic feature is that it distinguishes between digits by a spatial relation, transmitting all digits at the same time.

Conversely, we could transmit all digits over a common channel, at successive times, in the order 2,1 , $7,3,4$. The separate digits would be distinguished by their time of arrival on a common line. This is a SERIAL process, digits being distinguished by a temporal relation.

If ten pulses, made recognizable from each other by modulation, are available, any number can be transmitted either serially, over one line, or in parallel, over many lines, from one organ to another. We will consider only serial operation because it is more illustrative of traffic (switching) dispatching problems, as well as because it is the system employed in the machines that will first be constructed.

Orders to various parts of the machine must also be capable of transmission, hence they can be expressed conveniently as numbers in some arbitrary code. Thus numbers and orders are represented in the same way, being strings of digits. We know which is which when we put them into the machine, so
that if our programmer dispatches only orders to central points and numbers to arithmetic points, it will not matter that the machine by itself cannot distinguish orders from numbers. In fact, this is a convenience, because by considering an order as a number we can modify an order by operating on it with the arithmetic unit.

Representing the ten digits by pulses of different amplitude would reduce machine reliability, making results depend upon tube constants and supply voltages. It is better to have only two amplitudes to distinguish. If these two amplitudes represent digits 0 and 1 , we must find a way of representing numbers in terms of these two digits. In decimal notation, the number 352 means
$2 \times 10^{0}+5 \times 10^{1}+3 \times 10^{2}=$
$2+50+300$
Each successive digit position to the left represents the coefficient of the next higher power of 10 . We therefore need digits only to 9 ; a coefficient of 10 in any place is equivalent to a coefficient of unity in the next place. If we drop the use of 10 as our base, and use 2 instead, we write a number such as 37 in the following binary manner, 100101, meaning
$1 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+0 \times 2^{3}+$ $0 \times 2^{4}+1 \times 2^{5}=1+4+32=37$

We pay for the simplicity of having only two different digits by needing approximately three times as many columns to write a number in the binary system as in the decimal system.

To represent 0 and 1 and the corresponding pulse trains, we choose a basic pulse repetition rate of 2 mc , and synchronize all parts of the machine so that successive pulses (representing 0 or 1) occur at these half-microsecond intervals. If all trains of pulses are locked to this reprate (repetition rate), we can use the presence of a pulse to represent 1 , and the absence of a pulse to represent 0 . Thus the sixmicrosecond pulse train shown graphically in Fig. 1A represents the binary word 110101100111 (read from right to left) which has the (decimal) value 3431 . Voltage and tube parameters need only be held within the tolerance range to
keep the pulses within their amplitude range of reliable operation.

Now that we have a scheme for representing numbers as pulse trains, we are ready to analyze problems of storing numbers.
Storage - Typical machines operate with numbers of ten significant figures in the decimal system, so will require roughly 35 binary places. A 35 binary place number at 2 -mc reprate will be represented by a pulse train having a duration of 17.5 microseconds. It is impractical to put information into a machine or to print results at such a rate, over 50,000 words per second. We need a speed changer, or device for storing the many words being written into it at one speed, and capable of being read at some other speed, either faster or slower. One scheme is magnetic recording of the pulse trains on either wire or tape. Magnetic pulses cannot be packed more closely than about 200 per inch if they are not to overlap and become incapable of resolution. The reprate of reading and writing magnetically for a given packing is proportional to the speed at which the wire is transported. Hence we can magnetically record pulse trains leisurely and run them into the machine rapidly or conversely, can record fast signals on a fast wire, and later read the wire at a speed which an electric typewriter can reliably be expected to follow.

Inside the machine we need two types of memory, one that stores a train of pulses statically and another that stores the high reprate trains of pulses.

Static register - The first of these, the static register, is needed, among other places, in the arithmetic unit, to set up central voltages in accordance with the 0 's and l's of a number. Basically a static register is a flip-flop such as that of Fig. 1B which has two stable states. High and low plate voltages can be taken to represent the storage of a 1 or a 0 .

In a practical flip-flop, grid capacitors are used to speed transition from one state to the other. Minimum transition time depends upon mutual conductance of the tubes. A more rapid flip-flop than the one shown can be made by us-

FIG. 2-Gates and buffers constifute the operating elements of the arithmetic units. Germanium diodes may be used for compactness

FIG. 3-Basic functional components of digital computer, and their interrelation
ing such tubes as the 6AK5, connected either as pentodes or triodes. Provision is also made for setting the flip-flop in either state by applying a negative pulse to the appropriate tube. The diodes are isolation buffers to disconnect the pulse sources when pulses are not being applied. This not only reduces loading on the transfer pulse from one tube to the other, but also prevents this pulse from being transmitted to other flip-flops via the input circuit.

Tying the two input leads together provides a binary counter. The plate-grid coupling capacitances provide enough memory (time lag) for the flip-flop to remember in which state it was prior to the application of a pulse ap-
plied to both tubes. As a result, an input pulse changes the state of the flip-flop and provides a scale-oftwo, or binary counter. Cascaded binary counters have many applications. For binary counter purposes, the grid input arrangements can be omitted and a positive pulse applied to the common cathode lead.

By using 35 flip-flops, one for each binary column, we can statically store a 35 place binary number. Writing a number into a register consists of setting its flip-flops in accordance with the succession of 0 's and l's in the binary number. Reading the register consists of causing it to generate the pulse train corresponding to its array of 0 's and 1's.

Feeding register - There are
two ways of converting a serial train of pulses into the parallel form for storage in the static register. The pulses can either be fed into the register from the end or set up in parallel alongside it.

The latter scheme is indicated in Fig. 1C; the train of pulses is fed into a delay line of $0.5 \mu \mathrm{~s}$ sections, so that just as the last pulse appears at the input the previous pulses appear at the various junctions. The delay line thus momentarily converts the serial pattern of voltage peaks versus time into a spatial pattern of voltage versus position; voltage appears at the junctions corresponding to the positions of the binary 1's in the number represented, no voltage appears at the positions corresponding to 0 's. When this space pattern is obtained, all the gates are opened by an activating pulse, and the 1 's are entered into the register via the set 1 input leads. The register can be cleared by applying a pulse to the set 0 inputs.

If the plate outputs of the flipflops are connected to successive junctions of a duplicate delay line, clearing the register (by simultaneously setting all flip-flops to 0) will introduce pulses into the line at the 1 positions; these pulses will come out of the delay line as the desired train.
The other scheme for sending a train into a static register is somewhat similar to the operation of some desk computing machines that have only 10 keys, 0 through 9. Pushing 3 enters 0003 on the dials, then pushing 5 shifts the 3 along as the 5 is entered, showing 0035 , etc. This sequential to parallel conversion can be accomplished by the shifting register of Fig. 1D.

The set 0 lines are all connected to a shift pulse bus. A shift pulse then clears all flip-flops, and any registering 1 generate output pulses. These pulses arrive at the set 1 leads of the next flip-flops, transferring the 1 's one place to the right. Clearing a flip-flop registering 0 generates no pulse, so leaves the next flip-flop cleared to 0 . Hence every time a shift pulse is sent in, the contents of the register shift to the right. If the shift pulses come at a 2 -mc reprate, evenly interspersed between the

2 -mc signal pulses sent into the left-hand flip-flop, every time the register is shifted it will find the next digit of the train in the lefthand flip-flop and 35 shifts will result in a static storage of the 35 pulses in the train. We now stop the shifting and have the number stored.

Reading the register (regenerating the train of pulses) is simple. The output of the right-hand flip-flop is connected to a transmission bus and 35 shifts are made, sending the successive 1 's and 0 's onto the line, and leaving the register cleared to all 0 's, assuming that no signal is coming in from the left.

The static registers described above require two tubes per binary digit, or 70 tubes per word stored, so are uneconomical for the main storage. (A general purpose computer needs storage facilities for at least 1,000 words). However the static register is useful in the arithmetic unit for intermediate storage between two organs with different speeds, such as internal parts of the machine and the magnetic wire. One word at a time can be written at any speed, and then read at any other, permitting synchronizing input data pulses with the 2 -mc clock, which would be impossible to do by trying to run the wire at an exact speed.

The other internal high-speed memory, or scratch paper, of the machine can either hold pulse trains as a static array, or remember them dynamically; that is, in the form of pulse trains available for retransmission on demand. Only the latter choice will be discussed here.

DYNAMIC MEMORY-The simplest way of achieving dynamic memory is to feed pulses into a delay line whose output is connected back to the input to keep the pulses circulating. An amplifier and pulse regenerator are needed at the delay line output to compensate losses. Distorted pulses from the line are used to control a gate feeding fresh pulses from the master pulser, or clock, back into the line. Such a gating combination in the recirculation system is referred to as a pulse reshaper.

The losses of an electric delay
line are too great. Each word to be stored requires $17.5 \mu \mathrm{~s}$ of line to hold it; this implies a total of 17.5 milliseconds of electrical delay line, whether in one or several segments. To transmit the individual 0.2 us pulses without excessive distortion requires a bandwidth of 10 mc . Even with the optimistic figure of 6 db per us attenuation in lines having this bandwidth, attenuation wou'd be $105,000 \mathrm{db}$, requiring 7,000 tubes such as the 6AK5 haring a gain of 15 db per stage. This is excessive.

A practical way to simplify dynamic storage is to store pulses acoustically rather than electrically. We can convert the 0.2 us pulses into 0.2 us packets of h-f using a carrier frequency of 20 or 30 mc . These h-f pulses can then be used to drive a quartz crystal which in turn generates waves in a mercury column. A receiving crystal at the far end senses these waves giving a signal that is amplified and rectified to regenerate the pulses. Attenuation in mercury is approximately 0.06 db per $\mu \mathrm{s}$ at a carrier freguency of 30 mc , or one percent of that for the electrical line. The pair of crystal transducers used with the line introduces a loss of about 50 db .

If one long delay line is used, coupling losses would be negligible, but a single delay line of 17.5 milliseconds would require on the average a waiting time of 9 milliseconds before the desired word would be available. This is too long. A practical compromise between equipment and speed is to subdivide the memory into lines, or tanks, of 20 word capacity, each having a delay of 350 us . Thus 50 lines are needed, involving 50 pairs of transducers having $2,500 \mathrm{db}$ attenuation. Adding the attenuation of $1,050 \mathrm{db}$ in the mercury, we have a total of $3,550 \mathrm{db}$ attenuation (to be compared with the $105,000 \mathrm{db}$ of electrical lines) and requiring only about 250 amplifier tubes. A typical recirculating tank circuit is shown in Fig. 1E.

We now have conceptually a source of input signals, a receiver for output signals, an arithmetic unit, static registers and dynamic memory tanks. Signals must be dispatched from one to another of

Table I-Operation of an Elementary Adder
Terminals of Elementary Adder

List of Binary Input-Output Combinations

In A $\ldots \ldots \ldots$	0	0	0	0	1	1	1	1
In B $\ldots \ldots \ldots \ldots$	0	0	1	1	0	0	1	1
In C $\ldots \ldots \ldots$	0	1	0	1	0	1	0	1
Out D $\ldots \ldots \ldots$	0	1	1	0	1	0	0	1
Out C $\ldots \ldots \ldots$	0	0	0	1	0	1	1	1

Rules of Arithmetic

[^3]these organs. In general, any organ may be called upon to send signals to any other. The simplest way of doing this is to connect all tank inputs to a common point through switches (electronic gates) and to connect the arithmetic unit output to this point. Then opening the proper gate will allow the signal to proceed to the chosen tank, and to no other. Conversely, if several sources are to be capable of sending to several receivers, all sources can be connected in parallel to a common transmission bus, and the receivers connected to this bus through gates. Then by opening a receiver gate, and instructing the proper source to transmit, the desired result should follow. In practice, this would not work, for with many sources in parallel, each source would be loaded by the parallel combination of the output impedances of all the others. We need, between each source and the common bus, a buffer which allows only one way traffic, so that a signal can come from a source through the buffer to the bus, but the other sources cannot load the bus. The
use of a buffer between an oscillator and a modulated r-f amplifier is well known. In our case of passing pulses of only one polarity, we do not need a triode or pentode buffer, but can use a diode. This diode is normally biased with back roltage so that it presents a high impedance to the common bus. A pulse on the bus increases the back voltage on the diodes and is protected. A pulse from a source, however, reverses the polarity on that one diode and goes through with small loss. The advantage of such buffers is that germanium diodes can be used, greatly reducing shunt capacitance.

With gates and buffers we can perform circuit switching, or spatial selection for traffic control. If we stored our 1,000 words in 1,000 one-word tanks, there would be an exorbitant number of switches with their attendant losses and control problems. We could compromise on 50 tanks holding 20 words each. We can choose any one of these 50 tanks by spatial switching and any one of the 20 words in a tank by temporal selection. The temporal
selection requires no switches aside from the timing gate.

The timing circuit can be operated by dividing the master clock rate. The 2 -mc reprate drives a counter which counts up to 35 and then throws a flip-flop, giving an output which is on for 35 pulses, or one word time, and off for the next. By feeding these rectangular waves of word duration into a scaleof -20 counter, we can devise a circuit which will give an output (to control a gate) for the duration of any desired one of the twenty words.

Arithmetic Circuits

To understand how to combine gates and buffers to make a circuit that will do arithmetic, it is convenient to interpret gates and buffers in terms of their logical behavior.

A gate is essentially a device having two inputs and one output. Either input can be considered as the signal, and the other as the control. Obtaining output from a gate is dependent upon stimulating both inputs; that is, it requires stimulation of one input AND the other input. Logically the gate detects the AND concept, one thing AND another.

Buffers, on the other hand, that feed two or more signals to a common point give an output signal if any one of the sources is excited; that is, if one OR another input of the row of buffers is stimulated. Hence two buffers connecting two inputs to one output constitute the logical concept of OR, one signal OR another.

Typical gate and buffer circuits using tubes are shown in Fig. 2. The series gate of Fig. 2A has both grids normally biased beyond cutoff; both must be driven above cutoff to produce an output. The parallel gate of Fig. 2B has all tubes normally conducting. If the load resistor is large compared to the conducting resistance of a single tube, the common plate voltage will remain low unless all tubes are cut off by signals.

The series and parallel buffers of Fig. 2C and 2D represent inverse operating conditions on the corresponding gate circuits. The nor-
mal-abnormal conduction states are interchanged, and the circuits are stimulated by pulses of sign opposite to those required by the corresponding gates. A signal on any input produces a change in the output.

The diode circuits of Fig. 2 are all parallel circuits. Gates, requiring the AND or multiple coincidence, have all their diodes normally conducting, while buffers have all their diodes normally nonconducting. Diodes are generally of the germanium type.

Adder Is Basic Element

To add two digits, the basic operation of arithmetic, we need two inputs and one output. If the sum of the two digits is greater than 9 in the decimal system, or greater than 1 in the binary system, a carry will be produced to add in the next digit position. Hence we need three inputs, one for each digit in the given position, plus one for the possible carry from the previous position. We also need two outputs, one for the output digit, and one for the carry. Thus each digit position requires a device as shown in Table I. Operating characteristics of this elementary adder can be deduced from the laws of arithmetic. The desired outputs for the eight possible input combinations of 0 and 1 on the three inputs are listed in the table.
There are two types of adders: parallel and serial.

A parallel adder is made of 35 elementary adders, one for each digit position. Various digits are set up in a static register, as previously discussed, and the steady register output voltages representing 0's and l's activate static elementary adders. The carry output lead of each place can be permanently connected to the carry input lead of the next, requiring one type of elementary adder to satisfy the rules of arithmetic. Alternatively the sum and carry digits can be formed statically in each place, and the carrier transmitted to their neighboring adders an instant later. Part of the difference in the circuitry is involved with the fact that a carry may generate a carry, as in adding 7774 to 2226 . Propaga-
tion of the carry down the line can be handled in various ways.

The serial adder uses a single complicated elementary adder for successive digit places in sequence. Pulse trains are not set up in static form, but are fed in dynamically, the two numbers arriving simultaneously. If an output 1 pulse is generated, it is transmitted immediately as one digit of the sum. If a carry pulse is generated, it is delayed $0.5 \mu \mathrm{~s}$ and returned to the carry input, arriving there coincident with the input digits of the next place.

An elementary adder can be made of gates and buffers. Rules of arithmetic shown by the list of input digit combinations are stated in Table I. The preventing operation in case (2) implies a negative gate, or logical AND NOT, which is easy to devise from diodes by using several bias levels. With this terminology, the functions of an elementary adder can be described logically as at the bottom of the table. The complicated combinations of AND and OR are straightforward logically and electronically, but lead to a practical circuit employing (in one design) nine pentodes and 36 diodes! Some of these elements are incorporated to reshape pulses, and several diodes are used as limiters and d-c level restorers.

Any adder can be considered as a problem in traffic control where the signals (numbers) that are put in control the transmission of pulses throughout the adder. This local control is one step more complicated than the central control, or traffic dispatch between organs. In the central control problem, control voltages set up the paths to be taken by signal pulses. In the local control, pulse paths, and times (clock beats) at which pulses occur are set by the signals themselves, so that there is no longer a clearcut distinction between signal and control pulses.

Multiplication is a more complex problem. Ordinary longhand multiplication consists essentially of adding the multiplicand (574) as many times as the right-hand digit of the multiplier (31) shifting columns, adding on the multiplicand
as many times as the next digit, etc., as in the example:

Because in the binary system, only l's and 0 's occur, we have for the partial products either the multiplicand itself, or zero.

This allows us to use a shifting register (previously described) together with a basic adder, to perform multiplication. We do or do not add in the multiplicand according to whether the right-hand digit of the multiplier is 1 or 0 , shift the number in the register, and repeat. Thus a basic arithmetic unit consisting of registers, which can be shifted when desired, gates and buffers, can either add or multiply according to whether it gets a simple signal to add, or whether it gets also a signal to shift and reneat. Other modifications permit subtraction and division. Which operation is to be performed is controlled by signals from central control, usually quasi-static voltages to keep certain gates open until the operation is completed.

Before examining means for converting pulse trains representing arbitrarily coded orders into gate control voltages, let us glance at the overall organization of the computer.

The input portion of the machine sends all its words, both numbers and orders, to the high speed memory storage. From storage, orders go to the central control, logically through a decoder, but this decoder is the main part of the central control and so is not usually considered separately. Central control must dispatch operating instructions to all machine units, including the input, for it must tell the input when there is room in the memory for more data and orders
to continue the problem. The general scheme is shown in Fig. 3. The only feature of the diagram that is unnecessary is the transmission of orders (not control voltages) to and from the arithmetic unit. This is a useful way of pyramiding the hierarchy of control to achieve versatility of operation. Because orders themselves are coded to appear as numbers, orders can be modified by performing arithmetic upon them. This feature simplifies programming the mathematical problem in terms of dispatching orders, but need not concern the electronic circuit designer.
We have mentioned that orders are coded in numerical form. Suppose for example that eight different orders are desired; that is, eight different lines are to be energized. Any eight things can be represented in code form by the binary numbers 0 to 7 ; that is, 000 , $001,010,011,100,101,110,111$. These are the eight combinations of three places, each having either of two values. Electrically, we can have three wires, each of which may have voltage applied. If orders are pulse trains they can be converted to the static three wire combination by setting up a static register of three flip-flops. We then have three wires, any one or more of which may be hot, representing eight different possibilities, and we wish to excite any one of eight leads in accordance with these choices. In general, we have N wires of two possible states each (hot or cold) giving 2^{5} combinations, and wish to excite only one of 2^{v} outputs. In practice, instead of using N wires from N flip-flops, having some hot and some cold, it is better to bring two wires from each flip-flop, one from each side. We then have N pairs of wires, each of which has only one side hot. All input pairs are thus excited one way or the other, avoiding complications of zero-voltage input signals.

The simplest case of a decoder is where $N=2$, so that there are two input pairs and four output leads. The circuit of Fig. 4A shows this case. The horizontal and vertical lines are connected through diodes, so that the diodes in any column form a gate, or AND circuit. If
upper and lower lines of the top pair are excited positively, output from the left-hand lead is excited, and so on for the four possible combinations of input.

FIG. 4-Switching circuits use unidirectional conductance of diodes

For larger decoders, it will be convenient to indicate the presence of a diode connection between two lines by a circle at the crossover. There are no direct connections, Figure 4B shows a simple decoder for four input pairs, vielding 16 possible output excitations. Combinations of upper and lower pair excitations that result in excitation of each of the 16 lines are indicated on the figure.

This direct check of the possible combinations can be called a onestage decoder. Fewer diodes are required if we decode in two stages, namely, by mixing two pairs as in Fig. 4A to get one line out of four, and doing the same with the other two pairs to get one line out of another set of four. We then have two sets of four lines each, in which only one line of each set is excited. These two sets can be fed into the circuit of Fig. 4C. Thus in using Fig. 4B, each output line requires a quadruple coincidence for excitation, and 64 diodes are needed. By using two circuits of Fig. 4A and one of Fig. 4C, making successive simple coincidences, we need $8+8+32=48$ decoders, or a saving of 25 percent.

Multistage decoding exhibits even greater savings as N increases. For $N=8$, allowing selection of any one of 256 memory tanks by virtue of the $2^{\prime}=256$ different gates that may be opened by an 8 -pulse signal, a three-stage decoding requires only 608 diodes as against 2,048 for single-stage decoding.

Traffic Handling Systems

Having seen how a coded order can be converted to the selection of a gate opening voltage, it is of interest to consider briefly the general traffic handling plan. The mathematician prepares his instructions to the machine in terms of numerical data, coded orders to select which basic operation the arithmetic unit is to perform, for sequencing the machine or for expressing the routine to be followed. In general two kinds of words are put into the machine memory: numbers and orders.

Assume that the memory is capable of storing 1,000 words and, for

NEW
 No. 54A13124
 for printed circuit

No. EXP 8437-A conventional wiring type

Cinch laboratory . and experience contribute the NEW sub-miniature sockets. One LOOK of the engineering data .. . the photographs . . . conveys the usefulness, efficiency, the labor and time saving advantages of these subminiatures. In the printed circuit, No. 54A13124 takes no additional space... holds tubes securely in place with high tension contacts of new design, and permits easy maintenance and replacement of tubes.

SUB-MINIATURE SOCKETS

No. 54A13124

No. EXP 8437-A
(Enlarged twice)

A development of Cinch engineering laboratories, these newly designed "selt-attaching" sockets will revolutionize conventional wiring in chassis applications. Samples and further detaits on request.
simplicity, that the two kinds of words are of equal duration, or number of pulse positions. These 1,000 words occupy definite positions in two dimensional space-time. Hence we can consider their positions as pigeonholes numbered from 1 to 1,000 and call for transmission of a word to or from any pigeonhole. The simplest way of entering the input data is to take the first thousand words from a magnetic wire and store them sequentially in the thousand cells. This can be done by using a counter to measure off a word, and cause unity to be added to the address to which the next word is to be sent.

High speed reading of the memory can also be done sequentially by giving the address 1 as the instruction for the cell to be read and by having a built in arrangement for automatically adding unity to the address of the cell to be read. It will then automatically read cell 2 as soon as it has finished with cell 1 and is ready to read again.

A procedure that may be more flexible for repeating subsequences and setting up branch operations (choice of next order depending upon present results) and also more convenient in practical programming is the four address code. In this system each order is composed of four addresses (or memory cell locations) : the address of the first operand (number to be arithmetically operated upon), the address of the second operand, the code for the operation to be performed, and the address of the next order to be read after completion of the present instructions. This system is more efficient if memory reference is slow compared to other operations; that is, if waiting time for a word to be reached in the sequential reading of a dynamic memory is relatively large because it allows the essentially simultaneous look-up of both operands.

A variation of the four address system is the use of a fifth address in the words on the input wire, to designate the cell into which that word is to be stored. The fifth address is automatically deleted as the word is entered into the machine.

In electronic digital computers,
the tubes, for example, are called upon to develop a pulse of usable level, or not called upon at all. Variations between tubes, aging, or tolerances of resistors do not affect accuracy, until they become so extreme that the signal falls out of usable range. A ten to twenty per cent variation of signal strength has no effort on a series of pulses. Ideally a computing machine works perfectly or not at all. Actually, as tubes deteriorate, there is a threshold at which operation may be erratic. By setting a limit checking circuit for a safe level margin, this otherwise possible operation can be put in the class with complete breakdown.

Errors can occur due to nöise generating a false pulse at an allowed pulse time when the word transmitted has a zero in that position. This noise pulse may be indistinguishable from a proper pulse. Occurrence of errors due to such random causes can be guarded against by one of several checking schemes.

One of the most elaborate checking schemes that has been proposed is to check the arithmetic and the transmission. The arithmetic can be checked in a fashion similar to the ancient system of casting out 9's, where each number is expressed as its excess over a multiple of 9 ; that is, it has a value of $0-8$. This is done by adding sideways. The 9 's excess of a sum of numbers is equal to the sum of their individual excesses, (expressed as an excess if larger than 9). The 9 's excess of the product of two numbers equals the (excess of the) product of their excesses. A simple auxiliary addition or multiplication on the excesses has often been used for checking arithmetic. For example, multiplying 371 by 24 gives 8904 . The 9's excess of 371 is found by adding the digits $3+7+1=11$, $1+1=2$. Similarly, the 9 's excess of 24 is 6 . The product of these two excesses is 12, having itself an excess of 3 , which agrees with the excess of $8904,8+4=$ $12,1+2=3$, A corresponding procedure of casting out ($2^{x}-1$) can be set up for binary computation, and a small auxiliary arithmetic unit operated simultaneously with the main unit.

This type of checking lends itself to verifying correct transmission of a number. The excess count of a number can be stored with it in the memory for performing the parallel arithmetic check. It can be used as a transmission check by taking the excess count of a number received by the arithmetic unit and comparing it with the received check count. Very peculiar transmission errors are required to make the new count of an incorrectly transmitted number agree with either its original count or an incorrectly transmitted count. This type of checking is based on arithmetic.

Checking the address selection exercised by central control can be done by storing with each word its address. When the word and accompanying address is read, the read address is checked against the called-for address. This checks both the spatial and temporal phases of word selection in the machine.

Electronic design of machines is fast progressing to the point where they will be more perfect than the mathematics set up for them. I refer to such varied factors as round-off error, inevitably introduced by working to a fixed number of significant figures. If a machine performs 1,000 arithmetic operations a second for days on end, what relationship does the final answer have to the original hypotheses? Some mathematical research is being done on this point. A more vital question is the design of mathematics suited for machines. Many procedures use machines for replacing human computers, using numerical computational schemes developed for the human brain. Characteristics of an electronic machine are different from those of a human brain, and it is reasonable to suppose that computational procedures can be devised which, although unsuited for hand computing, are well adapted to machine routines. Such procedures have been developed for a few spocial problems.

The writer thanks the Raytheon Manufacturing Company and the Eckert-Mauchly Computer Corporation for supplying some of the circuit details shown in the figures.

For the past ten years Mallory FP Capacitors have set new standards of dependability.
Now new improvements make them more reliable than ever.

Yours for the asking!
Send for the Mallory Capacitor Catalog, which contains useful data on all types of Mallory Ca-pacitors-sizes, electrical characteristies, test measurements, mounting hardware.
(1) Neu design anole tabs cannot break from vibration.
(2) Ample air space retained for gas expansion at elevated temperatures.
(3) Neu staking method between anode and tab permits higher discharge currents.
(4) Improted high surge separator material better at high temperatures.
(5) Unique processing improvements provide still better performance at $85^{\circ} \mathrm{C}$. No voltage derating required by Mallory FP capacitors at this temperature. (Inchuding the 450 V rating.)
6) Lower tab to terminal contact resistance for sensitive circuits.
(7) Extra heaty mblier seal for high temperature and ripple conditions with venting feature preserved.
(8) Heavier cathode tab for better tab to ring ueld, locer resistance and more rugged mechanical construction.
(9) Special etched cuthode (all voluges) reduces loss of capacity under high ripple conditions, louers $R F^{\prime}$ impedance und remarkably reduces intersertion coupling.
(10) Increased FP anode ratio of 12 to 1 at 450 V and 15 to 1 at 150 V provides better design factors.

Still cost no more. Mallory FP capacitors have given exceptional performance at prices comparable to ordinary capacitors. These new improvements have all been accomplished without extra cost to the user.

MALLLORY
 CAPACITORS

(ELECTROLYTIC, OIL and WAX)
P. R. MALLORY a CO., Inc., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Mobile Television Receivers 120
Industrial Tube Tester. 122
Sensitive Transducer 136
Video Interference 142
Visual Examination of Crystal Modes 148
Acoustic Well Sounder 150

- Power Converters for Television 152
Baseline for Visual Alignment Systems 154

Mobile Television Receivers

Television receivers mounted on three jeeps operated by an automobile club made it possible for several additional thousands of people to see the telecasts of the national political conventions from station WCAU-TV, Philadelphia.

The receivers were mounted so. that they faced the sidewalk when the jeep was parked on the righthand side of the street. Thus each jeep could be parked along the highway enabling spectators to watch the television picture from the sidewalk without producing a traffic hazard.

Table model television sets were used, standard Philco model 1001 receivers with 10 -inch direct-view
screens. As the picture shows, each te!evision set was mounted on a special rack at the right rear of each jeep, and a 12 -foot aluminum antenna was also mounted on the side of each jeep. The antenna comes in 6 -foot sections, and two sections were used.

For driving along highways with bridges or low-hanging trees, the top mast section and dipole were detached and strapped to the top of the jeep. A single half-wave dipole without a reflector was fastened to the top mast section. This was connected to the receiver by a 70 ohm coaxial line to minimize ignition interference from passing automobiles.

Philco ten-inch table model television receiver mounted on a jeep for the convenience of roadside viewers

Such an installation is useful for observing television reception in various locations. Measurements of field strength may be taken by checking agc voltage and multipath may be observed by watching the picture. The jeeps had standard JAN ignition suppression and in the absence of bad standing waves it was possible to obtain a steady picture when the jeep was traveling at 30 mph .

Power for each set was supplied by three 120 -ampere-hour storage batteries in the back of each jeep. One battery supplied heater voltage at 14.4 amperes to all tubes. For the purpose, the 5 V 4 damper tube was replaced by a 6 W 4 .

The other two batteries supplied two Mallory VP-555 Vibrapacks whose total output was 340 volts d-c at 140 ma . Cold-cathode $0 \mathrm{Z4}$ rectifiers were used and filament power was applied at least 30 seconds before the Vibrapacks were energized.

Initially planned by the staff of WCAU-TV, the idea was executed by Philco engineers under the direction of Joseph Fisher, project engineer, Research Division, Philco Corporation. One engineer from Philco Service accompanied each jeep, with the regular uniformed drivers of the Keystone Automobile Club. The jeeps are normally used for emergency calls and are equipped with mobile radiotelephone, and now have mobile television.

Taxi Tele
Taxicab operation of a television receiver is reported by G. W. Fyler of Motorola. The receiver used was a Motorola VT-71 in which the 12 and 25 -volt tubes were changed to 6 -volt tubes of similar characteristics. A Mallory Vibrapack was added for plate supply. This was mounted away from the receiver to prevent hum components in the picture. Filters designed for the television frequencies to be used were also added.

Modifications to the receiver included series-connected VR tubes for plate supply regulation and adjusting the time constant of the age circuit to about 0.01 second. This permitted fast circuit action in standing waves but not so fast as to lose too many low-frequency components, including the vertical sync

In any given sire, color, and grade...
 THEY'RE ALL ALIKE . .

DIEFLEX PRODUCTS LIST

made with braided cotton sleeving base
VTA Grade A-1 Magnelo Grade Varnished Tubings VTA Grade B-1 Standord Grade Varnished Tubings VTA Grades C-1 and C-2 Heavily Coated Saturated Sleevings VTA Grade C-3 Lightly Coated Saturated Sleevings Heavy Wall Varnished Tubings and Saturated Sleevings

MADE WITH BRAIDED FIBERGLAS BASE
VTA Grade A-1 Mogneto Grade Varnished Fiberglas Tubings VTA Grade C-1 Extra Heavily Salurated Fiberglas Sleevings VTA Grade C-2 Heavily Saturated Fiberglas Sleevings VTA Grade C-3 Lightly Saturated Fiberglas Sleevings Silicone-Treated Fiberglas Varnished Tubings and Sleevings

Ting quality of electrical insulation if you always specify Dieflex. In any grade, size, and color, every piece of Dieflex Varnished Tubing or Sleeving is exactly like the next one. Faithful adherence to high standards of quality have long made this product a time- and money-saver for manufacturers. Such features as ability to be cut evenly and cleanly, rapid return to roundness after cutting, and excellent flexibility make Dieflex Varnished Tubing Products an important help in cutting manufacturing costs.
Dieflex Varnished Tubings and Saturated Sleevings, of finely braided cotton or inorganic glass fiber base, are available in all VTA and ASTM grades. Write for information, or call your local representative.
*CHICACO $6-565 \mathrm{~W}$. Washington Blva.

MHWAUKEE?
312 E. Wiseonsin Ave.
DETROIT 2
15 Lowrenco Ave.
*hocol Stacks Avilable

FCLEVELAND 14
1231 superior
Ave., N.E.
DAYYON 2
1315 mulual Home
Buildias

IMC Representatives

PEORIA 5-101 Hoinz Coun - MINNEAPOLIS 3-1208 Harmon Place

Authonized Distributors

INSULATION and WIRES INCORPORATED
St. Louis 3, Mo. - Atlanta, Ga. Bostan 20, Mass. Detroit 2, Mich. - Bouston 2, Tex. New York 7 , N. Y

TRI-STATE SUPPLY CORPORATIONS

Los Angeles 13rCal. - San Francisco 7, Cal. - Seatlle 4, Wast.
pulse. Adequate heater voltage was found important to stabilize sync action.

To cover both the high and the low channels, an all-band antenna was shortened and modified at the center as a compromise between good performance at the proper length and ease of mobility of the vehicle.

Ignition suppressors and special generator filtering were found desirable but no special shielding was added to the receiver circuits. It was found to be important to have low set and car noise during minimum signals in the standing wave pattern.
The high-channel signals seemed to have more standing waves and ghosts. In severe standing waves the age was able to follow signals on the low channels better because the standing waves occur about three times as far apart. Video and audio signals seemed to have different standing wave patterns.

Signals from the high-band channels were stable in open flat country but tend to have somewhat deeper shadows behind hills as expected. Standing waves were found to be greatest near large metal structures such as a bridge but were often perfectly stable under the bridge. Strangely, slight ghosts appeared in a few areas in flat open country without overhead wires or other objects that cause reflection.

Industrial Tube Tester

The efficiency of gas or mercuryfilled industrial tubes such as thyratrons and phanotrons is tested by the circuit shown in Fig. 1.

In most cases, gas or mercury vapor tubes are used as high-current, low-voltage devices. For that reason, this General Electric tube tester is designed to test the ability of the tube with high current passing through it. The passage of current may readily be seen by noting the familiar blue glow.

Tube efficiency can be determined by measuring the voltage drop from anode to cathode when rated peak anode current is passed. With the TT-1 tube tester, the rated peak, anode current is carried by the tube under test for a half-cycle shot once
per second, thus preventing the cathode of the tube from warming up due to the passage of current. The lowering of the voltage drop due to passage of current can easily be checked by allowing the tube to conduct during short portions of each cycle for a few minutes and noting the change in the dial setting required to light the indicating neon tube. This is the reason for making the test reading on the first five conducting cycle positions. A voltage drop of 25 volts is usually considered the maximum limit for good tubes at rated peak anode current.

An anode-to-cathode voltage of 110 volts is placed across the tube for one-half cycle of a 60 -cycle source by means of a contactor which is opened and closed by an electronic circuit when the test button is pushed. Various peak currents may be put through a tube by changing the load resistor to various selector settings. When current passes the tube under test, a voltage drop appears across the tube which lights the indicating neon light if the voltage drop exceeds the rated value. The zero calibration is set for a series of tests to compensate for the slight change in the tube characteristics in the electronic calibrating circuit.

In testing ability of the tube to pass current, other defects of the tube are automatically tested. If a tube is leaky or gassy, has an open filament or low emission, it will immediately show up as having poor ability by a high voltage drop.

Mercury vapor pressure inside of tubes nearly doubles for every 10 C
rise in temperature. Too low a mercury pressure causes a highvoltage drop from anode to cathode and therefore speeds up the positive ions in the region between the anode and cathode, resulting in bombardment of the delicate cathode coating. A higher mercury pressure lowers the tube's voltage drop but also lowers the ability of the tube to withstand inverse voltage. For these reasons, mercury tubes have a minimum and maximum temperature limit, usually from 40 to 80 C .

Temperature is measured at the point where condensation takes place, usually at the bottom of the tube. A test of the ability of the tube as given by the TT-1 tube tester is made at the lower temperature limit so that tests will be under the highest voltage-drop condition. However, in low ambient temperatures a longer period than the cathode heating time is required in order to get the condensed mercury temperature of the tube to this lower temperature limit.
For this reason, and also because it is necessary for the mercury to be properly distributed (all condensed in the bottom of the tube), a heating time longer than the normal cathode heating time is called for in the instructions for use of this tester. A condensed mercury temperature of 40 C is usually taken as the temperature for measuring the ability of the cathode.
Gas-filled tubes differ from mer-cury-filled tubes in that the gas pressure does not vary excessively in normal temperature conditions of
(Continued on p 136).

FIG. 1-Complete circuit of tube tester for phanotrons and thyratrons

STOP RADIO INTERFERENCE

2.5 amp filtron for 50 V . D.C. operation size $13 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \times 7 / 8^{\prime \prime}$

Shielded Spherical-Seat Terminal Filtron-designed for continuous high attenuation from 150 kc to well above 200 mc

100 omp Aircraft Filtron size $31 / 2^{\prime \prime}$ $\times 31 / 2^{\prime \prime} \times 2 \frac{1}{2 \prime \prime}$

SEND FOR CATALOG AND ENGINEERING MANUAL No. FC-20

Write for this catalog on your letterhead - it contains complete electrical and mechanical characteristics of standard Filtrons.

THOUSANDS of FILTRONS-radio interference filters-are standard equipment on the majority of the current production of Aircraft. Thousands of others are in use in vital equipment where radio interference must be suppressed.

Filtron's experienced Engineers, recognized authorities in the noisesuppression field, are available to measure the RF interference caused by your product, and to specify a standard Filtron or design the proper filter so that Army, Navy, Air Force or FCC interference specifications are met.

Filtron will design the RIGHT filter for your circuit conditions, with exactly the right attenuation, ampere rating, voltage drop, temperature rise, mechanical arrangement, and space and weight limitations.

Filtron's production capacity and skill will meet your delivery requirements.

All measurements are made in our new modern specially-designed shielded Radio Noise Suppression Laboratory, which is equipped with the most modern and approved radio frequency measuring instruments.
"Filtron," the largest exclusive manufacturer of Radio Noise Filters, offers you both the services of their Engineers and facilities to make your product "Noise Free."
FILTRONS OFFER THESE ADVANTAGES...

1. Low Cost
2. High Attenuation
3. Dependability
4. Small Size
5. Light Weight 6. No Maintenance 7. Hermetically Sealed

RADIO NOISE FILTERS FOR...

Electric Motors Electric Generators Electronic Controls Electronic Equipment Fluorescent Lights Oil Burners Signal Systems Business Machines Electronic Heating Equipment Electric Appliances Electronic Signs

THE ELECTRON ART

Edited by FRANK ROCKETT

Detection of Microwaves 124
Plotting Electron Paths 124
Electronic Circuit Has Logarithmic Response 166
Survey of New Techniques 178

Detection of Microwaves

ABSORPTION OF MICROWAVES by gases has been studied to determine such physical constants as molecular dipole moments. ${ }^{1}$ In these investigations thermal and acoustic effects have also been observed. ${ }^{2}$ Using the expansion produced in gases by their absorption of microwave energy it has been possible to detect as little as 10 milliwatts with relatively simple apparatus. The absorption phenomena can also be used, at low gas pressure, to stabilize the frequency of microwave oscillators as effectively as oscillators of lower frequency are stabilized by quartz crystals. ${ }^{\text {a }}$

Microwave Wattmeter

Figure 1 shows a wattmeter. The resonant gas-tight metal cavity is filled with a highly absorbing gas such as ammonia or one of the Freons. The cavity communicates with the U-tube in which is a light liquid that does not react with the gas. When a transmitter generating

FIG. 1-Wattmeter utilizes expansion of gases produced when they absorb microwaves

10 watts is coupled to the resonator the liquid is deflected about 12 inches in a second; equally rapid response is obtained when the power is cut off.

This type of wattmeter can be used with $1.25-\mathrm{cm}$ and $3.2-\mathrm{cm}$ transmitters delivering either continuous or pulsed power. The action is

FIG. 2-Gas-filled cavity is acoustically resonant to modulation, electrically resonant to carrier frequency
a consequence of the conversion by resonant molecular absorption of the microwave energy, followed by collisions of the excited molecules thereby converting their internal energy into an increased gas pressure.

Resonant Absorber

The conversion of microwave energy into gas pressure can be used directly as a detector of modulated microwaves. If a balloon, filled with an absorbing gas, is placed in the throat of a horn excited by a microwave transmitter, the modulation will be heard for some distance as the gas in the balloon expands and contracts in proportion to the instantaneous energy of the wave. Such an ar-
rangement constitutes a true wireless receiver.

The technique can be used in a sensitive detector having squarelaw response. A gas-filled cavity is arranged that is acoustically resonant at the modulation frequency and electromagnetically resonant at the carrier frequency, as shown in Fig. 2. A study of the optimum wave configurations for excitation of the cavity indicated that the microwave energy should be confined to only half of the cavity. A cutoff guide can be inserted at the midsection to confine the electromagnetic waves without disturbing the acoustic waves. A Rochelle-salt crystal is coupled to the aluminum disc that seals the end of the cavity. A conventional audio amplifier and vacuum-tube voltmeter complete the experimental equipment. It is sufficiently sensitive to detect 10 milliwatts of modulated uhf.

The same technique could be used by a football coach to communicate with a quarterback. The coach would use a highly directional voice-modulated microwave transmitter. The quarterback would have a helmet equipped with a gasfilled ear piece.
(1) W. D. Hershberger, The Absorption
of Microwaves by Gases, Jour. Appl.
I'hys., p 495 , June 1946; p 814, Oct. 1946.
(2) W. D. Hershberger, $\frac{\mathbb{E}}{}$ T. Bush,
End G. W. Leck, Thermal and Acoustic
Wrfects Attending Absorption of Micro-
sept 1946, on which the foregoing article
is hased , on which the foregoing article
(3) W. D. Hershberger and L. E. Nor-
ton, Frequency Stabilization with Micro-
Wave Spectral Lines, RCA Review, p 38.
March 1948.

Plotting Electron Paths

By Paul J. Selgin
Ordnance Development Division Nationtil Bureau of Standards Washington, D. C.

Trajectory of an electron is frequently determined graphically. The method described here uses a universal set of curves developed on the assumption that the electron trajectory between equipotentials is an arc of a parabola. The curves are used in conjunction with a map of the electric field in which the electron moves, and requires knowledge of the initial position and velocity of the electron in that field.

Development of Method
While the greatest difficulty in most engineering problems lies in

This instrument has found universal acceptance because of its wide frequency coverage from 20 cyclės to 5 megacycles. A five step decade attenuator provides a means by which extremely small output voltages can be accurately set and a six position switch enables any one of a variety of output impedances to be quickly selected.

SPECIFICATIONS:

FREQUENCY RANGE: $\mathbf{2 0}$ cycles to $\mathbf{5}$ megacycles in iwo ranges. Low range: 20 to 30,000 cycles. High range: 30 kc to 5 megacycles.
FREQUENCY CALIBRATION: Accuracy ± 2 cycles up to 100 cycles, $\pm 2 \%$ above 100 cycles.

STABILITY: About 5 cycles driff below 1000 cycles. On low range, drift becomes negligible percenfage with increasing frequency. On high range, drift is $\mathbf{3 \%}$ or less.

ADJUSTMENT: High and low ranges have individual zero beat adjustments. Low range may be checked against power line frequency with front panel 1 inch cathode ray tube.

OUTPUT POWER AND IMPEDANCES: Rated power output: One waft, available over the low frequency range from output impedances of $20,50,200,500,1000$ ohms, and over both high and low frequency ranges from an output impedance of 1000 ohms.

DISTORTION: 5% or less af 1 waft outpul, $\mathbf{2 \%}$ or less for $1 / 2$ voltage output.

VOLTMETER ACCURACY: $\pm 3 \%$ of full scale reading.

For further details write for Catalog E

For ths Roduction Lins

QX-CHECKER TYPE 110-A

This production-test instrument is specifically designed to compare relative losses or Q simultaneously with inductance or capacitance in one operation and with a single setting. Built to laboratory precision standards, the QX-Checker is a sturdy, foolproof instrument for use in production work by any usual factory personnel.

SPECIFICATIONS:
FREGUENCY RANGE: 100 kc to $\mathbf{2 5} \mathrm{mc}$ in 6 ranges using plug-in coils.
ACCURACY OF COIL CHECKS: May be checked against standard to within about 0.2% with coil values of 10 microhenries to 10 millihenries and Q of 100 or greater.
CAPACITANCE RANGE: Capacitance values ranging between approximately 2-1000 mmf may be checked against a standard to an accuracy of a few tenths of one mmf if the Q of the capacitor is high.

FIG. 1-Notation for general problem
reducing the problem to a mathematical statement, in the study of electron paths the equations of motion, though readily obtained, are difficult to solve. In most design problems the electron does not reach relativistic velocities, so that its mass can be considered constant. Usually there is negligible magnetic field, and, for beams of low density, the region is also free of electrostatic charges. Although this latter assumption will introduce an error, the error is slight and can be taken into account geometrically. ${ }^{2}$ These simplifications lead to the equation of motion

$$
\begin{equation*}
(d / d l) V=(e / m) \operatorname{grad} U \tag{1}
\end{equation*}
$$

where \boldsymbol{V} is a vector representing the electron's velocity, U is a vector representing field potential, whose value in a charge-free region can be obtained by calculation or by an experimental technique such as the electrolytic tank ${ }^{2}$; m represents the mass, and e the charge of an electron. Because the values are expressed in MKS units, there are no numerical constants.

Equation 1 cannot readily be integrated because of the difficulty of expressing U in analytical form for usual configurations. On the other hand, because U is usually available in the form of equipotential contours, the partial derivatives of V along Cartesian coordinates X, Y, and Z can be determined, and can be considered constant within a small region of the field.

The basis of this graphical method is to assume that the potential gradient is constant between equipotentials, and to compute the
trajectory through this region. Then another short span is similarly treated, and so on. To make it practicable to repeat the process, a simple graphical method is developed.

Universal Curves

To systematize the construction, an analytical expression for the motion of an electron is obtained and a universal plot is made from which individual problems can be solved by projection.

FIG. 2-Chart of universal equation

Due to the initial assumptions, Eq. 1 becomes

$$
\begin{align*}
& A_{x}=(e / m)\left(U_{1}-U_{0}\right) / X_{1} \tag{2}\\
& A_{Y}=0
\end{align*}
$$

having taken the X axis perpendicular to the equipotential contour U_{1} at the point where the electron intersects it (the origin for this particular phase of the solution), A_{x} is the acceleration in the X direction, U_{0} is the potential contour at which the velocity of the electron is given, and U_{1} is the contour at which it is to be found; X_{1} is the distance between contours (Fig. 1).

With the above orientation of coordinates, there is no acceleration in the Y direction. For fields of usual symmetry, there will be no acceleration in the Z direction, and it will be assumed that there is no initial component of velocity in the Z direction. Integrating Eq. 2 gives

$$
\begin{equation*}
V_{X}=V_{x 0}+\frac{e}{m} \frac{U_{1}-U_{0}}{X_{1}} \tag{3}
\end{equation*}
$$

$$
V_{r}=V_{\gamma n}
$$

in which $V_{x 0}$ and $V_{Y 0}$ are the given initial components of velocity. Integrating Eq. 3 gives the coordinates of position of the electron

$$
\begin{align*}
& X_{1}=V_{x 0} t+\frac{1}{2} \frac{e}{m} \frac{U_{1}-U_{0}}{X_{1}} t^{2} \tag{4}\\
& Y_{1}=V_{w o} t
\end{align*}
$$

At time t_{1} the electron crosses contour U, at position X_{1}, Y_{1}. From the above equations it is seen that, under the assumed conditions, the trajectory between contours is a segment of a parabola.

Because the time of flight is usually not of interest, it need not be found. The magnitude of the final velocity can be determined from

$$
\begin{equation*}
V^{2}=2(e / m) U \tag{5}
\end{equation*}
$$

in which U is the total potential difference through which the electron has fallen. From the geometry of the problem as shown in Fig. 1

$$
\begin{align*}
& Y_{1}=V_{r_{0} t} \\
& \left(Y_{1} / X_{1}\right)=\tan \phi \tag{6}\\
& \left(V_{r_{1}} / V_{r_{1}}\right)=\tan \theta_{1} \\
& \left(V_{r_{0}} / V_{r_{0}}\right)=\tan \theta_{0}
\end{align*}
$$

where ϕ determines the point where the electron intersects U_{1}, θ_{1} indicates the path of intersection, and θ_{0} is the angle of intersection of U_{0}. Using these relations, the pairs of parametric equations (Eq. 4) can be reduced to

$$
\begin{equation*}
\cot \phi=0.5\left(\cot \theta_{0}+\cot \theta_{1}\right) \tag{7}
\end{equation*}
$$

$\cot \theta_{1}= \pm\left\{\left(U_{1} / U_{1}\right)\left(1+\cot ^{2} \theta_{0}\right)-1\right\}^{1 / 2}$
Only the second of these relations need be considered, and only the positive sign need be chosen for it. The negative value would apply if the electron described the entire parabola, cutting the equipotentials.

Although the position of the electron at equipotential U_{1} could be obtained from Eq. 4 or 7 , and the process repeated at the next contour, the trajectory can be obtained more conveniently by constructing a universal family of curves from the second of Eq. 7. The curves are hyperbolas symmetrical about the axes, but not with common foci. Mutually reciprocal values of U_{1} / U_{0} are associated with curves symmetrical about the $x=y$ line. The chart is thus as shown in Fig. 2, but only one half of it need be constructed for actual use.

Graphical Construction

To plot the path of an electron, a sheet on which the universal curves are plotted is placed on a map of the potential field as shown in Fig. 3. The lower edge of the chart is
(continued on p 162)

mended load impedance is 5 megohms.

Two-Speed Changer

Magnavox Co., Fort Wayne 4, Indiana. A new two-speed record changer that makes it possible to play the new long-playing records at 33.3 rpm will also play conventional dises at 78 rpm . Pickup weight is 5 grams.

F.M Monitor

Doolittle Radio, Inc., 7421 S. Loomis Blvd., Chicago 36, Ill. The FD$12 \mathrm{f}-\mathrm{m}$ frequency and modulation monitor handles up to four frequencies anywhere between 25 mc and 170 mc and has an accuracy of

0.0015 percent. A $500-$ ohm output is provided for audio monitoring. Power consumption is 80 watts.

Tone Arm

General Electric Co., Syracuse, N. Y. A new tone arm equipped with a variable reluctance cartridge for playback of 10 and 12 -inch rec-

ords has a 1-ounce stylus pressure. Designated No. UPA-002, the unit is a companion to the professional transcription arm (illustrated) type FA-21-A with stylus pressure adjustable by means of a calibrated scale.

Alignment Generator

Philco Corp., Philadelphia, Pa., introduces a portable visual alignment generator, model 7008, for

television and $\mathrm{f}-\mathrm{m}$ receivers, and for research and engineering work in frequencies from 3.2 to 250 mc . Price is $\$ 395$.

Two-Jaw Clip

Mueller Electric Co., 1583 East 31st St., Cleveland 14, Ohio. The new no. 22 clip has jaws at both ends. Either jaw or both may be opened by properly applied pressure. The clip is two inches long and has a screw connection. Free samples are available.

Lab Counter Set

El-Tronics, Inc., Philadelphia, Pa. Model LS64 laboratory counter set is a complete instrument for use with Geiger counter tubes in measuring radiation intensities.

The unit has a built-in recording clock and uses the Higginbotham scaling circuit.

Ceramic Pickup

Astatic Corp., Conneaut, Ohio. Model QC pickup cartridge with

ceramic element has great physical ruggedness. It has a frequency range of 50 to 10,000 cycles and needle pressure of one ounce.

New Converters

Radio Corp. of America, Harrison, N. J. Types 6BA7 and 12BA7 highgain pentagrid converters are identical except for heater ratings. They have a conversion transconductance of 90 micromhos with 250 volts on the plate. The short inter-

nal leads are so designed for service in f-m broadcasting. A brochure is available.

UHF Signal Generator

Boonton Radio Corp., Boonton, N. J. Type 218 signal generator is a portable signal source for receiver measurements in the band from 400 to 1,000 megacycles. Maximum power output is 1 milliwatt
((Continued on p 182)

Raytheon Reliability with a capital "R"

Says the chief engineer of Wheelco Instruments Company, "We use this special Raytheon tube to be sure of uniform characteristics, long life and greater stability throughout its operating life." The Wheelco Flame-Otrol guards life and property against the danger of explosion of any gas or oil fired furnace or indus. trial heating equipment. It does it ingeniously and positively by utilizing the electrical conductivity of a gas flame or spectral response of an oil flame translating resistivity change or response of sensing element, due to flame failure, through the use of a

Wheelco uses a RAYTHEON CK-5608 Tube because of its reliability and stability - the result of:

1. Proven design and precise manufacturing control, backed by the experience of 25 years of continuous production involving \$125,000,000.00 worth of special purpose tubes.
2. Unsurpassed engineering knowledge and ability in the development and manufacture of tubes especially to meet long life, industrial application.
single Raytheon CK-5608 Tube, into change of current sufficient to operate a relay which acts to close the fuel valves. Action, being electronic, is instantaneous and sure.

Write for Detailed Information on RAYTHEON Special Purpose and Subminiature Tubes

RAYTHEON MANUFACTURING COMPANY SPECIAL TUBE SECTION

Newton 58, Massachusetts
RADIO REEEIVING TUBES - SUBMINIATURE TUBES - SPECIAL PURPOSE TUBES - MICROWAVE TUBES

NEW PRODUCTS

Edited by A. A. McKENZIE

New equipment, components, tubes, testing apparatus and products closely allied to the electronics field. A review of catalogs, handbooks, technical bulletins and other manufacturers' literature

500-Mc Tube

Raytheon Mfg. Co., Newton, Mass. Type CK5703 (formerly CK608CX) has a mutual conductance of 5,000 micromhos and amplification fac-

tor of 25 . It has a 3 -watt plate dissipation and can be made to produce about a watt of output power at 500 megacycles.

Old-New Record Turntable

Alliance MFg. Co., Alliance, Ohio. A new dual-speed turntable operating at either 33.3 or 78 rpm is a

modification of the model 80 , containing two motors instead of one. Only one motor is used at a time.

Oscillosynchroscope

Browning Laboratories, Inc., 742 Main St., Winchester, Mass. Model OL-15B Oscillosynchroscope includes a vertical amplifier bandwidth of 6 mc , recurrent sweeps of 5 to 500,000 per second and driven sweep rates of 0.25 microseconds per inch to 200 microseconds per

inch. The instrument is self-contained and uses a 5 -in. cathode ray tube.

Ultrasonic Thickness Gage

Photocon Research Products, 1062 North Allen Ave., Pasadena 7, Calif. The Metroscope measures wall thickness of metal, plastic, and glass parts from one surface and will also detect flaws or imperfec-

tions in these materials. Using ultrasonic frequencies, the device operates on the basis of thickness vibrations, and gives a cathode-ray presentation of its findings.

Geiger Tubes

Nuclear Development Lab., Box 7601, Kansas City, Missouri. Thin-

window, thin-wall, and all-metal cosmic ray counters illustrated are completely described in Bulletin 10.

Diversity Reception

Decimeter, Inc., 1428 Market St., Denver 2, Colorado. The DM-430 Diverse Adaptor selects the better

of two antennas for receiving the desired signal on as little as 0.05 volt of avc. It operates on 200 to 300 volts at 15 ma and filament supply of 6.3 volts a-c at 1.5 amperes.

Ceramic Microphones

Astatic Corp., Conneaut, Ohio. Two new microphones using ceramic elements are now available. Chief feature of the unit illustrated is its independence of high ambient temperatures. Its response is essentially flat from 30 to 10,000 cycles. Output level is minus 62 db . Recom-

AUDIO DEVICES, INC., 444 madison Avenue, Now York 22, N.Y.

Export Department: Rocke International Corpᄀ 13 E. 40th Street, New York 16, N. Y.
Audiodiscs are manufaciured in the US.A. under exclesjve license from PYRAL, S.A.R.L., Paris

Thay speak for Themselves audiodises

Rural industrial radio; URSI-IRE meeting;

tv reallocation; Army tests transistors; utilities radio group; IRE-RMA Fall meeting

Stratovision Demonstration

Stratovision's tlying television station over outskirts of Pittsburgh

Rural and Small town television coverage is now in the offing by means of Stratovision, whereas service in such areas could not otherwise be expected for years. A recent experiment in which some 40 reporters were flown to Zanesville, Ohio, was not too successful due to weather conditions, but a solution for the problem has been promised.
The principal purpose of the recent experiment conducted by Westinghouse and Glenn H. Martin Co. was to show the FCC why the sponsor should get channel 8 in Pittsburgh for regular ground service and Stratovision and why no other channel 8 station should be permitted within 200 miles of the city.

Immediate plans called for making KDKA-TV the conventional ground station operating several hours daily. It would then go off the air and would relay its programs by microwave to the plane, which would spray the channel 8 signal over a 200 to 250 mile radius.

Electronic equipment aboard the plane consists of a 5 -kw video transmitter, the size of an ice-box; a 1kw audio transmitter, intended to be placed in the same rack with the video; a transmitting mast 25 feet long, with 2 bays, lowering from the bomb-bay; and a receiving mast 8 feet long projecting from the tail fin.

The system when perfected would use four planes at each station. Two would alternate in the air, four hours at a time, while two were being serviced on the ground.

Highlights of RMA Convention

Anticipated military requirements of a billion dollars annually for radio and electronics equipment recently prompted the RMA board of directors, led by president Max F. Balcom, to appoint an eight-man industry mobilization policy committe. The committee, appointed at
the RMA's 24th annual convention in Chicago, consists of Fred R. Lack of Western Electric Co. as chairman, Paul V. Galvin of Motorola Inc., vice-chairman, Frank M. Folsom of RCA Victor, Harry A. Ehle of International Resistance Co., George R. Haase of Operadio Mfg. Co., H. L. Hoffman of Hoffman Radio Corp., W. A. MacDonald of Hazeltine Electronics Corp., and R. C. Sprague of Sprague Electric Co.

Objectives of the committee are to persuade government officials to establish a four-man committee to centralize and coordinate procurement of equipment and components, and to seek means of expediting production of military equipment through spreading work among all segments of the radio industry.

Other accomplishments of the convention were the reelection of Max F. Balcom as president of RMA for his second term, election of three new division chairmen and three new directors, re-election of 12 directors and two division chairmen, and the admission of 13 manufacturers as new members.

New division chairmen are: Set Divi-sion-George M. Gardner, president of Wells-Gardner \& Co., Chicago; RMA Parts Division-A. D. Plamondon, Co., of Chicago; Transmitter DivisionT. A. Smith of RCA Victor Division, Camden, N. J. ; Tube Division-R. E. Carlson of Newark, N. J.; Amplifier \& Sound Equipment Division-Fred D. Wilson of Operadio Manufacturing Co., St. Charles, Ill.
New directors are: Allen B. DuMont, president of Allen B, DuMont Laboratories, Inc., Passaic, N. J. John W. Craig general manager of the Crosley Division of Avco Manufacturing Corp., Cincinnati, Ohio; and Herbert W. Clough, vice-president of Belden Manufacturing Co., Chicago.
The twelve directors who were reelected are: Benjamin Abrams, Max $\underset{\text { W. B. Barkley, H. C. Bonfig, Gichard }}{\text { G. }}$ Wryling, Samuel Insull, Jr., J. J. Kahn, Fryling, Samuel Insull, Jr., J. J. Kahn, Fiamondon, Jr., Allen Shoup and G. W. Thomipson. Retiring directors are past president R. C. Cosgrove, Lloyd A. Hammarlund and Monte Cohen.
Leslie F. Muter of Chicago was relected RMA treasurer for his fourteenth year, Dr. W. R. G. Baker of Syracuse, New York, was reelected director of the RMA Engineering Department. Bond Geddes was reelected executive vice-president. Following are the 13 new members elected: Aircraft-Marine Products, Inc., Harrisburg. Pa.; Barnes Metal Products Company, Chicago 23, Ill; David Bogen Co., Inc., New York 12, N. Y.; Consolidated Television Corp., New York 1, N. Y.; Drake Manufacturing Company, Chicago 22, Tll. Electronic Tube Corporation, Philadelphia 18, Pa.; General Precision Equipnient Corp., New York Electric Co., Chicago 5 , Ill.; Rerfection Specialty Mfg. Co., Portland 14, Ore.; Shure Brothers, Incorporated, Chicago 10, Ill. ; Rowe Industries, Toledo 9, Ohio ; Wirt Company, Philadelphia 44, Pa. ; 'W. M. C. Inc., Chicago 47, Ill.

Following action by the RMA Set Division and upon recommendation of retiring chairman Paul Galvin,

Lavoie

UEE PRECISION INSTRUMENTS

Specialists in the Development and Manufacture of UHF Equipment

Fred R. Lack, vice-president of Western Electric, addressing membership luncheon at annual convention of RMA in Chicago
the board of directors voted to continue the policy not to sponsor or endorse any public or trade shows of television or radio receivers. The board also adopted a resolution asking the FCC to retain the present numbers of the twelve television channels for the avoidance of confusion.

Finally, associate director Virgil Graham reported that the Rochester Fall Meetings in the future will be under the sponsorship and direction of the RMA Engineering Department in cooperation with the IRE, instead of the Rochester Fall Meeting Committee which originated these annual engineering conferences.

Instrumentation Conference

A three-day conference on electronic instrumentation in medicine and nucleonics, jointly sponsored by the AIEE and IRE, is scheduled to be held in New York City, Nov. 29 to Dec. 1, 1948. Arrangements are to have the area of common interest fall on the second day of the meeting. On the first day, devoted to electronic aids to medicine, such items as biological amplifiers and recording devices (c-r oscillograph, electrocardiograph and electroencephalograph) will be covered. The second and third days will cover nucleonic instrumentation, including subjects of interest in medicine and physics. The second of these three days will be devoted to matters of interest to medical person-

MEETINGS

Aug. 20-29: All-Electrical Exposition, Pan-Pacific Auditorium, Los Angeles, Calif.

Aug. 24-27: AIEE Pacific General Meeting, Spokane, Wash.

AUG. 30-SEPT. 17: 114th national meeting, American Chemical Society. Eastern session, Washington, D. C., Aug. 30Sept. 3; midwest session, St. Louis, Mo., Sept. 6-10; western session, Portland, Ore., Sept. 13-17.

SEpT. 4-6: ARRL Convention, Milwaukee Auditorium, Milwaukee.

SEPT. 6-11: International television meeting, with exhibition Sept. 2 to 15, Swiss Federal Institute of Technology, Zurich. Address inquiries to Sec retariat, International Television Meeting, Gloriastrasse 41, Zurich 6, Switzerland.

Sept, 13-17: Third Instrument Conference and Exhibit, Convention Hall, Philadelphia, Pa.

SEPT. 20-23: Annual meeting, Associated Police Communication Officers, Inc., Rice Hotel, Houston.

Sept. 27-Oct. 1: Third National Plastics Exposition, Grand Central Palace, New York City.

Sept. 29-Oct. 2: Pacific Electronic Exhibition and IRE west coast Annual Convention, Biltmore Hotel, Los Angeles, Calif.

Oct. 5-7: AIEE Middle-Eastern District Meeting, Washington, D. C.

Oct. 7-9: Second joint meeting, URSI and IRE, National Bureau of Standards, Washington, D. C.

Oct. 11-12: PM Association Sec-
ond Annual Convention, Sheraton Hotel, Chicago.

Oct. 12-16: Fifth National Chemical Exposition, Coliseum, Chicago, Ill.

Oct. 23-29: Annual convention, American Society for Metals, Benjamin Franklin Hotel, Philadelphia.

Oct. 25-28: Annual Fall meeting of the Institute of Metals, Division, American Institute of Mining and Metallurgical Engineers, Hotel Adelphia, Philadelphia.

Oct. 25-29: National Metal Exposition, Commercial Museum and Convention Halls, Philadelphia.

Oct. 25-29: Annual Convention, American Welding Society, Bellevue-Stratford Hotel, Philadelphia.

Oct. 25-29: 64th semiannual convention, Society of Motion Picture Engineers, Hotel Statler, Washington, D. C.

Oct. 27-28: Annual Convention, Society for Non-Destructive Testing, Hotel Adelphia, Philadelphia.

Nov. 4-6: National Electronies Conference, Edgewater Beach Hotel, Chicago.

Nov. 8-10: Twentieth Rochester Fall Meeting of members of IRE and RMA Engineering Dept., Sheraton Hotel, Rochester, N. Y.

Nov. 29-Dec. 1: Conference on electronic instrumentation in nucleonics and medicine, sponsored by IRE and AIEE, Engineering Societies Building, New York City.

Nov. 29-Dec. 4: 18th National Exposition of Power and Me chanical Engineering, Grand Central Palace, New York.
nel, including stable isotope measurement.

Further information on the conference and registration may be obtained by writing to C. C. Wilson, AIEE Headquarters, 33 W. 39th St., New York 18, N. Y.

Soviet Television

Indicative of the status of television in the USSR is the fact that one electrical appliance store in Moscow now has on sale to the gen-
eral public the Moskvich T-1 television receiver. It is a 20 -tube set with combination f-m radio reception but only an adapter for recordplaying.

However, reconstruction work is being carried out at the Moscow Tele-Center television broadcasting station, which is still using 343 -line pictures, for changeover to 625 -line pictures. Image clarity at the Leningrad center has been increased to 441 -line pictures compared with the prewar 240 -line images. Regular (Continucd on p 212)

SIX SOLUTIONS TO YOUR D-C POWER PROBLEMS

tubes at work
(continued from p 122)
10 to 80 C . For this reason, less heating time is required in testing gas-filled tubes.
In general testing, a few points should be reviewed before a tube has definitely been considered bad:

Heater voltage at the heater terminals of the tube must be at the rated value. Any poor connection on one of the heater terminals will cause a lowering of voltage at the terminal with a resulting lowering of cathode temperature and an increasing voltage drop from anode to cathode during conduction.
The anode, cathode, and grid leads of thyratrons must make good contact with the caps of the tester to insure proper current conduction.

Sensitive Transducer

A Device for electrically measuring mechanical motions or displacements that places no friction load on the transmitting device and exerts little or no reaction force on the transmitting device, is the Atcotran. It has a linear electrical response when actuated by a linear mechanical motion and operates from 60 -cycle current.
Essentially the Atcotran is a differential transformer with a linear response. It consists of three coils as shown in Fig. 1. These are

FIG. I-Cross-section of coil assembly
wound on a single spool, with a freemoving armature of magnetic material mounted inside the spool.

Alternating current is supplied to the center or primary coil C and the magnetic flux generated by this coil is distributed by the armature so

DE MORNAY • BUDD STANDARD TEST EQUIPMENT

For Precision Broad Band Microwave Measurements

A typical, K Band. bench test set-up with power supply and amplifier

The complete line of De Mornay-Budd standard test equipment covers the frequency range from $4,000 \mathrm{mcs}$ to $50,000 \mathrm{mcs}$. It provides all R. F. waveguide units necessary for broad band precision test work requiring extremely high accuracy in attenuation measurements, impedance measurements, impedance matching, calibration of directional couplers, VSWH frequency measurements, etc.

To eliminate guesswork, each item of this De Mornay-Budd test equipment is individually tested and, where necessary, calibrated, and each piece is tagged with its electrical characteristics. All test equipment is supplied with inner and outer surfaces gold plated unless otherwise specified.

NOW READY

The new DeMornay-Budd catalogue of Standard Components and Standard Bench Test Equipment is now ready. This catalogue features α 36 page "Introductory Concepts to Microwaves" and "Measurement \& Calibration Procedures." This catalogue is available to those requesting copies on company letterhead.

CE MORNAY - BUDD INC., 475 GRAND CONCOURSE, NEW YORK 51, NEW YORK CABLE ADDRESS "DEMBUD," N. Y.
 simple action. Features starting, quick-stopping, jogging, inching or creeping, reversing, with infinite speed adjustments and controlled acceleration and deceleration.

HAYDON-TIMED for accurate action

The all-electric Reliance $V \star$ S Drive employs a special Haydon timer to provide a 30 or 45 second preheating cycle to protect the power tube, while still cold, against premature application of the load. The timer also features delayed reset to permit other relays to operate in the interval and to provide against complete recycling in the event of momentary power failures. Reliance is but one of hundreds of nationally known manufacturers relying on Haydon
 timers for better product performance. When confronted with a timing problem, take advantage of Haydon Time Engineering Service. There is a Haydon representative near you to discuss and demonstrate timing motors and devices. For immediate reference, see the condensed Haydon catalog in Sweet's File for the Product Designers . . . or write for your complete copy, with illustrations, application information, specifications and dimensional drawings. If it's about time, call for Haydon.

Write 2409 Elm Street, Torrington, Connecticut HAYDON
MANUFACTURING COMPANY, INC.

TORRINGTON

 we ERIE

ERIE "GP" Ceramicons are small and compact, even in high capacities. Tubular in shape, they require less space than rectangular condensers. They can be wired into position more easily and quickly where space conditions are close, and thus are basically easier to handle in any type of installation.

The wide range of adaptability of ERIE "GP" Ceramicons simplifies the inventory problem, reduces "out-of-stock" bottlenecks, and saves confusion generally.

The enormous popularity of "GP" Ceramicons is the result of a combination of their superb performance and economical cost. Their inherently simple construction results in higher resonant frequencies that are so important in by-passing applications for FM and Television.

ERIE "GP" Ceramicons are made in insulated styles in popular capacity values up to $5,000 \mathrm{MMF}$, and in non-insulated styles up to $10,000 \mathrm{MMF}$. If you haven't switched to "GP" Ceramicons for by-pass and coupling applications, write for full details.

> Electronices Diciscon ERIE RESISTOR CORP., ERIE, PA. IONDON, ENGIAND. TORONTO, CANADA.
*Ceramicon is the registered trade name of silvered ce. ramic condensers made by Erie Resistor Corporation.

WHERE

BASIC
DESIGNS

ELECTRIC

controls

RESULT.
ENGINERREO

IN

ARE

FOR
Vernon, N. Y. Offices in principal cities of U. S. and Canada.
YOU

Sizes 1, 2 and 3 of Ward Leonard's new Solenoid Contactors are now available

The advantages of Ward Leonard's recently introduced A-C Solenoid contactor can now be obtained in 2 and 3 pole combinations rated up to 100 amperes.
All these sizes provide "Result-Engineered" features which you can't afford to overlook. Let us point them out to you . . Write for our Bulletins 4451 , 4452,4453 and be convinced. Ward Leonard Electric Co., 31 South St., Mount

TUBES AT WORK (continued)

FIG. 4-Two Atcotrans in a balance circuit for remote indication or control
lustrated in Fig. 3, and if the portion of the curve in Fig. 2 between 0.05 and 0.1 inch were used, the a-c meter pointer would go from zero to full scale for a Bourdon tube deflection of 0.05 inch. The meter could readily be calibrated in terms of pressure as applied to the Bourdon tube.

A null-balance circuit is shown in Fig. 4.

When both Atcotran armatures are in their proper position the outputs of Atcotrans A and A^{\prime} will be equal and opposite in phase and the resultant input to the amplifier will be zero. No voltage will be applied to the amplifier phase of the motor and it will be dominant.

When the pickup device raises the armature of Atcotran A, phase A will predominate and the input to the amplifier and subsequent input to the motor will be in the proper phase relationship with the line voltage to run the motor and raise the armature of A^{\prime} Atcotran a like amount and balance the system.

If the pickup device lowers the armature of Atcotran A, phase B will predominate and the motor will run in the opposite direction until the system is again rebalanced. In this way the motor will continually cause the armature of Atcotran A^{\prime} to follow the movements of the pickup, and any pointer or pen coupled to the motor shaft will indicate or record a motion exactly proportional to the motion of the pickup, which in the case of a Bourdon tube is in turn proportional to the pressure applied to it. Such an arrangement will result in a remote pres-

Tine new alarm-lock works easily enough when ycu know the right buttons to push. Push the wrong ones, and you bring the cops on the run. Like so many other signaling devices, the alarm-lock is operated by a Telechron synchronous electric motor.

In this lock, the motor is the lowcost Telechron H-3. This is the popular model for range and radio timers, sequence fiming, signaling, control and recording devices. Many
millions of these versatile motors are giving long, economical service in many different types of timing mechanisms.

These dependable, self-starting motors give your product the extra sales appeal of famous Telechron accuracy. Operating in perfect synchronism with the frequency, they have to be right . . . can't run fast or slow. Sealed-in lubrication and precision building assure long, troublefree life.

Telechron motors are produced by the largest maker of synchronous electric timing motors for over 25 years, and are Underwriters Laboratories approved. If you have a special timing, control or recording problem, why not consult Tclechron's application engineers? There's no obligation, of course. Address Motor Advisory Service, Dept. M, Telechron Inc., Ashland, Massachusetts. A General Electric Affiliate.

THE FIRST AND FAVORITE SYNCHRONOUS ELECTRIC TIMING MOTOR

PRECLION RESISTORS!

.. Hermetically sealed
dloy to
coefficient
. With predetermined time . For
... With definite positive or negative temperature coefficient .. With special low-tolerance ... With highest stability of fixed pad networks)
.. Mounting styles for
any need

FIG. 5-Electronic phase and voltagesensitive relay
sure transmission system of unusual stability and accuracy.

Another arrangement is shown in Fig. 5. The electronically operated relay will pull in and either close or open a load circuit, when a small a-c voltage is applied to its input terminals. The magnitude of this voltage required to operate the relay is determined by the bias control. When the Atcotran armature is in a phase A relationship the relay will not be actuated, but if its armature moves through the null or zero output position (see Fig. 2) to a phase B position, the relay will pull in and actuate a load circuit. Such an arrangement would give off and on control of pressure or could be used as an alarm.
If two electronic relays were used -one connected to pull in on A phase and one on B phase and the bias controls were properly adjusted we would get three-position (High-Neutral-Low) control.

Since the Atcotran made by Automatic Temperature Control Co., is a voltage-producing device a number of these units may be connected in series to give an electrical output which is either the sum, difference or average of a plurality of variables.

Video Interference

As memoed to designers and manufacturers of television receivers by I. J. Kaar, chairman of RMA Committee on Television Receivers, there is a serious problem of radio interference that may be caused by

Without CONSTANT VOLTAGE protection, this selfsustaining link in the chain of relay points that chart the nation's airways, could not successfully perform its safety function.

It is remotely located, at times almost inaccessible to service personnel and solely dependent on local power service. Were it not for a Sola Constant Voltage Transformer, its delicately engineered electronic and radio equipment would be constantly at the mercy of periodic and unpredictable surges or low voltage levels.

Throughout the entire cross-country system Sola Constant Voltage Transformers maintain operating volt-
ages at a constant, predetermined level and the nation's air-men fly their courses with confidence.

If you are building electrically energized equipment to operate at precise voltage levels, remember this: it is more economical to include Constant Voltage protection in your design than to install it later as a remedial measure.

Revised Bulletin DCV-192 available on request.
Write for your copy.

31 standard types of Sola Constant Voltage 'Transformers available in capacities ranging from 10 VA to 15 KVA .

Transformers far: Constant Voltage - Cold Cathode Lighting - Airport Lighting - Series Lighting - Fluorescent Lighting - Luminous Tube Signs Oil Burner Ignition - X-Ray • Power - Controls • Signal Systems • etc. - SOLA ELECTRIC COMPANY, 4633 W . 16 th Street, Chicago 50, Illinois

Manidfaciured under license by: ENDURANCE ELECTRIC CO., Concord West, N. S. W., Australia " ADVANCE COMPONENTS LTD., Walthamstow, E., England UCOA RADIO S.A., Buenos Aires, Argentina - M. C. B. \& VERITABLE ALTER, Courbevoie (Seine), France

The completely scientific production of HOLTITE screws, bolts and allied fastenings is closely supervised through every operation by our skilled Engineering Staff. From the analysis of raw material to the final hardening, heat-treating and finishing every operation is meticulously checked and inspected by the latest scientific devices. Modern comparators throughout the production line supplement inspection devices to insure absolute precision.

Aided by special research in exfensive chemical and metallurgical taboratories, our engineers are constantly improving methods, equipment and products to provide, users with the most rugged, uniform and accurate fastenings science can devise.

HOLTITE Engineered Fastenings effect tighter, stronger, vibration-defying assemblies with cost-cutting efficiency. Select your next requirements from HOL. TITE'S complete line . . . your time study records will prove the wisdom of their continued use.

TUBES AT WORK
video and scanning circuits of television receivers.

Since the range from 10 kilocycles to 4,500 kilocycles is coincident with those frequencies used in radio communication and radio broadcast, it is to be expected that wiring and components in the television receiver which carry video currents may possibly radiate or produce induction fields of sufficient strength to cause interference to other services employing radio frequencies.

Interference in the broadcast band is of particular importance because receivers for this band may be located in an adjacent room in an adjoining apartment in the same building so that possibly only a few feet may separate the broadcast and the television receivers. The video interference usually sounds quite mushy and makes itself evident as a noisy background of variable intensity riding along with the broadeast progiam. The intensity may be so severe in some cases as almost to obliterate completely weak broadcast signals. In addition to the mush there may be birdies or tweets caused by more or less steady frequency components in the video signal beating with the carrier.

Intercarrier Audio

A third type of interference may be found at 4,500 kilo-cycles, in a band used at airports and for some fixed and mobile services. This frequency is found in video circuits as a result of detection of the television sound carrier by the television picture second detector since the difference between the picture and sound carriers is 4,500 kilocycles. This 4,500-kilocycle signal will be frequency modulated by the television sound signal and may be readily identified and received by using slope detection in a standard a-m receiver.

In one instance the 4,500 -kilocycle signal interfered with airport operations at an airport located over a mile from the offending receiver. An examination of the receiver revealed that the installation was a custom-built one wherein the video frequency conductor from the last video amplifier to the cathoderav tube was over ten feet in length and unshielded.

In general, video interference can

Compact.... Dependable

Selector Switch Franmes-a part of the 15,000-line inspallation of Federal Rotary Telephone Switching Equipment at the Rochester Telephone Corporailon, Rochester, N. Y.

Natvar insulating materials can be furnished punched to specification and held to close tolerances, in the finish best suited to the operation.

The 7A-2 Rotary System is modern high speed automatic telephonc equipment, built by Federal Telcphone and Radio Corporation, Clifton, N. J., an I. T. \& T. associate. It must be both compact and dependable. This calls for minimum clearances without sacrifice of reliability of performance or ease of maintenance.

In the words of one of their engineers:
"To produce a system which fulfills the many complex circuit requirements of today, which is at the same time sound and robust mechanically, requires the closest cooperation between circuit and mechanical designers."

Natvar Varnished Kraft insulators are an example of this cooperation. Here an electrical insulating material has been used to provide both electrical and mechanical protection to the selector terminal blocks and to the ribbon cable which multiples the terminal banks.

If your requirements call for insulating materials with good physical and electrical performance characteristics, in bulk or cut to your own specifications, it will pay you to use Natvar. Get in touch with your Natvar distributor, or with us direct.

- Varnished cambric-straight cul and bias
- Varnished cable tape
- Varnished canvas
- Varnished duck
- Varnished silk
- Varnished special rayon
- Varnished Fiberglas cloth
- Silicone coated Fiberglas
- Varnished papers
- Varnished tubings and sleevings
- Varnished identification markers
- Lacquered tubings and sleevings
- Extruded vinyl tubing and tape
- Extruded vinyl identification markers

Ask for Catalog No. 21

1,000,000,000 to one!

with these BALLANTINE instruments

ONE BILLION TO ONE-This enormons range of AC voltages - is easily covered by the Model 300 Voltmeter, Model 220 Decade Amplifier and Model 402 Multipliers illustrated above. The accuracy is 2% at any point on the meter scale, over a frequency range of 10 eycles to 150 kilocycles. The Model 300 Voltmeter (AC operated) reads from .001 volt to 100 volts, the Model 220 Amplifier (battery operated) supplies accurately standardized gains of $10 x$ and 100 x and the Model 402 Multipliers extend the range of the voltmeter to 1,000 and 10,000 volts full scale.
be reduced by using short connecting wires shielded by running them in fairly close proximity to conductors at r-f ground potential. A bruteforce method would be to enclose the whole receiver in a cabinet having a screen shield built completely covering its inner surface. Screening cannot be put over the face of the picture tube, so some radiation occurs through the face of this tube. In an experimental receiver the residual interference was further reduced by employing a picture tube having a special conductive but translucent coating applied to its face and grounding the coating to the chassis.

Scanning Circuits

Scanning systems develop pulsetype and sawtooth-type waves having fairly steep decay characteristics (short-time decay). An analysis of the frequency spectrum reveals the presence of fairly strong harmonics of the line (horizontal) and field (vertical) frequencies. The harmonics of the field frequency, being harmonics of 60 cy cles per second, are ordinarily not bothersome at radio frequencies because the amplitude usually falls off inversely with the order of the harmonic.

This is not true in the case of the horizontal frequency because the fundamental is 15,750 cycles per second, and is therefore itself a radio frequency. Harmonics of sufficient amplitude to cause interference to broadcast service have been observed. This type of interference makes itself evident in the form of birdies or tweets caused by the harmonics beating with the broadcast station carriers.
This type of interference is quite annoying and does not change in intensity with picture content, but may change in intensity if the size and linearity controls are adjusted or if a person walks up to a television receiver and changes the radiated field intensity by an antenna effect. A satisfactory cure for this type of interference has been found by the employment of grounded shielding. The components requiring shielding usually are the sweep yoke, the high-voltage rectifier system for the picture tube second anode if the $h-v$ supply is

Magnaw masals 8 Important New Speakers

T type installation. Over 100 different models are produced in the modern new Magnavox speaker factory at Paducah, Kentucky.

The nation's most efficient loud speaker plant, plus all the research and experience amassed in thirty-three years of service to the radio industry, enables Magnavox to meet your specifications exactly. Write for complete new speaker catalog today.

The Magnavox Company • Sales and Engineering Offices
Components Division • Fort Wayne 4, Indiana
Magnavox is the oldest and largest producer of quality loud speakers!

has served the radio industry for over 33 years
The Magnavox Company of Kentucky, at Paducab

How to put faraway suppliers close to "home"

$\mathbf{W}_{\text {hat }}$ if suppliers are thousands of miles away? When you specify Air Express, you cut down delivery of equipment, supplies and finished products to a matter of hours. Air Express is the fastest service there is. Remember-large inventories are expensive. You can keep them low by getting what you need in hours.
Air Express goes on every flight of the Scheduled Air-lines-places the most distant suppliers only hours away. And you get fast pick-up and delivery service at no extra cost. Rates are low. Use Air Express regularly and keep things hustling.

Specify Air Express-World's Fastest Shipping Service

-Low rates-special pick-up and delivery in principal U. S. towns and cities at no extra cost.

- Moves on all flights of all Scheduled Airlines.
- Air-rail between 22,000 off-airline offices.

True case history: Sacramento, California, dairy regularly gets replacement parts and equipment by Air Express. Keeps inventory low-gets things in hours. Typical shipment: 32 lbs . of parts picked up in Detroit 7 f.m., in use at Sacramento next afternoon. 2039 miles, Air Express charge \$19.65. Any distance similarly inexpensive. Phone Air Express Division, Railway Express Agency, for fast shipping action.

air express, a service of railway express agency and the SCHEDULED AIRLINES OFTHEU.S.
derived by the "kick" across the horizontal output transformer, the horizontal sweep amplifier tube and horizontal sweep-damping tube, if employed.

Visual Examination of Crystal Modes

UsE of the Megasweep, a sweeping oscillator with output between $50-\mathrm{kc}$ and $500-\mathrm{mc}$ (Electronics, Aug. 1947, p 112), makes possible the visual observation of crystal modes.

The sawtooth sweep voltage of the sweeping oscillator is applied to the horizontal plates of an oscilloscope, providing a horizontal deflection which is proportional to frequency. The frequency-modulated output signal of the sweeping oscillator is applied across a quartz crystal; and the voltage across the crystal, after rectification and filtering, is passed on to the vertical deflecting plates of the oscilloscope. With the sweeping oscillator adjusted for maximum sweep, the oscilloscope pattern will show those crystal modes lying within the sweep width.

The maximum sweep of the instrument is usually about 30 mc , but it can, with some loss of linearity, be brought up to about 70 mc . As the sweeping frequency passes through the crystal frequency or one of its odd harmonics, the crystal impedance and the rectified voltage across it become minimum. Since this absorption occurs periodically at the sweep rate, a stationary pattern is seen on the oscilloscope with pips corresponding to the series resonant modes of the crystal.

As the center frequency of the sweep is shifted, higher modes can be seen to appear on the pattern. With the sweeping oscillator adjusted for narrow sweep, the pattern of an individual "pip" occupies a large area on the oscilloscope and can be studied in detail.

In a typical test using a $10-\mathrm{mc}$ fundamental crystal, the modes were traced up to the 11th, a frequency of $110-\mathrm{mc}$. The size of the pips was noticeably different, the variation being due either to different mode strengths or amplitude

EVERY KNOWN TEST QUALIFIES WILBUR B. DRIVER ALLOYS FOR SUPERIOR INSTRUMENTATION!

Photomicrographic checking of grain size and quality of metals is only one of the exhaustive tests which Wilbur B. Driver resistance alloys are subjected to throughout production. There are many others including ASTM life, tensile strength, yield point, hardness, micrometer and thorough testing for resistance. These constant checks plus industry-old experience, are the reasons you can defend on all Wilbur B. Driver alloys to perform as epecified. The alloys listed are so produced, and are especially recommended for instrumentation.

WILBUR B. DRIVER CO.
I 50 RIVERSIDE A I'E., NEWARK 4, NEW JERSEY

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical properties, high quality standards and dependable uniformity with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified
pH for maximum-minimum acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . . or other technical characteristics vital to your quality standards and production requirements.

MOSINEE PAPER MILLS COMPANY•MOSINEE, WIS.

modulation in the output. Using the wavemeter incorporated in the instrument, the frequencies of the modes were measured and found to be $20-\mathrm{mc}$ apart.

Acoustic Well Sounder

Determination of the fluid level in the annular space between the casing and the tubing of an oil well is being done with an acoustic method.

A small pressure-tight chamber attached to a casing outlet at the surface of the ground contains a microphone and a mechanism for firing a blank cartridge. The sound of the explosion travels down the annulus between the tubing and the casing; the sound is partially reflected at all obstrictions such as tubing collars and tubing catcher, and is finally reflected almost totally at the top of the column of oil which usually extends some distance above the pump.

The sound of the initial explosion, and also all of the reflected pulses are transformed into an electric current by the microphone within the chamber attached to the well-head. This current is amplified and recorded on a moving strip of paper by means of two pen-andink recording galvanometers operating simultaneously.

The reflection from the top of the fluid appears on the record as a large disturbance superimposed on a succession of small kicks which result from the weak reflections at the tubing collars. Thus the top of

Well attachment ready for firing. Sound traveling down is partially reflected by obstructions and surface of oil

zevolutionais new designs Ceramic tfolviad capacitors

for R.F. Heaters and Transmitters

U.I.C of England, pioneer manufacturers of ceramic transmitter capacitors, now introduce a range of capacitors which embody the accumulated experience of many years. They are acclaimed for their outstanding electrical performance and rugged construction by leading British and European manufacturers of R.F. Heaters and Transmitters who have used U.I.C Ceramic capacitors at the rate of $1,000,000 \mathrm{KVA}$ in 1947 alone. Further details furnished on request. All orders and enquiries to :-

Sramples from a wide range of Types

Type	HLS203I	HLT202I	HLT202I	HLC201I	HLC2014*
Capacitance	125 pF	300 pF	$\frac{600 \mathrm{pF}}{}$	$\frac{800 \mathrm{pF}}{}$	1000 pF
Max. R.F. Load	70 KYA	50 KVA	$\frac{45 \mathrm{KVA}}{}$	25 KVA	40 KVA
Peak Voltage	7.5 KY	7.5 KV	7.5 KY	7.5 KV	7.5 KV

Max. R. F. Current 30 Amps, 30 Amps, 30 Amps. 30 Amps. 30 Amps.

\star Lead-through typs, all other examples tag type.

Unsurpassed !

UNITED

 Ceramics
Usability Unlimited

the new Astatic OS, OD and OSS MODELS CRYSTAL, DYNAMIC and CERAMIC MICROPHONES

The Ideal Microphone for Many Uses-Public Address, Recording, Inter-office and Portable Communications.

I

 T'S A PACESETTER . . . a major new accomplish ment in terms of quality performance at modest cost. And, still, that is only part of the story of this new Astatic Microphone. It has usability unlimited! It is so designed that it may be used in a variety of ways shown in illustrations. Extra convenience in all applications is offered by optional models with Type "S" off-on switch. Crystal and Ceramic models furnished in dark brown, streamlined plastic case: Dynamic models in die.cast case.Work on AC-DC or standard circuits. Crystal and Ceramic models available with substantially flat re. sponse or rising characteristics in the voice range. Dynamic models incorporate Astatic's newly developed circular, Alnico 5 magnet, which doubles flux density. providing higher output level. extended range, and more stability. permitting highest quality performance in these more compact units. CB Base. stand adapter and hang-up bracket are accessories. and may be purchased separately.

Write for prices, additional details
SPECIFICATIONS

$\begin{gathered} \text { Model } \\ \text { No }_{0} \end{gathered}$	Tipe	Recommeniled Load Invedtane	$\begin{gathered} \text { Outyun } \\ \text { Level } \\ \text { IAjprox } \end{gathered}$	$\begin{aligned} & \text { Fred } \\ & \text { Resp...lise } \\ & \text { r.p.s. } \end{aligned}$	Charammistirs
OS	Crystal	Mea	$-50 \mathrm{db}$	$30 \cdot 10.000$	Substantally Flat
OS. 1	Crystal	Meg	50 db	30-10.000	Rising Characleristics
OD	Dynamic	500 Omm	$-52 \mathrm{db}$	30-10.000	Substantally Mlat
ODH	Dynamie	5 Meq	$\begin{aligned} & -50 \mathrm{db} \\ & -62 \mathrm{db} \end{aligned}$		
OSC	Ceramic	${ }_{5}^{5} \mathrm{Meq}$	$\begin{aligned} & -62 \mathrm{db} \\ & 62 \mathrm{db} \end{aligned}$	$30-10.000$ $30-10.000$	Substantially Flar Rising Chatacteristes
OSC-1	Cexamic	5 Mea	$\underline{62}$ db		Rising Chazacteristus

Listed in The Radio Industry RED BOOK
Astatic Crystal Devices Manufactured under Brush Development Company patents

TUBES AT WORK
the fluid is located with reference to the natural scale of tubing collars. The interpretation of the record requires only the counting of the number of tubing joints exposed above the fluid.

As employed in the Keystone Sonolog, the two simultaneous recording channels are adjusted permanently for best response to different events, which makes it possible to dispense with critical adjustments, and semiskilled personnel obtain satisfactory results.

The instrument is designed for portable operation and consists of three components, the well-attachment, the amplifier-recorder and a power converter operating from a six-volt storage battery. The log is available immediately without any intermediate processing since pen and ink are used.

Power Converters for Television

OPERATION of television receivers from a d-c power line can be accomplished by using the vibratortype converter whose circuit is shown in the diagram. It incorporates a frequency control (potentiometer R) which permits adjusting the vibrator to a frequency of 60 cycles to prevent distortion of the picture.

Although most cities are supplied exclusively with a-c power lines, there is still a significant number that contain d-c districts. New York City, for example, has 316,000 d-c meters, Boston has 58,000 , and Chicago has 26,000 . And television stations are now operating in all three cities.

The circuit shown is that of one

Adding potentiometer R to a vibrator power supply permits frequency adjustment

HEINEMANN ELECTRIC COMPANY

97 PLUM STREET

FOUND! a way to cut production COSTS 25\% AND STILL IMPROVE QUALITY

ALPHA TRI-CORE Rosin-filled SOLDER

Three cores for the price of one! Speedier action! More operations per pound of solder! Test after test in radio plants has proved that Alpha TriCore is more efficient and more economical than conventional solders. Our engineers will be glad to demonstrate these dollar-saving features in your plant. There is no obligation ; just call on us.

CHECK THESE FEATURES

Alpha TRI-CORE ROSIN-FILLED Solder

* 99.9% pure, water-white rosin used exclusively!
* Non-activated! No rejects due to corrosion!
* Adapted to your production needs: an American solder designed for American production; manufactured and stored here ready for delivery!
\star No toxic, obnoxious fumes!
* 25% more joints per hour per pound of solder!
* Cut your solder cost with Tri-Core's - 5 to 15% less tin and still get better results than possible with other solders using more tin.
* Tri-Core available in diameters as large as $1 / a^{\prime \prime}$, and heavier-down to $.020^{\prime \prime}$ and finer.
other ALPHA PRODUCTS include TRI-CORE"ENERGIZED"ROSIN-FILLED SOLDER: TRI-CORE "LEAK.PRUF" ACID-FILLED SOLDER SOLID SOLDER WIRE: PREFORMS (rosin and acid-filled; BAR SOLDER, ANODES AND FOIL.

ALPHA METALS, INC., 371 HUDSON AVENUE, BROOKLYN 1, NEW YORK
converter made by Electronic Laboratories. It is filtered to less than one microvolt throughout the f-m and television bands, and powers a receiver rated up to 230 watts. A second model supplies up to 475 watts. These ratings are applicable to equipment having a high power factor, from 80 to 100 percent, such as is normally found on transformer-operated devices.

Baseline for Visual
 Alignment Systems

By Elliott A. Henry
Globe Products Corp
Bridgeport, Conn.

Activity in the television field has stimulated interest in sweep-frequency generators and visual alignment systems. The time saving and ease of adjustment inherent in visual systems outweigh the initial cost of equipment and the difficulty in making accurate gain measurements. Precise gain measurements, as well as a more accurate picture of the gain-frequency characteristic of the amplifier or net work, may be obtained if a reference of zero voltage (baseline) is provided on the cro screen.

The baseline may be obtained by blanking the return sweep within the sweep generator or by blanking the input of the vertical amplifier of the cro. As the majority of sweep generators do not incorporate internal blanking, and as physical or electrical considerations present conversion problems, the latter method is to be preferred.

While electrical blanking, obtained by keying one of the cro amplifier stages, might be used, it will not produce satisfactory results as the d-c component of the rectified

FIG. 1-Simplified circuit using battery to charge capacitor

outstanding advantage offored

 in ligheast Quality Potentiometor GIHIBS MICROPOT GUARANTMES $\pm 0.1 \%$ ICOIRIITY0"Integral Molding" . . . Exclusive Gibbs Engineering Development . . . Forever Locks Coiled Resistance Element and Terminails into One Integral Unit with Housing . . . Assures Unequalled and Permanent Operational Accuracy.

....and only the MIGMOMTI has it:

The coiled resistance element is threaded on the molded core

Resistance element and terminals are one integral part of housing

OTHER IMPORTANT FLATURES OF GIBBS TEE-TURN MICROPOT

Write Today! For engincering specifications and complete detail folder. Submit any problems to our engineering staff for recommendations. Units for immediate shipment. - 1,000 to 30,000 olim range. Special resistance values made to order.

- Resistance output is directly proportional to shaft rotatation through a full 3,600 degrees within $\pm 0.1 \%$: this linearity is carried right to the counter clockwise stop. In the Gibs NICROPOT such results are obtained by precision manufacturing and methods.
- Precision ground, stainless steel, double thread, lead screw guides the rotating contact, guarantees smooth action, low unifurm torque
and accurate settings-permanently.
- Rotor assembly, supported on two bearings, assures long life and low torque.
- Ends of resistance element soldered to terminals before molding.
- Anti backlash spring in contact guide-assures you posilive selting and resetting.
- The $431 / 2^{\prime \prime}$ length of resistance element gives you a finer resolution.

DEPT. 34 GIBRS Division
Where electrical contact is required to a moving part, laminated pristics at a real saving in cost over solid precious metal rings.
Silver or Gold, or Platinum, or Palladium, or their alloys, bonded to the required base metal, such as copper or bronze alloys, make possible . . .

* . Uniform contact resistance
* . Uniform contact resistance

- . Melected temper for

- . Corrosion resistance
These rings are now being used in special electric motors, calculators, and computators, Radar, and fire control instruments, potentiometers, and other electro mechanical devices. Our engineers will be pleased to make recommendations to meet your requirements. We would also be pleased to submit quotations to cover your specifications.
D. E. MAKEPEACE COMPANY

Main Office and Plant, Attleboro, Massachusetts
NEW YORK OFFICE, 30 CHURCH ST. • CHICAGO OFFICE, SS EAST WASHINGTON ST

TUBES AT WORK
wave will be lost in coupling to the cro and a d-c component, equal to the plate voltage difference of the keyed stage, will be added and appear on the cro screen. Since it is necessary, to produce an accurate picture of the gain-frequency characteristic of the network under test, to transfer the d-c component of the rectified wave to the cro screen and since this is readily accomplished by periodically restoring the cro vertical amplifier to its zero operating condition, mechanical blanking was chosen.

Basic Operation

For an explanation of the transfer of the d-c component, reference is made to Fig. 1. With switch 2 open, when switch 1 is closed, with the battery polarity as shown, C, charges through R_{1} and R_{2}. The direction of current flow makes the grid of T_{1} go positive and the cro spot to move upward. When C_{1} becomes fully charged, current ceases to flow and the grid returns to its static value. The spot returns to its former position and nothing further happens as long as conditions remain unchanged.

Now if switch S_{2} is momentarily depressed, C_{1} will be discharged through R_{2} while the battery will be protected by $R_{\text {. }}$. The direction of current flow is now such as to make the grid of T_{1} go negative and the cro spot to move downward. Therefore if S_{2} is made to operate rapidly and to have equal off and on time, the pattern obtained will be a series of square waves, the magnitude of which will be an absolute proportionality to the battery voltage as C_{t} has had a charge alternating between zero and full battery voltage.

By substituting the load of the linear diode detector for the battery, adjusting switch S_{2} on-time to 180 degrees of the modulation cycle, and providing a means of phasing the start of S_{2} on-time, either the up or down sweep may be blanked and the baseline, equivalent to zero voltage, obtained.

Resistor R_{1} should have a value at least four times greater than the diode load resistor to prevent the discharge of the diode capacitor during switch S_{2} on-time. Switch S_{2} must be capable of very fast action and have very low contact resistance. A relay with the mercury-

for HIGHResistances

SPECIFICATIONS

RANGE: 2,000 ohms to 50,000 megohms in five overlapping ranges; zero to 100 volts, d-c as a vacuum-łube voltmeter.
ACCURACY: within $\pm 5 \%$ of indicated value from 30,000 ohms to 3 megohms; within $\pm 8 \%$ from 3 to 3,000 megohms when the central decade of scale is used. Voltage measurement accuracy is $\pm 2 \%$ of full scale.
SCALE: standard direct-reading ohmmeter calibration is used; scale is illuminated.
VOLTAGE ON UNKNOWN: does not exceed 106 volts and varies with meter indication.
INPUT RESISTANCE: for voltage measurements input resistance in megohms is indicated by selector switch. On the "infinity" position, resistance is greater than 20,000 megohms.
TEMPERATURE-HUMIDITY EFFECTS: over normal room temperature and humidity ranges, accuracy is substantially independent of either.
DIMENSIONS: $10 \times 8 \times 51 / 2$ inches.
WEIGHT: $81 / 2$ pounds, net.

THIS NEW MEGOHMMETER is very similar to the usual ohmmeter except that a vacuum-tube voltmeter is used as the indicating device. It is a-c operated and direct-reading in five overlapping ranges from 2,000 ohms to 50,000 megohms. The a-c power supply is regulated to make readings of the instrument independent of supply voltage variations.

This megohmmeter is very useful for moderately high resistance measurements such as leakage resistance of cables and insulating samples, locating defective insulation in electrical machinery, and particularly for the determination of moisture content of wood, paper and other products. By means of a panel switch it is convertible to use as a d-c vacuum-tube voltmeter for measurements up to 100 volts, d-c.

The Type 1861-A Megohmmeter is convenient to use, accurate and stable.

FOR MOBILE F-M RADIO

CRYSTAL UNITS

Widely used for all forms of mobile communications equipment, RH-7 plated erystals offer a standardization on one holder, with an option of pins or wire leads, to cover every frequency range.

Small, compact, and hermetically sealed, the gold vapor plated RH-7 is luilt to withstand rough treatment in every mobile radio application.

Standardize now with RH-7.

WRITE FOR BUIIJETIN RHC:X

REEVES $\frac{\sqrt{\frac{12}{7 n}} \text { HOFFMAN }}{}$

chirry and north streis - caruste, pa.

FIG. 2-Conventional circuit for single image alignment
wetted type contacts is recommended to provide the clean baseline and fast action required.

Single Image Alignment
A common arrangement for single image alignment is shown in block form in Fig. 2. Here the sweep generator uses sinusoidal modulation and a sinusoidal time base is used to produce a linear fre-quency-time pattern. With the modulation and time base voltages in phase, a single image will be seen, assuming no distortion, with the up and down sweeps coinciding at all points. With this arrangement only the a-c component of the rectified wave is viewed and no knowledge of the actual instantaneous voltage is obtained.

The practice of using a sweepwidth very wide in comparison to the pass-band of the network under test to obtain two points of assumed zero voltage ($F_{\text {max }}$ and $F_{\text {min }}$), may lead to a false picture of the gainfrequency trace. A more accurate picture of the steady-state characteristic of the network under test is obtained by using a narrow sweep-width and the baseline for accurate gain measurements.

Figure 3 shows the blanking unit in block form connected to the common arrangement of Fig. 2. The

FIG. 3-Addition of the Baseliner provides zero reference trace

offer you new flexibility and economy for multi-channel wire or radio systems

Federal's new UHF broad band radio link, for multichannel telephone and telegraph service, can be used as a complete communication system-or as an intermediate link in cable or open wire systems. It is especially designed to provide economical communication over mountainous, swampy, or soft terrain where pole lines are costly or impractical-and for spanning wide rivers, lakes, bays or inlets.

The FTL-13A radio link equipment has a total usable communication bandwidth from 200 to 60,000 cycles. It operates in the 890 to 960 Mc UHF band, offering the economy of low transmitter power and highly efficient directive antennas.

Write Federal today for complete information on this new type of communication system. Dept. H-113.

[^4]

AND THE SECRET IS SCMNEMEX:

Bendix-Scintilla* Electrical Connectors are precision-built to render peak efficiency day-in and day-out even under difficult operating conditions. The use of "Scinflex" dielectric material, a new Bendix-Scintilla development of outstanding stability, makes them vibration-proof, moisture-proof, pressure-tight, and increases flashover and creepage distances. In temperature extremes, from $-67^{\circ} \mathrm{F}$. to $+300^{\circ} \mathrm{F}$., performance is remarkable. Dielectric strength is never less than 300 volts per mil.
The contacts, made of the finest materials, carry maximum currents with the lowest voltage drop known to the industry. Bendix-Scintilla Connectors have fewer parts than any other connector on the market-an exclusive feature that means lower maintenance cost and better performance.
*REG, U.s. PAT. OFF.
Write our Sales Department for detailed information.

- Moisture-proof, Pressure-tigb - Radio Quiet - Single-piece Inserts - Vibration-proof - Light Weight or High Are Resistance Easy Assembly and Disassembly - Less parts than any other Connector Available in all Standard A.N. Contact Configurations

phase-shift network in the Baseliner is adjusted to make the switch ON time start with either $F_{\text {max }}$ or $F_{\mathrm{m} \ln }$. The switch time control is used to adjust the switch ON time to exactly 180 degrees.

With single-image alignment, the procedure is the same as where no blanking is used. With doubleimage alignment, the blanking is not used until alignment is complete. After alignment is complete the blanking is used and one image disappears, being replaced by the baseline. Absolute gain measurements may then be made.

External input connections allow the use of any switch rate from one to sixty cycles. As the switch contacts are single-pole double-throw, the unit may also be used as a high speed mechanical switch (up to 60 cps) to replace an electronic switch. It is most advantageous where one or more of the signals to be switched has a d-c component that it is desired to preserve.

Refereñce

(1) Frantz, The Transmission of a Frequency Mod IRE, Mar 1916 .

Photometer incorporating a magnetic amplifier has an indicating instrument requiring 5 milliamperes for full-scale deflection instead of a few microamperes as is usually required. The instrument, made by Electro Methods Ltd. (London, England) is thus quite rugged. The photosensitive element can be either a barrier layer or a photoemissive type capable of delivering 0.1 microwatt at 3.5 microamperes to the magnetic amplifier. The indicating instrument requires about 250 mi crowatts for full-scale deflection, and thus the amplifier provides a power gain of 2,500 ; it is linear within ± 2 percent of full-scale output over its operating range. A 5percent change in the $50-\mathrm{cps}$ power supply voltage produces only a 1 percent change in output current. Adjustments on the meter enable the zero and sensitivity to be set to standards; the meter is intended for comparison measurements and is calibrated in percent.

FOR
 AND

PHILCO

VISUAL ALIGNMENT GENERATOR

PHILCO 7008. The only instrument of its kind, combining all functions for complete, accurate visual alignments on Television and FM receivers. Includes 5 different signal generators and their associated controls; a complete oscilioscope with centering, gain, focus, intensity, phasing and blanking controls, and power supplies. Separate RF probe permits measurements of sensitive circuits without disturbance. Removable crosshatch screen for special ultra-short $3^{\prime \prime}$ cathode-ray tube. Compartment for storage of all cables, including RF probe.

PH|LCO MAKES TEST EQUIPMENT HISTORY

In creating precision instruments for radio measurements, in compact, portable, inexpensive form . . . Philco engineers have repeatedly achieved results considered impossible by experts. Especially so, in the new Philco 7008 Visual Alignment Generator for FM and Television . . . which combines in one economical instrument functions that can be approached only by a cumbersome, costly collection of conventional devices. The 7008 alone performs complete, accurate visual alignments . . . saves the test engineer's time . . . makes the job easier. In every unit of today's Philco Test Equipment line you will find equally important advantages.

WRITE FOR TECHNICAL LITERATURE TO: PHILCO CORP., PHILADELPHIA 34, PA.

NO. 7008 PHILCO VISUAL ALIGNMENT GENERATOR
NO. 7001 PHILCO ELECTRONIC CIRCUIT MASTER NO. 7070 PHILCO R.F. SIGNAL GENERATOR

NO. 5072 PHILCO CROSSHATCH GENERATOR NO. 7030 PHILCO DYNAMIC TESTER NO. 7019 PHILCO JUNIOR SCOPE

PHILCO SIGNAL

 GENERATORMODEL 7070. Range from 100 kc to $110 \mathrm{mc}-$ all fundamentals! No switching trouble at any frequency. Residual output less than 5 micro-volts! Model 7170 for FM also available.

PHILCO ELECTRONIC CIRCUIT MASTER

MODEL 7001. Uses exclusive vacuum tube voltmeter and electronic bridge circuit. All ranges and functions including 10,000 volts AC or DC. Probe available for RF measurements.

YOU CAN TELL THE QUALITY OF THE PLUG BY THE EQUIPMENT IT CONNECTS

AN3060 45° CONDUIT COUPLING used for connecting either flexible or rigid aluminum, brass or other conduit.

AN3064 BOX CONNECTOR used with AN3066 Conduit Coupling to form a termination inside conduit boxes or panel.

AN3068 CONDUIT COUPLING ADAPT ER is used to make a coupling between any two male threaded conduit fittings

Mid Continent Airline mechanic, S. M. Fabac, holding a Cannon Electric Type "K" Plug about to be installed in the instrument pane of an MCA airliner. Upper black arrow points to K-32S Receptacle. Major timesavers . say Mid Continent Airlines of Cannon Plugs

Canmon Type "AN" Receptacles on \mathbb{G}. M. Gianaini \& Co. High Pressure Transducers.

HIGH QUALITY and guarantees of performance have long been leading factors in the choice of connectors by manufacturers of fine electrical equipment. Whether in the Type "AN" Series or "K" (shown above) or any of the 11 other major type series, engineering skill and precision workmanship combine in Cannon Plugs to match the quality of the equipment they connect.

Unleas epecific engineering bulletins are required, ask for C-47 Condensed 'Catalog giving a mummary of the various type series and prices in many types. Address Dept I-120.

CANNON FLECTRIC DEVELOPMENT COMPANY

3209 Humboldt Street, Los Angeles. 31, Califoraia
Canade \& British Empire - Cannon Electric Co., Itd., Torento, Ontario o World Export
Agents (excepting Brifish Empire) frazar \& Hansen, 301 Clay St, San Francigeo 11, Calif.

THE ELECTRON ART
(continued from p 126

FIG. 3-Chart is used with field map
the $x=y$ line, termed the base line. The coordinates of the chart (parallels of the X and Y axes) cut the base line at 45 deg.

The right-hand edge of the chart is normal to the base line and contains the origin of the chart; this edge is termed the starting line. In operation, the starting line is placed tangent to the equipotential where the electron starts at a point distant $2^{\frac{1}{2}}$ from the origin, marked the starting point; the unit of distance is that used in plotting the chart.

A straight line is projected through the starting point along the direction of the initial velocity, intersecting the base line at point A. The ratio U_{1} / U_{0} or U_{0} / U_{1} whichever is greater is computed. If the field is accelerating ($U_{1}>U_{0}$), the coordinate line from A is followed upward and to the left to the intersection with the corresponding U_{1} / U_{0} line at B, then back to the base line at point C. A straight line is projected from C to the starting point. This line indicates the new direction of the electron as it

Now it's permanent magnets for better television reception. The permanent magnet shown above keeps electrons on the beam... eliminates blurring of the television picture. Once the set has been focused further adjustments are unnecessary. And, the use of a G-E permanent magnet results in greater efficiency since no heat is generated by the Cast Alnico ring magnet.
An outstanding feature of this ring magnet is the very thin wall section developed by G-E process engineers. Heretofore this was possible only with sintered magnets. Better permanent magnets as well as new applications are constantly being developed by G-E engineers.
' Perhaps you can improve the efficiency of your product with G-E permanent magnets. General Electric will be glad to work with you to improve your product. Greater flexibility of magnet design is possible with the many G-E permanent magnet materials now available. All are produced under rigid quality control methods. This assures you of receiving magnets of the highest uniform quality for your application.

Clear, sharp television reception with the new G-E Magnetic Focusing Assembly.
The magnetic field sel up by the assembly focuses the electron beam on the tellovision screen. The combined effect of the G.E Cast Alnico 6 permanent magnet and a small coil produces this magnefic field axial with the tube neck. The ring magnet supplies the bulk of the mag. netic flux while the coil acts as a vernier adjustment. The punched pole pieces collect the magnefic flux and direct it into a uniform radial paftern.

Outstanding advantages of this new assembly are increased efficiency and compactness. Defocusing due to line valtage fuctuation and warm-up drift is eliminated.

- METALLURGY DIVISION

1 CHEMICAL DEPARTMENT, SECTION CM-9
GENERAL ELECTRIC COMPANY
PITTSFIELD, MASS.
Please send me:
\square Bulletin CDM-1, "G-E Permanent Magnets."
Name
...- Title
Company
Mfrd
Products Mfrd
Address. \qquad
City
State
ELECTRIC

For Unusual and Difficult Requirements

Models

Have an ADC catalog in your file for ready reference. Write us about your special problems Foreign Inquiries Solicited. Cable address: AUDEVCO MINNEAPOLIS
the electron art
crosses the equipotential U_{1}. A line drawn on the field map parallel to this line will record this direction.

The point where the electron crosses U_{1} is found by locating the midpoint of $A C$, point D (which can be done by dropping a perpendicular from B to the base line). The straight line projected from D through the starting point to U_{1} locates the intersection of U_{1} by the electron. The construction is then repeated extending the path to another equipotential U_{2}, and so on.

If the field is retarding the only difference in the construction is that point B is above and to the right of A, and C is to the right of A instead of to the left. As the electron progresses through a retarding field, there comes a point where the construction cannot be carried out because the electron will not reach the next equipotential, indicated by the fact that the line drawn upward and to the right from A will not intersect the required U_{0} / U_{1} curve. In this case the line is brought to a point on the X axis. The value of U_{0} is divided by $U_{0} / U_{\text {, }}$ at this point to obtain the minimum potential that the electron will reach.

The equipotential so found contains the apex of the electron trajectory. The point of tangency to this contour is obtained by dropping the normal from the intersection of the X axis to D and drawing a straight line from D to the limiting equipotential through the starting point.

From its apex, the electron curves back to the starting contour U_{0}. The position and direction of the electron at U_{0} is found by inverting

FIG. 4-More steps give higher accuracy

The BETTER your components the 0 OWER- your costs...

Your production costs can be materially reduced-and your products simultaneously improved-by standardizing on STUPAKOFF CERAMICS! Dimensionally accurate, cleanly made, and mechanically strong, they speed assembly of your components. Highest quality in electrical properties
 insures top performance of your products.

Extensive experience in the design and manufacture of a wide variety of ceramic parts gives the Stupakoff organization a fund of information that can be useful to you in reducing costs and improving performance. We will gladly place our knowledge at your disposal.

 CERAMIC AND MANUFACTURING CO.

- Gears are the motivating force in such units as highly sensitive instruments, fishing reels, timers, tuning devices, or gear reducers. The smooth operation and often the success of these units depends on the quality of gears used.
- Quality-made gears reflect the ability and experience of their

FREQUENCY MODULLTED
 SIGNAL GENERATOR

MODEL 78FM
86-108 MC

Also Available For Other Frequency Ranges

1 to 100,000 MICROVOLTS

manufacturers of Standard Signal Generators Pulse Generators FM Signal Generators Square Wave Generators Yacuum Tube Voltmeters UHE Radio Moise 2 Fibid Strength meters Capacity Bridges Megohm Meters Phase Sequence Indicators Television and $F M$ Tes Equipment

Variable Oufput

With Negligible Carrier Leakage MODULATION: 400 cycle internal audio oscillator. Deviation directly calibrated: 0 to 30 kc . and 0 to 300 kc . Can be modulated from external audio source. Audio fidelity is flat within 2 db from de to 15,000 cycles. Distortion less than 1% at 75 kc . deviation.

The Model 78FM when used with Measurements Model M-275 Converter provides output in the IF ranges of 45 10.7 and 21.7 mc Circular on Reques

MEASUREMENTS CORPORATION boonton - new irssiv

THE ELECTRON ART (continued)
the construction whereby the electron was followed initially from U_{0} to the apex. For this purpose the position of the chart on the field map must also be inverted because the electron is now passing through equipotentials in the opposite direction. In general, more points are needed near the apex than in other regions to retain the accuracy

Figure 4 shows an electron path plotted by this method. Two paths have been plotted with different numbers of points to show the change in accuracy. For most purposes the construction with fewer steps will be adequate. If electrons enter the field at an initial emission velocity U_{B} volts, all contours on the map should be increased by U_{g}. The direction of emission velocity can be arbitrarily assigned.

Several other graphical methods have been described for plotting electron paths. The simplest and most widely used constructs the path in a succession of arcs of circles. ${ }^{3}$ Modifications of this method to overcome the disadvantage on large radii of curvature have been applied to the electron lens ${ }^{4}$ and to the cyclotron. ${ }^{5}$ Another parabolic method has been described elsewhere. ${ }^{*}$ Under the last reference the reader will find a wide survey of other methods.
(1) I. Langmuir and K . Blodgett, Currents limited by space charge between coaxial cylinders, Physical Review, 1374, 22, 1923 , also p 49, \%4. 1924 .
"Television", Zworykin and G. A. Morton, Television", p 73, John Wiley, New lork.
(3) H. Salinger, Tracing electron paths in electric fields, ELECTRONics, p 50 , paths in electric fields, Electronics, p 50 Oct. 1937
(4) K. Spangenberg and L. M. Field, Some simplified methods for determining the optical characteristics of electron lenses, Troc, \mathbf{W}. Parkins and F C 1942. den. A graphical method for determinine particle trajectories Iovrnal of a plice Physics. p 447, June 1946.

Electronic Circuit has
 Logarithmic Response

By A. W. Nolle
Department of Physios
University of Texas
Austin, Texas
INSTRUMENTS for measurements in communications and acoustics are most useful if their indicating meters have uniform decibel scales; that is, if they are logarithmic instruments. Such instruments are more versatile if the voltages that they develop are logarithmically re-

In every type of home radio SYLVANIA tubes speak for themselves

Admiral

ABVIS

Bendir
 Radio

 EROSHEYEmerson Radio ESPEY

Fannswouth GLOBE hallicrafters

Miniatures, standard types, and famous Lock-Ins are all included in the Sylvania line.

1
In the leading makes of home radios - from portable models to console combinations you'll find Sylvania tubes helping to assure fine reception and lasting service. The quality of Sylvania tubes has made them famous throughout the world.

For information on Sylvania tubes, see Sylvania Distributors, or write Radio Tube Division, Emporium, Pa.

radio tubes; cathode ray tubes; electronic devices; fluorescent lamps, fixtures, Wiring devices; electric light bulbs; photoflash bulbs

Motorola

 Olympic PHILCORegal Silvertone Sparton STROMBERG-CARLSON Temple TR $A V-L E R$

Westinghouse

the electron art
(continued)
lated to their inputs, instead of the uniform decibel scale being obtained by modification of the meter movement. The output voltages can then be applied to recording instruments or to oscilloscopes, thus extending the forms in which the logarithmic presentations can be made.

Conventional circuits for this application use nonlinear components such as pentode amplifiers, ${ }^{1}$ gridcathode rectification in triodes, ${ }^{2}$ and copper-oxide rectifiers. ${ }^{3}$ The circuit described herein uses the exponential characteristics with time of a resistance-capacitance circuit, thus obtaining logarithmic response from an inherent property of the circuit rather than from an approximate characteristic. The exponential response to square-wave exicitation of R-C and R-L-C circuits is familiar and need not be reviewed here.

Basis of Operation
The exponentially decreasing output voltage E_{R} of, for example, an R -C circuit is $E_{R}=E_{0} \exp -t / R C$ where E_{0} is the initially applied voltage. the time T_{κ} required for the output to decay to an arbitrary value E_{κ} is $T_{\kappa}=R C\left(\ln E_{0}-\ln E_{\kappa}\right)$. This equation is the basis for the

FIG. 1-(A) Response to a repetitive square wave, and (B) sampling action

Type BH6 is evailable up to 100 MC and can be furnished to meet all standard specifications, military or commercial This means your design considerations can be simplified by elimination of unnecessary multiplier stages. Write for information covering latest recommended oscillator circuits and associated crystal data.

IMPORTANT FACTS TO KEEP HANDY

PLAX POLYETHYLENE SHEET AND FILM

Stretches without tearing
Even at Sub-zero Temperatures
(Elongation, 77° F, 300-500\%)

WATER-VAPOR RESISTANT
(Water absorption, 24 hrs., 0.01\%)

high dielectric strengit
(Dielectric constant of 2.3 at frequencies of 10^{3} and 10°)

CHEMICALLY-RESISTANT
(Not affected by acids, alcohols)

Chemically-inert
(Non-toxic. odorless and tasteless)

ABOVE ARE A FEW of the many desirable characteristics that make for apparently limitless application possibilities. The possible uses of Plax polyethylene sheet and film have been barely explored. As a leading supplier of plastics in many forms, Plax can be of real help in exploring the application of this and other materials to your product. Please write Plax for complete details.

P. O. BOX $1019 *$ HARTFORD 1, CONNECTICUT In Canada - Canadian Industries, Ltd., Montreal

Do you have This IIelpful Helipot Duoudial Catalog?

Do you have complete dafa

on the revolutionary new HELIPOT-the helical
potentiometer-rheostat that provides many times greater
control accuracy af no increase in panel space?... or on the equally unique DUODIAL that greatly simplifies furns-indicating applications? If you are designing or manufacturing any type of precision electronic equipment, you hould have this helpful cafalog in your reference files...

It Details - He precision onomsmertion reatures found in the HELIPOT,.. the centerless ground and polished stainless steel shafts-the double bearings that maintain rigid shaft alignment-the positive sliding contact assembly-and many other unique features.

If IIIUStrates $=$ dexciber ond gives ton dimenen sional and electrical data on the many types of HELIPOTS that are available . . . from 3 turn, $1^{1 / 2^{\prime \prime}}$ diameter sizes to 40 turn, $3^{\prime \prime}$ diameter sizes . . . 5 ohms to 500,000 ohms . . . 3 watts to 20 watts. Also Dual and Drum Patentiometers.

It Describes

and illustrates the various special nelipot designs available-double shaft extensions, multiple assemblies, integral dual units, etc.

turns-indicating dial that is ideal for use with the HELIPOT as wall as with many other multiple-furn devices, both electrical and mechanical.

If you use precision electronic components in your equipment and do not have a copy of this helpful Helipot Bulletin in your files, write today for your free copy.
the Helipot corporation, 1011 mISSION St. south pasadena 2, calif.
logarithmic circuit. If either the applied voltage or the arbitrary smaller voltage is made a constant of the apparatus, the partial decay time T_{k} becomes a linear function of the logarithm of the other voltage. In practice it is simpler to fix E_{κ} and to use $E_{\text {, }}$ as the variable to whose logarithm the instrument responds. The instrument is then designed so that a measurement is made of the time interval for the voltage under test to decay to a standard value. This one measurement is sufficient to give the logarithm of the amplitude of the voltage.

Practical Circuit Design
Because most voltages that are to be measured vary with time and because continuous indications are usually desired, it is necessary to repeat the process continuously. When this is done, a succession of time measurements is delivered to the final indicating device in such electrical form that an averaged indication of its logarithmic level is always presented.

The repetitive action can be produced simply by applying a square wave whose amplitude is proportional to that of the input signal to an R-C or R-L circuit. The output from an R-C circuit is shown in Fig. 1A in relation to an applied square wave of amplitude E_{κ}. Because the capacitor does not charge completely each half cycle, the peak output voltage is $E_{6}=E_{s}(1+F)$ where $F=\tanh (T / 4 R C), T$ being the period of the applied square wave. At the end of each half cycle the voltage has decayed to $E_{s}(1-F)$. In practice the logarithmic response circuit must be designed so that F is nearly equal to unity if differences of the order of 20 db are to be registered. Thus the peak output voltage of the R-C circuit is essentially equal to the peak-to-peak amplitude of the square wave.

The time required for the output voltage of the R-C circuit to decay to the fixed value E_{K} is T_{κ}. Measurement of T_{κ} will give the correct indication of the logarithmic amplitude of the square wave provided that the peak voltage $E_{s}(1+F)$ is (1) greater than the reference voltage E_{κ} but (2) small enough that

By way of illustration ... I. Du Mont transmitter unit utilizing Du Mont cathode-ray tubes as indicators 2. Did Mont television field equipment for picking lp remote programs. 3. Scientific research in medicine, aided by Du Mont oscillography. 4. Du Mont Television Transmitting Control Console utilizing Du Mont cathode-ray fubes. 5. Du Mont Type 208-B oscillographs used in nuclear research. 6. Du Mont Type 280 oscillograph for precision measurements of television waveforms utilizing the TYpe 5RP-A high voltage tube. 7 Typical scene in mosi radio repair shops, where servicemen make their diagnosis with a Du Mont Type 274 oscillograph. 8. Du Mont Chatham table set with a 12 inch Du Mont picture tube for clear, bright, truly superlative pictures 9. The symbol of quality cathode-ray tubes - always your best buy

- Yes, it's all in the tube! No matter what the end use in all fielcs of radio-electronics - you'll find the omnipresent cathode-ray tube - the Du MONT cathode-ray tube.

If it's nuzlear research, fransmitter signal studies, television monitoring, high-speed-transient oscillography, television receivers, examination of mechanical phenomera, medical research, production testing, or a multitude of other applications, experience teaches
that ONL.Y the cathoce-ray tube is always adequate as an indicating and measuring device.
And among the makers of cathode-ray tubes. Du MONT is foremost by virtue of many years" ex perience and ever-continuing pioneering.
So it is wise, always, to specify DU Mont when ordering a new or when replacing an old cathode-ray tube. And remember, only Du Mont makes a full range of cathode-ray tubes.

- allen a du mont laboratories, ine.
- Literature on request

> The Simple Solution to positioning and control of variable elements

The principle problem with variable elements in designing electronic equipment is-location. You want to place them for optimum circuit efficiency, easy assembly and wiring. At the same time you want to locate their controls for convenient operation and harmonious panel arrangement.

You can do both by using S.S.White remote control type flexible shafts to couple the elements to their dials. These shafts, specially designed for the job, give you smooth, sensitive control in any length. They're available in a wide range of sizes and characteristics.

WRITE FOR THIS FLEXIBLE SHAFT HANDBOOK

In its 260 pages you will find all the information and technical data you need to work out applications. A free copy will be mailed if you write for it on your business letterhead and mention your position.

THE S. S. WHITE DENTAL MFG. CO. DPT, EIO EAST GOTh ST.. NEW YORK DIG, N. Y. DEPT, E 10 EAST AOPh ST.. NEW YORK IG, N. Y. -
 small cuivino amo animoing ioors. spicial bormula rualif

One of Americais AAAA Industrial Enterterises
the interval T_{κ} is less than half a cycle.

Figure 1B shows a method for obtaining a signal indicative of T_{ε}. An indicator circuit is so arranged that current of constant amplitude flows through an indicating instrument, such as a d-c meter, as long as the output of the $\mathrm{R}-\mathrm{C}$ circuit is greater than E_{K}. The output of the indicator circuit is thus a pulse train modulated in width in proportion to the logarithm of the amplitude of the initial square wave. The average value of this pulse train produces the proper steady deflection of the indicating instrument. If the calibration of the instrument is to remain fixed, it is essential that the period of the square wave be constant.

There are several other practical considerations: The square-wave generator feeding the R-C circuit must have a constant internal resistance. Full-wave operation can be obtained if the indicating circuit operates on both halves of the square wave, responding to E_{E}, then to $-E_{E}$. The meter deflection per db can readily be controlled by varying the resistance of the $\mathrm{R}-\mathrm{C}$ circuit. The absolute level of the meter scale can be controlled by the amplification of the input signal and by the magnitude of the bucking current through the meter, which should be large enough that, in the absence of signal input, the indicating element will be off scale so as to avoid ambiguity.

A Specific Circuit

Figure 2 shows the diagram of a specific circuit which has a logarithmic range of more than 20 db . This circuit is designed for measuring alternating voltages and therefore is provided with an a-c amplifier stage and a balanced voltagedoubler rectifier. This rectifier converts the signal into direct voltages at A and B that are positive and negative respectively by equal amounts as compared to the average potential at D.

A limiting amplifier, excited by the high voltage from the power transformer, develops a square wave at D whose peak-to-peak amplitude closely equals the voltage difference between A and B because of the action of the limiting diodes. A variable bias current is obtained

OFF THE SHELF SERNIGE!

ELECTRO-TFCH Equiment $^{\text {m }}$ ELECTRICAL INSTRUMENT HEADQUARTERS

Request
Gatalog No. 48

The Largest, Most Complete Stock

\qquad of Electrical Instruments

Here's your simple guide for every type of electrical instrument and control from ammeters to tachometers. No need to check through dozens of catalogs. No need to make telephone calls by the hour. And no need to spend your valuable time shopping from house to house or clogging your office with salesmen. Here within the covers of this catalog are 64 pages jam-packed with over 3,000 instruments and controls...fully described, illustrated and priced. Just to give you an idea of the wide variety of types in this catalog, we list a random dozen:
FLUXMETERS
MEGGERS
AUDIO VOLTMETERS
OSCILLATORS
PYROMETERS
DECADES

AMmETERS
 BRIDGES
 ELECTRONIC COUNTERS
 APPLIANCE TESTERS
 ANALYZERS
 VOLTMETERS

Only Electro-Tech, the world's largest jobber of electrical, electronic and mechanical instruments and controls can offer you this exceptional service. Write today for Catalog No. 48, the handy guide for instrument and control buyers. A copy is waiting for you. No obligation, of course.

Here's the sturdy little fellow you've been looking for-it lets you design for compactness. Thinnest switch made, it is no thicker than an ordinary match book and only slightly larger than a postage stamp-yet it delivers long, dependable service with the utmost accuracy. ACRO'S exclusive rolling spring action is the key to its superlative performance-the reason why it's the choice of hundreds of manufacturers. Code 2MD3-1A approved by Air Materiel Command. Write for further details.

Coin Model M with No. A-22 Wire Leaf Actuator for coin operated machines. Length and form of wire can be made to suit job. Underwriters' Lab.Inc. Insp. 3 Amps. 125 V., 3 Amps, 250 V., A. C.

Model M fitted with No. A-18 Leaf Actuator Brackel. Also furnished with Roller Leaf, No. A-18M. Underwriters' Lab., Inc. Insp. 10 Amps, 125 V., 5 Amps, 250 V., A. C.

THE ACRO ELECTRIC COMPANY

FIG. 2-Circuit diagram of instrument hav. ing full-scale response of 20 db
from G to assure that both the rectifying and the limiting diodes operate only within their linear regions. This bias is desirable to avoid operation of the diodes in their lowcurrent regions where there is considerable variation of plate resistance, thus improving the linearity of the circuit at low levels. The rectifier-limiter circuit is adjusted so that changes of input level produce very little variation of direct voltage level at D.

The portion of the circuit de-

PLASTICON CPCACITORS

HI VOLT POWER
 SUPPLIES

Besigned to transform 118 SAC to high volt－
ace－low current DC age－low current DC
por use lu radiation counters，oscillos－ copes，（lust precipita－ vision sets，specto－ grampic analysers． etc．Hi Volt Power
＊＇pplies are selt－con－ laed in nermeticaly

Type ASG are Plasticon A dielectric－silicone fuld impregnated capacitor elements in hermetleally
sealed yluss tubes．Temperature range－ 60°（）to sealed yass tubes．Temperature range－ 60° ，to
$+125^{\circ} 0$ ．The smandest and lightest ligh voltage capactors made Type ARG are idea for De and low frequency AC applications

PHOTOFLASH CAPACITORS
For the best in photoflash capaci－ ors，specify l＇LASTICONS forfaster discharge and more light．Type
Aocof are the tightest photoflash capacitors made．more flexible to use．safer and more econonical than single high capacitance large block

PHOTO FLASH

PHOTOFLASH CAPACITORS				
For the best in photolash capaci－ Tors，speceify PLASTICONS Por taster discharge and more light．Type AOCOE are the tightest photoflashcupacitors made．more flexible to use．safer and more econonical than single high capacitance large block．				
PHOTO FLASH				
Cat．No．		$\underset{\substack{\text { Pr，} \\ \text { ch．} \\ \text { v．}}}{\text { d }}$	${ }_{\text {dimen }}^{\substack{\text { mions }}}$	Your
Aocoezez3	${ }^{7.6}$	22：50	4x2x1／4＂	\＄2．92
${ }_{\text {AOCOESM2 }}$	4	${ }^{3000}$	$4 \times 2 \times 1$ 19＂	3.00 3.20
	${ }_{15.1}^{12}$	${ }_{5}^{4000}$	${ }_{4 \times 2 \times 14^{\prime}}$	3.20 3.60
aOCE4M12	100	4000		
AOCE4M24	200	4000	${ }_{8 \times 4}{ }^{9} 6 \times 3$	38.

SPECIAL PLASTICONS

Taking advantage of the wide variety of plastic film dielectric character－ istics，Plasticons are engincered to neet many special applications．W can furnish capacitors for $200^{\circ} \mathrm{C}$ for pulse network duty；close tolerances ultra high resistancre．Send us your aper－ifications

GLASSMIKES ASG

$$
1 \ll
$$

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	VIDC：	1）imenstons	Your
PS－1	2400		\＄11．14
PS－2	2400	3^{5} 的 $\times 3 \% \times 5 \times 1 /{ }^{\prime \prime}$	15.14
PS－5	5000		38.22
PS $\mathbf{1 0}^{10}$	10000		58.80
PS－ 30	30000	$7 \times 7 \times 7$＂	147．c0

can operate under more severe con
ditions，

INDUSTRIAL and TRANSMITTING

Cat． No．	$\begin{aligned} & \text { Cap. } \\ & \text { Mft. } \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \text { DC } \\ & \hline \end{aligned}$	Dimensions	Your Cost
AOC6C1	1.0	do	$21 / 81^{3 / 4} 1^{\prime \prime}$	\＄2．19
AOC6C2	2.0	8.00	$2^{3} 4^{4} 11^{3} 11^{\prime \prime}$	2.65
AOC6C4	40	6300	31／2 $21 / 21^{3} 6^{\prime \prime}$	3.30
AOC6C8	Q． 10	600		4.98
AOC6C10	10.0	Fion	$4533^{3 / 4} 1^{1 / 2}$	5.60
AOCIM1	1.0	1.000	$233^{8} 10181^{\prime \prime}$	2.37
AOCIM2	2.0	1.000	$4{ }^{4} 8181^{\prime \prime}$	2.59
AOCIM4	4.0	1.000	44 $23 / 1$ $1^{3} 16^{\prime \prime}$ 18	3.86
AOCIM8	8.0	1.000	$453^{3 / 4} 1^{3} 4^{\prime \prime}$	5.43
AOCIM 10	10.0	1.000		6.27
AOC2M05	0.5	2.000	$2^{3 / 8} 1^{33} 3^{3 \prime} 1^{\prime \prime}$	2.87
AOC2M1	1.0	2.000	$31 / 21^{1 / 4} 1^{\text {t }}$	3.47
AOC2M2	2.0	2.1000	$3^{31 / 2} 21 / 2181^{3} 16^{\prime \prime}$	4.02
AOf：2M4	4.0	2.000	$31 / 23141^{3} 1^{\prime \prime}$	5.43
AOC3M1	1.0	$3.0{ }^{\prime} 10$	$4^{4} 231 / 1^{3} 16^{\prime \prime}$	7.12
AOC3M2	2.0	3.010	$433 / 4{ }^{1 / 4 \prime \prime}$	9.05
AOC3M4	4.0	3.00 \％	$45 / 833124^{\prime \prime}$	12.52
AOC4M1	1.0	4.000	$4 \quad 33 / 411 / 4$	16.17
AOC4M2	2.0	4.000		19.40
AOC4M4	4.0	4,000	$4 \quad 33 / 44^{3} 16^{\prime \prime}$	29.66
AOC5M1	1.0	5.100	$4{ }^{4} 31 / 41^{3 / 4 \prime \prime}$	19.40
AOC5M2	2.7	5.000	$31 / 231 / 44^{181} 1{ }^{\prime \prime}$	24.70
AOC75C1	1.0	7.500	$31 / 233 / 44^{19} 16^{\prime \prime}$	29.11
AOC10M1	1.0	10.000	$4334^{4}{ }^{\prime \prime}$	51.74

DC OVALS

Cat．No．	$\begin{aligned} & \text { Cap } \\ & \mathrm{Mff} . \end{aligned}$	$\begin{gathered} \text { Volts } \\ \text { C. } \mathrm{C} . \\ \hline \end{gathered}$	Dimen－ sions	Your Cost
AOCO6C：2	2.1	600	$\underline{2} \times 21$	\＄2．59
AOCO6C4	4.11	600	421112	3.11
AOCOMM1	1.0	1.000	$\begin{array}{llll}3 \times 4 & 114\end{array}$	2.26
AOCO1M2	2.0	1.000	3 将 $214 *$	3.04
AOCO3MO1	0.1	3.000	2 㿟 2114%	4.46
AOCO5MO1	0.1	－5，000	$23 / 32^{1} 14{ }^{\prime \prime}$	8.28
AOCO5MO25	0.25	5，000	$31 / 22^{11 / 4}$	9.05
AOCO5M05	0.5	5.000	$45 / 82114$	10.88
AOCO8M005	0.05	8.001	$21 / 211 /{ }^{1}$	8.93
AOCO8MO1	0.1	8.000	3138114	9.83
AOCO1OMOO5	0.05	10，000	$33 / 2211 / 4$	11.32

LABORATORY CAPACITORS

Type LAG（Glassmike style）and Type LAC sorption of any eapacitor matle．Residual charge is $.01-.02{ }^{\circ} \mathrm{O}$ ．Dissipation factor at 1 MN is .0002 to 0003 ．（apacitance and Q is constant fromi DC per microfarad．Stantard capacitance tolerance is \pm ，Tybe La umis are used for timing and integrating circuits．

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Cap． Mfd．	Dimensions	Your Cust
LAG101	． 0001	${ }^{19} 6 \times 13,10^{\prime \prime}$	\＄1．76
LAG201	． 0002	${ }^{19}$ 攵13180	1.76
LAG501	． 0005		1.76
LAG 102	． 001	${ }^{19}$ 囱 $1^{13} 16^{\prime \prime}$	1.76
LAG202	． 002		2.06
1．AG502	． 005	3×13＂	2.88
LAG103	． 01	$3 \times 13{ }^{\prime \prime}$	3.94
LAG203	． 02	$3 / 4 \times 214$	5.12
LAG503	． 05	${ }^{29} 6 \times 2 \times 14$	6.17
LAC104	． 1	21／513／4 $\times 1$＂	9.23
LAC204	2	$21 / 4 \times 21 / 2 \times 13{ }^{3}{ }^{\prime \prime}$	9.82
LAC504	． 5	$4 \times 23 / 2 \times 1$／8＂	12.35
LAC105	1.	$4 \times 33 / 4 \times 14{ }^{\prime \prime}$	18.87
LAC205	2.	$4 \times 33 / 1 \times 24{ }^{\prime \prime}$	30.16
1，AC505	5.	$6 \times 3364{ }^{10}{ }^{\prime \prime}$	57.98

The abore condensed rersion of the Plasticon Line will appear in the new catalogs of leading clectronic distributors．Plasticorts are manufactured by Condenser Products Company，Chicago siz．Illinoin

Fishing reel gears must operate smoothly at a speed of 3000 revolutions per minute or more, when a cast is exesuted. These gears must also withstand the stra n of hauling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed ard velvety smoothess in one direction-strenglh and durability in the other.
Instruments and machines have individual gear problems. For over a quarter of a century, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to $60^{\prime \prime}$ in diameter for manufacturers in many diversified industries.
Aircraft controls, dental drills, electric clocks, gauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartheat of Quaker City Gears. Your gear problem is our business, our large productive capacity is al your service.
your inquiries will receive prompt attention
The heart of the Outdoorsman Castomatic reel illustrated above is but one of many gear trains developed by our engineers and produced in our fully equipped plant.

THE ELECTRON ART
scribed thus far generates a con-stant-frequency (60 cps) square wave whose amplitude is proportional to that of the input signal. This square wave is amplified and applied to the R-C circuit. The effective resistance of this circuit includes the generator impedance contributed by the amplifier stage. Resistance R is adjustable so that the desired scale factor can be obtained on the indicating instrument. The circuit is terminated on a low-impedance bleeder that provides the reference E_{K}. The values shown produce a $20-\mathrm{db}$ scale on a 1 -ma meter ; a $30-\mathrm{db}$ scale can be obtained by reducing the 30,000 -ohm fixed resistor to 15,000 ohms and adjusting E_{k} to about 5 volts.

The output of the R-C circuit feeds a two-stage directly coupled amplifier. In the absence of signal the reference voltage E_{k} at the grid of the first stage acts to cut off the second stage. The plate of the second stage is then at a higher potential than the indicating instrument circuit at H and no current passes the diode. When signal is present, the second stage of the d-c amplifier conducts whenever the output of the R-C circuit is less than its average value by at least E_{K}. During these intervals, constant current passes through the meter M. Neon bulb N regulates this constant current. Control X determines the magnitude of reverse meter current employed to place the zero off scale; it may be used as a fine adjustment to set the end of the scale to correspond to a specified input voltage.

Response of the Meter

The frequency response of the instrument and its absolute sensitivity within gross limits are determined by the input amplifier, which is conventional. The fullscale indication of the instrument as shown in the circuit diagram corresponds to an input of about 3 $r \mathrm{~ms}$ volts.

With the instrument adjusted for a $30-\mathrm{db}$ scale, it is accurate within 0.1 db over the top 20 db . If the linearity control is properly adjusted, this accuracy can be extended over the full-scale range. Thus, while it is possible to secure substantially ideal performance over a $30-\mathrm{db}$ range, this result is

THE ELECTRON ART
(continued) only obtained by careful correction of the rectifier and limiter diodes. Therefore the circuit is shown for a $20-\mathrm{db}$ scale for which critical adjustments are unnecessary. The sensitivity of the instrument to line voltage changes is 0.07 db per volt, which represents a uniform scale drift.

Design Limitations

The serious source of error is the rectifier-limiter circuit. The portion of the meter following the rectifierlimiter circuit of Fig. 2 is accurate within $\pm 0.2 \mathrm{db}$ over a $30-\mathrm{db}$ range.

If it were required to redesign the meter for a $30-\mathrm{db}$ range, an input stage having a larger output capability than the 6SJ7 would be necessary so that the rectifiers and limiters could be operated farther into their linear ranges. If this were done, the square wave would have to be attenuated before going to the grid of the 6 V 6 power stage.

The maximum useful range of the logarithmic circuit, which begins after the limiter diodes, is determined by the finite on-off sensitivity of the d-c amplifier. This sensitivity is of the order of 0.1 volt, and must be small compared to E_{K} in order that sharply defined pulses be produced. Thus there is a lower limit to E_{π} of about 3 volts. If the working range of the circuit is to be as much as 40 db , the peak-to-peak undistorted output of the square-wave amplifier must be greater than 3 volts by the 40 db plus a safety margin of about 3 db , or 400 volts peak-to-peak. Because of this requirement, a reasonably portable instrument is limited to about 30 db full scale.

The R-C filters between the rectifiers and the limiters are important to prevent slow periodic variations of the instrument indication at certain input frequencies. When the input frequency is nearly a multiple of the $60-\mathrm{cps}$ square wave, ripple in the rectifier output is sampled in stroboscopic fashion in the limiting process. Thus a 10 -percent ripple component in the rectifier output could produce a cyclic 1-db variation in the instrument indication.

These R-C filters are the chief factors in limiting the speed of response of the instrument; the values for them shown in Fig. 2 are commensurate with the mechanical

For Inverting D. C. io A. C. . . .
Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equipment from D. C. Voltages in Vehicles, Ships, Trains. Planes and in D.C. Districts.

aUto radio VIBRATORS

A Complete Line of Vibrators
Designed for Use in Standard Vibrator Operated Auto Radio Receivers. Buill with Precision Construction, feafuring Ceramic Stack Spacers for Longer Losting Life.
new desions American Telievision \& Radio Co. NEW LITERATURE
See your jobber or unite factory

SURVIVAL OF THE FITTEST

MEANS FINER SPEAKERS FOR YOU

ONLY the fit survive the stern tests our G-E speakers meet on the production lines. At frequent intervals speakers are picked from the lines and subjected to rigid tests to assure the maintenance of high standards in the manufacturing process. Test after test is applied to single elements,

combinations of elements and to the final, completed units. The test shown here is only one of the many that General Electric speakers face as they roll down the production lines. This unceasing care in building speakers of quality builds confidence and customer satisfaction.

Write today for information on General Electric quality speakers to: General Electric Company, Electronics Park, Syracuse, N. Y.
performance of usual milliammeters. If more rapid response were desired for operation of a highspeed recorder or for presentation of the results on an oscilloscope, it would be necessary to redesign the instrument for operation at a higher square-wave frequency. This change, although increasing the circuit complexity, would produce a faster response by providing more rapid sampling and by permitting reduction of the time constants of the R -C filters.

Acknowledgements

The author is pleased to acknowledge the cooperation of the Ordnance Research Laboratory of the Pennsylvania State College, with whose facilities a preliminary test of the principle of the logarithmic circuit described above was made, and of the Electrodyne Company of Boston, to whom development rights have been assigned.

[^5]
SURVEY OF NEW TECHNIQUES

Propagation measurements conducted at the National Bureau of Standards under the direction of K. A. Norton indicate that atmospheric ducts may increase the range beyond line of sight of $f-m$ broadcasting stations operating in the 88 to 108 mc band. The effect is most pronounced in the early morning and reaches a maximum during the summer months. (Ed. Note: Listeners have begun reporting reception of distant f-m stations now that the summer is here.) The increased transmission is caused by changes in refractive index in the region from 10,000 to 20,000 feet of air strata of different temperatures and hence different densities. The measurements also indicate that increased transmitter antenna height is more effective in increasing range than increased power. For rural areas, receivers that definitely limit with signals of five
microvolts per meter will not be affected by natural noise, except possibly strong local lightning, For the most part fading at great distances is caused by multipath effects.

Thickness of cigarette paper can be controlled to within 0.2 micron $\left(0.2 \times 10^{-12}\right.$ meter) by a beat-frequency capacitance meter. The method, being applied in French factories manufacturing paper having a thickness of about 0.001 millimeter, is based on developments described by J. Coulon in his doctor's thesis at the Faculte des Sciences de l'Uinversite de Toulouse, France. The thesis reports methods of stabilizing the frequency of crystal oscillators.

Linear electrostatic accelerator, designed to yield positive ions with energies up to 12 mev , will be built at the University of California Los Alamos Scientific Lab. Although other types of accelerators capable of higher energies are operating or under construction, there is need in nuclear technology for precise measurements within the range for which this new machine is designed; beam energies will be controllable to a precision of one-tenth of a percent (orbital accelerators are accurate to only about two percent). The flexibility of the energy controls will permit experimenters to select particles and target materials to produce monoenergetic neu-

Housing for accelerator accommodates 150. ton crane (A) to lift pressurized generator (B) so that vital parts can be adjusted, stack of annular steel plates and insulators (C) inside which beam is formed and accelerated loward deflecting magnet (D) that directs beam into target room (E) where nuclear reactions will be produced

FOR PRECISION TUBING WHATEVER THE ...

SHAPE vour dectorame require metal-shielded wire or seamless tubing for pointers, Bourdon gauges, antennas or other uses - Precision Tubing is formed or flattened to the shape you specify with Nth degree accuracy . . . ready for immediate application.
SIZE
Precision Tubing is available in outside diameters of $0.500^{\prime \prime}$ to $0.010^{\prime \prime}$ wall thicknesses of $0.035^{\prime \prime}$ to $0.0015^{\prime \prime}$. Through continuous hydrogen atmosphere annealing furnaces and tungsten carbide tooling, dimensions you specify within this range are held to extremely close tolerances.

ALLOY

 num alloy used to acquire high strength-toweight ratio for instrument pointers, the copper alloy for metal-shielded wire, brass, nickel, or any other non-ferrous alloy-Precision research subjects non-ferrous metals to rigid tests. These assure reliable operation even under extreme conditions. Controlled production cycles make possible correct temper, a clean smooth finish, and the precise uniformity so essential to long life.WHEN PRECISION COUNTS... COUNT ON PRECISION
pradion rube mo

Factory: 3824-26-28 TERRACE STREET, PHILADELPHIA 28, PA.

Do you need a DRY BATIERY you can't find?

There is a SPECIALTY DRY BATTERY for your special need

If you are looking for hard to-get or special dry batteries, write us. We design, create and manufacture to your requirements.

SEND FOR THIS FREE CATALOG

SPEGIALTY BATTERY GOMPANY
 A SUBSIDIARY OF THE RAYOVAC RAY-O-VAC COMPANY

MADISON 4, WISCONSIN

ONE OF A SERIES

BALANCE WEIGHTS

 NTSTRST RELIABILITY...BALANCE WEIGHTS of helical type phosphor bronze, formed in a manner which eliminates slipping or shifting, are used to balance the moving element. All ranges AC and DC available in $2 \frac{1}{2}$ " $, 3 \frac{1^{\prime \prime}}{2}, 4 \frac{1}{2}{ }^{\prime \prime}$ rectangular or round case styles and are guaranteed for one year against defects in workmanship or materials. Refer inquiries to Dept. F98.

CARBY

MANUFACTURERS OF PRECISION EYELETS and MULTIPLE PLUNGER PRESS PRODUCTS
The Carby Manufacturing Company, spe cialists in small diameter and long draw. through years of experience, engineering "know how" and excellent production facilities, can accurately produce to the most rigid requirements every electronic requirement for

- GROMMETS
- EyElets
- SOlderless lugs
- TERMINALS
- ferrules

EYELETS: Eyelets can be produced winh square, hexangular or round barrels with heads to match or in any wanted comtbination.
METALS: Available metals in 006 to .032 AWG. Accurately fabricated on eyelet machines or by plunger press to meet any requirements in

ALUMINUM COPPER
 ERASS STEEL

 NICKEL-SILVERDELIVERY: Prompt delivery is a speciality of Carby. Our production facilities, modernly managed, is at your command to meet any reasonable requirement.
STANDARD OR MADE TO SPECS . . .
Many standard shapes in stock but we specialize in fabricating special needs. Send in your blueprints for prices, deliveries, and engineering advice.

CARBY MFG. CO.,INC.

62 COTTAGE PIACE WATERBURY 5, CONNECTICUT
tron beams of any energy from 0.03 to 30 mev . The accelerator is basically a pressurized version, as developed by R. C. Herb of the University of Wisconsin, of the Van de Graaf generator. The building in which it will be housed is to be located at the base of a cliff, which will give lateral bracing to the tower and serve as a radiation shield for the control room and general laboratory that will be located atop the nearby mesa.

LABORATORY RATS carrying miniature radio receivers are being used at the University of California, Los Angeles, by Dr. J. A. Gengerelli. The object is to study learning and retention traits of the rats. The rats are enclosed in mazes through which they can run freely. By means of a radio transmitter tuned to the frequencies of the rats' receivers, electrical impulses can be

Dr. Gengerelli adjusts transmitter that sends impulses to tiny crystal rectifier placed under skin covering rat's skull. Note antenna wire projecting above rat
delivered to their brains. In this way traits that might be influenced by electrical shock can be studied without the hindrance of long wires connected to the rats.

A group of cemeteries in Chicago will use a $160-\mathrm{mc}$ Motorola central station and a radio dispatcher to help in the maintenance of extensive grounds and the smooth handling of funeral processions.

T he model illustrated is a six pole, six position circuit selector with standard mounting. Ledex Circuit Selector Switches are also available from stock in the following models; three pole twelve position, and six pole six position, all with either standard or panel mounting. Where quantity requirements justify, special selectors for specific applications will be engineered and priced by quotation.

The rotors of Ledex Circuit Selector Switches are powered by Ledex Rotary Solenoids. This compact, powerful solenoid is converted to a rapidly oscillating motor by means of a commutating switch and return spring. Provisions are made to operate Ledex Circuit Selector Switches from any standard power source.

Precision manufacture to exacting specifications and individual operating tests are your assurance of dependable, longlife service under severe operating conditions.

Wherever industrial electronic equipment is sectionalized, Amphenol AN connectors serve with efficiency and economy to provide quick connection and easy disconnect for servicing or movement.
They save money by permitting associated wiring for one or many circuits to be prefabricated, thus electronic devices may be tested at the factory and instantly connected for use on arrival. This greatly simplifies installation and servicing procedures.
Available in five major shell designs, each of which accommodates over 200 styles of contact inserts, Amphenol AN connectors handle voltages up to 22,000 , amperages up to 200. Types with pressure-proof, explosion-proof or moistureproof housings also are available, as are standard elements for thermocouples.
The complete new Amphenol "AN" catalog is just off the press.
A note on your letterhead will bring a copy immediately.

AMERICAN PHENOLIC CORPORATION

1830 South 54th Avenue, Chicago 50, Illinois
COAXIAL CABLESAND CONNECTORS - INDUSTRIAL CONNECTORS, FITTINGSAND CONOUIT - ANTENNAS - RADID COMPONENTS • PLASTICS FOR ELECTRONICS

NEW PRODUCTS

(continued from p 130)
into a 50 -ohm load. The attenuator is calibrated in c-w or peak pulse power or voltage into a 50 -ohm load. Pulse rate is 40 to 4,000 cycles. Details of performance are available.

Dual-Channel Recorder

Amplifier Corp. of America, 398-7 Broadway, New York 13, N. Y. Model 910-B Twin-Trax magnetic tape recorder gives four continuous hours of recording and playback at $7 \frac{1}{2}$ inches per second. Two sound tracks are recorded on a single tape,

one in one direction and the other in the reverse. Frequency response is essentially flat from 40 to 10,000 cps.

Vacuum Indicator

George E. Fredericks Co., Bethayres, Pa. The Televac Model I vacuum indicating meter has a scale calibrated directly in the range from 1 to 1,000 microns. A voltage stabilizer mounted within the portable meter case eliminates errors

due to line voltage fluctuations. Readings are obtained merely by the operation of an on-off toggle switch, no previous current adjustments or calibration being required.

Signal Generator

The Rollin Co., 2070 N. Fair Oaks Ave., Pasadena 3, Calif. Model 30 power-type standard signal generator has 6 watts nominal r-f output and 50 -ohm impedance with a 160 db range of attenuation and $c-w$, $a-m$ or pulse operation. It can be

tuned from 40 to 400 mc and has a spiral dial scale equivalent to 4 feet in length.

Coil-Winding Machine

Associated Production Co., 2655 W. 19th St., Chicago 8, Ill., announces new improvements in a

coil-winding machine that permits almost micrometer adjustment of guide roller travel through positive electric limit switches. The machine winds coils of all types in 16 gage to 42 gage wire. Maximum arbor space is 36 inches.

Mobile Dynamotor

Gothard MFg. Co., 2110 Clear Lake Ave., Springfield, Ill. Model GP-26 dynamotor was designed chiefly for mobile transmitters but is suited to

Ineotroate
COPPRR ABMORED SISALKRAFT

TELEVISION AND RADIO STUDIOS, TESTING ROOMS, INDUSTRIAL LABORATORIES, AND DIATHERMY, RADAR AND ELECTRONIC EQUIPMENT

The success of COPPER ARMORED SISALKRAFT for shielding during the past decade suggests that you might find this reinforced "electro sheet copper" product practical for rooms and large enclosures or equipment requiring electrostatic shielding.
SISALKRAFT engineers do not presume to be authorities on this complex subject. We shall be glad to cooperate, however, on the basis of experience gained in such installations as:
Steinmetz Hall, New York • Hollywood Television Studio of Don Lee WBKB Radio Station, Chicago - Sentinel Television Testing Rooms Corn Products Company's Argo Laboratory - Delco Radio Sets CBS Radio Testing Laboratories
... and other applications that indicate the merit of COPPER ARMORED SISALKRAFT in these and allied fields.

COPPER ARMORED SISALKRAFT is available in l-oz., 2-oz., and 3-oz. weights, in rolls $4^{\prime \prime}$ to $60^{\prime \prime}$ wide. Reasonable cost... as low as $\$ 9.25$ per 100 square feet in cost. Send for samples.

COPPER IRIUORED NSSLLLRRIITT

THE SISALKRAFT CO., Chicago $6 \cdot$ New York $17 \cdot$ San Francisco 5

Please send samples of One-Ounce; \square Two-Ounce; \square Three-Ounce COPPER ARMORED SISALKRAFT. The use I contemplate involves (describe briefly)

We undertake the Design, Development and Manufacture of any type of Optical-Mechanical -Electrical Instrument. Including Cameras for special purposes.

Avimo Limited, Taunton, England \cdot Telepbone Taunton 3634

ILC 44 Silicone Grease for reliable permanent lubrication

PHOTO COURTESY MOTOROLA INCI DC 44 Silicone Grease permanently lubricates the plunger-solenoid contact surfaces in this Motorola Auto Radio push-button tuner.
Actual performance is the only true measure of a lubricant's quality. That is why more and more manufacturers are specifying Dow Corning Silicone Greases for their lubrication problems. Their tests show that longer lubrication life, greater oxidation resistance, elimination of gumming, and indifference to temperature extremes are all characteristic of the silicone greases.
Motorola inc. of Chicago had a lubrication problem in their auto radio push-button tuner. The tuning is accomplished by a solenoid and plunger with a dash-pot action between the two for smoother operation. A thin film of the fubricant selected had to be permanent and maintain its consistency over the operating temperature range from -20° to $160^{\circ} \mathrm{F}$, to give the dash-pot action.
Their engineers tested many lubricants but the only one to allow satisfactory operation and still lubricate after 75,000 cycles was DC 44 Silicone Grease. It maintains the right consistency to give smooth action and permanent fubrication. Even in thin films this silicone grease does not run out or form gum.
We recommend DC 44 Silicone Grease for permanently lubricated anti-friction bearings, and for high temperature applications up to $350^{\circ} \mathrm{F}$. DC 41 Silicone Grease is recommended for temperatures up to $450^{\circ} \mathrm{F}$. DC 33 Silicone Grease is both a low and a high temperature grease and is recommended for use from -95° to $300^{\circ} \mathrm{F}$.
If you want permanent lubrication or have high temperature or low temperature problems it will pay you to investigate Dow Corning Silicone lubricants. Write for data sheet N 7-5 or call our nearest sales office.
DOW CORNING CORPORATION MIDLAND, MICHIGAN
New York - Chicago - Cleveland - Los Angeles Dallas - Atlanta
In Canada: Fiberglas Canada, Ltd., Toronto In England: Albright and Wilson, Lid., London

many marine and aircraft applications. It is available in a range of capacities, with power output ranging up to 80 watts continuous and 150 watts intermittent duty. The unit weighs 81 pounds.

Scaling Unit

Tracerlab Inc., 55 Oliver St., Boston 10 , Mass., is now manufacturing the SC-1A Autoscaler with a high voltage supply continuously variable from 500 to 2,200 volts. A time delay circuit is included. Scaling circuit and precision timer are

actuated by a pushbutton. Overall resolving time of the input amplifier and scaling circuit is about 5 microseconds. Pulse height sensitivity is approximately 250 millivolts.

Pin Straightener

Hytron Radio \& Electronics Corp., Salem, Mass. A new miniature 9 -pin straightener is now

Small, lightweight and inconspicuous, the Turner Model L40 can be worn in the lapel, held in the palm of the hand, or concealed. Highest quality moisture sealed crystal produces high signal level. Engineered by Turner to give crisp, clear speech reproduction. Widely used for sales demonstrations, public address, call systems, sound re-inforcing, and recording systems. Also used in dictographic and detective work. Comfortable to wear. Alligator clip secures unit to clothing. Finished in satin chrome. Complete with 20 ft . of attached flexible cable.

Model 3H-L40

- The Turner "third hand", and L40 microphone. A special combination for mobile sound work and call systems where operator must have both hands free. Ideal for sales demonstrators. The 3 H slips over the head. Holds microphone close to mouth! Adiusts to any position. Also avaliable with micro*
phone switch at extra cost.

Ask your dealer

THE TURNER COMPANY

NEW PRODUCTS
(continued)
available. It is built of aluminum and stainless steel. Designed primarily for radio servicemen, it should find utility in any laboratory.

Filter Selector

AErovox Corp., New Bedford, Mass. Choice of proper interference filter is simplified by the analyzer that can be varied to simulate all types of stock filters manufactured by the company.

Knob setting designations are calibrated in terms of these types. Optimum arrangement can then be made after it is determined by means of the analyzer.

Sensitive Relay

Allied Control Co., Inc., Dept. S, 2 East End Ave., New York 23, N. Y. Type BK relay, designed for high sensitivity, has a d-c coil rating up to 32 volts at 24 milliwatts and an a-c coil rating of 220 volts

at 0.240 volt-ampere. Contact rating is 1 amp at 48 v d-c. It is supplied in single or double pole, normally open or normally closed contact arrangements, also double throw.

Two-Pole Relay

Ebert Engineering and Mfg. Co., 185-09 Jamaica Ave., Hollis 7, L. I., N. Y., announces a 2 -pole norm-ally-open or normally-closed mercury relay for loads up to 25 amps breaking both sides of the line, also

motor loads up to $3 \mathrm{~h}-\mathrm{p}$ at 230 volts a-c. Overall dimensions are 5 in. long, 3 in . wide and 2 in . high.

High-Frequency Triodes

Amperex Electronic Corp., 79 Washington St., Brooklyn, N. Y., announce the 492 and 492 -R h-f water-cooled and air-cooled triode amplifier and oscillator tubes having a 5 -kw plate dissipation. The grid of each is mounted to a ring seal by an unperforated section of

copper cone which forms a shield between filament and anode, and makes the tube suitable for grounded- grid h-f circuits.

Intrusion Alarm

El-Tronics, Inc., 2647 North Howard St., Philadelphia 33, Pa. Model

Inside Perimeters from .592" to 19" With specialized experience and automatic equipment, PARAMOUNT produces a wide range of spiral wound paper tubes to meet every need ... from $1 / 2^{\prime \prime}$ to 30° long, from $.592^{\prime \prime}$ to $19^{\prime \prime}$ inside perimeter, including many odd sizes of square and rectangular tubes. Used by leading manufacturers. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus $.002^{\prime \prime}$. Made to your specifications or engineered for YOU.

Paramount
 PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Manufacturers of Paper Tubing for the Electrical Industry

Unique Design

 Pump Produces High Vacuum Faster, More Efficiently and SafelyThe pump has only 2 moving parts rotor and slide valve, always completely sealed in pump cylinder. As rotor furns, slide valve acts as piston forcing all air out of cylinder through discharge valve and lubricator above it, creating a constant vacuum behind the slide valve piston.
The combination of mechanical inlet slide valve, automatic exhaust valve, and rotary pump with rocker oil seals on slide valve, account for the unusually high vacuum and volumetric efficiency in this single stage pump.

for

ELECTRONICS AND LAMPS

Vacuum exhausting af low pressures of lamp bulbs, fluorescent tubes, radio, television and electronic tubes, X-ray tubes, photo-electric cells, etc.

ELECTRICAL PRODUCTS

High vacuum impregnation of coil windings to give greater strength; dehydration and impregnation of molded or compressed graphite parts; deairing, drying and impregnating insulating paper, cable, motor windings; dehydrating insulating oil; filling condensers.

ADVANTAGES

- Top Vacuum - to 2 microns
- High Speed Evacuation
- Noiseless - Vibrationless
- Low Power Consumption
- Long Service Life
- Capacities to 845 c.f.m.

Write for Catalog No. 84
BEACH-RUSS COMPANY 52 CHURCH ST., NEW YORK 7, N. Y.

BEACH-RUSS trpe rp VACUUM PUMPS

FASTER, SIMPLER AUDIO ANALYSIS with Model AP-1

PANORAMIC SONIC ANALYZER

Reduce time, complexity and cost of making audio measurements with the unusual advantages offered by the Panoramic Sonic Analyzer. By resolving a complex audio wave info a spectrograph showing the frequency distribution and voltage amplifude of the components, Model AP-1..

- Eliminates slow point-by-point frequency checks - Provides a quick overall view of the audio spectrum - Enables determination of changes in waveform content while parameters are varied - Furnishes simple presentations for production line testing.

Panaromic Sonic Spectrogroph of 750 cps square wave.

Use Model AP. 1 for analyzing... - Harmonics - Intermodulation - Vibration - Noise - Acoustics - Materials
Features... Continuous scanning from 40$20,000 \mathrm{cps}$ in one second - Wide input voltage range - Linear and log voltage scale - Closely logarithmic frequency scale - Built-in voltage and frequency calibrator - Simple operation.

WRITE for detailed specs, price and dellvery. NEW LITERATURE AVAJLABLE

HS-5 alarm detects intrusion by change in antenna capacitance upon approach of a person. It also detects fire by means of a heat detector that operates at about 160 F . Slow capacitance changes owing to changing meteorological conditions will not affect the device.

Midget Thyratron

General Electric Co., Schenectady, N. Y. Type GL-5663 midget thyratron designed to maintain low

control grid and shield grid currents is inert-gas filled. Peak forward and inverse voltage ratings are 500 volts. Average anode current is 20 ma .

Symbol Tracer

Rapidesign, Inc., P. O. Box 592, Glendale, Calif., announces the new

Pickering reproducers have always been built to the highest standards of the critical listener willing to pay a premium for excellence in record reproduction.
The growing demand for Pickering quality and the resulting increase in production have made possible substantial price reductions.
Revised manufacturing techniques have enabled us to actually improve quality and lower prices at the same time.
We take great pleasure in giving our customers the benefit of lower production costs.

Model S-120M
with .0027" Sapphire Stylus
Former List Price-\$25.00
Now $\$ 16.50$

Model D-120M

with .0025" Diamond Stylus
Former List Price- $\$ 60.00$
Now $\$ 41.50$
ducers is the Model D-140S for the new long playing, MICROGROOVE type disc recordings. The D-140S has a diamond stylus of $.001^{\prime \prime}$ radius, tracks with a pressure of 5 grams and, like all Pickering Cartridges, incorporates all of the known requirements for perfect tracking, minimum record and stylus wear, and distortion-free

Píckeríng
 \& Company, Inc.

reproduction.
Model D-140S with . $001^{\prime \prime}$ Diamond Stylus $\quad \$ 60.00$ List

Oceanside, Long Island, N. Y.

Present 3 clean-cut Advantages

1. EXTREME UNIFORMITY

2. SUPERIOR STAKING QUALITIES . . . ends will roll without splitting.

3. BETTER FOR MOLDED PARTS

.. closed end keeps compound out.
If you use pins for vacuum tubes, adapters, fluorescent lamps, plugs, or electrical equipment of any kind, the chances are you'll save time, money and rejections by using these supersmooth, seamless, patented Radio Pins. They are available in a wide variety of styles and sizes, with staking end either closed or open. For a quotation, simply send a sketch, sample or description and state the quantity you need.

Radio or Radar Equipment?

In addition to Radio Pins, we produce large quantities of top caps, base shells and adapter shells for vacuum tubes; also a wide variety of other metal products including deep drawn shells and cups, blanks and stampings, ferrules, grommets, washers, vents, fasten-ers-and, for almost every manufacturing requirement, the world's largest assortment of eyelets. atzis

THE AMERICAN BRASS COMPANY Waferbury Brass Goods Branch
General Offices: Waterbury 88, Connecticut
Subsidiary of Anaconda Copper Mining Company In Camada: Anaconda American Brass Ltd., New Toronto, Owt.

No. 31 Electroneer template for design and drafting personnel in the industrial electronic, television, radio, and electrical engineering fields A cellulose nitrate sheet of 0.04 -inch thickness, it measures $4 \frac{1}{4}$ 6 $\frac{1}{2}$ inches.

High-Gain T-V Antennas

The Workshop Associates, Inc. 66 Needham St., Newton Highlands 61, Mass., has developed eight different high-gain antenna arrays for television and f-m. Each is mounted

on a single mast and designed for reception of all channels operating in a particular area. Elements are constructed of half-inch aluminum tubing. More arrays can be added to the installation as additional stations go on the air.

Low-Current Power Supply

Beta Electronics Co., 1762 Third Ave., New York 29, N. Y. Model 251 regulated low-current power supply is used for currents below 10 milliamperes at voltages up to 500 volts d-c. Output voltage is continuously variable, up to 500 , either positive or negative with

respect to ground; and it will change less than 0.5 percent at any setting for line voltage variations from 95 to 135 volts.

Calorimeters

R. A. Whiteman, 630 N. Wisner Ave., Park Ridge, Ill. The types $1 \mathrm{HC}-20$ (illustrated) and IHC-50 calorimeters measure and check the power output of induction heating units. They permit measurements

from low values to 20 kw and 50 kw respectively. Each is available in either magnetic or nonmagnetic steel.

Light-Beam Wattmeter

General Electric Co., Schenectady 5 , N. Y., has developed a new portable light-beam wattmeter giving readings in the low wattage, low power factor ranges for frequencies

of 25 to 3,000 cycles. It can be used as an instrument calibrator and in laboratory production testing.

Actuator

Phillips Control Corp., 612 N. Michigan Ave., Chicago 11, Ill. The 51 A actuator features a frame of

-more compact, highher aceuragy!

Railway Express is part of the modern miracle of transportation which makes the people of your community neighbors with those of other cities and towns from coast to coast. Neighbors . . . who depend on each other, near and far, for the essentials and luxuries which contribute to our way of life.
The men and women of Railway Express are your neighbors, too, wherever you may live. They work with you and for you to provide a complete shipping service for every one of your business and personal needs. You'll find them dependable neighbors, always ready to serve you with speed, efficiency and courtesy.

It's good business to say,
"Ship it RAILWAY EXPRESS!"

RAILWAY EXPRESS

... Maintains 23,000 offices (there's one near your factory, office or home);
... Uses 10,000 passenger trains daily;
... Has 18,000 motor vehicles in its pick-up and delivery services;
...Offers extra-fast Air Express with direct service to 1,078 cities and towns.

NATION-WIDE

bonded silicon steel laminations and a T-shaped laminated plunger adaptable for both push and pull operations. It is available for continuous duty on 115 volts, 60 cycles, with a maximum stroke of one inch. Approximate pull is 2 pounds at $\frac{3}{4}$ inch, 4.2 pounds at $\frac{1}{4}$-inch stroke.

Geiger Counter

Omaha Scientific Supply Corp., 3623 Lake St., Omaha 4, Nebraska. The $3 \frac{1}{2}$-pound TX-6 Geiger counter consists of a probe, amplifier, and headphones. Gamma rays from uranium ore produce clicks in the

phones. The instrument is sensitive enough to detect radiation in a radium dial watch.

Photorelays

Photobell Co., 116 Nassau St., New York 7, N, Y. Type ES-1 electric eye relay operates from 115 volts 60 cycles, and comprises a photoelectric tube, amplifier, relay and sensitivity adjustment all mounted on a $2 \frac{1}{2} \mathrm{x} 5$-inch steel chassis. Type ES-2 is similar but includes a light projector built into

New, Lighter, More Compact . . . Easier to Build Into Your Product RAYTHEON VOLTAGE STABILIZERS

 advanced design, precision manufacture, rugged construction, reliable and accurate performance . . . in a word "Excellence in Electronics."

Now, to these highly desirable characteristics, have been added important space and weight saving features . . . features that make it easier and more economical to build dependable, accurate control of fluctuating line voltage right into your product. This entirely new line has been performanceengineered to provide a wide choice of models in service-tested, standard types . . . or you may have special models custom-engineered to suit your special needs.

Get the complete story on this important development at "Voltage Stabilizer Headquarters." Send for it today.

BUILD THESE ADVANTAGES INTO YOUR EQUIPMENT

- Positive contrel of cutput voltage to within $\pm 1 / \pi \%$.
- Stabilization at any load within ratêd capacily.
- Quick response. Stabilizes varying input voltage within 1/20 second.
- Entirely automatic. No adjustments. No moving parts. No maintenance.
- Many dasigns available with very low harmonic distortion of the output voltage wave of any load.
- Models can be supplied with frequency compensation.
- Single or multiple output voltages.
- Wide ronge of designs including hermetically-sealed types.

RAYTHEON MANUFACTURING COMPANY

Waltham 54, Massachusetts
Gentlemen: Please send me copy of your new Voltage Stabilizer Bulletin DL-V-304A.

Name

.Position..

Company

Street Address
City
Zone No.
. State

THE NEW
 THYROMETER

Integrating type scaler with ratemeter
Designed for precision measurement of radioactive samples in the research and medical laboratory.

Some of the special features include:
(1). Both scaler and ratemeter can be operated as a unit or the ratemeter can be operated as a separate unit.
(2). All operating controls are mounted on the sloping panel.
(3). The unit employs a three decade logarithmic type ratemeter.
(4). A strip chart recorder may be used to indicate the output of the ratemeter circuit.
(5). A range switch provides selection of counting ranges of one, two or three decades ($100-1000-10,000$ counts per second) for the recorder.
(6). The scaling circuit measures the time required to accumulate a predetermined count with a total selection of five ranges up to 16384 counts.
(7). Available for use with a choice of G-M tubes, sample stage, probes and preamplifiers.
(8). The unit may be mounted on an undercarriage as illustrated for utility and accessibility.
(9). The ratemeter may also be furnished as a separate unit.

Write for particulars on this or other radiation measuring instruments and components.

the chassis base. Response time is about 0.05 second, permitting use as a counting machine at speeds up to 600 counts per minute.

Heat-Transfer Unit

Eastern Industries, Inc., 296 Elm St., New Haven 6, Conn. Model No. 5 -H.T.U. is a new heavy duty heattransfer unit for cooling the magnetron power tube in an induction-

heated oven. The unit will dissipate 3,000 watts within a temperature rise of 40 F above ambient.

Engine Synchronizer

Square D Co., Kollsman Instrument Division, 80-08 45th Ave., Elmhurst, N. Y. A new 28 -ounce synchronous differential contains two synchronous motors and a mechanical differential. Used in synchronizing engines, it serves as an

Exacting users prefer JOHNSON wafer sockets because they are in sulated with grade L4 steatite or better, top and sides are glazed, the underside is impregnated against moisture. Contacts are brass with steel springs, cadmium plated and are mounted against phenolic wash ers in molded recesses to prevent movement. Rivets are countersunk and mounting holes bossed to permit sub-panel mounting. Locating grooves facilitate tube insertion.

Illustrated above is the $122-225$, a 5 pin socket which can be used with such tubes as the 807 .

Additional Types

122-224, 4 pin, for tubes such as the 812 or T40
122-226, 6 pin, for tubes such as the T21
122-227, 7 pin medium, for tubes such as the RK34
122-217, 7 pin small, for tubes such as the 6A7
122-228, octal, for tubes such as the 6L6 and 815

Also available are Giant wafer sockets for transmitting tubes, of 5 or 7 pin bases, sockets incorporating a base shield, and Super Jumbo 4 pin base sockets.
E. F. JOHNSON CO. WASECA, MINN

PRECISION BOBBINS
Precision provides the strength, the insulation, the dependability by the most thorough specialized engineering, exactly to your specifications

Sp:ral winding of the tube-heavy heat-treated compressionswaged tube ends securely locked-impregnation of the complete assembly are factors of Precision's exceptional service. Lightest of all co'l bases. Perm t larger gauge, or more wire of same gauqe in winding area.

Let us make up samples for your requirements
Also mfrs. of dielectric tubes, round, square, rectangular, any length, iD or $O D$; coil forms; spools; dust caps and thread protectors.

2041 W. CHARLESTON ST.
Plant No. 2 at 79 Chapel St
CHICAGO 47, ILL. Hartford, Conn.

LINKINGFUNCTION

To DESIGN

Engineers and Designers who insist on dependable components have adapted Vickers Selenium Rectifiers into their circuits. They are specifying Vickers products, and are submitting their rectifier problems to us. Our greatly expanded plant facilities, plus the recognized dependability of Vickers products, make it possible for us to offer the most complete line of Selenium Rectifiers and selfgenerating Photoelectric Cells.

FOLLOH
$\operatorname{chc}^{2 R^{s}}$

VICKERS ELECTRIC DIVISION

$\sqrt{\text { ICKERS }}$

2160 EAST IMPERIAL HIGHWAY - EL SEGUNDO, CALIF EXPORT: Frazar \& Hansen, Lid., 301 Clay St., San Francisco 11, Colif. CANADA: Powerlronic Equipment lid., 494 King St., E. Toronta 2, Canada

Desianed for

The No. 90881 RF POWER AMPLIFIER This "SOM" watt, RF nower amplifier unit
may be 4 sec as the basis of a high nower amamay be usec as the basis of a high power ama-
teur band transinitter or is a means for increasing. the power output of an existing transmither. As shipped from the factory, the
No. 90891 RF power anplifier is wired for use No. 90881 RF power amplifier is wired for use
with the poppular RCA or C.E. "812, type Whbes, but axiequateinstructions arefurnished for re-adiusting for operation with such other popular emateur style transmitting tubes as Taylor Tz4il. Eimac 35T, etc. The amplifier is on a 10$\}^{\prime \prime}$ "relay rack panel. The panel contains the grid and plate tank tuning capacitor dials, as well as the grid and plate current
milliannmeters. Plug-in inductorsareavailable for operation on 10. 20. 40 or 80 meter amateur bands, from stock, as well as special coils to order for commercial frequencies. The stand-
ard Millen No. 90800 exciter unit is an ideal ard Milen No. 90800 exciter unit is an ideal
driver for the new No. 90881 RF power amplifier.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND fACTORY MALDEN

MASSACHUSETTS
uns

NEW PRODUCTS
(continued)
intermediary regulating device of engine control equipment. It may also be used as a torque-producing half-speed synchroscope. The unit operates flom a three-phase source over a frequency range of 15 to 60 cycles with an input voltage of 0.007 times the frequency in cycles per minute.

Control Tester

Flight Research Engineering Corp., P.O. Box 1-F, Richmond 1, Va. The Servo Analyzer is used as an aid in developing and testing servos and automatic control systems employing 400 cycle error measuring devices such as Selsyns

or E type pickoffs. Frequency response and transfer function may be obtained over an input range of from 1 to 60 cps .

Miniature Capacitors

Solar Mfg. Corp., 1445 Hudson Blvd., North Bergen, N. J. Type TST capacitors are $3 / 16$ inch in diameter and inch long, sealed

against humidity effects. Details are given in a new catalog bulletin.

Hiyrl-Speed Counters

Potter Instrument Co., Inc., 136-56 Roosevelt Ave., Flushing, N. Y., has developed a new sustem for measuring frequencies from 0 to 1.6 mc with accuracies

ARMATURE PAPER
Strong Kraft with high dielectric strength and anticorrosion properties.
CABLE WRAP
Flat or creped Kraft; can be waterproofed or made anti-corrosive as required.

CORE BASE PAPER

Controlled conductivity; free from harmful chemical action.
INSULATION PAPER
High physical strength, high dielectric strength.

ANTI-RUST PAPER

Treated to prevent rusting of metal with which it is in contact.

ANTI-CORROSIVE PAPER

Chemical properties carefully controlled to assure neutrality.

Centraline Engineered Electrical Papers are designed especially to solve ycur particular problem. They can replace more expensive materials, improve product design, increase production and reduce manufacturing costs. Uniformity and adherence to specifications is assured by laboratory control from pulp to finished Electrical Paper.

Consult a Central Paper Engineer he will be glad to discuss your problem with you and provide samples for testing. No obligation of course.

2442 LAKESHORE DRIVE, MUSKEGON, MICH:

of one part in ten million or greater. Basic units of the system are two high-speed electronic counters, a crystal oscillator and an electronic switch. The instrument shown, a Doppler frequency chronograph, measures unknown frequencies of 50 to 200 kc using the new system.

Industrial Scope

General Electric Co., Syracuse, N. Y. Industrial oscilloscope type YNA-4 is intended primarily for servicing such equipments as resistance welders, motor control cir-

cuits, and photoelectric circuits. A three-inch tube is employed with pushpull d-c amplifiers. Horizontal sweeps range from 10 cps to 20 kc .

Low-Voltage Soldering Iron

Jet Thermal Device Co., 2873-86th St., Brooklyn, New York. The Slim Jim soldering iron can be used on automobile storage battery or socket

-Announcing

Six new volumes in the Massachusetts Institute of Technology RADIATION LABORATORY SERIES

MICROWAVE TRANSMISSION CIRCUITS

Vol. 9. Edited by GEORGE L. RAGAN, General Electric Research Laboratory, Schenectady, N. Y. 716 pages, illustrated, $\$ 8.50$
This volume brings you a practical treatment of the problems of power transmission at microwave frequencies. Actual designs and performance data, as well. s principles and techniques, are given for transmission along coaxial lines and waveguides. Use of the circle diagram, matching techniques,
and methods for extending the frequency range for good operation are carefully analyzed.

MICROWAVE MAGNETRONS

Vol. 6. Edited by GEORGE B. COLLINS, Chairman, Department of Physics, University of Rochester. 806 pages, 533 illustrations, $\$ 9.00$
Covers completely the theory, design and operation of multicavity magnctrons in the frequency range from 1000 to $25,000 \mathrm{Mc} / \mathrm{sec}$, and in the many modifications that extend the useulness of attention to the subjects of starting, phenomena, electronic tuning, and stabilization of frequency. Practical problems of magnetron design are dealt with in full.

ELECTRONIC INSTRUMENTS

Vol. 21. Edited by IVAN A. GREENWOOD, Jr., General Precision Laboratory, J. VANCE HOLDAM, JR., Laboratory for Electronics, Inc., and DUNCAN MacRAE, Jr., Harvard University. 721 pages, 466 illustrations, $\$ 9.00$
This book brings you the theoretical background and practical details of electronic analogue computers, instrument servomechanisms, voltage and current regulators, and pulse test equipment. and construction of prototype equipment. Numerous practical applications and examples are presented, including special servosystems and radar test oscilloscope designs.

CATHODE RAY TUBE DISPLAYS

Vol. 22. By J. THEORDORE SOLLER, Professor of Physics, Amherst College, M. A. STARR, Department of Physics, University of Portland, and GEORGE E. VALLEY, Jr., Assistant Professor of Physics, M.I.T. 746 pages, illustrated, $\$ 10.00$
Here is practical aid in the design of instruments employing cathorle ray tubes-a thorough discussion of their basic characteristics, principles of operation, and methols of application. This book explains the design and construction of beam deflection and focusing devices, optical projection and measuring apparatus, and auxiliary mechanical equipnent. Λ complete treatnent of cathode ray tube screens is included.

RADAR SCANHERS AND RADOMES

Val. 26. Edited by W. M. CADY, Head, Physics Section, U. S. Naval Ordnance Test Station, Pasadena Area, M. B. KARELITZ, General Precision Laboratory, Inc., and L. A. TURNER, Dept. of Physics, State University of lowa. 513 pages, illustrated, $\$ 7.00$.
A comprehensive discussion of the engineering and design features of radar scanners, or antenna mounts, and radomes, the plastic enclosures for antennas. The book includes a thorough develop. ment of landbased, shipborne and airborne antennas, antenna mounts, and stabilization. Part 11 provides a thorough electrical treatment of radomes, including design, materials, installation and testing.

PRINCIPLES OF MICROWAVE CIRCUITS

Vol. 8. Edited by C. C. MONTGOMERY, Associate Professor of Physics, Yale University, R. H. DICKE, Associate Professor of Physics, Princeton University, and E. M. PURCELL, Associate Professor of Physics, Harvard University. 486 pages, illustrated, $\$ 6.00$

Barrymount
Type M-114
Standard Aircraft Mounting Rack for Electronic Equipment. Sizes per Specification JAN C-172.

BARRYMOUNTS Control VIBRATION and IMPACT

with special emphasis
on the field of electronics

We offer a complete line of highly engineered Vibration and Impact isolators for commercial, industrial, and military applications . . . also an engineering consulting service on special problems.

Catalog on Request
A letter from you will give us the opportunity to demonstrate how we can help you.

THE BARRY CORPORATION
 formerly L. N. AARRY CO., INC

* 177 SIDNEY STREET 177 SIDNEY SIREET
CAMBRIDGE, MASS

power. It is designed for heavy duty but weighs only 32 ounces including tip and cord. The unit will operate on a-c or d-c.

New Contact Metal

Fansteel Metallurgical Corp., North Chicago, Ill. Fasaloy 99 is a new contact metal with surface resistance substantially that of fine silver but which will successfully break resistance load circuits 25 percent higher than those that can be broken by fine silver contacts. Write for Fansteel Technical Data Bulletin 7.104.

Sensitive Relay

Kurman Electric Co., Inc., 35-18 37th St., Long Island City 1, N. Y. The type 24 split-armature relay can be adjusted to operate at 0.005

watt from 0.01 to 115 volts d-c or a-c. Several contact combinations are available.

High-Fidelity Mikes

Electro-Voice, Inc., Buchanan, Mich, Models 650 and 645 high-fidelity, high-output dynamic broadcast microphones are designed for both f-m and a-m. Each is equipped with a newly developed shock mount and a switch which permits instant

September, 1948 - ELECTRONICS

TRACING CLOTH

HARD PENCIIS

- Imperial Pencil Tracing Cloth has the same superbly uniform cloth foundation and transparency as the world famous Imperial Tracing Cloth. But it is distinguished by its special dull drawing surface, on which hard pencils can be used, giving clean, shorp, opaque, non-smudging lines.
Erasures are made easily, without damage. It gives sharp, contrasting prints of the finest lines. It resists the effects of time and wear, and does not become brittle or opaque.
Imperial Pencil Trasing Cloth is right for ink drawings as well.

REVOLUTIONARY New SOLDERING IRON
 Soldetron
 Trade Mark Reg., U.S. Pat. Off., Pat. Pend.

Weighs only 3 ounces, yet it can do the job of a 200 watt iron.

- Readily interchangeable tip-hcads; no cleaning or filing.
- Easy to use for every type of soldering.

Fingertip control ... Permits long periods of soldering without fatigue High working output Low current drain.

EFFICIENT, ECONOMICAL: The "Soldetron" pays for itself in a few months intermittent control feature minimizes tip corrosion and eliminates the places as in instrument work etc. Long, thin tip permits soldering in inaccessible Various types are available, and can be removed and inserted in one easy motion - No more fussing with frozen tips. Heater element is incorporated in mately $1800^{\circ} \mathrm{F}$.; during this severe test, the tip-heads did not burn out.

PRICE, including transformer and Tip-Head " A ", \$13.95.
See your distributor, or for further information write to:
TRANSVISION, INC., dept. घ. п. NEW ROCHELLE, N. Y.

NEW PRODUCTS
selection of either 50 or 250 ohms impedance balanced to ground. Furthen information is available in a recent bulletin.

Fractional Motor

Bach Electrical Corp., Bridgeport, Conn., announces a new factional 110 -volt 60 -cycle a-c motor. It is Fiberglas insulated and has

cast-aluminum rotors. Further information is available from the commany.

Control Panel

Swart and Koch, 15 Brattle St., Cambridge 38, Mass. The switch and receptacle unit illustrated is equipped with eight feet of rubber

cord with fused plug. A neon pilot lamp shows when the unit is plugged in.

Plane Radio

Radio Corp. of America, Camden, N. J. A new compact, plane-radio transceiver is now available. The One-Sixteen weighs only nine pounds and fits into the instrument panel. A single selector switch tunes in any broadcast program on the standard band or any frequency from 200 to 400 kc . A special

Your Crystal Problems

The James Knights Co. is equipped to build "Stabilized" crystals to your exact specifications. A special production systerm meets your needs for short runs . and the price is right! Whether you need one, ten, or several thousand crystals, The James Knights Co. can deliver quickly and at modest cost.

In addition, The James Knights Co. fabricates a complete line of "Stabilized" crystals to meet every ordinary needprecision built by the most modern methods and equipment.

If you want quality - speed - price, contact The James Knights Co.
New James Knights Co. Catalog On Request
AN ENGINEER wanted three crystals on approximately 90 kc in one hermetically sealed holder. The James Knights Co. made delivery in 72 hours, our Type H18.

The JAMES KNIGHTS Ca.

SANDWICH, ILLTAOSS

theresa a new GE material

 that's ideal for UHF insulation. Investigate GE \#1422!
NEWSubscription Order

Please enter my new subscription for THREE YEARS of ELECTRONICS for \$12.
(If you prefer I year of ELECTRONICS for \$6 check here \square

Name:
Position
Home Address: \qquad
City:
Zone
State
Company Name:
Foreign Rates (I year) Canada \$7, Latin America $\$ 10$, Other $\$ 15$

NEW Subscription Order

Please enter my new subscription for THREE YEARS of ELECTRONICS for $\$ 12$.
(If you prefer I year of ELECTRONICS for $\$ 6$ check here \qquad

Name:
Home Address:
City:
Company Name:

Zone
State
Position
\qquad

BUSINESS REPLY CARD

First Class Permit No. 64 (Sec. 510, P. L. \& R.) New York, N. Y.
4¢ POSTAGE WILL BE PAID BY -
McGRAW-HILL PUBLISHING CO., Inc.

ELECTRONICS

330 WEST 42nd STREET
NEW YORK 18, N. Y.

BUSINESS REPLY CARD

First Class Permit No. 64 (Sec. 510, P. L. \& R.) New York, N. Y.
4¢ POSTAGE WILL BE PAID BY -
McGRAW-HILL PUBLISHING CO., Inc.

ELECTRONICS
330 WEST 42nd STREET
NEW YORK 18, N. Y.

marker indicates standard tower frequency of 278 kc .

Radio Instruction

Radio Corp. of America, Camden, N. J. The Dynamic Demonstrator is an $f-m$ and a-m six-tube radio receiver with its circuits and components laid out on a panel 45×33 inches for purposes of study. It is designed to simplify the teaching of radio theory, operation and

maintenance. The unit will operate on a-m from a signal generator as well as an antenna. The f-m i-f will operate from a sweep generator.

Audio Units

Fairchild Camera \& Instrument Corp., 88-06 Van Wyck Blvd., Jamaica 1, N. Y. Audio units from microphone preamplifier to rack frame are available in numerous combinations that are flexible to the current needs of the amplifier system. Basic component is Unit 620 power amplifier with a frequency response from 20 to 20,000 cycles.

Appliance Tester

The Hickok Electrical Instrument Co., 10527 Dupont Ave., Cleveland 8, Ohio. Model 900B voltampere wattmeter is designed for testing all a-c appliances from clocks to 220 -volt electric ranges. The unit incorporates a current

FOR FINER LATERAL REPRODUCTION
(and other benefits explained in Bulletin No. 3) COLUMBIA BROADCASTING SYSTEM and
AMERICAN BROADCASTING COMPANY
(as well as hundreds of independent stations) have placed

GRAY TRANSCRIPTION ARMS and EQUALIZERS

on every transcription table

Ideal for the New Long Playing Micro-Groove Records The Gray Transcription Arm gives you improved quality of reproduction, greatly extended life of stylus and recordings, economical operation, as well as low first cost. Due to such features as adjustable
stylus pressure, frictionless motion self-leveling base and the accommodation of any standard cartridge, arm obsolescence is precluded. Arm, less cartridge, $\$ 35.00$
The Gray \#601 4-position Equalizer for GE Cartridge, finet performance and workmanship, ideal response curves. Matches pickup to microphone channel. Complete, $\$ 42.50$.

GRAY RESEARCH \& DEVELOPMENT COMPANY, Inc.

Factory: Hartford, Conn. - Sales: 565 FIFTH AVENUE, NEW YORK 17

MICROSECOND TIMING! THE NEW 1.6 mc IIITEVVAL IIMER (COUNTER CHRONOGRAPH)

* Extremely High Accuracy - 1.6 Megacycle crystal oscil. lator time base.
* Direct Indication of Intervals up to one second - recycling of the counter con bobserved or recorded for longer intervals.
\star High Resolution measures intervals in sleps of 0.625 microsecond.
* Retains Indication of Measurement until reset.
* Easy lo Actuate - positive pules from common or separote sources con be used.
- Stable - no adiustments renuired
> ...measures and records time intervals with a resolution of 1/1,600,000 seconds

This instrument determines and indicates directly the elapsed lime between electrical "Start" and "Stop" signals derived from the beginning and ending of a time interval to be measured. A 1,600,000 c.p.s. crystal oscillator is used as the time base. The instrument, which is completely self contained, counts the number of cycles from this time base which occurs during the time interval measured. Price $\$ 925.00$

High Speed Electronic Counters and Precision Internal Timers for All Appli-cations-Address Inquiries to Dept. 8 N

ATPFRITF

 Studio Mierophones at P.A. Prices
Ideal for BROADCASTING

- RECORDING
- PUBLIC ADDRESS
"The ultimate in microphone quality," says Evan Rushing, sound engineer of the Hotel New Yorker.
- Shouf right into the new Amperite Microphone-or stand 2 feet awayreproduction is always perfect.
- The only type microphone that is not affected by any climatic conditions.
- Guaranteed to withstand more "knocking around" than any other type mike.
Special Write for Special Introductory Offer, Offer: and 4-page illustrated folder.

AMPERITE 6 mpany Inc. 561 Broadwar - New York 12, N. Y.

Model SKH, list $\$ 12.00$
Model KKH, lișt \$18.00

In Canada: Atlas Radio Corpı, Lid., 560 King Si, W., Toronto

transformer for additional ranges of 5,000 and 10,000 watts, and 65 and 130 amperes.

Literature

\qquad

Fabrics Bulletin. The Duplan Corp., Industrial Division, 512 Seventh Ave., New York, N. Y. Many technical facts for a large number of standard weaves of Fiberglas and Nylon fabrics are given in a recent bulletin. A wide range of industrial applications is illustrated and described, together with details of their properties.

Connector Catalog. Cannon Electric Development Co., Humboldt St. and Ave. 33, Los Angeles 31, Calif. The C-47 edition of Cannon Plugs contains 32 pages in 3 colors, covering the thirteen major type series of multi-contact electric connectors. Prices are given on all except the AN, K, and DPD series.

Motor Catalogs. Gleason-Avery Inc., Auburn, N. Y. Two new catalog sheets have been recently released. The first deals with both synchronous and nonsynchronous instrument and timing motors. The second covers the series 500 gear motors. Both are well illustrated and give complete specifications.

Automatic Computing System. Eckert-Mauchly Computer Corp., Broad and Spring Garden Sts., Philadelphia 23, Pa. An 8-page

GENERAL ELECTRIC THERMOCELLS for ACCURACY

G-E thermocells are as small as it is practical to make them and still retain all of the advantages which broaden their field of application and simplify the problems of design engineers.

Design engineers will appreciate especially the octal base feature. Add in these other major advantages in G-E thermocells - then specify them for every job you have under consideration.

1. G-E thermocells are filled with an inert gas and sealed to inhibit atmospheric contamination of both crystal and thermostat contacts.
2. Warm-up time is extremely short because of the low thermal capacity of the unit as a whole.
3. The heat loss is low, which permits low operating power and consequently less load and longer life for the thermostat contacts. Radiant heat loss is minimized by the polIshed chromium-plated shell.
4. Durable platinum-iridium thermostat contacts are used in G-E thermocells.

A typical example of the $\mathrm{G}-\mathrm{E}$ line of thermocells is the Type G31:

Frequency Range 2500-10,000 K.C. Size and Shape.............. . Same as 6 . 6
Freq. Adj. of Normal
Ambient Temperature. 0015%
Ambient Temp. Operating Range . . O to $55^{\circ} \mathrm{C}$. Long Time Frequency Stability
better than.......................... . . . 001%
Heater Power. 2.6 Watts Crystal Cuts Normally Used. AT \& BT Electrodes and Mounting. . . . Pressure Airgap
Warm-up Time. 15 Minutes
For further information on this and cther G-E thermocells, quartz crystals and germanium diodes write today to: General Electric Company, Electronics Park, Syracuse, New York.

185-G2

GENERAL (76) ELECTRIC

THIS SELF-LOCKER won't SHAKE LOOSE!

THBPID

The Knurling of this "Unbrako" Socket Set Screw, as shown. "swages the threads", so that it becomes a most excellent "Self-Locker". . for use with the 5 standard points that do not lend themselves to knurling. This "Unbrako" Socket Set Screw positively will not shake loose, regardiess of the most chattering vibration. Sizes available from \#4 to $11 / 2^{\prime \prime}$ diameter, and in a full range of lengths. Ask for your copy of the "Unbrako" Catalog. .. it is useful and informative.
Our patented "Unbraka" Self-Locking Knurled Socket Set Screws and Stripper Bolts lock in most any industrial screw application. They won't shake loose. Millions and millions in use.

Write us for the name and address of your netrest Min ind ind

Kourling of Socket Screwis originated with TUnbrako" in 1934.

STANDARD PRESSED STBFL CO.
 JENKINTOWN, PENNA:
 BOX 596

CHICAGO - DETROIT - INDIANAPOLIS • ST, LOUIS - SAN FRANCISCO

FM TRANSLATOR
General Electric Model XFM-1

Post.war version
Postrwar version
Translator which was used and enjoyed by tens of thousands of discriminating radio listeners.

Covers 88-108 mc range, dial 12 inches long, uses guillotine luning for highest efficiency, high stability. Designed for ex port, has power inputs for 110 to 250 volts, $50 / 60 \mathrm{cy}$. Used in coniunction with good audio section or separate amplifier will provide best $F M$ listening you ever heard. In attractive natural walnut cabinet $-103 / 4^{\prime \prime}$ high $\times 15 \frac{3}{4}$ " wide $\times 113 / 8^{\prime \prime}$ deep. complete with 8 tubes. Tropic-proof construction. Quantity limited, no more availoble. Get your order in while they last!

Available only from HARVEY Special price $\$ 49.50$

GE PRE-AMPLIFIER
Sust arrived in stock, the new GE Phonograph Pre-Amplifier with built-in power supply for use on 105-125 V. AC only. Does not use $A C-D C$ type power circuit, has self-contained power, transformer and is completely isolated from power line. For use with GE Variable Reluctance Cortridge.
Net . $\$ 9.57$

LS-3 SPEAKER

Signal Corps model, $6^{\prime \prime}$ PM speaker, weather resis. tant, in rugged crockle finish steel case. Complete with self-contained transformer to motch 4000-0hm load. Voice coil impedance $6-8$ ohms. Ideal for many uses around the shack, drive-in theatres, etc. Harvey Special \qquad
All prices Net, F.O.B., N.Y.C.
Subject to Change Without Notice
Telephone: \rightarrow LOngacre 3-1800

103 West 43rd St, New York 18, N. Y.
booklet shows the chief features of the Univac (Universal Automatic Computer), which is the central component of an electronic system by which many types of information can be processed with speed and economy. Operation includes the use of a newly developed magnetic tape recording system.

Microwave Test Equipment. Polytechnic Research and Development Co., Inc., 66 Court St., Brooklyn 2, N. Y. New sheets are now available for the company's catalog of test equipment. Included are waveguide terminations, variable flap attenuators, slide screw tuners, and directional couplers.

All-Channel Antenna. The Workshop Associates, Inc., 66 Needham St., Newton Highlands 61, Mass. A catalog sheet and assembly instructions are available for the new indoor television and f-m antenna that is constructed of corrugated board covered with aluminum foil. The antenna is designed to be mounted in an attic.

Transmitting Tubes. Sylvania Electric Products, Inc., Emporium, Pa. Characteristics on more than a score of types with rated plate dissipation ranging from 20 to 175 watts are given in a six-page bulletin.

Motor Control. J. B. Lewis \& Co., 3324 Main St., Hartford 5, Conn. Bulletin 105 points out the features of a new wide range, adjustable speed, motor control employing two electronic tubes.

A-M and F-M Tuner. Browning Laboratories, Inc., Winchester, Mass., has issued catalog sheet 8415 describing the characteristics of an a-m and f-m tuning unit with f-m sensitivity of 10 microvolts for 30 db noise reduction. Curves of its performance are also available.

Crystal Pickup. Electro-Voice, Inc., Buchanan, Mich. The Series 12 Torque Drive crystal pickup cartridge was developed to provide light weight coupling of crystal to record groove. Fourteen outstand- * TERMINALS

Hollow lugs speed wiring from top or bottom of terminal board.
wgs shown actual size. Notice the midge split lug for hearing aids and other small. space applications. Ad for prices by code number.

These new CTC terminal lugs for quick, easy, neat connections are typical of the broad line in midget, short, turret, double-end and split types . . in sizes to meet widely varying needs. They're all strongly made of quality brass, heavily silver plated; yet they're free from surplus metal that would draw heat and slow down soldering. Their tolerances are uniform enough for automatic swaging. And, of course, like all CTC components and hardware, they're guaranteed for materials and workmanship!

CUSTOM SERVICE

Chances are you'll find the terminal lugs you need in the CTC standard line. It's wise to check first. If not, CTC will custom-engineer lugs to your specifications. A discussion of your requirements will not obligate you in any way.

CAMBRIDGE THERMIONIC CORPORATION
437 Concord Avenve, Cambridge 38, Mass.

GENERAL INSTRUMENT CORP.
AND
AIR KING PRODUCTS, INC.
Join the Manufacturers Served by HOWARD W. SAMS

MORE AND MORE RADIO MANUFACTURERS ASSIGN THEIR SERVICE DATA MANUAL PREPARATION TO THE
HOWARD W. SAMS LABORATORIES
The fuil facilities of the laboratories of the Howard W. Sams Manufacturers' Division are available to manufacturers of AM, FM and Television Receivers; Record Changers; Recorders; Intercom units; Power Amplifiers, and kindred electronic equipment, for the preparation and publication of their service data manuals.
The Sams' Service offers you the preparation of complere, accurate, logical service data, relieving your service and engincering divisions of burdensome detail, and effecting significant economies in preparation and printing costs.
Our staff of service engineering specialists are ready to prepare from thorough analysis of the actual equipment, the following data: Text materal, covering construction, operation, installation and service procedure; compilation of parts lists and specifications; clear, accurate schematic diagrams based on the exclusive PHOTOFACT "Standard Notation" system; "exploded" views and full photographic coverage of the product. Production experts supervise the final preparation and publication of data.

NOW SERVING THESE CLIENTS:
We are at present serving a considerable industry group. Service manuals and data have been satisfactorily prepared (with many others in work) for:
Brush Development Co.
Colonial Radio Corp.
Crescent Industries
Emerson Radio \& Phonograph
General Electric Co.
The Hallicrafters Co
Lear, Inc.
Meissner Mfg. Co
Milwaukee Stamping Co.
Montgomery Ward \& Co
Sears Roebuck \& Co.
Telequip Mfg. Co.
V.M Corporation

Wire Recording Corp. of America
Specimens of our work are available on request. You inquiries are invited. Our representative will gladly call on you to explain the entire service. Address your inquiries to our Manufacturers' Division

HOWARD W. SAMS \& CO., INC. Indianapolis 7. Indiana
Publishers: l'HOTOFACT Folder Sets and Volumes: "Automatic Record Changer Service Manual"; "Dial Cord Stringing Guide": -Radio Receiver Tube Placement Guider: "Radio Industry Red Book". Other Volumes in preparation. Complete data on request.

Dint PILOT LIGHT ASSEMBLIES

The DIAL LIGHT CO. of AMERICA

FOREMOST MANUFACTURER OF PILOT LIGHTS
900 BROADWAY, NEW YORK 3, N. Y.
Telephone-SPring 7-1300

HEAT RESISTANT WIRES FOR EVERY APPLICATION . . .

HAVE YOU A

Wire Problem?

If it concerns heat and age resistance, we're specialists and have been for twenty years. Whether it is dropping excessive voltages-maintaining higher than ambient temperatures in equip-ment-high current conductors--heating element leads in crystal temperature control ovens - if it's got to be tough to continually withstand wear and tear ...

HEATING UNITS
heating elements
RESISTANCE LINE CORD

THERMOCOUPLE WIRE
ASBESTOS LEAD \& FIXTURE WIRE INSULATED RESISTANCE WIRE FIBERGLAS INSULATED WIRE

WIRE TO ANY SPECIFICATIONS

Lemis can give you the answer

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our en gineers.
 DUPLICATING" family of Machines brings you accuracy, speed, capacity range and ease of operation fully up to the standards of DI-ACRO Benders, Brakes, Shears.
Do you require precision? - The DI-ACRO Rod Parter holds tolerance to .001 " on duplicated cuts. The ends are square, and roundness is maintained.
Do you want speed? - The Rod Parter exceeds output of other methods with equal accuracy, on rods and bars up to $5 / 8^{\prime \prime}$. Torrington Roller Bearings incorporated in an exclusive multiple leverage arrangement provide remarkable ease of operation in both heavy and light materials.
Get "diedess duplicating" catalog! Shows parts produced without die expense by DI-ACRO Benders. Brakes, Shears, Rod Parters, Notohers. Punches. Send for your free ropy.

QUANTITATIVE MEASUREMENTS ON HIGH IMPEDANCE CIRCUITS

MODEL 102

PHANTOM REPEATER

AN INSTRUMENT AMPLIFIER WITH 200 MEGS.-6.0 MMF INPUT IMPEDANCE

The Phontom Repeater bridges voltmeters and cathode ray oscilloscopes, which have inputs of 1 megohm and 30 mmf , onto signal circuits of 50,000 ohms and higher -such as a pentode amplifier stage with its high resistance plate load-without the loss of voltage and high frequency response which would result if the measur-
ing instruments were connected directly. Input Impedance: 200 megohms shunted by 6 mmf Output Impedance. 300 ohms Gains of 100 10.0 and 100 Frequency Gains of $1.00,10.0$, and 100. Frequency Range from 5 cps to 150,000 cps within 2%. Background noise equivalent to 40 to 70 microvolts at the input.

Descriptive Bulletin Sent Upon Request

ing features are treated in bulletin 141.

Standards Index. American Society for Testing Materials, 1916 Race St., Philadelphia 3, Pa. The recently issued 240 -page index to ASTM standards as of December 1947 will be furnished without charge on written request. Items are listed under appropriate key words according to particular subjects.
Electronic Glassware. T. C. Wheaton Co., Millville, N. J. A complete line of electronic glassware, particularly glass-to-steel hermetic terminals in various shapes and sizes, is covered in a recent bulletin.
Industrial and Laboratory Devices. Airmec Laboratories Ltd., 19 Charterhouse St., London, E. C. 1, England. Descriptive leaflets are available on the d-c ionization voltage tester type 732 , the d -c oscilloscope type 723 , and the electromechanical counter type 737.
Oscillography Equipment. Allen B. DuMont Laboratories, Inc., 1000 Main Are., Clifton, N. J., has issued an informative pamphlet covering c-r tubes, oscillographs, allied equipment, and accessories. It may be obtained by request on business letterhead.
Laboratory Catalog. Fisher Scientific Co., 717 Forbes St., Pittsburgh, Pa. and Eimer \& Amend, 635 Greenwich St., New York 14, N. Y. A 40-page profusely illustrated book pictures 268 laboratory innovations and describes more than 300 equipment items that have been developed to aid laboratory work.
Chemical Products. General Electric Co., 1 Plastics Ave., Pittsfield, Mass. An 18-page illustrated booklet CDP-576 describes briefly a wide range of chemical products such as plastics, resins and insulating materials, metallurgical products and compounds. A technical bulletin is available on each product described.

Tube Data. Radio Corp. of America, Harrison, N. J. A fourpage technical bulletin gives complete data on the 6BA7 and 12BA7 pentagrid converters which are in-

suitable to Volume

Production...it may
pay you to call upon

United-Carr and its
subsidiaries. They
have helped many

* SPEED PRODUCTION
* TURN OUT FINER

FINISHED PRODUCTS

special nails • rivets • screws • made to your order

HASSALL cold-heading may solve your immediate special part problem Special nails, rivets and threaded parts made in diameters from $1 / 32^{\prime \prime}$ to $3 / 8^{\prime \prime}$-lengths up to $7^{\prime \prime}$... Rivets $3 / 32^{\prime \prime}$ diameter and smaller a specialty

Variety of metals, finishes and sec. ondary operations... Economy, quality and quick delivery in large or small quantities... Tell us what you need

We will answer promptly. ask dor free catalog. 3-color Decimal Equivalents Whall Chart free on request.
JOHN HASSALL, INC.
150 Clay Street Brooklyn 22, N.Y.
Manufacturers of Cold-Headicd Specialties-Established 1850

A NEW V-O-M "MODEL 500"

SENSITIVITY

20000 ohms/volt AC-DC

RANGES

AC-DC Volts: 0-3/15/150/300/750/ 1500/7500

DC Current: 0-150 UA/1.5 MA/30 MA/1.5 A/15 A

OHMS: $0-5000 / 50,000 / 50,000,000$ DB: $-10 / 0 /+73$ in 7 ranges

FEATURES:

Highest sensitivity-Damped move-ment-Accurate-Rugged-Port-able-Long mirrored scale-with added center zero range. Complete with High Voltage test leads. Housed in handsome hardwood case.

Measure from a low of 10 microamperes to a high of 15 amperesfrom . 2 volts to 7500 volts-from 1 ohm to 50 million-from minus 10 to plus 73 DB.

So accurate it is used in the Laboratory. So rugged it withstands portable field use. Write for Catalog 4423 or see your jobber.

See us in Booth 515, Convention Hall, Philadelphia, Pa. September 13-17, 1948

ROLLER-SMITH

BETHLEHEM, PA.

Electrical Indicating Instruments, Aircraft Instruments
Switchgear. Air

NEW PRODUCTS (continued)
tended especially for use in f-m broadcast service.

Motors Guide. Allis-Chalmers Mfg. Co., Milwaukee 1, Wis. A 12-page loose-leaf perforated booklet offers a quick reference to data on a variety of general purpose motors. It is well illustrated and gives specifications and applications.

Snap Switches. The Acro Electric Co., 1305 Superior Ave., Cleveland 14, Ohio. A recent catalog describes, complete with mechanical drawings and operating characteristics, many types of snap-action switches with the patented rolling spring construction.

Silicone Products. General Electric Co., Pittsfield, Mass. A $30-$ page illustrated bulletin CDR-57 describes in detail the new silicone resins, oils, greases, water repellents, and rubber together with their many industrial uses. Charts and tables are included for handy reference.

Isotope Apparatus. Tracerlab Inc., 55 Oliver St., Boston 10, Mass. A 40-page booklet shows a variety of scalers, counters, timers, sample changers, and radiation survey meters. Chief features, uses, and specifications for each are given. Also included are descriptions of radioassay accessories.

Annual NBS Report. Department of Commerce, U. S. Government Printing Office, Washington, D.C. The 1947 report of the National Bureau of Standards involves five types of activities: research and development; test, calibration and standard samples; commodity standards and codes and specifications; advisory services; and cooperative activities. A complete table of contents is given.
Resistance Measurement. James G. Biddle Co., 1316 Arch St., Philadelphia 7, Pa. The 12 -page bulletin 24-25 contains photographs, wiring diagrams and charts showing various aspects of low-resistance testing and its application. It features the Ducter ohmmeter which measures resistance down to 0.000001 ohm .

Radio Heater. Rediffusion Ltd., Broomhill Road, Wandsworth, London, S. W. 18, England. A re-

Red Streak Acid-Free tapes and gummed flat sheets are made to conform to the most critical specifications and are uniform in thickness.

Tests for free acids and alkalines are made by pH method.

Available in materials and thicknesses listed below.

- . 005 Gummed White Flexible Holland
- . 005 Gummed Red Rope
- . 002 Gummed Glassine
-. .003-. 004 -. 005 -. 006

—. 007 - .010 Gummed Kraft
- .005-.007-.010 Gummed

Dark Grey Fish

The RIGHI Acti-froe fagt
for you is

ALLEN BRADLEY

AND OTHERS

RESISTORS and POTENTIOMETERS

CAPACITORS

all makes
mica,
silvermica,
silvered button mica, ceramic, oilfilled tubular.

MAGNET WIRE
all sizes
all insulations
best quality only. fast deliveries from immense stocks.
recognized as source of supply by the "blue chips" of the electronic industry.

NAMES ON REQUEST

LEGRI S CO.

INCORPORATED 130 West 102 St.
New York 25, N. Y.

* we are supplier of many Universities, Research Laboratories and fill Government Orders per JAN Specifications.
 Standard Propellers... for measurStandard Propellers.... or measur-
ing natural frequencies or speed of rotating objects, checking or calibrating tachometers, oscillators, impulse generators, similar equipment. pulse generators, similar equipment.
C. G. CONN LTD., DEPT. 912 ELKHART, IND.

Now Available
22 Types
in
3
Frame Sizes

Qothard DC-AC ROTARY CONVERTERS

PROMPT DELIVERY IN ALL MODELS

Ask for literature on Gothard Dynomotors, Converters, Motor Generotors and Generators.

cent leaflet pictures and technically describes the model RH. 24 Redifon industrial radio heater with an output of over 350 watts. The unit is specifically designed for dielectric heating applications and features a single oscillator valve of the latest repairable silica-envelope type.

Paper Tubulars. Cornell-Dubilier Electric Corp., South Plainfield, N. J. Descriptive bulletin NB116 covers the Grey Tiger paper tubulars which are Vikane impregnated and feature outstanding performance over a temperature range of -55 C to +100 C . These capacitors are primarily designed for use in automobile radios and other high-temperature applications.

Recording Catalog. Gorrell \& Gorrell, Haworth, N. J. Bulletin G-100 is a condensed catalog briefly outlining features, functions and general construction of several types of instruments for timing, control, and graphic recording. Complete details and typical applications are given in individual bulletins.

Microphones. Electro-Voice, Inc., Buchanan, Mich. Bulletin 103 illustrates and describes in four pages many models of microphones, stands and accessories now available.

Internal Defect Locator. Sperry Products, Inc., 1505 Willow Ave., Hoboken, N. J. Operation and application of the new portable, lightweight type SR05 supersonic reflectoscope is described in bulletin 3001. This nondestructive testing instrument is used for locating internal defects in metals and other materials.
Precision Equipment. R.T.S. Electronics Ltd., King St., Exeter, England. The model EA11 singlechamnel cro, model EA20 resist-ance-capacitance bridge and EA36 signal tracer are fully treated in a 12-page, board-covered booklet.
Fractional H-P Motors. Alliance Mfg. Co., Alliance, Ohio. Various types and sizes of electric motors rated from less than 1/400th h-p to $1 / 20$ th $\mathrm{h}-\mathrm{p}$ are described and illustrated in a four-page folder. Applications are given.

Only $\$ 975$

Never betore a value like this $31 / 2 \mathrm{KW}$ bombarder or high frequency induction heater for saving time and money in surface hardening, brazing, soldering, annealing and many orher heat treating operations. Is

Portable . . . mounted on four rubber coasters. Width $141 / 2^{\prime \prime}$; depth $27^{\prime \prime}$; height $42 \frac{1}{2}$ "; weight 300 \#.

Operates from 220 volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job, Cost, complete, only \$975. Immediate delivery.

Scientific Electric Electronic Heaters are made in the following ranges of power: 1-2-3-5-71/2-10-121/2-15-18-25-40-60-80-100-250. KW.

Division of
" $\$$ " CORRUGATED QUENCHED GAP CO. 105-119 Monroe St., Garfield, N. J.

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyzing devices; generation of low frequency saw tooth and site waves; controls for radio and radar equip. ment; position indicators; servomechanisms; electro medical instruments, measuring devices-tele. metering; gun fire control where 360° rotation, high precision and low noise levels are essential.
The type RIIHMS sinusoidal potentiometer is illustrated. it is wound to a total resistance of 35,400 ohms and provides two volt. ages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\pm .6 \%$. Overall dimensions are $43 / 8$ diameter $x 411 / 32$ long plus shaft extension $1 / 4^{\prime \prime}$ diameter x 11/4" long.

Write for Bulletin F-68

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

 Par-Metal Equipment offers many features, including functional streamlined design, rugged construction, beaubiful finish... plus ADAPTABIIITY, Eliminate need for special

Engineers and manufacturers will effect economies with Par-Metal Products, which are available for every type of job from a small receiver to a deluxe broadcast transmifter.
Professional techniques and years of specialization are reflected in the high quality of Par-Metal. .
CABINETS • CHASSIS PANELS. RACKS

Write for Catalag

That's what users tell us about the new DRAKE line of Signal Lights with Built-In Wire Leads . . . For dependability, you'll find nothing to touch these expertly designed units and just check these features:

- No terminals to short circuit
- No questionable solder connections at Pilot Light terminals
- Highly economical to install
- Meets UL requirements

Send today for the new DRAKE Cota$\log E S \ldots$. . it's a handbook on tested, inexpensive Light Assemblies no cost or obligation, of course!
Socket and Jewel LIGHT ASSEMBLIES MANUFACTURING CO.
1713 w. HUBBARD ST., CHICAGO 22

NEWS OF THE INDUSTRY (continued from p 134)
programs are currently being broadcast in Leningrad twice a week, and are expected to be increased to four times a week soon. The Leningrad center also plans to have in operation by autumn a portable television transmitter.

During the past two years The Moscow Radio Club organized two cycles of 15 lectures each dealing with the principles of television and how to build a television receiver. Under the aegis of the club's television section 400 amateurs made their own television receivers and are now viewing regular programs broadcast by the Moscow TeleCenter.

Rural Industrial Radio

A special industrial radio service was recently proposed by the FCC to make radio-communication available to persons engaged in commercial or industrial operations which are predominantly rural in nature. Under this category would be included farming, ranching, irrigation, mining and construction activities.

Also covered by the proposed special service would be those engaged in commercial and industrial operations involving hazard to life and property where use of radio would decrease such hazards, those engaged in operations reacting directly upon public welfare or safety, and maintenance and repair services directly involving public health or well-being.

URSI-IRE Meeting

A SECOND joint meeting of the American Section, International Scientific Radio Union, and the Institute of Radio Engineers will be held in Washington on Thursday, Friday, and Saturday, October 7, 8, and $9,1948$.

The program will, as usual, be devoted to the more fundamental and scientific aspects of radio and electronics. The program of titles and abstracts will be available in booklet form for distribution before the meeting. Anyone wishing to submit papers for presentation at this meeting should send in title and a 100-word abstract before

* When it comes to intricate resistance strips and tricky controls, just bring those engineering and production problems to "Winding Headquarters". That's what others have been doing for years pasi.

Clarostat craftsmen have almost a quarter-century of winding experience, outstanding skill and exclusive winding facilities at their finger tips.

Windings as fine as 700 turns per inch - wire sizes even down to .0009" diameter - on bakelite, ceramic or other material - flat. round, tapered. Clarostat handles those intricate profle windings for extraordinary radio-electronic controls. Also string windings on fibre glass and cord.

CLAROSTAT MFC CO . Inc. 285.7 N. Gin St . Brooklyn, N. Y.
In Canada: CANADIAN MARCONI CO.. Lid.
Montreal. P.Q.. and branches

Several pages of Jones Catalog No. 16 illustrate standard and special panels we are constantly producing. Latest special equipment enables us promptly to produce practically any panel required. Send print or description for prices, without obligafion. Hundreds of standard terminal strips also listed. Send for Catalog with engineering drawings and data.

JONES MEANS
Proven QUALITY
HOWARD B. JOHES DIVISION 2460 w . GEORGE ST. Mtg . Corp. CHICAGO 18, itt.

Since 1933 PYROFERRIC has been the standard source for IRON CORES manufactured to desired permeability, frequency, " Q ", resistance and physical strength . . to fit any circuit.
PYROFERRIC, with its background of research and experience, will gladly consult with you on your IRON CORE requirements.
Pyroferric Co. 621 EAST 216 STREET, NEW YORK 67, N. Y.

AND ELECTRICAL COILS
Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

PROMPT DELIVERIES!
FELFER
WINDING LABORATORIES
9 albermarle ave., trenton 3, N. J.

Mosa

$0-500$ VOLTS D.C. AT 300 MA. WITH POSITIVE OR NEGATIVE GROUND

The Model 204A Regulated Power Supply will provide from $0-500$ volts of well regulated and well filtered D.C. The output voltage is continuously variable without switching and either positive or negative side may be grounded.

SPECIFICATIONS:

oUTPUT VOLTAGE

High Voltage: 0 -500 Volts D.C. continHigh Volly variabie: (Without switching). Current: 300 Ma .
Low A.C. Voltage: 6.3 Volts A.C. al 6 amps. center-tapped, unregulated

REGULATION

Within 1% for voltage between $30-500$ volts, from no load to full load.
Within 1% for line voltage variations from Within 105 to vorts at full load current for any los to 125 volts at \quad voltago between $30-500$ volts and within 2% at 10 volts.
HUM VOLTAGE
Within 10 Millivolts at any voltage or load within ratings.
LINE INPUT
105-125 Volts A.C. $50-60$ cycles.
OUTPUT TERMINATIONS
High and low voltage outputs available from front and rear of unit. Positive or negative terminal of high voitage output may be grounded as desired.

Detailed specifications will be forwarded upon request without obligation.

ELECTRONIC MEASUREMENTS COMPANY
ZED AAK KEW JERSEY

August 20 to Dr. Newbern Smith, Secretary, American Section, URSI, National Bureau of Standards, Washington 25, D. C.

San Francisco Audio Society

On June 22 in San Francisco's NBC Building the first organizing meeting for formation of a San Francisco Section of the Audio Engineering Society was held. About thirty audio specialists attended and established by acclamation a temporary chairman, I. R. Ganic of Audiophone, Oakland, Calif. There was also a talk and demonstration of the Ampex tape recorder by Myron Stolaroff.

Television Reallocation

Hearings were held in Washington, D. C. recently at which the FCC proposed a nation-wide reallocation of the twelve television channels. A $10 \times 16 \mathrm{ft}$. map of the U. S., on which interference conditions are graphically portrayed, was prepared by Allen B. DuMont Laboratories, Inc., for the occasion.

Dr. Thomas T. Goldsmith (right), head of DuMont research division and an assistant, Robert Wakeman, with map of U. S. showing FCC's proposed allocation

The DuMont proposal includes first the correcting of some serious spacings in the proposed FCC allocation plan and secondly the addition of a few further channels beyond the present twelve.

Channel Numbers to Stay

Wayne Coy, chairman of the FCC, recently announced that the Commission is not considering a renum-

BbRaley RECtifiers

HIGH VOLTAGE SELENIUM RECTIFIERS

Bradley selenium power rectifiers are rugged and compact. Square plates afford maximum of rating to space factor. Con servatively rated up to thousands of am peres. Shown: SEllW20F, full-wave bridge, rated of 110 volts A.C., 5 ampers D.C

PHOTO CELLS

SIMPLIFY PHOTO-ELECTRIC APPARATUS

Luxtron* photo cells convert light into electrical energy. No external voltage is required to operate meters and meter relays directly from Bradley photo cells, improving control over your processes, reducing your cosis Housed model shown. Many different sizes ond shapes, mounted and unmounted.

Our engineers will select or develop rectifiers or photo cells to meet your needs exactly. Write for BRADLEY LINE showing basic models.

Tektronix Type 511 Oscilloscope

VERTICAL DEFLECTION SYSTEM

Amplifier Bandwidth $10 \mathrm{mc}, 1$ stage; $8 \mathrm{mc}, 2$ stoges.
Rise Time . 04 microsec., 1 stage; .05 microsec., 2 stoges.
Maximum Sensitivity $27 \mathrm{~V} / \mathrm{cm}$. (Peak to Peak) Input Impedance Direct 1 meg., 40 mmf . Probe $10 \mathrm{meg} ., 11 \mathrm{mmt}$.

Versatility...Plus

The Tektronix Type 511 is a portable wide band oscilloscope providing facilities formerly available only in very expensive, cumbersome instruments.

SWEEP CHARACTERISTICS

Continuously variable 11 second to 1 microsecond (10 cm . deflection).
Direct reading sweep speed dial.
Choice of triggered, recurrent or single sweeps at all speeds.
Triggers on sine waves to 10 mc . or pulses over .05 microsecond.
Any 20% of sweep may be expanded 5 times. $D C$ coupled PP amplifier for external sweep input.

MISCELLANEOUS

Calibrating voltage $0.1,0.10,0.100$ volts, 60 cycles.
CRT 5CP1A, 5CP7A or 5CPIIA operating of 3 kv
Direct connection to all plates from side panel.
Tolal weight 65 pounds, self contained.

Price $\$ 795.00$ f.o.b. Portland
Your inquiry will bring more detailed information and nome of the nearest Field Engineering Representative.

712 S. E. Hawthorne Blvd. Portland 14, Oregon

FOR RADIO AND TELEVISION RECEIVERS
Punched, threaded, notched and grooved to meet individual specifications. Exceptional performance at lower material costs. Ask obout other COSMALITE types for coil forms and deflection yoke shells, cores, and rings.

The CIEYELAND CONTAINER c. 6201 BARBERTON AVE. CLEVELAND 2, OHIO

 PLASIICS Division al Plymouth, Wisc. - ABRASIYE DiYISION at Cleveland, Ohio

The theory and application of electronics in industry

Industrial Electronics Reference Book

By Electronics Engineers of the Westinghouse Electric Corp.

This book was compiled to answer the need for complete and clear information on the application and design of industrial electronic equipment. Written by a group of engineers, each an expert in his particular branch of electronics, the Industrial Electronics Reterence Book contains the most recent information on the subject. The material is directed at the practicing engineer. Its aim is to give him a better understanding of the scope and limitations of electronic apparatus as it is applied to industrial processes.

Contents Include:

Physical Background of Industrial Electronics; Electron Emission; Control of Free Electrons; Electrical Conduction in Gases; Vacuum Tubes; Gas Tubes; Photoelectric Devices; Industrial X-Ray Tubes; CathodeRay Tubes; Ultraviolet Radiators; Circuit Elements; Tuned Circuits and Filters; Transformers; Vacuum Tubes as Circuit Elements; Electronic Motor Control; Industrial Photoelectric Control; Care and Maintenance of Electronic Apparatus.

1948
680 pages
$\$ 7.50$

NEWS OF THE INDUSTRY
bering of the present 12 television channels. In a letter to the executive vice-president of the RMA he stated that neither the report and order deleting Channel No. 1, nor the proposed rule revising the allocation of television channels contemplates changing the numbering of the remaining 12 television channels.

Army Tests Transistors

A recent Bell Laboratories development, the transistor (see p 68, this issue), gives promise of having great military value for communications equipment. Exhaustive tests are being undertaken by the Signal Corps to gather complete data on the device's characteristics and its reaction to shock, vibration and extremes of climate.

The transistor, a new crystal triode, is important to the army because, having no filament, it requires no heating current to amplify voltages. In portable communications equipment, such as the walkietalkie and the handy-talkie, a large part of the weight and bulk consists of batteries for heating tube filaments. Transistors would greatly reduce the ground soldier's load.

Signal Corps engineers caution that there is little conclusive data on the new crystal triode's performance. They believe it will be useful where low power is involved but expect to continue to rely on the vacuum tube for high-power equipment.

Utilities Radio Committee

At a recent meeting attended by twenty-two power utilities representatives from all over the country, the National Committee for Utilities Radio was organized in Chicago. It will be a successor committee to the group formerly known as Committee 4 of Panel 13, RTPB.

The first item of business which the new organization undertook was the formulation of comments to be forwarded to the FCC on their new proposal for the reallocation of frequencies in the various bands and on the proposed new rules under which the licensees represented by this committee are to operate. Empha-

to
 HIGHER PRODUCTION

 and LOWER COST

BTV-TT

\& MACHINE COMPANY 1000 MERWIN ROAD MILFORD, CONN. 1000 WEST RIVER ST., EIYRIA, OHIO

Flexible Shuft5

Wherever power drives or remote control are re quired, you can depend upon us to produce the Flexible Shafts that will meet the exact specifica tions. We have years of experience in manufacturing flexible shafting for all types of industry. If we do not have what you require in stock, we can make shafts to your specifications. Our engineers will be glad to work out your problems without obligation.

Write for Manual D

 or design can be created for you by our master designing department. We have 36 years of "know-how" and have created metal products and displays for the top manufacturers. Write today for descriptive folder.

Sheet Metal Works, Inc. 2645-49 Clybourn Ave. Chicago 14, III.

Fairchild Type 748
10-Gang Linear Potentiometer
The Problem: To raise the function A to various powers up to A^{10}. Space, weight and driving torque to be held to a minimum; accuracy to be better than $\pm .5 \%$.

The Solution: This Fairchild type 748 ganged precision linear potentiometer with output accuracy $\pm .1 \%$.* Torque is reduced to a minimal 5.5 ounce inches for the entire 10 -gang assembly ... wiper contacts are in permanent correct alignment on the windings . . . backlash is completely eliminated all by mounting the units directly on a single shaft without couplings.
*Isolating amplifiers between each consecutive cascaded
voltage divider eliminate loading errors.
For complete data on these instruments, precision-engineered for over a million cycles of operation, address Dept. I, 88-06 Van Wyck Boulevard, Jamaica 1, New York.

A marked increase in service life and performance of brush contacts is made possible by using minute quantities of an appropriate precious metal alloy for the actual contact. The photograph above shows brush arms and contacts used in a variety of typical applications. Note
the small amount of precious metal needed to assure superior service.

Ney also offers industrial users a wide range of precious metal alloys for many specialized applications as well as gold solders and fine resistance wires (bare or enameled). Details on request.

[^6] Shecializing in ALL ELECTRONIC COMPONENTS, PARTS, TEST EQUIPMENT AND

Codering Eijpecidlly TO THE NEEDS OF MANTELCTLRERS - LABORATORIES RESEAREII DEPTS. - BIGIVEERS SCHOOLS • PIRCHASLIG AGETTS

CALL•WRITE •WIRE
H01E

SPBCIAL PRICES - QUDTATIONS • DELIVERY SCHEDULES

A CDMPLETE LINE DF MDLIEID-IRON COIEES

Whatever your requircments in iron-powder parts,

LENKURT KN@WS HOW

has completed construction of new plant facilities totalling 20,000 sq. ft .

RCA INstitutes has opened new quarters with expanded facilities at 350 W. Fourth St., New York City. The new building has space for more than 20 classrooms, offices and laboratories.

Mullard Electronic Products L.TD., London, now has the right to

Now Available DIAMOND NEEDLES

for Manufacturers of
\star RADIO PHONOGRAPH COMB.
\star PICKUPS
\star RADIO PHONOGRAPH
TELEVISION COMB.
\star TRANSCRIPTIONS
Our research and development now permit us to offer manufacturers genuine diamond needles hitherto unobtainable.

Radius and angle are positive gem finish, insuring gem contact in record groove, and assuring a minimum of record wear.

These diamond needles are obtainable in any radius and angle desired, including one-thousandths radius for the new micro-groove records.

Our diamond needles may be inserted in any spring or similar assembly with a minimum of mass.

Send inquiries to:
ROYAL DIAMOND TOOL CO.
Diamond Phonograph Needle Division
Plant: 172 Green St., Jamaica Plain Stations Boston 30, Mass.
Office: 403 Statler Building
Boston 16, Mass.

BACHH-NTERNATIONAL COMPOUND HIGH VACUUM PUMP

This high vacuum pump is widely known and used extensively in the manufacture of electric lamps, radio tubes, fluorescent lamps, for laboratory work and for many industrial applications where high vacuum, plus rapid exhausting are essential requirements in processes of manufacturing.
In free air capacities ranging from 1 cubic foot to 50 cubic feet per minute.
Readings on all sizes guaranteed 0.50 micrans or better.

Operates quietly. Prompt deliveries
Write for details.

INTERNATIONAL MACHNE WORKS

Manufacturers of Baach-International Hot Cut Flare machine.

2027 - 46th STREET
NORTH BERGEN, N J., USA
Tel. UNion 3-7412
Cable Address "INTERMACH" North Bergen, N. J.

DIRECT READING WATTMETER MONITORS SWR

New Direct Reading Wattmeter-MicroMatch models MM252 and MM272 -can be used in laboratory or field to monitor continuously RF power or standing wave ratio at levels up to 500 watts, and may be used to measure momentary power levels up to 1000 watts. Irrice, either model $\$ 60.00$

Micro-Match models available for aperation at 500 KC to 250 MCS, and power levels of 2 to 50,000 watts. watts.

SPECIFICATIONS

Frequency Range 3 to 162 Megacycles Transmission line impedance 52 (MM252) or 72 (M M272) ohms Wattmeter Scales 0 to 10,100 and 1000 watts Range of Power measurement $1 / 10$ to 1000 watts Power range for SWR measurement 2-I000 watts
Reflection Coefficient less than $1 / 2$ db. Reflecrion Coefticient ioss than 12 db. Connectors Amplienol type 82-84; atso available 83-IR

Vrite for complete details on these and other MicroMatch $S W R$ and RF power monitors.

M. C. JONES ELECTRONICS COMPANY
 BRISTOL, CONNECTICUT

Distributed outside continental U.S.A. by RCA International Division Radio Corporation of America.

New Book makes AUTO RADIO REPAIR twice

 as easy!Covers all auto Radio types from mid-1930's to
present, includ-
ing mobile FM.

Just Out!

SERVICING THE MODERN

CAR RADIO by A. L. Hurlbut

Second edition, 702 pages, $8 \frac{1}{2} \times 11$, 222 illus., over 500 circuit diagrams... $\$ 7.50$

Here-written by a practical auto radio expert of 20 years' standing-is everything to help the beginner or experienced serviceman gain profitable skill in the fast-growing field of car radio servicing. A complete guide to the work. Book not only A complete gulde to the work. Book not only fully, but also gives needed special facts of car radio circuits, differences beween car and home radio servicing problems, shop set-up and businessgetting ideas, etc. And invaluable for all jobs is the big gallery of circuit diagrams on hundreds of models, old and new.

Practical facts and methods on:

-petting into the car radio	-car set installations
business	-antenna installation
-differences between mo-	-londspeaker installation
bile and home radios	-remedying interference
-antennas and input cir-	-rervicing procedure
cuits	-viber suplies
-circuit features	-voudspeaker servicing
-the auto electrical system	-car-radio alignment
-setting up shop	-push-button tuning. etc.

OPPORTUNITY OF A LIFETIME

for alert servicemen, says A. A. Gbirardi autbor of famous radio serticing of famous radio se

"iI helime SERVICING THE MODFRN Wide awake servicrman can opfort tonity no There are over $3,000,000$ car radios-ap proximately 16 out of every 100 raclio re"eifers in use today-a wonderful field for profles, stepping aheard of competition! Good auto ratio mer are scarce, and this book gites you a gold mine of information you need to cash in on this profitable

10 DAYS' FREF EXAMINATION

Murray Hill Books, Inc.
(Division of Rinehart \& Co.)
Dept. E-98, 232 Madison Ave., New York 16, N. Y.
Send me Hurlbut's Servicing the Modern Car Radio for 10 days examination on apprwal. In 10 day's postpaid. Postage paid on cash orders: same return privilege. (Books sent on approral in U.S. only. Price outside U.S., 88.00, posipaid.)

Address
City (Zone) \& Stat
Occupation

NEWS OF THE INDUSTRY manufacture all Hallicrafters communication designs.

Radio Sonic Corp., formerly Tuck Electronic Corp., has moved its research laboratory and factory to 186 Union Ave., New Rochelle, N. Y.

American Broadcasting Company recently installed an RCA $80-\mathrm{ft}$ antenna for WJZ-TV atop the Hotel Pierre, New York City.

General Electric Co., Syracuse, N. Y., designed and installed a $2 \frac{1}{2}-$ watt f-m transmitter for Syracuse University. Preliminary FCC approval of such noncommercial, lowcost f-m broadcasting has been given.

Howard W. Sams \& Co., Inc., Indianapolis, Ind., publishers of the Photofact Folders, began in set No. 38 a presentation of television principles for radio service technicians. The entire series will be included in consecutive sets.

The Permanente Metals Corp. will reactivate its plant at Permanente, Calif., to handle the facilities of an entire German aluminum foil mill purchased from the Foreign Liquidation Commission.

Fielden Electronics Inc., of Huntington Station, N. Y., was recently incorporated and is closely associated with Fielden (Electronics) Ltd., of Manchester, England, manufacturers of the Drimeter, a device for giving continuous indication of moisture content for the textile industry.

PERSONNEL

M. J. Kelly, executive vice-president of Bell Telephone Laboratories, has been named chairman of the newly constituted Committee on Navigation which will work closely with the Air Navigation Development Board.

Frieda B. Hennock recently became the FCC's first woman commissioner.

Clarence A. Lovell was co-recipient of the 1948 Potts Medal of the Franklin Institute for combined

saves money

ECONOMY in building television sets is important and the General Electric Focus Coil points the way to important savings in manufacturing.

1 The G-E Focus Coil requires less current - permitting the use of lowerpriced power supplies.

2 It is a combination of the new G-E Alnico 6 permanent magnet and an electro-magnet.
3 It is simple to install. Forming a single assembly with the deflection yoke and centering device, the entire assembly is mounted with one bracket.

4 It is small, compact, light-weight-giving set designers more space to utilize.

When your sets are placed on the market-be sure they're equipped with this little G-E Focus Coil with the four big features.

For complete information on Television Components write: General Electric Company, Electronics Park, Syracuse, N. Y.

GENERAL SLECTRIC

D. C. POWER SUPPLIES

Selenium and Mercury Vapor Rectifiers POWER CONVERSION FOR-Industrial Application-Laboratory Use-Praduction Testing of D.C. Apparatus-High Voltage Plate Power Supply-Dynamotor Opera-tion-Electroplating-Replacing Batteries -Etc.

MODEL SV 30-24
INPUT: 115 volts, 60 cycle, single phase OUTPUT: (Variable) $0-30$ volts at up to 24 Amperes of Filtered D.C.
RECTIFIER: Full wave bridge selenium stack
NET F.O.B. BROOKLYN $\$ 298$.
This unit is representative of one of the types we supply. Upon receipt of your requirements we will promptly furnish quotation.
Electroumc contraus couphan OF NEW YORK 3124 Avenue 1 Brooklyn 10, N. Y. Phone: WOrth 2-3844

Terminals FOR
 ELLCCTRIC WIRES

Condenser Plates
Small Metal Stampings
in accordance with
Customer's Prints
∇

- ACCURACY
- PRECISION
- REASONABLE

DIE CHARGES
Modern Equipment and Factory
no screw machine parts
Patton-MacGuyer Company 17 VIRGINIA AVE. PROVIDENCE, R. I.

S.S.WHITE RESISTORS

are of particular interest to all who need resistors with inherent low noise level and good stability in all climates.

HIGH VALUE RANGE
15 to $10,000,000$ MEGOHMS
STANDARD RANGE
1000 OHMS to 10 MEGOHMS

ARE USED IN THIS ULTRA SENSITIVE ELECTRONIC PHOTOMETER

In this instrument-designed for measurement of very low light values-S.S.White Resistors serve as the grid resistance in the allimportant highgain D.C. amplifier circuit. The manufacturer, Photovolt Corp., New York, N. Y.. reports that the resistors "work very satisfactorily"-which checks with the experience of the many other electronic equipment manufacturers who use S.S.White resistors.

WRITE FOR BULLETIN 4505

It gives essential data about S.S.White Resistors, including construction, characteristics, dimensions, etc. Copy with price list on request.
Photo courtesy of
Photovolt Corp., New York, N. Y.

S.S.WHITE
 m" . mum tura wa co NDUSTRIAL

Hexible shatts - hexilie shaft tools. alrcraft acees somies small cutting and grimoing toots - special conmula rubiens molbto kesistors - pastec spelialiles - contract plastics motima

EISLER
ELECTRICAL \& ELECTRONIC EQUIPMENT
ELECTRONIC TUBE EQUIPMENT
 36 HEAD
RADIO TUBE RADIO TUBE
EXHAUSTING EXHAUSTING
MACHINE We Make
Complete
Equipment
For The
Manufacture
Of Incandes-
cent Lamps
Radio and Elec-
tronic Tubes.
TRANSFORMERS OF ALL TYPES

SIZES $1 / 4$ to 250 KVA SPOT WELDERS

OF ALL TYPES
FOR ALL PURPOSES
Butt Welders - Gun Welders
Arc Welders
Neon Sign Units
Manufacturing Equipment
CHAS. EISLER
EISLER ENGINEERING CO., INC.
751 So. 13th St. (Near Avon Ave.), Newark 3, N. J.

and Standard or Special

MIXTURES

LINDE rare gases are spectroscopically pure-argon, helium, neon, and standard mixtures are available in one- and twoliter glass bulbs and in cylinders; xenon and krypton are available in liter and fractional-liter bulbs.

The word "Linde" is a trade-mark of

[^7]PRESSURE PATTERNS GUIDE in Reducing Fuel and Repair Costs

SMCHRED-MAREEEE P环ESSUTEEGIBAP田

Reveals basic facts heretofore unknown!

Solves many problems by reproducing on oscillograph screen an accurate piclure of explosion or pressure variations related to factors of time, angular velocity. peak and top dead center pressures, crankshaft, carburetor and exhaust actions, etc.

Quickly pays for ifself in operation and maintenance savings. Now used by leading engine, aircraft and automobile manufaciurers, oil companies, chemical plants and refineries, military and naval ordnance, etc.

\leftarrow Send today for this free booklet illustrating many typical Pressuregraph applications.

Know your pressure variations and you know how to increase engine, pump or pressure line efficiency.

Whatever your special problems consultation with our engineers is cordially invited.

ELECTRO PRODUCTS LABORATORIES

549 W. Randolph St.,
Chicago 6, III.
Phone STate 7444

AUTOMOBILES

COMMUNICATION TRANSMITTERS

TRUCKS AND BUSSES

DISPENSERS

YOU CAN SAVE

WITH ESSEX "PACKAGED" WIRING HARNESS...

Engerneoning

Scores of users have found that they save time, trouble and money by turning their electrical wiring harness problems over to Essex specialists. Essex One-Source service handles the intricate job of producing lighting, ignition and control harness assemblies chstom-built to your exact specifications and complete with all
manual and electrical control devices for quick, efficient installation.

Through intensive specialization in wiring harness assemblies, Essex has developed line production methods of manufacturing, assembly and inspection, for economical production of high grade, individually tested, specially engineered assemblies.

ESSEX WIRE CORPORATION
WIRE ASSEMBIY AND CORD SET DIVISION
SALES DEPARTMENT

MONTICELLO, INDIANA

Sales Offices: Chicago, Ill.; Cleveland, Ohio; Dayton, Ohio; Detroit, Mich.; Kansas City, Mo.; Los Angeles, Calif.; Milwaukee, Wis.; Newark, N. J.; Philadelphia, Pa.; San Francisco, Calif.; St. Louis, Mo.
contributions to the theoretical and practical design of the electrical gun director.

David B. Parkinson was co-recipient with Dr. C. A. Lovell of the 1948 Potts Medal of the Franklin Institute.

Jan A. Rajchman, with RCA since 1936 and chiefly responsible for the development of the electron multiplier, recently received the 1948 Levy Medal of The Franklin Institute in recognition of a paper entitled "The Electron Mechanics of Induction Acceleration", jointly authored with W. H. Cherry.

J. A. Rajchman

W. H. Cherry

William H. Cherry, co-author of the above-mentioned paper, was the co-recipient of the Levy Medal. He has been engaged in research for RCA since 1941 and is at present working in the RCA television group.

William Balderston, formerly executive vice-president, has been elected president of Philco Corporation. Between 1944 and 1946 he directed the company's reconversion to civilian production.

Paul H. Wendel, formerly associate editor of Radio News and business manager of Radio Maintenance, has joined the Photofact staff of Howard W. Sams \& Co., Inc., Indianapolis, Ind.

Dan Drommerhausen, senior engineer with Hoffman Radio Corp., Los Angeles, has become manager of the service department.

Stuart Ballantine (deceased) was recently awarded posthumously the Armstrong Medal for outstanding contributions to the art. One of his many works was development, on a purely mathematical basis, of

DON'T BUY YOUR CUSTOM RADIO UNITS HAPHAZARDLY!

WATCH FOR COLLINS CUSTOM COMPONENTS

For your home entertainment group.

- FM/AM tuner with bass and treble controls, squelch, provision for TV
- High fidelity amplifier
- Record changer
- Loud speaker
- Antenna
- Professional Transcription turntable (optional)

A complete high fidelity radio system at a reasonable price.
All components precision matched by engineers.

Write for details
COLLINS AUDIO PRODUCTS CO. INC.
P. O. Box 368

Westfield, N. J.

Wanted

Electronic Engineers
and

Physicists

Excellent opportunities for graduates with research, design, and/or development experience in Communications \& Aerial Navigation Systems including direction finders, radar, FM, television, micro-wave.

Write complete details regarding education, experience \& salary desired.

To Personnel Department FEDERAL
TELECOMMUNICATION LABORATORIES, 500 Washington Ave. Nutley, N. J.

"Wou-Meter"

Newly developed direct-reading instrument simplifies measurements of varia tions in speed of phonograph turntables, wire recorders, motion picture projectors and similar recording or reproducing mechanisms.
The Furst Model 115-R "Wow-Meter" is suitable for both laboratory and produc-
tion application and eliminates complex test set-ups.
The instrument incorporates an additional amplifier stage so that a directinking recorder may be connected for qualitative analysis of speed variations. Send for Bulletin 115.

Frequency Response: $1 / 2$ to 120 cycles
Designers and Manufacturers of Specialized Electronic Equipment

FURSTEECTRONICS

806 W. North Ave., Chicago 22, Illinois

stement colli cent. whell ph. ath rell

NEWS OF THE INDUSTRY (continued)
the theory of the vertical antenna and its low-angle radiation.

Donald K. de Neuf is chief engineer of the Rural Radio Network's sixth f-m station, WVBN, at Turin, N. Y. Like the other five (WFNF, WVFC, WVCV, WVBT, and WVCN), it is operating on a radio relay network basis. WGHF in New York City is an affiliate.

Everett S. Lee, chief engineer of G-E's General Engineering and Consulting Laboratory at Schenectady, has been elected president of the AIEE for 1948-49.

Albert J. Friedman, formerly associated with the Federal Telephone and Radio Corp. of Nutley, N. J. and the Island Electronics Co. of Freeport, N. Y., has been appointed chief antenna development engineer at J. F. D. Mfg. Co., Inc., Brooklyn, N. Y.

Paul Thompson has been named chief electronic engineer of the Turner Company, Cedar Rapids, Iowa, manufacturers of microphones and electronic equipment.

P. Thompson

L. L. Helterline, Jr.

Leo L. Helterline, Jr. has been promoted from chief engineer to general manager of Sorensen and Co., Inc., Stamford, Conn. He was formerly associated with General Motors and Sylvania Electric Products Co.

William A. Browne, former engineering buyer for radar development at Sylvania's Electronics Division, was recently appointed merchandising supervisor for the Radio Division of Sylvania Electric Products, Inc.
R. L. Campbell has established a consulting television engineering laboratory in Boston, Mass.

when others failed, Peerless engineers successfully solved a

TOUGH PROBLEM

Illustrated above is a modulation transformer, cxtremely difficult to design and manufacture. Other manufacturers failed to meet the customer's requirements. Peerless surprised the customer by more than meeting requirements. Designed to meet C.A.A. specifications and specifically, the following electrical characteristics:
FREQUENCY RESPONSE - The Arequency tesponse of thus unit is that within 1 db trom 90 cps to $12,000 \mathrm{cps}$ and within 11 db trom 9,000 cPs to 11,000 cPS an specitled loads.
OISTORTION - The audio distortion in the transformer is less than 2% for all specitied trequencies and impedances and all power levels up to 250 watts. IMSERTION LOSS - The insertion loss is less than $21 / 2 \%$.lt $1,000 \mathrm{cps}$ for all specified loads.
REACTANCE - The reactive value of the input im. pealance is less than 100% of the resistive value iol any audto frequency from 90 cps to 200 cps ;
less than 50% from 200 cps to 1000 cps and less than 15% from 1000 (ps to 12,000 cps. These ratios obtain for all specilied loads at any power level up to 250 watts.
PHASE SHIFT - The phase shift of this unit is less thann Se/n between 9,000 cps and $11,000 \mathrm{cps}$ for all rated impedances.

LET PEERLESS HANDLE YOUR TOUGH PROBLEMS

The above clearly demonstrates that Peerless,

 with one of the finest and largest technical staffs, can design, engineer and manufacture transformers to meet your most difficult problems and specifications. Avoid delays that cost time and money-consult Peerless first.
PEERLESS ELECTRICAL

 PRODUCTS DIVISION ALTEC6920 McKinley Avenue, Los Angeles 1, Calif. Frazar and Hansen, Ltd.
301 Clay Street, San Francisco 11, Calif.

Lo-Hi Television Antenna

COVERS ALL CHANNELS

\author{

- SIMPLER
 - easier to erect
 - Lower cost
}

A radically new Television Antenna providing two separate arrays, each consisting of dipole and reflector, to insure maximum pickup for all 12 channels. Both arrays are fully adjustable in both horizontal and vertical planes. Simple design, quickly and easily assembled. A low-cost, satisfactory Antenna that gets results.

Get complete details from your radio job ber or write direct.

PRTMAX PRODUCTS

DIVISION CHISHOLM-RYDER CO., INC. 4810 HIGHLAND AVE., NIAGARA FALLS, N. Y.

Hermetic sealing excludes dust and corrosion. Arc-quenching atmosphere minimizes contact pitting or transfer. Contacts actuated silently and positively by an electric heater. Insensitive to transients or momentary power interruptions. Operates in any position. A simple, inexpensive relay for continuous operation.
-GENERAL SPECIFICATIONS

Delay:
Amblent Range:
5 sec . to 8 min .
Contacts:
SPST, normally open or
Contact Rating:
6 amps. at 250 volts
Heater:
5 watts
AC/DC
Write for Publication No. 300 203 Lakeside Avenue - West Orange, New Jersey
\square instrument division
THUMAS A. EDISON, Incorporated
 cycles with versatile, efficient electric synchronous motor timers. Use them in your own operations; specify Industrial Timers for your products. You get longer service and unquestioned accuracy with Industrial Timer equipment.
Two widely used Industrial Timers!
Time Delay Series-May be incorporated in assembly as a unit. Meter type mount allows flush panel installation. Automatic re-set, adjustable timing cycle up to 5 minutes. Small size. Both screw and solder type terminal connection. Available in various voltages and frequencies. Used on conveyors, molding presses, in diathermy and vacuum fube operation.

Automatic Re-Set Timer-P Series-Controls time of exposure to light, heat, electric current or agitation. Instant push-button operation-automatic re-set. Can be operated by remote control positions. Avallable in maximum time cycles from 15 seconds to minutes.

We manufacture more than 400 types of electric time controls for specific jobs. Write us your requirements.

INDUSTRIAL TIMER CORPORATION 111 EDISON PLACE • "KNOWN the world over" NEWARK, N. J.

SMALI PARTS

Filaments, cmodes, supports, springs, stc. for electronic tubes. Small wire and flat metal formed parts to your prints for yous assemblies. Double pointed pinm. Wire atraightened and cut diameter up to 16 . inch. Any length up to 12 feet.
LUXON fishing tackle accessorien.
Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.

BET4
 HIGH VOLTAGE POWER SUPPLIES

PROBLEM: A government research agency required a lightweight 0-50 KV Power Supply, with less than 2% ripple at 50 KV and $500 \mu \mathrm{a}$, and a removable control panel for remote operation.

NEW BOOKS

Vibration and Sound

By Philip M. Morse, Divector, Broolhaven Natiomal Laboratory. McGrawHill Book Co., Inc., New York, N. Y. 1348, Second Edition, 468 puges, $\$ 5.50$.

THIS is a revision of the original book brought out in 1936. The author has continued the objective of the first edition, namely, a thorough treatment of the theory of vibration and sound for students in physics and communication engineering. In attaining these aims the atuthor has provided an adequate and complete treatment of the mathematical foundations of conventiomal sound theory which forms the basis for the solution of the specific problems. Accordingly, the first palt of the book is concerned with a complete mathematical treatment, with most of the detailed steps included. In the latter portion of the book, the treatment is not as complete and therefore, requires some effort to fill in the intermediate steps.

The subject matter is confined for the most part to types of vibrations that can be handled mathematically. It is not, however, a book on mathematics with sound as an excuse. Mathematics is used as a tool. Sufficient explanation is given for the most part to keep the physical concepts and significance of the formulas clear.

The use of diagrams to illustrate modes of vibrations of strings, bars, membranes, and plates is one of the outstanding and useful features of the book. In the case of membranes and plates, the figures are presented in perspective to show the shapes for the lower modes of vibration. Illustrations of this kind are useful because they give at a glance information which cannot be readily gleaned from the mathematics.

Some of the subjects not usually considered in detail in books on sound are as follows: the perturbation theory of strings with variable density, effect of motion of the end supports of a string, vibration of membranes and plates, radiation resistance of radiators of various shapes, scattering of sound from obstacles, and room acoustics.

The transient response of vibrating systems is one of the important

Slash Fastening Costs

PALNUT salf:lockng NUTS

- Low in cost
- Vibration-proof
- Speedy assembly with
hand or power drivers
- Small space

- Light weight
- Many types for vari-
ous needs

On most light assemblies, α single PALNUT replaces common nut and washers. You reduce material and labor costs cut assembly time - save space and weight, while gaining the security of PALNUT double-locking action. Send details of fastening problem, for samples of PALNUTS. Ask for literature on entire line.

A leading radio tube manufacturer is rounding out its engineering staff. Several permanent, progressive positions will bs filled in the near future.
"SENIOR DESIGN ENGI. NEER'": A graduate engineer with five or more years experience in the design of receiving type tubes.
"JR. DESIGN ENGINEER": A graduate electronic engineer with some industrial electronies experience not necessarily in the radio tube field.
"PHYSICIST": - Young graduate with major in Spectroscopy.

These positions offer excellent working conditions, fine opportunities for advancement and many employee henefits.

Apply now in writing:
PERSONNEL DIRECTOR

TUNG-SOL LAMP WORKS, Inc.

200 Bloomfield Avenue Bloomfield, N. J.

Cavite

STEATITE ceramic

Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITE the precise qualities called for in their specifications . . . high compressive and dielectric strength, low moisture absorption and resistance to rot, fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its ingly low loss-factor of LAVITE plus its
excellent workability makes it ideal for all excellent workability makes
high frequency applications.

Complese details on requess

D. M. STEYARD MFG. COMPAMY
 Mein Offira 8 Worts: Chotrnnnoso, Jona. Neathan, Mass. Chicago - tos Angdes New York - Philadelphid:

NEW BOOKS
(continued)
characteristics which depicts the performance of a vibrating system. It is fortunate that one of the additions in the revision is the application of the operational calculus and the Laplace transform to the study of transients.

The treatment of room acoustics is outstanding. The following subjects are considered: room resonance, the characteristic frequencies or modes, rooms of various shapes, steady-state response and boundary coefficients.

The book includes a useful set of tables of trigonometric, hyperbolic, Bessel and Legendre functions and absorption coefficients, and plates or graphs of hyperbolic tangent transformation, standing-wave-ratio vs acoustic impedance, and absorption coefficient vs acoustic impedance. The glossary of symbols used in the book is very useful.

The bibliography on contemporary books is not complete or up to date. For example, there are at least six new and pertinent books which have been published since the old edition was issued which are not listed.

A large collection of problems of a practical nature, at the end of each chapter, gives the student a working knowledge of problems in vibrating systems and sound.

The book is a valuable addition to the literature in acoustics, particularly to the serious student and in-vestigator.-Harry F. Olson, RCA Laboratories.

Microwave Magnetrons

Volume 6 of the MIT Radiation Laboratory Series, Edited by George B. Collins. McGraw-Hill Book Company, Neu" York, 1947, 769 pages, $\$ 9.00$.
THE Book opens with an introduction which is evidently intended, in a concise manner, to acquaint the reader with the fundamentals of the field of microwave magnetrons. This takes the reader through subject matter which is in the main repeated in greater detail in the five main parts of the book. Though the introduction is well written, the extent to which it touches upon material to follow renders its value in the book somewhat questionable. Beyond the introduction the de-

A SUPERB VIDEO AMPLIFIER Convert Your 208 Scope To Television Use With . . .

THE TYPE 1000 TELEDAPTER
FREQUENCY RESPONSE: 3 Db down at rise time, nor more on 0.1 microsecond rise time, nor more than 10% tilt on GAIN: Approximately.
DEFLECTION FACTOR: Probe 0.4 Volts Peak to Peak per inch (With Du Mont 208B scope). Panel .04 Volts Peak to Peak per inch.
ATTENUATOR: Ratios of 1000/100/10 and 1 to 1 by means of selector switch.
OUTPUT VOLTAGE: 75 V. Peak to peak each side of push puli output amplifier. NPUT IMPEDANCE: Probe, 5 meg. and 15 mmf. Panel, 5 meg. 35 mmf .
OUTPUT LOADING: Normally 17.5 mmf and 5 meg. each side to ground. PROBE: Fully shielded, impedance 5 Meg . and 15 mmf .

TELEVISION RECEIVER I.F. ALIGNMENT

TYPE 1500 "WOBBULLTOR"
FREQUENCY BANDS: Two bands selected by panel switch. Either band range 4.5 to 35 M.C. center with band widths up to $\pm 25 \%$. Typical arrangement is: Band 1 center 21.9 M.C. $\pm 250 \mathrm{KC}$ for sound I. F. Band 2 center 25 M . C. ± 5 M.C. for Video I.F.
MARKERS: Up to 5 pulse type markers for each band, to specified frequencies, accuracy $.05 \%$. Markers extend to zero OUTPUT: 1 Vase to
OUTPUT: 1 Volt to 1 millivolt continuously variable. Output flat to $\pm 5 \%$ over entire band.
OUTPUT IMPEDANCE: Removable 75 ohm single ended cable with terminated box at end.
SAW SWEEP: A sweep signal is provided for "X" axis of scope. No "synching" adiustments required.
MONITOR OUTPUT: OUtput signal rectified and available at binding post.
OTHER TEL-INSTRUMENT PRODUCTS:
$\begin{array}{ll}\text { Type } 1200 & \text { 12 channel Wobbulator } \\ \text { Type } 1310 & \text { Video Distribution Amplifier }\end{array}$ Type 1310 Video Distribution Amplifie
Type 1900 Multi Frequency Generator Iype 1900 Multi Frequency Generat
Type 2000 Dot and Bar Generator
Type 2100 Bench Type Television Picture and FM Sound Carrier Gen erator
Television production test methods consultants to manufacturers.

Tel-Inslrument Co.lnc.

50 Paterson Avenue
East Rutherford, New Jersey Tel. RU 2-9720

FLEXIBLE SHAFT COUPLINGS

SIMPLIFY YOUR DESIGN PROBLEMS

FLEXIBLE SHAFT COUPLINGS-Here is absolutely accurate and effortless remote conirol at its finest. Dependability built for trouble-free service. Send specifications for our recommendations and prices.

RADIO WIRE SHIELDING-Flat wire construction with smooth inner and outer surfaces makes it more rigid, easier to handle. Makes smoother bends and allows for quicker insertion of wires. Used to shield audio, radio and video circuit components. Popular in discriminator and television circuits. Sold in various diameters in mill lengths of over 10 feet or cut to exact lengths. Available in tinned sleel, copper and brass for easy soldering. ECONOMICAL.

ELLIOTT MANUFACTURING COMPANY
218 PROSPECT AVENUE * * © INGHAMTON • NEW YORX
LEXIBLE SHAFTS FOR POWER TAKE-OFFS AND REMOTE CONTROLS

CDMPDUNDS

Scientifically compounded for pecifio applioations from wnien, reains, asphalts, pitches, olls, and minerals. Aviliable in wide range of melting polnts and hardnesses. Speoial pottlig compoande are hest conducting and crack resiatant at extremely low temperatures.
data, and samples will be furnighed on request.

fifi	
IMPREGNATING	SEALING
radle colls	condensers
transtormer coils	battoriee
Ionition colls	switch base terminals
wire coveringe	sooket terminals
paper tube and forms porou* ceramlea	Hight fixturet
	POTTING
DIPPING	Radio Transformers
Coils	Lloht Units
Transformers	Loadina Colls
Condensers	Condonsere

BIWAX CORPORATION

3445 HOWARD STREET SKOKIE, ILLINOIS
 Actual size illustrated

RECHARGEABLE - NON-SPILL VITAMITE 1 OZ. BATTERIES
(Smaller Than 2 Pen-Lights) IDEAL FOR USE WITH
Minioture And Sub-Minioture Filoment Type Tubes for HEARING AIDS, PORTABLE EQUIPMENT, ETC.

larger models also available

Write for Data and Literature
THE VITAMITE COMPANY
227 West 64th Straet
New York 23, N. Y

NEVER BEFORE IN THE U.S.

GROUND Miniature Ball Bearings
New Hampshire MICRO Ball Bearings are ground, on all functional surfaces, inside and out. Plus-Superfinished raceways.

Radial, Radial-thrust, Self-aligning and Pivot Ball Bearings, 5/32" to $\frac{3}{8 \prime}$ OD.

TECHNICAL BULLETIN ON REQUEST.

NEW HAMPSHIRE
BALL BEARINGS, INC.

5 Main St., Peterborough, New Hampshire

QUALITY COILS TO YOUR SPECIFICATIONS

We manufacture quality coils for the radio and electronics industry, High voltage R. F. power supply transformers a speciolty: $5 \mathrm{~K} . \mathrm{V}$. to $90 \mathrm{~K} . \mathrm{V}$. are standard. Let us know your requirements for any type coil and we will quote promptly.

FUGLE-MLLER LABORATORIES

NEW JERSEY
398 Main St. Me 6-2245
tailed treatment of the subject matter is presented in five main parts.

In the four chapters of Part 1. a cuite complete analysis is made of resonant systems as developed for cavity magnetrons. The last of these chapters deals with the problem of coupling the load to the tube cavity.

The four chapters comprising Part 2 present an analysis of the operation of microwave magnetrons to the extent that this was developed during the wartime activity. In this part, one is impressed by the need of additional research in this field, and the apparent complexity of an analytic treatment of the problem. The chapter entitled, "The Space Charge as a Circuit Element", is particularly interesting and instructive. This is followed with a discussion of transient behavior which necessarily deals to a considerable extent with mode selection. The concluding chapter of this part deals with noise in the magnetron.

Part 3 consists of four chapters on design which generously present various devices for arriving at quantities needed to make up a tube design. Interesting block diagrams are provided to set forth interrelations among design parameters. The laws are given of scaling a known tube design to arrive at values for a new tube. For application of these laws, performance charts of a number of existing types of tubes are included. This is followed by appropriate data for r-f portions of the tube, the cathode, and the magnetic structure.

Part 4 deals with mechanical and electronic tuning, and frequency stabilization. Part 5 contains practical information relating to tube construction. It is gratifying that the book is rounded out with this section, which is of great importance to anyone setting out to build magnetrons. After a chapter on measurements and test equipment, there is a closing chapter of data on typical magnetrons.

Upon studying this book, one is impressed with its uniqueness, scope, and general excellence. For a worker in the field of microwave magnetrons it is unquestionably an essential.-H. W. Anderson, Electronics Laboratory, General Electric Co., Syracuse, N. Y.

Compact, laboratory styled, high sensifitify test set "Application Fagineered" for production test, laboratory, school and servicemaintenance phases of modern radio-clec-fronics-commintications.

20,000 Ohms per Voli D.C. -1000 Ohms per Volt A.C. VOLTAGE RANGES: 0-3-12-60-300-12006000 A.C. \& D.C. 0-120 microamps 0-1.2-12-120-MA. CURRENT RANGES: $\begin{aligned} & 0-120 \text { microamps } \\ & 0-1.2-12-120-\mathrm{MA} . \\ & 0-1.2-12 \text { Amps I). } C .\end{aligned}$ RESISTANCE RANGES: $0-6000-600 \mathrm{~K}-6 \mathrm{Meg}$ F60 Megohms. DECIBEL RANGES: From - 26 to +70 DB . Complete with batteries and $\begin{gathered}\text { est leads }\end{gathered} \$ 38.75$

```
PLUS superior physical features:
* 45/8" wide angle meter.
* Heavy duty molded bakelite
    instrument case size 51/2\times71/8\times3".
* Heavy gauge, anodized aluminum panel,
* Rotary Range and Function Selection.
\star Recessed }6000\mathrm{ volt safety jocks.
* Only two pin jacks
    for all standard ranges.
```

Ask to see this and other "Precision" Application Enginecred instrumonts, on display at leading radio parts distributors. Write for new, complete 1948 catalog, including drtails of the Precision Electronamic tube testin! circuit.

PRECISION APPARATUS CO., Inc. 92-27 Horace Harding Blvd. Elmhurst 10, $\mathrm{N} . \mathrm{Y}$.

Export Division, 458 Broadway, New York City, U. S A. Cable, MOR'HANEX

Backtalk

This department is operated as an open forum where our readers may diseriss problems of the electronics industry or comment upon articles whirh ELECTIRONICs has published.

More Hartley Law

I)EAR Sirs:

In REPLY to the letter of Mr. L. A. Zadeh in your May issue, it is, of course, true that Hartley, in his original paper, fully realized that the capacity of a channel to carry information per unit time was proportional to the product of the bandwidth of the channel and the logarithm of the number of quantum levels. It is also true, as Hartley pointed out, that the capacity of the system is limited by the distortion (random and nonrandom) introduced by the transmission circuit. It is not, however true, in the absence of distortion of the random variety, that the capacity of a channel to carry information per unit time is limited, as was shown in the original Hartley article. It is in the recognition of this last point, which eluded Hartley in his otherwise striking analysis, that the new theories represent a revision of the Hartley law.

In his 1928 paper Hartley showed that the capacity of a channel to transmit information was limited by a quantity which he called intersymbol interference; namely, interference produced by the fact that any filter with finite cut-off frequency contains energy storage elements. Energy stored in these elements results in the appearance of signals at the output of the filter long after the input signal has become zero. The spurious output signals, according to Hartley, become mixed with subsequent signals. According to this viewpoint, one must wait until the intersymbol interference has decayed to a suitable value before measuring the amplitude of any new incoming signals.

It has now been shown, by all the workers in the field mentioned in

CUSTOM DESIINED to Your Specifications

Planned, written and illustrated by a select staff . . . experts in creating radio and electronic manuals for civilion \& militory use.

When you call upon Boland \& Boyce to crecte your monuals you are relieved of every detail in their preparation. The entire operation is taken over and completed by a speciolized staff with years of experience in publishing books \& manuals.

First the requirements for your manual are completely surveyed. The working conditions to which they will be put are studied and the operations or equipment described in the manual are thoroughly onalyzed. A complete outline is then prepared and submitted for your approval, along with a dummy of the manual as it will oppear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.

Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style. Each project is treated with individual ottention in technique of presentation and editorial opproach. The Boland \& Boyce military and civilian manuals now in use throughout the world are our best recommendations.
U. S. Navy
U. S. Signal Corps.

Sylvania Electric Products, Inc.
The National Company
Western Electric Co.
Bell Telephone Laboratories
Maguire Industries, Inc.
Allen B. Dumont Laborotories, Inc. General Electric Co.
Nine Safety Appliances Co.
Write or wire Boland \& Boyce today for more information.

BOLAND \& BOYCE INC., PUBLISHERS

[^8]
AN 8" DIA-CONE SPEAKER WITH THE HIGHEST EFFICIENCY NOW AVAILABLE TO INDUSTRY

SPECIFICATIONS:
Power Rating 12 watts Voice Coil Impedance. 8 whs Voice Coil Impedance .
Required Amplifier Output Impedance
4.8 ohms
 4 lbs.

The acknowledged design leadership of Altec Lansing in the field of high quality sound reproduction has now produced an $8^{\prime \prime}$ speaker of extreme high efficiency, light weight, and quality performance. It incorporates the famous Dia-cone principle of high frequency reproduction from a separate metal diaphragm. It is particularly applicable for portable sound reproduction uses, such as 16 MM sound projectors, wire recorders, and announcing and music systems in mobile units, such as airplanes and buses. It is ideally suited for television, and table model FM receivers where quality reproduction is essential and space occupied by the speaker is important.
Inquiries from manufacturers concorned with ecomomy in quantity production are invited. An illustrated brochure, fully describing the entire 1948 Altec Lansing line of speakers, containing frequency response curves for each speaker, will be sent on request. Write to address nearest you.

161 Sixth Avenue New York 13, N. Y. 1161 N. Vine Street Hollywood 38, Calif.

Newl formica YN-25 ELECTRICAL INSULATION

200 Times Better Insulation Resistance

The specifications for Formica " $\mathrm{YN}-25$ " tell their own amazing story far better than adjectives. Note particularly that impact strength is 10 times greater. insulation resistance 200 times higher than standard electrical grades of laminated insulation.

Excellent machining, punching and post-forming characteristics mean limitless variety of possible sizes and shapes.

BACKTALK
Mr. Zadeh's letter, that this intersymbol interference need not exist. In other words, in the absence of random noise or harmonic distortion, and, in fact, sometimes even in the presence of the latter, information may be transmitted at an arbitrarily high rate over a system of any bandwidth desired. Systems have been constructed, on paper at least, capable of performing this operation. The statements, to the effect that the "new" law, indicated the possibility of transmitting speech on a bandwith of only a few hundred cycles, are therefore completely correct and do not involve a method of frequency compression similar to that described by D. Gabor in the November issue of the Journal of IEE (London). These schemes having to do with the "new" law concern themselves purely with the elimination of the intersymbol interference found by Hartley to be the major factor limiting the rate of transmission of information in communication systems as we know them today.

Since this intersymbol interference may readily be eliminated from any communication system, it is necessary to probe further into the problems of the transmission of information to discover what does limit the rate at which information may be transmitted. We must then go to the terms which from Hartley's viewpoint were second order, namely noise and distortion. It is in this recognition of the nonexistence of the Hartley limit and the probing into the second order effects that the revised theories hold their utility. It is perfectly correct that the equations involved in the "new" law can readily be obtained directly from Hartley's law by a process such as that given by Mr. Zadeh in his letter after one recognizes the unessential nature of the Hartley limit. This process, however, glosses over certain of the effects of wide-band modulation which should be included in any derivation of an adequate law for the rate of transmission of information and have been so included by all of the later workers in the field.

It should also be pointed out that in the derivation of the "new" law, no tacit assumption that the bandwidth of the transmission channel is at least as large as that of the
message need be made, and, in fact no such tacit assumption has been made by those whose theories have received recent attention. Such a restriction may be placed, if desired, and if this is done, a special form of the law will be obtained. This restriction is neither desired nor necessary in any general statement of theory. It is to be hoped that a complete statement of the derivation of the revised Hartley law may be published within a reasonable time so that this whole matter may be cleared up.

> W. G. TULLER
> Melpar. Jne.
> Alexandria, Virginia

Acronyms

Dear Sirs:

We read the article "Survering with Pulsed-Light Radar" in the July issue with a great deal of interest.

How about using the acronyms "infrar", "lidar" and "ultrar" for infrared, light-wave and ultra-violet-type pulsed radars?

Ted Powell
Engineering Dept. Amplifier Corp. of America

Radiosonde Measurements

Dear Sirs:
In CONNECTION with my article "Radiosonde Potential Gradient Measurements" (p 184 Jan. 1948) I wish to point out that the article is based on a portion of my M.SC. Honours thesis. The work described was done at the Physics Department, Aukland University College, New Zealand, under the supervision and following the suggestions of Dr. K. Kreielsheimer and Prof. P. W. Burbidge. Doubtless as a consequence of the (present) address from which I corresponded with your staff, the published affiliation is misleading.

> Wellington, Rew E. Bealand

Note: On April 8, 1948, Mr. Belin wrote pointing out the misleading impression created by the affiliation published under his byline. Publication of the above letter has been delayed during correspondence with Mr. Belin and Dr. Kreielsheimer. Public announcement of radiosonde potential gradient measurements was first made jointly by Dr. Kreielsheimer and Mr. Belin (Nature, p

Designers of microwave transmission equipment are now taking full advantage of the flexibility of WAVEFLEX flexible waveguides without sacrificing any of the advantages of rigid waveguides. As a result, design problems are greatly simplified. WAVEFLEX waveguides offer lower attenuation loss, excellent impedance match, and extreme flexibility without loss of efficiency.

Standard WAVEFLEX flexible wave.
guides are made in accordance with joint Army-Navy specifications. We will gladly work with you in developing special Wave. guides to serve in special applications.

Literature on request
Titeflex Inc., 410 Frelinghuysen Ave., Newark 5, N. J.

IF IT'S ELECTRONIC...
 BaW can make it for your

NOW IN PRODUCTION

 AT B \& WCOMPLETE RADIO TRANS. MITTERS - DUAL DIVERSITY
CONVERTERS, CONTROL UNITS and frequency SHIFT EXCITERS FOR RADIO TELETYPE TRANSMISSION SPECIAL TEST EQUIPMENT

- REDESIGN, MODERNI.

ZATION AND MODIFICA.
TION OF EXISTING EQUIP-
MENT - MACHINE WORK

- METAL STAMPING
- COILS - CONDENSERS
- Other ELECTRONIC dEVICES IN A WIDE RANGE OF TYPES

From small electronic components up to carefully engineered test equipment and complex electronic devices, Barker \& Williamson can engineer and manufacture high quality products to your specifications.

Three B\&W plants, comprising 150,000 square feet, completely equipped with a competent engineering staff, machine shop, tool room (including all machines for drilling, milling, turning, stamping and forming metals and plastics), and a complete wood. working shop are at your disposal. Your inquiries are welcome. Write Department El-98 for prompt reply.

- CONTACTS

FOR THE FIELD OF ELECTRONICS

TUNGSTEN and MOLYBDENUM Quality and accuracy in our fabrication oi Tungsten δ Molybdenum Ribbons have characterized our service to the Electronic industry.

> A development of
H. CROSS CO.

WE manufacture a complete line of equipment

EAECTRONIC EQUIPMEXIT. vacuum pumps ete WET GLASS SLICLNG and cutting machines for Colifire GLASS wolkKiNG units for stulents EISLER ENGINEERING CO.
731 So. 13 th St. (near Avon Ave.)
from 100 to
400 Amps

Custom Built Equipment

Mechanical-Electrical-Electronic Complete Units. Metal Parts Cabinets, Chassis, Boxes
BUCK ENGINEERING Co., Inc.
34-37 Marcy St. FREEHOLD, N. J.

Antenna Coils, Grid Clips, Dial Cord Springs and Precision Springs of all types pertaining to RADIO and TELEVISION.

Write for descriptive folder

WEBSTER SPRING CORPORATION
97 South 5 th Street
Brooklyn 11, New York

MICROMET	
FREQUENCY	
METER within 0.01 per cent	
LAMPKIN LAB Bradenton,	ATORIES, IN a., U. S. A.

ELECTRO-CHEMICAL

 GLASS-BLOWING - ScientificVacuum

- Vacuum

WILLIAM I. FRIOLI
1208 West Sumner Ave. indianapolis 44, Ind.

BACKTALK
(continued)
227 Feb. 23, 1946). Dr. Kreielsheimer who appears to be the originator of the modifications to the original Bureau of Standards radio meteorograph has previously described the methods before the Science Congress (Wellington, N. Z., 22 May 1947, in a paper to be published in the Trans. Royal Soc. N.Z.).-The Editors.

Light Meter

Dear Sirs:
In the article, Light Meter for Electric Flash Lamps, that appeared in the June 1948 issue, there is an error in the drawing on page 78 . The negative lead of the 45 -volt battery should connect to the lower side of capacitor C instead of one side of the filament.

Harold E. Fidgerton Massuchusclts Imstitute of Techurlogy ('ambringfo. Massachuseths

Square-Wave Response

Dear Sirs:
In the reference sheet "SquareWave Response" (Electronics, p 130, Aug. 1947) a waveform is shown identifying the voltages used in the equations on which the nomograph is based. The formula seems to apply to a pulse, but could be made applicable to a square wave if voltages were measured with reference to a mean-value axis.

> W. F. Thomson

Wembley, Engltuit
Dear Mr. Thomson:
I AM sorry that an errata has not been made stating that E is the peak value at the beginning of the cycle (not the peak-to-peak value) and that e is the peak value t seconds later. With these definitions, the nomograph is applicable to rectangular waves of any duty cycle. The waveform certainly should have been more representative. You may also have noticed that R in the circuit diagram should have been R_{G} and that an additional defining relation: $R=R_{G}+R_{L}$ where R_{L} is the load resistor of the first plate, should have been added.

I am grateful to you for bringing these errors to our attention. The printer was unable to send the nomograph with the waveform, circuit diagram, and equations to me for approval before publication.

> A. J. Baracket Allen B. DuMont Labs., Inc. Clifton. N. J.

PROFESSIONAL SERVICES

Consulting - Patents - Design — Development - Measurements
in
Radio, Audio, Industrial Electronic Appliances

THE BARRY CORPORATION

VIBRATION Sperialists in the Control of NoISE Engineering Development Manufacturing
$17 y$ Sidney Street $\begin{gathered}\text { Cambridge, Mass. } \\ \text { detephones: ELIot } 0861-0140\end{gathered}$

H. RUSSELL BROWNELL

Consultant

Specializing in Measurements \& Testing
Instrunents © Technigups - Elect
188 West 4th st
Ne

CANOGA CORPORATION

Electronic Enginefrs
Radar, Pulse Techniques, MTI Systems, l'ulse and Television Receiver, Vidro Ampliflers, Test Equipment. Mierowave Antenna Applications, Electronic Controls, am Microwne Equipment. SHOP ANJ LABORATORY FACILITIES 4310 Bessemer St. state j-4: 222 Van Nuys, Calif.

EDGERTON, GERMESHAUSEN \& GRIER, Inc.

Consulting Engineers
Research. Derelopment and Manufacture of Electronic and stroboscopic Fquipment Specialists in IIIgh-Speed Photography
155 Massachusetts Arenue, Cambriage 39, Mass.

ELECTRO-MECHANICAL RESEARCH INC.
Specialized Research and Manufacture
High and Low Frequency Circuit Development
octronic Measuring and Test Equipment
Optical and Infa-Red Studien
Magnetionphysical Equipment
Ridgefteld Con

ELECTRODYNE CO.
Electronics Mechanics Optics RESEARCH AND DEVELOPMENT Cathode ray recorders custom built to your own specifications. Prompt delivery. mentation and industrial problems.
Literature arailable on request
899 Boylston St.
Boston 15, Mass. \quad Phones Copley $\begin{aligned} & \text { 7-0055 } \\ & \text { Copley } \\ & 7-0056\end{aligned}$

ELECTRONIC ENGINEERING

 CO. of CALIFORNIARadio and Electronic Consulting and Designing.

ERCO RADIO LABORATORIES, INC. Radio Communications Equipment Kngineering - Design - Development - Production Pioneers in F'rpquency Shiit Telegraph	

FRANKEL \& NELSON

Consultants in Mathematical Physics 7710 Firenze dre. Los Angeles 46, Calif. Granite 6970

GENERAL

INSTRUMENT \& ENGINEERING
CONSUI,TATION IRESEALCLI DEVRLOH'MENT IN
FILECTIRONICS, E. F., D'HYSICS
100 Barr Building
Washington 6, D. C.
PAUL E. GERST \& CO.
CONSULLTING ENGINEERS Specialisfs in
rical Product Design
. Machinery Apparatus \& Applications
El. Appliances, IIi-Frequencies Apparatus
11 So. Desplaines St. Communations \quad Chicago 6, Ill.

GLOBE PRODUCTS
 CORPORATION

Specializing in Test Methods and Techniculues-
Development and Vesign of Electronic Test and
Measurement Equipment-Automatic and Manual
l'roduction and Laboratory types.
P.O. Box \#7 $\quad 870$ Maplewood Are. Briggeport. Conn

PAUL GODLEY CO.
Consulting Radio Engincers gREAT NOTMH, 天. J

Est. 1926
little Falls 4-1000

HANSON-GORRILL-BRIAN INC.

Product \&o Mfg. Development electrical - electronic hydraulic - mechanical
One Continental Hill
Glen Cove. N. Y. Glom Cove 1022

LERU LABORATORIES, INC.
 Design and Development of Electronic Equip

 ment for industrial and scientific purposesSpecial experience in microwaves, spectrum analyzers, photo-electric circuits, test equipment, ete. 300 Bleecker Street
New York 14 \qquad WAtkins 9-4194

GEORGE J. MAKI

Radiotelegraph Consultant
Design \& Application Engineering FSK Systems
Moraga, California

MEASUREMENT ENGINEERING LIMITED

Consultants on Special Equipment tor measurments and production tests, commmications and -
61 Duke
Toronta,
Ont.
Arnurior, Ont.
2235 Addington Are.
Montreal, Que.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \&f Physicist
Higli Frefurncy Heating - Industrial Flectronies Applied I'hysics and Mathematies
549 W. Wahhington Blod. Chisago 6. Ill.

$$
\text { State } 8021
$$

A. F. SMUCKLER \& CO.

Electronic Engineers
Electronic Product Manufacturing Contractors to United States Government

SPECTRUM ENGINEERS

Electronir \& Merhanical Designers
540 North 63rd St. Philadelphia 31, Pennsylrania GRanite 2-2333: 2-3135

SEARCHLIGHT SECTION

BUSINESS

$\$ 1.20$ a line. Minimum 4 lines. To figure advance payment count 5 average words as a line.
Positions Wanted (full or part time salaried employment only) $1 / 2$ the above rates payable in adoynce.

Discount of 10% if full payment is mede in advance

for 4 consecutive insertions.
Individual Spaces with border rules for promineat
display of advertisements. $\$ 10.25$ per inch for all advertising appearing on other than a contract Box Numbers-Cars of publication New York, Chi- An advertising inch 18 measured $7 / \mathrm{s}^{\prime \prime}$ vertically on NEW or San Francisco offces count as 1 line, \quad ADVERTISEMENTS received by August 31 column, will appear in the October issue, NEW ADVERTISEMENTS receivedmitations of space available. subject to limitations of space available.

TELEVISION ENGINEERS

The Crosley division, Avco Manufacturing Corporation is expanding its television receiver activities on a long term basis, creating a few positions for qualified supervisory and senior engineers.
Requirements: College degrees. Three or more years' experience in television and radar design and development of which at least two years have been spent in advanced or product development of television receivers. Specialists in circuit elements will be considered.
Ideal working conditions in well equipped modern laboratories with unlimited opportunities for crdvancement. Forty hour week, insurance, hospitalization and pension plans. Responsibilities and salary based on experience and ability.
Replies (which will be kepi contidential) stating age, experience, education and sal-

Director of Research and Engineering CROSLEY DIVISION
avCO MANUFACTURING CORPORATON
1329 Arlington St. Cincinnati 25, Ohio
ENGINEERS
Physicists-Electronic Engineers of
Superior Ability
WANTED
for research and development work
Salaries Commensurate With Ability Send Complete Resumes To
THE APPLIED SCIENCE CORPORATION OF PRINCETON
Post Office Box $44 \quad$ Princeton, N. J.

CHIEF ELECTRICAL ENGR PROJECT ENGRS SENIOR ENGRS

Must have extensive experience in home radio receivers and/or television, design $\&$ development.
Address Replies To

Vice President in Charge Engineering
AIR KING PRODUCTS CO., INC.
170-53rd St.
Brooklyn, N. Y.

LEPLIES (Box No.): Address to office nearest you NEW YORK: 330 W, lind St. (18) OHIGAGO: 520 N. Michigan Ave. (11)
S.IN FRANCISCO: 68 Post St. (4)

POSITIONS VACANT

ELECTRICAL ENGINEER or research physicist with imagination, versatility and good phases of mathematics and physics, particuphases of mathematics and physics, particuand research laboratory in Dayton, Ohio. Development for industrial clients comprise smalt motors of synchronous hysteresis type, industrial electrical and electronic controls, aparatus and devices. In reply state age, education. experience and s-5194, Electronics.
engineer-Electrronic amd High Vacuum experience, for development of related apdetails. Replies confidential. Location-MidWest. P-6064, Electronics.

EMPLOYMENT SERVICES

SAI,ARIED POSITIONS $\$ 3.500-\$ 35,000$. If you are considering a new connection communirate with the undersigned. We offer the original personal employment service (38 years
recognized standing and reputation). The recognized standing and reputation, is ine brocedure, of highest ethical standards, is inhevelons overtures without initiative on your lart. Your identity covered and present position protected. Send only name and address
for details. R. Wixby Inc., 266 Dun Bidg., Buffalo

EXECLTIVES $\$ 3.010-\$ 25.000$. This reliable service. established 1927. is geared to needs nection under conditions assuring, if employed, full protection to present position. Send name and address only for details. Personal consultation invited. Jira Thayer Jennings, Dept. E,
241 Orange St., New Haven, Conn.

POSITIONS WANTED

SALES ENGINEER with plenty on the ball! I liring with me a knowledge of methods and policies which can help you increase profits. Formerly divisional sales manager for leading品ound: $11 /$ years sales, $41 / 2$ years technical. Excellent correspondent; highly recommended.
Metropolitan N. Y, only: PW-5988, Electronics.

MECHANTCAL ENGINEER-...M.E.. M.S.: age 29. 8 vrs. experience in servomechanisms, electronic instruments, fesign and manufact.
of mecision instruments. Capable of bastc of precision instruments. Capable of basic
analysis and research. Desires responsible analysis and research. Desires responsible
position. Available in October. PW-6043, position. Available in October. PW-6043,
Electronics.

COMMUNICATIONS ENG., graduate 1940, 7 years industrial exp. on H.F. receivers and ion. PW-6041, Electronics.

Chief Engineer

Available

Graduate: Experienced in design, development and production of Television, Home Receive Cost Consciousal Electronic Equip ment. Cost conscious, sales minded, pro and Development Worker. Employed at present by Radio-Television manufacturer in above capacity. Will move to East or West coasts. Finest trade references.

PW-5821, Electronics
330 West 42 nd Street, New York 18, N. Y.

Northern Ohio SALES REPRESENTATIVE

Solicits connection with manufacturers of high quality electronic components and equipment.

Fully experienced
J. R. DANNEMILLER ASSOCIATES
4334 Groveland Cleveland 18, Ohio

RADIO CABINETS

and wood cabinets of all types built to your specifications.
"Engineered Wood Production"
THOMAS MANUFACTURING CO. neenah, WISCONSIN

SAVE RESEARCH TIME

BY CONSULTING

These Indispensable References: ELECTRONIC ENGINEERING MASTER INDEX ELECTRONIC ENGINEERING PATENT INDEX

Descriptive Literature on Request
ELECTRONICS RESEARCH PUBL. CO.,

MICROPHONES

Un breakablo dynamic-adjustabo Impodance
SOUND ENGINEERS BUY DIRECT
Off the regular list price
SEND FOR FREE CATALOG
ST. LOUIS MICROPHONE CO.
2728 Brontwood Bivd..
St. Louis 17, Mo

ART-13 POWER SUPPLIES AND LOW FREQUENCY OSCILLATORS

High Power R.F. Amplifiers, Special Equinment Quotations on request.

155 Chambers St
UCTS

WANTED

WANTED

Western Electric Carrier Telephone, Carrier Telegraph Equipment and Components. Filters, repeating coils, transformers, equalizers. Types CF1, CF2, H, C, and other carrier equipment. Telephone and telegraph repeaters.

W-4435, Electronics
330 West 42nd Street, New York 18, N. Y.

WANTED

TEST EQUIPMENT

All types of Laboratory Test Equipment, new, used or surplus. Send description to

W-4861, Electronics
330 West 42 nd Street, New York 18, N. Y.

ENGINEERS PHYSICISTS

The establishment of a new section in our research laboratory requires the services of Electronic Engineers, Servo Engineers, and Physicists.
iPOSITIONS AVAILABLE AT ALL LEVELS!
An excellent opportunity exists to grow with this expanding group and receive responsibilities commensurate with your ability and experience.
Microwave radar, television, telemetering, ultra-high frequency communication, cryogenic, high altitude physics, auto-pilot, and computor experience is especially valuable.

EMPLOYMENT SECTION

BENDIX AVIATION CORPORATION
Research Laboratories 4855 Fourth Avenue Detroit, Michigan

Radar Technicians WANTED

For Overseas Assignments

Technical Qualifications:

1. At least 3 years practical experience installation and maintenance.
2. Navy veterans ETM $1 / \mathrm{c}$ or higher.
3. Army veterans $T E C H / S G T$ or higher.

Personal Qualifications:

1. Age over 22 -Must pass physical examination.
2. Ability to assume responsibility.
3. Must stand thorough character investigation.
4. Willing to go overseas for 1 year.
5. No dependents permitted overseas.

> Base pay, bonus, living allowance, vacation, add up to $\$ 7,000.00$ per year. Permanent connection with company possible.

Apply By Writing To

Q-58, P. O. Box 3495, Phila. 22, Pa.
Give complete history of your experience, particularly in radar maintenance. Interview will be arranged for successful applicants.

INVESTIGATE THIS OPPORTUNITY

To join the staff of one of the largest research organizations in the country devoted exclusively to

VACUUM TUBE RESEARCH

Working conditions are ideal in these laboratories which are located in the New York Suburb of Orange, New Jersey. Your associates will include men of many years experience in vacuum tube research and development.

This rapidly expanding organization is devoted to both commercial and military research. It is a division of one of the oldest vacuum tube manufacturers in America. Security and stability for the years to come are assured. You will have an opportunity to gain experience with the different kinds of vacuum tubes, receiving, power, cathode ray, sub-miniature, micro-wave, radial beam and various special types.
If you can qualify as a

PHYSICIST • MATHEMATICIAN • ELECTRICAL ENGINEER CIRCUIT TECHNICIAN • VACUUM TUBE TECHNICIAN

write at once to

RESEARCH DIVISION

NATIONAL UNION RADIO CORPORATION
350 SCOTLAND RD. ORANGE, NEW JERSEY

Bachelors, Masters, PhD's in PHYSICS or E.E.; Experienced Electronic Engineers; Recent Graduates; and Technicians: OPPORTUNITY ON LONG ISLAND

offers attractive working conditions, salary commensurate with ability, access to graduate schools, first-rate research and plant facilities, other advantages.
Projects underway in fields of microwave receivers, transmitters, antennas: radar, air traffic control; servos, motor-control systems; general electronics.

In reply, write Personnel Manager

WE NEED A BETTER CHIEF ENGINEER

He should have a broad scientific background and thorough training and experience in mechanical design of complex precision equipment involving electronic and optical features. His depariment will also be responsible for tooling, drafting, and maintenance and correlation of blueprints, specifications, parts lists, etc. He must be able to effectively organize and administer a group of engineers, draftsmen, and tool and die makers. If qualified, send complete personal information and record of past training and experience. Include references and recent photograph. Location, West Coast. Salary, \$500J-\$7000, depending upon qualifications and performance.

P-5808, FLECTRONICS
68 Post St., San Francisco 4, Calif.

FIELD SALES ENGINEER

Must have knowledge of transmitting tube field. Excellent opportunity. Write or phone AMPEREX ELECTRONIC CORP.
25 Washington Street, Brooklyn 1, N. Y. MA 5-2050 - Ext. 32

WANTED:

ENGINEERS OR PHYSICISTS
With radar design and development experience. Also men experienced in UHF ant nan design work. Master's degree or Ph.D. desired nut not absolutely necessary if experience is broad enough giving fult details to :

RESEARCH FOUNDATION Oklahoma A \& M Coliege, Stillwater. Okialtoma.

YOUR HEADQUARTERS FOR INDUSTRIAL EQUIPMENT

RCA 630 T.S. POWER TRANSFORMER

This transformer designed for heavy duty television serrice
Sec. $\overline{=}$ I $325-0.325 \mathrm{cy}$. © 400 ma.

$$
\$ 17.95
$$

RANSFORMER
 Pimainy

 Dealis- deisped to light scove
tube ant $\times x 2$ tube. Ki/2" high $\times 23 / 4 \times 41 / 2^{\prime \prime}$
$\$ 3.95$

TRANSFORMER
I'rmary 220 or $110 \mathrm{~V} ., 50 / 60 \mathrm{Cy}$ Sec.20:0 LT @ 1 amp. Used ilt a bridge circuit, this transformer will deliver 2000 V . DC @ 487 ma........ $\$ \mathbf{1 7 . 9 5}$

POWER TRANSFORMER

ion Volts DC transtormer-Tric. 117.5 Volts-
Sec. 16.3 V. @ 1.2 amps
Sce. $=2725.0-725 \mathrm{~V}$. @ fio tha

$\$ 2.95$

TRANSFORMER

Here is a frantormer versatite enough to ram almost any piecer ol
surplus gear-gives you B-. bias $\operatorname{mpl}, 110 / 220 \mathrm{~V} .60$
Sec Sec $\# 1-325-0-325 \mathrm{~V}$. @ 250 ma
Sec $=2-0.180 \mathrm{~V}$ Sec $=3-0.180 \mathrm{~V}$.@ 40
Sec. $=4-5 \mathrm{~V} .3$ amps See $=512 \mathrm{~V}$ @ 10 amps

TRANSFORMER

$$
\$ 5.50
$$

[^9]
SELSYV MOTORS

CLOSE

SPECIAL

Synchronous Type
Pair in Series for 110 v . AC .

SYNCHRO——IFFERENTIAL

A high voltage cap for the 8016 or 2×2 tube $30 ¢$ ea.

PBC GENERAL ELECTRIC OVER CURRENT RELAY

OVERCURRENT RELAY

ADLAKE Type 1040-80

No. R-4012 Mer cury Time Delay Relay Normally Open, Closes in 5 seconds. Open in .3 seconds
$\$ 8.75$

No. R-4013 Doulile Pole Double Throw 115 Volts 60 cyc. Coil 5 amp. contacts.
\$2.65

ANTENNA MANUAL
Here is the latest dope on antennal. 350 full payses on heams, stacked arrays, colin-
ear arrays etc.-how to match them to feed lines-a wonderful manual without mathematics sn anybody can understand $\mathbf{\$ 3 . 5 0}$
how and why

DO YOU OWN AN SCR-522?
We have a complete power supht including a separate voltage resulated bias supply
chassis and schenatic-all in kit form This kit will supply all voltage necessary for oneration of the set. All parts guaranteed. Complete at the
amazingly iow mice of
$\$ 14.95$

IT'S SENSATIONAL

Hottest Item Out 1 Make your SCR-522 Receiret oderate on 144 to 148 MC with ONE DIAL, conlrol. in less than 1 hour! rarts and in-
structions.
$\$ 3.00$
Model 200-EA. 5-ELEMENT 2 METER
BEAMI KIT. Folded di-pole driven element
All aluminum construction. Feed with low
$\begin{aligned} & \text { impedance coaxial cable. } \\ & \text { amateur ne price............... } \mathbf{\$ 8 . 4 0}\end{aligned}$
20% DEPOSIT WITH ORDERS UNLES RATED

NIAGARA RADIO SUPPLY CORP.
NEW YORK 6, N. Y.

Phone
Digby 9-1132-3-4 All Prices F. O. B. N. Y. C.

LARGEST STOCK OF W W IN THE COUNTRY
 ALL BRAND NEW—STANDARD BRAND
 MINIMUM ORDER $\$ 5.00$
 QUANTITY PRICES ON REQUEST

(ALL TUBE TYPES IN STOCK NOW-SUBJECT TO PRIOR SALE—PRICES SUBJECT TO CHANGE WITHOUT NOTICE)

20\% DEPOSIT WITH ORDERS UNLESS RATED

Dlgby 9-1132-3-4
All Prices F.O.B.
N. Y. C.

WRITE FOR COMPLETE LISTING!

INSTRUMENT ASSOCIATES

147-57 41-st AVENUE Telephone INdependence 3-1919 FLUSHING, N. Y.

SHIVE

 Brand New and Fully Guaranteed
SYNCHROS

IF Repeater, 115 volts, 60 cycle. Price $\$ 30.00$ each net.
IF Special Repeater, 115 volts, 400 cycle. Will operate on 60 cycle at reduced voltage.
Price $\$ 15.00$ each net.
IG Generator, 115 volts, 60 cycle.
Price $\$ 17.50$ each net.
ICT Control Transformer, 115 volts, 60 cycle.
Price $\$ 22.50$ each net.
2JIG1 Control Transformer, 115 volts, 400 cycle.

Price $\$ 2.00$ each net.
5G Generator, 115 volts, 60 cycle. Price $\$ 25.00$ each net.
5SG Generator, 115 volts, 400 cycle. Price $\$ 10.50$ each net.

PIONEER AUTOSYNS
AY1, 26 volts, 400 cycle.
Price $\$ 4.00$ each net.
AY20, 26 volts, 400 cycle. Price $\$ 4.50$ each net. AY30, 26 volts, 400 cycle. Price $\$ 10.00$ each net.

PIONEER

PRECISION AUTOSYNS
AYIO1D, new with calibration curve.

Price-Call or Write.
AYI31D, new with calibration
curve.
Price-Call or Write.

GENERAL ELECTRIC

D. C. SELSYNS

8TJ9-PDN Transmitter 24 volts. Price $\$ 3.00$ each net.
8DJll-PCY Indicator, 24 volts. Dial marked -10° to +65 Price $\$ 4.00$ each net.
8DJll-PCY Indicator, 24 volts. Dial marked 0 to 360° Price $\$ 6.50$ each net.
Resistor and Rectifier for operation from 110 volts, 60 cycle source. Price $\$ 1.00$ each net.

PIONEER TORQUE UNITS 12602-1-A.

Price $\$ 22.50$ each net. 12606-1-A.

Price $\$ 22.50$ each net.

12627-1-A.
Price $\$ 65.00$ each net.

PIONEER TORQUE UNIT

 AMPLIFIERS12073-1-A.
Price \$17.50 each net.

RATE GENERATORS

J36A, Eastern Air Devices, 10 to 5000 R. P. M., 02 V. per R. P. M. Price $\$ 8.50$ each net.
PM2, Electric Indicator Company, 0175 V. per R. P. M.
Price $\$ 7.00$ each net.
F16, Electric Indicator Company, two-phase, 22 V . per phase at 1800 R. P. M.
Price \$14.00 each net.
B-68, Electric Indicator Company, Drag Cup, 110 volts, 60 cycle, one phase.

Price $\$ 14.00$ each net.

INVERTERS

12117-4, Pioneer. Input 24 volts D. C. Output 26 volts, 400 cycle. Price \$12.00 each net.
12117, Pioneer. Input 12 volts D. C Output 26 volts, 400 cycle.

Price $\$ 15.00$ each net.
12123-1-A, Pioneer. Input 24 volts D. C. Output 115 volts, 400 cycle, 3 phase. Voltage and frequency regulated. 100 V . A.

Price $\$ 70.00$ each net.
153F, Holtzer Cabot. Input 24 volts D. C. Output 26 volts, 400 cycle, 250 V . A., and 115 volts, 400 cycle, 3 phase, 750 V. A. Voltage and frequency regulated.
Price $\$ 150.00$ each net.
MG750, Wincharger, PU16. Input 24 volts D. C. Output 115 volts, 400 cycle, 1 phase, 6.5 amps. Voltage and frequency regulated. Price $\$ 35.00$ each net.
149H, Holtzer Cabot. Input 28 volts at 44 amps. Output 26 volts at 250 V . A. 400 cycle and 115 volts at 500 V . A. 400 cycle. Price $\$ 39.00$ each net.
661102, Sperry Phase Adapter. 115 volts, 400 cycle. Used for operating 3 phase equipment from a single phase source.
Price \$12.75 each net.

149F, Holtzer Cabot. Input 28 volts at 36 amps. Output 26 volts at 250 V . A. 400 cycle and 115 volts at 500 V . A. 400 cycle. Price $\$ 29.00$ each net.
SINE-COSINE GENERATORS (Resolvers)
FJE 43-9, Diehl, 115 volts, 400 cycle.
Price $\$ 20.00$ each net.
FPE 43-1, Diehl, 115 volts, 400 cycle.

Price $\$ 20.00$ each net.
D. C. ALNICO FIELD MOTORS 5069600, Delco, 27.5 V., 250 R. P. M. Price $\$ 4.00$ each net.
5069466, Delco, 27.5 V., 10,000 R. P. M. Price $\$ 2.85$ each net.
5068571, Delco, 27.5 V., 10,000 R. P. M. Price $\$ 3.70$ each net.
SS-FD6, Diehl, 27.5 V., 10,000 R. P. M.

Price $\$ 3.65$ each net.
D. C. SERIES MOTORS

5BA10AJ18D, General Electric, 27 volts, 0.7 amp ., 110 R. P. M. Price $\$ 2.80$ each net.
C-28P-1A, John Oster, 27 V., 7,000 R. P. M. 7 amps., $1 / 100 \mathrm{H} . \mathrm{P}$. Price $\$ 3.75$ each net.
D. C. SHUNT MOTOR

5066665, Delco, Reversible, 27.5 V ., 4000 R. P. M. Flange mounted. Price $\$ 4.50$ each net.

A. C. MOTORS

5069625, Delco, Constant Speed, 27.5 V. A. C. or D. C., 120 R. P. M. Has built-in reduction gears and governor.

Price $\$ 4.25$ each net.
5071930, Delco, 115 V., 60 cycle, 7,000 R. P. M.

Price $\$ 3.75$ each net.
36228, Hayden Timing Motor, 115 V., 60 cycle, 1 R. P. M. Price $\$ 2.75$ each net.
Two-phase low-inertia motors, Pioneer, Diehl and MinneapolisHoneywell.

Price-Call or Write.

1 K.W. POWER SUPPLY KIT

2500-0-2500 V @ 500 MA 2000-0-200ํ. V @ 500 MA (oil-filled Xformer from BC610)
1-Swinging choke
1-Smoothing choke
1-Filament Xformer
2-2 MFd.— 3000 v. Condenser
2—872 A Tubes
2-Plate Caps for 872A
2-Sockets for 872A
All parts New!
Reduced to
s79
9. 50

STEP DOWN TRANSFORMER PRIMARY 440/220 VOLTS SECONDARY $230 / 115$ VOLTS .600 KVA Special at $14^{.95}$

SELENIUM RECTIFIERS Full Wave Bridge Type
INPUT up to 18 v AC up to 18 v AC

up to 18 v AC \begin{tabular}{llll}
up to $18 v ~ A C$ \& up to

up to \& $12 v \mathrm{vC}$ \& DC \& Amp .

$\mathbf{1 . 9 5}$

up \& $\mathbf{3 . 4 5}$

\hline

up to \& 18 v AC \& up to \& 12 v DC \& 3 Amp.

up \& $\mathbf{3 . 4 5}$

up to \& 18 Amp \& 4.45

up to \& 12 vDC \& 10 Amp. \& 7.45

\hline
\end{tabular}

SELENIUM RECTIFIERS					
	Full	Wave	Bridge	Type	
INPUT OUTPUT					
up to	18 vaC	up to	12 v DC	1/2 Amp.	\$0.98
up to	18 vaC	up to	12 v DC	1 Amp .	1.95
up to	18 vaC	up to	12 V DC	3 Amp .	3.45
up to	18 vaC	up to	12 v DC	5 Amp.	4.45
up to	18 vaC	up to	$12 \mathrm{v} D \mathrm{DC}$	10 Amp .	7.45
up to	18 vaC	up to	12 v DC	15 Amp.	9.95
up to	36 vaC	up to	28v DC	1 Amp.	3.45
up to	3 BivaC	up to	${ }_{28 v}^{28 v D C}$	${ }_{10} 5 \mathrm{Amp}$.	7.45
up to	3 VV AC	up to	${ }_{28 v}^{28 v}$ DC	10 Amp .	12.45
up to	36 vaC 115 y AC	up to	$28 v \mathrm{DC}$ 100 DC	${ }_{2}^{15} \mathrm{Amp}$ Amp.	18.95 2.95
up to	115 vaC	up to	100 v DC	${ }^{2} .6 \mathrm{Amp}$.	6.95
up to	115 vaC	up to	100 vDC	5 Amp.	19.95
up to	115 vaC	up to	100v DC	3 Amp.	12.95

OIL CONDENSERS
 NATIONALLY ADVERTISED BRANDS All Ratings, D. C.

2 x .1 mfd .	600 y	\$0.35	1 mfd .	2000 v	\$0.95
25 mfd .	(i)0 $\mathrm{v}^{\text {c }}$. 35	3 mfd .	2000 v	2.75
. 5 mfd .	600 y	. 35	4 mifd .	2000 v	3.75
1 mfd .	600 v	. 35	15 mmfd .	2000 v	4.95
2 mfd .	600 v	. 35	2 mfd .	2500 v	2.49
4 mid .	600 v	. 60	. 1 mid .	2500v	1.25
8 mid .	fiol v	1.10	.25mfd.	2500 v	1.45
10 mfd .	600 v	1.15	. 5 mfd .	2500 v	1.75
3 x .1 mfd .	1000 v	. 45	. 05 mfd .	3000 v	1.95
. 25 mfd	1000 v	. 45	1 mfd .	3000 v	2.25
1 mfd .	1000 v	. 60	25 mfd .	3000 v	2.65
2 mfd .	1000 v	. 70	. 5 mfd .	3000 v	2.85
4 mfd .	1000 y	. 90	1 mfd .	3000 v	3.50
Smfil.	1000 v	1.95	12 mfd .	3000 y	6.95
10 mfd .	1000 v	2.10	2 mid .	4000 y	5.95
15 mfd .	1000v	2.25	1 mfd .	5000 y	4.95
20 mfd .	1000 v	2.95	. 1 mid .	7000 v	2.95
24 mfd .	1500 v	6.95	3 mfd .	4000 v	6.95
. 1 mfd .	1750 v	89	2 mfd .	3000 v	3.45
. 1 mfd .	2000v	. 95	2 x .1 mfd .	7000 v	3.25
. 25 mid .	2000 r	1.05	. 02 mfd .	12000 v	9.95
. 5 mfd .	2000v	1.15	. 02 mfd .	20000 v	11.95

HIGH CAPACITY CONDENSERS

All merchandise guaranteed. Mail orders promptly filled All prices F.O.B. New York City. Send money order or check.

Shipping charges sent C.O.D. Minimum order $\$ 5.00$.
20\% Deposit required with all orders.

RADIO
 63 DEY STREET

ATTENTION!

INDUSTRIALS - LABS -
SCHOOLS - AMATEURS
Let us quote on componenits and equipment that you require. We on this page. Place your name on our mailing list now for new catalog.

SENSATIONAL TUBE SALE!
 XMITTING BRAND NEW TUBES-STANDARD BRANDS ONLY

$\left.\begin{array}{r}1.95 \\ 12.95 \\ 22.50 \\ 150.60\end{array} \right\rvert\,$

.99
.99
1.81
.81
.99
.99
.81
.81

RADIO HAM SHACK
 Inc.
 G3 DEY STREET
 NEW YORK 7, N, Y.

(1) SEARCHLIGHT SECTION TiD

All items are Sueplus-New-Guaranteed. C. 0 . D.'s not sent unless accompanied by 25% Deposit.

MARITIME SWITCHBOARD

336 Canal Street
Worth 4-8217
New York 13, N. Y.

We carry a nomplate line of surblus naw meters suit-
able far pyerv requiremint. surh as portable, panel, able for overv requirement surh as portable, pane
switchboard, laboratory standards, etc. OVER 50,000 METERS IN STOCK

We also have in ctork varimis surolits camoonents. tubes, code keying and recnrding units, onde training sets, tachnmpters, analvzers, tube testers, canverters,
precision resistors, current transformers, transmitters, precisions, resistors, condensers. and other elertronir units, barts and accessories.

SELENIUM RECTIFIER Bridge Type
 Input: $36 \mathrm{~V}, \mathrm{AC}$ Output: 28 V . DC.. 1.1 Amps.

 Brand New \$2.75
APPROACH INDICATORS

Type 1D-24/ARN-9
Brand New \$3.95

ALTIMETERS

Type AN/APN-1 Complete, brand new in original cartons with insiruction books

$\$ 49.50$

KOLLSMAN COMPASSES
Type B-16 Brand new and complete with spare pilot lamp

SOLAR ELIMOSTATS
Line filters, 20 cmps. capacity. 115 V. AC, 600 V. DC.

Brand New $\$ 3.95$
INSTRUMENT LAMPS
Mazda $\# 323$
$\$ 10.00$ per Hundred
SOLA VOLTAGE REGULATORS
Cat. No. 30807-Pri. $95-125$ V. 60 Cy. Output 115 V .2 .18 cmps . VA. 250.
$\$ 39.50$

RADAR EQUIPMENT

All Brand New Material!
ANTENNA ASSEMBLIES
SO-1 (66AGE)
$\$ 125.00$
SO-3 (NMT-2062
SO-8 (66AGD) $\$ 120.00$

TDY (NMT-2062)
$\$ 120.00$

SPARE PARTS

Complete Set SO-3 Tender Spares
$\$ 2500.00$
10 CM Flatwise Bend 90° Bronze Elbow
Complete spare parts in stock for Type SO-1 Radar

ALSO

SO-Radar Repeater Adapters CBM-50AFO, PPI units, SO-11 Modulators, Remote Indicators, SO Receiver Transmitter Units, Antenna Unit Controls, etc.
Large Stock. All Brand New Material!
RADAR TUBES IN STOCK
Types-4C35, 2J62, 3B24, 3C45, 7BP7

PAN-OSCILLO-RECEIVER
Ideal for laboratory, television and general service work.

Model AN/APA 10
Performs work of four units

1. PANORAMIC ADAPTOR: For use with any receiver with I.F. frequency of 405 $505 \mathrm{kcs} ., 4.75$ to $5.75 \mathrm{mcs} .$, and $29-31 \mathrm{mcs}$.
2. OSCILLOSCOPE: Visually checks received signals, monitors transmitter output, percentage modulation, carrier wave-shape, etc.
3. SYNCHROSCOPE: External inputs provide synchroscope action.
4. RECEIVER: Three inpuis provide facilities for use with convertors to cover wide range of frequencies to $10,000 \mathrm{mcs}$. FEATURES:

- $3^{\prime \prime}$ scope tube
- 21 tubes
- Variable sweep 35-40,000 cy

Transformer built in for 110 V .60 cycle operation.
2 I.F. stages-double conversion.
2 Video stages in push pull to vertical plates.
Pentode output audio monitor.
Multi-Vibrator horizontal sweep (radar type).

- Horizontal sweep amplifiers P.P. to horizontal plates
Surplus equipment tested and guaranteed in perfect operating condition. We have schools, laboratories, amats to leading all over the world.
$\$ 129.50$
(Mail $\$ 3.50$ for 80 page Technical manual and instruction book)
SOUND
POWERED

MOTOR GENERATORS
Brand new. Built by Allis-Chalmers to
rigid specifications of the U. S. Navy K.V.A. output 1.250 R.P.M. 3600
K.W. output 1. \quad Cont. Duty Ph. Single
P.F. 80
P.F. 80

Volts input 115 D.C. Cycles 60
Vilis output 120 A.C.
Amput 14
Amps. output 10.4

Length 26": Width $127 / 8^{\circ}$; height $13^{\prime \prime}$
Compound accumulative A.C. and D.C. fields. Centrifugal starier. Splashprooi covered. Frequency adjustable to load,
plus or minus five cycles.

$$
\text { PRICE } \$ 125.00
$$

Identical Machine, but 230 volts D. C. Input, \$125.00

Set of Replacement Spare Parts for Either Machine $\$ 29.50$
DYNAMOTORS-500 Watts
Navy Type CAJO-211444
Input: $105-130$ Volts D.C., 6 amps. Output 13 or 26 Volis D.C. $(26 \mathrm{~V}$. at 20 amps.$$ in series or 13 V . at 40 amps . in parallel). Designed for radio use, fully R.F. filtered, complete with separate Square D line switch box.

BRAND NEW \$59.50

SYNCHROS

(Selsyns, Autosyns, etc.)
Navy Ordnance types: 5B, 5G, 5F, 5CT, 5DG, 5SG, 5SDG, etc.
Army Ordnance types: 2J5FBI, 2J5SI, 2J1F3, CAL 18300, C78414, C78863. C78411, etc.

Also

Pioneer Precision Autosyns AY101D, brand new in original containers.

G. E. AMPLIDYNES

Type 5AM21JJ7, NEW
. $\$ 4^{\prime \prime} 9.50$
Type 5AM45DB20, NEW
r99.50
G. E. SERVO AMPLIFIERS,

Type 2CVICI, New $\$ 19.50$

PARABOLOIDS

Ideal for microwave experimental work. Spun Magnesium dishes
Reinforced Perimeter
$171 / 2^{\prime \prime}$ Diameter $\times 4^{\prime \prime}$ Deep
Two sets mounting brackets on rear. Open center hole $11 / 2^{\prime \prime} \times 15 / 8^{\prime \prime}$
Per Pair, Brand New. . $\$ 8.75$

TRANSMITTING EQUIPMENT

B C-325 B Transmitter. Freq. range 1.5 to 18 mes. Output 400 watts C. W. or 50 watts phone. 110 V. 60 cycle, 1 ph. Complete with tubes. Used, but in good operating condition..............\$295.00 MD1/FRC Modulators. Part of T-4/FRC and T-5/FYC. Complete in enclosed metal racks. Each unit consists of a duak modulator channel, each of 300 watts audio output (2-810's in puph-pul). Complete terminals for connection to Class "G" final amplifier R.F. stage Brand new... $\mathbf{\$ 2 7 5 . 0 0}$
SA-2/FRC Switch Panels.
. $\$ 10.00$

（II）SEARCHLIGHT SECTION

MAGNETRONS

TUBE	FRQ．RANGE PK．	PWR，OUT．	PRICE
2.581	$2820-2560 \mathrm{mc}$ ．	205 KW	\＄15．00
2.522 A	9345－9405 mc．	50 KW ．	\＄25．00
2 d 22	$3267-3333 \mathrm{me}$ ．	265 KW	\＄15．00
${ }_{2} \mathrm{~J} 26$	$2992-3019 \mathrm{mc}$ ．	2.5 KW．	\＄15．00
$\underline{9.127}$	${ }_{2}^{24650-29893}$ mic．	$2 \times 5 \mathrm{~kW}$ ．	\＄15．00
2．f：S Mg．	$3249-3263 \mathrm{mc}$ ．	5 KW	\＄25．00
2．109 19m．	3267－3．383 mc．	8.7 Kly．	\＄25．00
2.155 Pr g ．	9345－9405 mc．	51	
331	$24,000 \mathrm{mc}$.	5）KW．	815．010
$\begin{gathered} 71 \pm A Y \\ B=019 \end{gathered}$	2800 me．	1000 KW ．	80， 010

MICRO WAVE GENERATORS
AN／APS－I5A＂ X ＂＇liand compl Re head and modu－
Gut：4⿹丁口欠：
miser．Th，rewnd，duplexar，blower，etco，and com－ plete pulser．With tuber，used，fair condition．\＄75．00

MICROWAVE PLUMBING

 10 CENTIMETER＂S＂BAND Mixer Assembly，with erystat mount．Sink－ MAGNETRON TO WAVEGUIDE coupler with $721-\mathrm{A}$ 10 CM WAVEGUUDE SWITCHING UNiT，sidithec
 721－A TR CAVity witi TUBE．Complete witl

 10 CM OSC．PICKUP LOOP，with male HInmeltil TSIIT／APS．2FioCMANTENNA in licite bail with OAS NAVY TYPE CYTGGAOLZ，ANTENNA in lucite 10 CM．FEEDBACK DIPOLE antena，in lucite hall， RIGHT ANGLE＂RIGID COAX－B＂I．C． SHORT RIGHT ANGLE Beni，with pressurizing sip
 STUB－SUPPORTED RIGID COAX，Kold plated 5，
 7／8＂COAX ROTARY JOINT FLEXIBLE SECTION， $15^{\prime \prime}$ L．Biale to female．．．． 82.00
 plated．

3 CM．PLUMBING

> (STD. $I^{\prime \prime} \times 1 / 2^{\prime \prime}$ GUIDE UNLESS OTHERWISE SPECIFIED)

 ROTARY joint with sloted section and tspe $\$ 8.50$ WAVEGUIDE SECTION， 120 iong choke to cover．45 STABILIZER CAVITY feeding wareguide section，wifth SLUG．TUNER／ATTENUATOR．W．W．Euide． TR／ATR DUPLEXER section with iris flange．．．．$\$ 4.00$

 Sng XVE WAVEGUIDE，${ }^{\prime \prime}$ inng cover to choike．S2．50

SPECIALS

Ph．Digby 9－4 124

SURPLUS ELECTRONIC MATERIAL

immediate shipment below is a partial listing from our catalog

TUBES! GUARANTEED!

TYPE	price	TYPE	Price
1lag	\$1.65	851	\$49.50
$1{ }^{1} 4$	65	860 864	2.75
${ }_{2 \times 2 / 879}$	${ }_{65}^{65}$	8864	${ }_{75}$
	45	8724	1.65
$5 \mathrm{R4GY}$. 95	954	45
$6 \mathrm{AC7}$	95	957	45
6 6G7	95	${ }^{968}$	25
${ }_{6}^{6 \mathrm{CF}}$	55	1613	95
${ }_{6 \mathrm{GG6}}^{6 \mathrm{~F}}$		1616	95
${ }_{6 H 6 G T}$	55	1626	45
6 L 6	1.10	1629	18
6 SA 7	65	1632	18
6SD7	45	1641/RK60	
${ }_{6}^{6 S 07}$	65	$1{ }^{1044}$ /1R4	1.65
	75	306/1299	65
6×5	. 65	388A	3.95
737	65	394A	2.95
7 C 7	95	${ }^{9} 002$	
7 F 8	. 95	9003	25
7 N 7	85	9006	. 35
$7{ }^{74}$	75	sal3	2.95
12 k 8	18	RK60.1641	${ }_{75}$
1207	. 55	$\mathrm{RK73}^{\text {R }}$	45
12 SL 7	.65	11324	1.95
12 SN 7	65	${ }^{2} \mathrm{C} 46$	3.95
30 SPECIAL		3825	75
	. 65		2.95
25 Y 5	. 85	41827	2.95
${ }^{252 \mathrm{~L}} 6$. 75	${ }_{4}^{4 \mathrm{CO33}}$	9.50
38	65	14 E 6	. 55
45 SPECIAL		2384	45
56 (V753)	55	HY114B	45
210	65	${ }^{511005}$. 35
${ }_{3508}^{25}$	4.95	Amperite Voltage	
801	95	$\underset{\substack{\text { Resulator } \\ \text { Hytron liallast }}}{\text { 13-4 }}$. 25	
${ }_{814} 8$	4.95		
$826 / 2 \mathrm{~J}$	9.5		
${ }_{841}$	65	E1148	. 95
843	65	VR78	. 45

STANDARD BRAND PRECISION RESISTORS
Types WW3, WW4, and WW5
Following sizes are
in $\mathbf{1} \%$ and $\mathbf{2} \%$ tolerance Price $\$.35$

1 meg	66,000	1500
.8	\because	54,500
.75	\because	46,000
.7	\because	40,000
.6	33,000	1200
.68	\because	13,300
22	12,000	750
125,000	11,000	135
120,000	7,500	125
109,000	4,500	110
100,000	4,300	55
95,000	4,000	22
92,000	2,500	20
84,000	2,230	14
82,000	2,200	12
80,000	1,700	10

Following sizes are
5\% or better tolerance, Price \$.15
110,000
70
50
The following sizes
1% or better. Price $\$.1$

1,808	105.8	4.4
14,460	53.96	4.35
4,285	53.32	4.3
1,123	33.22	3.94
988	23.29	3.5
414.3	13.52	1.563
366.6	13.333	.29
220.4	10.2	.268
147.5	5.1	.25

COAXIAL CABLE

TYPE	IMPEDANCE	PRICE
RG $6 / \mathrm{U}$	76 Ohms	\$.071/2/ft.
RG $38 / \mathrm{U}$	55 Ohms	$071 / 2 / \mathbf{f t}$.
RG $59 / \mathrm{U}$	73 Ohms	. $0512 / \mathrm{ft}$.
RG 62/U	93 Ohms	. $073 / 2 / \mathrm{tt}$.
12G77/U	480 hms	. $071 / 2$ /ft

RELAYS

RCA Vacuum Relay, deelay contacts will hreak 2000 volts and carry 10 amperes solenoid resistance
200 olms, if volts DC- Fxcellent as li.F. ant

 Struthers Dunn \#61 RXXini I.P.S.T Coll 12 Volts D.C. Contats 25 andmes at 12 Volts $\mathbf{D . C}$ Allied Guntrol $=100 \mathrm{x} 8 \mathrm{a}$ Mate + Preak. Hears Contacts coil 18 tums $=10$ matarlled wire. 85 Relay S.P.S.T. WE Co. \#DI637N1 unit encased in
 operating current 4. 3 ma. release current 2.5 ma cont. rating 1 amp. Switelling spted pry to 2061
opeles Allied Control \#Iol)-X5 (oil 6 Vols D) C. Cont tacts D.P.D.T. price $\$.95$

 Coil 24 Yolts D.C. IRt's. 132 Ohms. . Price $\$.75$ | I solantite Relay D.I'.D.T. Heary Contactis Coil 100 |
| :---: |
| ohims, | Weston Mod, 505 Itrlay meter type, Requiles contarto. Coll resistance approximately 50 ohms. Solenoid reset coil-40日 ohms at 18 rolts b.C. Limited quantity.................... Price $\$ 3.95$ Telephone Type Relay-W. W.

contacto, I) P.S.T.N.C. (oit 200 ohms. 12 volts $1 \mathbf{P r i c e} \$ 1.25$

TIME DELAY RELAYS

Thernial vacıum type
S. P.S. T. 100 oh coill
24 Volts AC $/ 0 \mathrm{C}$
24 Volts AC/OC
Cramer Time Delay Relay $=11: l^{2} \mathrm{~B}$ N. Motor

4000-6000 VOLT LOW CURRENT DC SUPPLY

These units have been designed for use with television. cathode ray. electron multiplier and other
ivpes of equipment reaning high voltage with low current. lland new completely wired and tested. Ready to operate from 115 volt imwer line.
D.C. butmu is filtered.

Price Conplete $\$ 12.50$
2000-3000 Volt D.C. Supply simitar to abore. hut with lower outint voltage. Ready to operate
from 115 Volt power line. Price Complete $\$ 7.95$

HIGH FIDELITY
 INPUT TRANSFORMERS

Ferranti
Descrintion- Turns ratio stop-up,
\# Descrintion-Turns ratio sterb-u1
ductance 133 Henvenary inductance 133 henrys +1 the $60-3000$ cycles.

AMERTRAN TRANSTAT VOLTAGE REGULATORS

Madel $=29144$
Fixed Winding 115 Volts- 60 cycles Maximum out out 25 KVA Housed in shielded case $5^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ Price $\$ 6.95$ Type RH
Fixed Windiag 115 Volts- 400 cycles Commutator ranges $75-120$ volts
Load- 72 KYA
Housed
in
Shielded case
$51 / 2^{\prime \prime} \times 6^{\prime \prime} \times 61 / 6^{\prime \prime}$
Price $\$ 1.95$

RADIO NOISE FILTERS

These line noise filters are arailable in large quan tities and priced for quick sale.
Mallory NF 12 -6EG-Housed in a bathtub type
 Mallory NF $7-3 \mathrm{~A}$-Housed in silver-plated rectanku-
 Malloryo An.
 Mallory NF2-2-Housed in sfluare case $384-\times 212^{\prime \prime}$ Mallory NF2-2-Housed in sfluare case $33 / " \times 2 \frac{1 / 2 "}{}$ high-Rated at 50 amperes 35 rolts... Price $\$.95$ General Electric Noise Filter-Honsed in sumare General Electric Noise Filter-Housed in sumare
chase $4 /^{\prime \prime}$ by $3^{\prime \prime}$ high. Rated at 200 amperes at
H0 Mallory NF2.1-100 amps. 35 voits-lloused in
 Solar Elim-O.Stat—Type EAl05-50 amps at 50 Volts $\$.95$. Tryde FAI09-50 amps at 35 rolts Both units art housed in container similat to
Mallory NF2 Bendix-morlel 3937 Generator Filter- 50 amps.
 Line Noise Filter-Unshielder and mounted on a bracket suitable for use on regular bower lines Consists of two . 01 molded condensers and 140
turti solphoid choke coil...... Price only $\$ 10$

Last Minute Specials

These are in limited quantity and subject to prior sale
JONES PLUGS \& SOCKETS " 500 series"
These units are designed for 5000 rolts and 25 amperes per contact. I'lugs are all furnished with removal caps.

Sockets S 512 -CE $\quad \cdots, \ldots, \ldots, \ldots, \ldots, \ldots, \omega_{12}$ contacts
mall type-18 Terminal
Pluk $\# 222815$
Sockets

$\# 222816$ | Price s .25 |
| :---: |
| Price S |
| 25 |

1ri. $115{ }^{28}$ Volts 60 Transformer

Write for Descriptive Catalog Listing a Large Variety of Electronic Components
EDLIE ELECTRONICS, INC.

(T) SEARCHLIGHT SECTION \mathbb{D}

Finest of surplus at a fraction of cost peAK ELECTRONICS CO.
 Industrials Schools - Labs

DAVEN AUDIO FREQUENCY METER MODEL 837E

Direct readings flom $0-30 \mathrm{KC}$ in 4 separate ranqes on $6^{6^{\prime \prime}}$ Weston Model ${ }^{\text {Wegulated nower supply operates from } 115}$ volts 60 cycles, has high input impedance. pick-up can be used to determine frequency in vibration tester. With suitable mixer can check deviation of R.F. carrier from standard. Mount
Complete with tubes

"A POWERFUL BABY"

This plate transformer built to rigid Signal Corps spec. input 118 volts 25 to 60 eycles. Has 2 separate 118 volt primaries and can be used on 110 or mills. Exceptional regulation even when loaded to 900 mifis ! Fully cased- 4 mtg holes, 37 lbs. net wt $61 / 2 \times 61 / 2 \times 71 / 8$. Peak value at 7.95 . 10 for $\$ 70.00$

'BRUTE FORCE'

This fillv annased nhnke 6 Hanry at 55n milfs. 28 ohnis de resistance. Built to rigid Sional Corps spocs. Net weight 16 los, $51 / 2 \times 41 / 4 \times 5^{3} \mathrm{H}$. A grea
buy at $\$ 4.95$ earh. $10 \mathrm{fnr} \$ 40.00$.

FILAMENT TRANSFORMER

Two seoarate 118 volt. 25 to 60 nycle primaries.
Can he used on 110 nr 220 volts. Secondary 5 volts at 15 amos. Built to sional Corns soncs. Fully en cased. $5 \times 41 / 4 \times 5{ }^{2}$. Net wt. 10 libs. $\$ 3.75$ each 10 for $\$ 30.00$.

VERSATILE POWER

These transformers have many uses-filament. isolation, stepdown, bias. etc.
All have 2 separate primaries for $110 / 220$ volt All have 2 separate primaries for can be used in series or parallel.
3 chnices of Spcondaries:
Tyoe 504 - 115 wolts 500 mills and 6.3 volts 5 amps. Type 505 - 115 volts 900 mills and 6.3 volts 2 amps Type $502-0.70-75$ volts at 2.5 amps. ($35-37 \mathrm{v}$. in.
 Your cost any type ${ }_{10}$ for $\$ 17.00$

STEPDOWN TRANSFORMER

AMERTRAN 3 KV PLATE $6000 / 2500$ volts C.T. at I Amp Pri $110 / 220$ Volts

AMERTRAN PLATE 3000 VOLTS C.T. at I Amn. Pri $110 / 20$ V 60 Cycles. $8 \times 8{ }^{1}{ }^{2}{ }^{2 \times 7}$
Wt. 80 lus. $\$ 32.50$ wh. 80 Ibs.

U. H. F. COAX. CONNECTORS UGI2U-83IR-831J-UG2IU-831AP-831SP

T.P.D.T.

ANTENNA RELAY 10 V .60 eyclo coil Steatito
insulation. $0 \mathrm{nly} \$ 1.95$ each

ELECTROLYTIC CONDENSERS 25 Mid. 25 V.D.C. Tubular.
$80 \mathrm{Mfd} .450 \mathrm{~V} . \mathrm{D} . \mathrm{C}$. Tubular.
12 Mfd .450 V.D.C. Tubular
1000 Mfd .25 V.D.C.
$20 \times 20 \mathrm{Mfd}$.
450 V.D.C.
$.25 c$
$.29 c$
$.37 c$
$.34 c$
$.95 c$
.950

Tremendous stocks on hand. Please send requests for quotes. Special quantity discounts. Prices f.o.b. N Y. 20\% with order less rated, balance C.O.D. Minimum order $\$ 3.00$.

MEGOHM METER

industrial Instruments Model L2AU IIO/220 valts 60 cycle input. Direct reading from $0-100000$ megohms on $4^{\prime \prime}$ meter. Can be extended to 500000 megohms with external supply. Sloping hardwood cabinet $15^{\prime \prime} \times 8^{\prime \prime} \times 10^{\prime \prime}$ Brand new with tubes plus running spare parts including extra tubes. Great value only $\$ 69.95$.

SPERTI RF
VACUUM SWITCH 9200 volts oeak. 8 amps. Usen as
antenna switch in Colfins ART 13. BRAND new $\$ 1.75$

CHOKE BARGAINS
WE. 4.3 hy 62042 ahms. 10. . 4.95
N.Y.T. 8 henry 160 ma. 140 ohms D.G....... 1.39
C.T.C. 1.5 henry 250 ma . 72 ahms.....
19.50

POWER PLANT (PE 197)
4 cylindar Hernules Gas driven angine. Output 110
volts 60 cycle, voltage regulated, $5 \mathrm{KW}-6.3 \mathrm{KVA}$ $80^{\circ} \%$ Pwr. Ptr voltage regulated, $5 \mathrm{KW}-6.3 \mathrm{KVA}$ at ning spare Ptr. Single phase, complete with running spare parts, meter panel, battery, tools, re-
mote cables, etc. Woioht leo Weight 1200 Ibs. Export Paacked. Excellent for
emergency power. Brand new.............. $\$ 575.00$

Scope Transformer hermetically sealed 1,800 volts, $4 \mathrm{ma}, 6.3$ volts, 9 amp. $21 / 2$
volts, $2.5 \mathrm{amps.} 5 \times 31 / 4 \times ,33 / 4 \ldots . \$ 5.95$

4 QUADRANT PHASING CONDENSER

AMERTRAN TRANSTAT or Stepdown Transformer $110 / 220$ volts 60 cycle input. Output variable plus or minus Also can be connected to give ifferent voltage combinations Brand new.

AMERTRAN VOLTAGE

 REGULATOR $130 / 230$ volts $50 / 60$ cycles input. Output variablefrom $0-260$ volts, 1.3 KVA , single phase. Used
Uut good

OIL CONDENSER	
11 mfd 250 vac - . 85	.15/.15 mid 6000
5 mfd 150 vac - 49	1 mfd 7500 vde- $\mathbf{v d e}$-1.95
1 mfd 600 vdc - 29.29	$.15 / .15 \mathrm{mfd} 8000 \mathrm{vdc}$
4 mfd 600 vdc - 59	- 1 . ${ }^{\text {c }}$
$3 / 3 \mathrm{mfd} 600 \mathrm{vdc}-.79$	4 mid $88 \mathrm{kv} \mathrm{dc}-19.95$
10 mfd 14 mfd 600 $600 \mathrm{vdc}-\mathrm{ld}$ 1.35	. $01 / .01 \mathrm{mid} 12 \mathrm{kV}$ dc-5.75
$2 \mathrm{mfd} 1000 \mathrm{vdc}-.79$. $005 / .01 \mathrm{mfd} 12 \mathrm{kv}$. 50
$4 \mathrm{mfd} 1000 \mathrm{vdc}-.95$	$03 \mathrm{mfd} 16 \mathrm{kv} \mathrm{de-5.50}$
$15 \mathrm{mfd} 1000 \mathrm{vdc}-2.95$. 03 mfd 16 kv de - 5.75
$2 \mathrm{mfd} 1500 \mathrm{vdc}-1.25$. $65 \mathrm{mfd} 12.5 \mathrm{vdc}-12.95$
$1 \mathrm{mfd} 2000 . \mathrm{vdc}-1.45$.75/.35 mfd 8/16
$2 \mathrm{mfd} 4000 \mathrm{vdc}-5.50$	\%fd 25 kv kv - 12.95
$3 \mathrm{mfd} 3000 \mathrm{vdc}-3.95$ $1 \mathrm{mfd} 5000 \mathrm{vdc}-4.50$	$.1 \mathrm{mfd}_{25}^{25 \mathrm{kV} \mathrm{de}-17.50}$

MISCELLANEOUS SPECIALS

2-1 mmf . Butterfly with ball bearings.
G.E.S.P.D.T. Relay 10000 oh m coil.
Heineman Cirnuit Breaker 5 ann B . 10 o v . A. $\dot{\mathrm{C}}$
G.E. Solenold W/Mieroswitehes 24 V. D.C...

Microswiteh 10 amps. (interlack) $\ldots \ldots \ldots .$.
\checkmark eeder Root Counter
Trim Commercial Phones (iuigh imp).
I-196 Signal Gen.
I-114 Test Set
$W E 6.3 v 10$ ani
WS 13 Handset

Phone Cortlandt 7-6443

PERE ELECRRONICS CO.
188 Washingion St., New York 7, N. Y. Send for bulletin

(TD SEARCHLIGHT SECTION II

(I) SEARCHLIGHT SECTION \mathbb{D}

BIG VALUES m SURTLUS

RCA Crystal Test Equipment

 standard Fomedack on mantor orather units as a each oly and fis tubes on front panel are

Consisting of 2 Power Supplies \#TX.1403A Audio Mixer (TX-1404A) High Frequency Oscillator (TX.1417A) Duplex Oscillator (TX.1418A) Complete unit in heary steel cabinet, $20^{\prime \prime} \mathrm{X}$
$28^{\prime \prime} \times 15^{\prime \prime}$. Wrmkite enamel finish. Front panel $1 / \mathbf{m}^{\prime \prime}$ black lukelite. boors on top and rear of cabinet for masy accessibility. Commections t ach unit mate quickly with rords and col

Well Regulated Power Supplios. Supply No. 1 uses
 lation. DT Torgle Switeh in back of chassis for edther "Iligh" or "Inw" whage Supply No. 2. for low power consumption, uses same ulws extevt VR $150-6 ; 10$

USED, BUT EXCELLENT CONDITION—PRICE—\$75
 RCA Audio Frequency Meter Type 306-A

- Outmut drives recording meter dirert
- Accuracy unaffected by input wave shape.

MILLIAMMETERS

drisk type of meter is desired. Permanent magnet moving coil type. Scale length: $41 / 8^{\prime \prime}$. Weigh. $3^{1 / 2}$ pounds. $6^{\prime \prime 2} 21 / 2{ }^{\prime \prime}$
Range: $150-0-150 \mathrm{M} . \mathrm{A}$. D.C. accuracy within $1 / 2$ Used But Good Condition
OUR BARGAIN OFFER
 All prices F.O.B. Boston. Orders accepted from rated concerns on open accounts. Net 30 days.

Dept. E-9, 110 Pearl Street, Boston 10, Mass.

SURPLUS BARGAINS!

All meters are white scale flush bakelite case unless otherwise specified.

D. C. VOLTS

AC-VOLT AMMETER SET

Whse RA-37-4" SQ . $0-300$ V.A.
Scale: $300 / 600 \mathrm{VAC}$
Whase RA-37-4" su? in-5A................... \$10.co
scale $75 / 150$ Amps A
With Donut current TPMR for mouble Range
$75 / 150$ to 5 .
ALL 4 PIECES
17.50

FREQUENCY METER RANGE

A. C. AMPS

(scale: 120 . ${ }^{\text {a }}$)	
5 A ¢ " sx. Triplett 431.	$0 .!$
(scale: 150/300)	
0-75 A, 4" Weston b4-	(i.30
(Sulfice Metal ('aż)	

A. C. VOLTS

 PORTABLE A. C. AMMETER

 Weston 528-Double Range 0-3 Amps, $0-1$.Amps AC, Complete in leather case with test

RUNNING TIME METER
Industrial Timer Corp, $31 / 2$ " RD. Total Hours, ${ }^{60}$ Bycies

SELENIUM RECTIFIERSGOV'T SURPLUS NEW	
APPROXIMATE RATING	
	mfr. Type Mat Mat
	FEED. FWWB 18 V V 14 V
${ }_{3}{ }^{\text {A V }}$ 5 5	
	95

RHEOSTATS			
Ohms	Amps	Size-Dlam	Price
. 87	$\stackrel{13}{2}$	$3{ }^{1 / 1}{ }^{\text {a }}$ /	\$2.50
${ }^{6}$	$\stackrel{2}{9.2}$	$14^{14^{\prime \prime}}$	1.75 5 58
22	4.5-3.1	$6_{6 *}$	6.50
${ }_{32}^{30}$	1.7-7.9	21:	1.50
40	1.12	${ }_{2}$	2.50
50	${ }_{3}^{1.11}$	${ }^{2}$	2.50
75 100	${ }_{1}{ }^{\text {. }}$	${ }_{3}{ }^{\circ}$	7.50
200		+10	2.75
250	2.5-. 51	$\hat{i}^{\prime \prime}$	7.50

OHMITE POWER TAP SWITCH Non-Shorting, Model 312, Cat. $\# 312-10,25$
Amps A.C., 10 taps, without inol, Dimen

CAPACITORS

Cap.	Volts D.C.	Height	Width	th	Price
10	1000	$5-7 / 8 \times 1-3 / 4 \times 3-7 / 8^{\prime \prime}$$5-7 / 8 \times 2-3 / 4 \times 1-1 / 4^{\prime \prime}$$3-5 / 7 \times 2 \times 1-16^{*}$			\$1.85
${ }_{1}^{4}$	1000 1000				. 85
1	500	2^{-5}	1-1/4*	${ }_{1-1 / 16^{*}}$. 50
25	1000	1-1/2 ${ }^{\text {x }}$		$3 / 4^{\circ}$	

.001 Mfd.- 50 K.V. DC.- $51 / 8 " x 73 / 4$ "x $4^{1 / \$ 12.50}$

HEINEMAN CIRCUIT BREAKER

,		

RECTIFIER TUBES

6 Amp. (Tungar Type) for battery chargers, rectifiers.
Your Cost
Minimum Orier .. Tube
15 Amp, 115 V AC, Curve 3, CAT.AM 2511-15
35 Amp, 120 Y AC, Curve 2 , CAT.ADI 1510 R
1.5 Amp, 117.5 V AC, Instant Trip $\$ 1.75$

STRUTHERS-DUNN RELAYS
D.P.S.T., Normally open, $115 \mathrm{~V}, 60 \mathrm{Cycle}$ A.C. coil, 30 Amp contacts, fibre base with tholes for mounting. Dimensions, $41 / 2^{\prime \prime} \mathrm{L} \times 3^{\prime \prime} W^{\prime \prime} \mathrm{H}$
$23 / \mathrm{H}^{\prime \prime}$

HEAVY DUTY STEPDOWN TRANSFORMERS
Input: 115 V . (with 8 taps in primary)
Output: from 16 to 10.5 V . (in 8 steps)
Output: from 16 to 10.5 V . (in 8 steps) Capacity: 1.25 KVA Sec. Amps: 100.
Size: 13 "x $10^{\prime \prime \prime} \times 5^{\prime \prime}$. Approx. Weight: 30 Lus Size: 13×10 xb". Approx. Weight: 30 Lhes.
Open Frame Construction.
Your Cost $\$ 12.5$

POWER TRANSFORMER
Pri.- $440 / 220 \mathrm{~V} 60 \mathrm{Cy}$ Sec- $125 / 115 / 105 \mathrm{~V}$
Rating . 8 KVARCA Open construction. Rating - 8 KV A RCA Open construction.
Bracket nounted, pri \& sec terminal boards Bracket mounted, prid sec terminal boards
Overall dimensions: $\overline{-1 / 4 " H \times 71 / 2 " W \times 8 " D .}$

TRANSTATS- ${ }^{3}$ K. V. A.

Type RH input: 115 V. 10%. Output: 11 Made as a line volt Made as a line volt-
age corrector 10% of Input voltage, or can
be connected to give be connected to give
plus 20% or minus 20 of input. Can
be used as an isolated also be reconnected to be used as an isolated type stepdown with variable secondary. In-
put: 115 V . Output: $0-30$ Volts at 30 Amps .

A Real Buy at
$\$ 78.00$
Same type lut $25 \mathrm{KVA} . \quad$ Input: $103-126 \mathrm{~V}$.
Output: 115 V .2 .17 A.$)$
Price $\$ 6.50$

ALL PRICES INDICATED ARE FOB, OUR WAREHOUSE, NEW YORK, N. Y.
Shipments Transportation Charges Collect Will Be Made Via Railway Express Unless Sufficient Postage Is Included, Or Other Instructions Issued. We Will Refund Excess Postage In Stamps.

Phone: WOrth 4-8610
NEW YORK 13, N. Y.

(1) SEARCHLIGHT SECTION 『D

RELIANGE SPECIALS

OIL FILLED CAPACITORS

TRANSFORMERS \& CHOKES

Current	HV	6.3 V	5 V	Case		Pric
250 ma	800 V.CT	8A	3.1	$4^{\prime \prime} \times 4$ 3/4"x6 ${ }^{\text {F }}$ high		\$4.5
70 ms	$650 \mathrm{~V} . \mathrm{CT}$	2.4	3 A	$3^{*} \times 2$ 1/4*x4* high		2.
400 mas	12 Heary	90 ohm		$41 / 2^{\prime \prime} \times 5^{*} 3 / 8^{\prime \prime} x 4$	1/4*	3.8
110 ma	9 Henry			3^{*} Dia. 4 $^{\prime \prime}$ High		1.2
	ENER	AD1		ENGY ME	E	
	Kc-5	Kc	c	harmonics)		
	price	R Relia		ly $\ldots+$.		

POSTAGE STAMP MICAS

Wrapped—BALL BEARINGS—New
 IIARIDW.IRE ASSORTMENT (mostly SIIP KING AssicMBLE-5 silver miated rings on molded bakelite rotor. Stator holds
a silver fartoon lirusines for each ring. Rotor $37 / 8^{\prime \prime}$ O.D... fits $13 / 4$ " shaft. Complete with HKASs miNiviva iost sirew lown with
 long, 1's" high. hack, lapped 8-32 for $\mathbf{1 0}$ fot (iEAR KEDUCOTON 130X-Aluminum hous-

IRELIANCE $M_{\text {lechandizing }} C_{\text {ompongy }}$

All orders f.ob. Arch St. Cor. Croskey, Philadelphia 3, Pa. minimum PHILA., Pa.

[^10]ORDER Your Coaxial Cable NOW at these never again PRICES!
RG 8 /U—NEW-UNUSED 52 OHM Very low DB loss
${ }^{5000-2500}$ foet
$3,000-5,000$ feet
$5,500-10.000$
$10,500-20,000$ feet
feet
$\$ 10.00$
33.00
ner M
ner
30.00 ner \mathbf{M}
27.50
per
per

No charge for reels.

COAXIAL FITTINGS

 HaOd 106

 Plug 40
 Angle A $40 ¢$ M. 359 3 -IAP
 PL259A, $831 \mathrm{NLN}, 83-1 \mathrm{~J}, \mathrm{UG} 21 \mathrm{U}$, TiG22U, CUF

 UG87U Baby " N "' Socket, Gold I'lated with
 UG28U-' ${ }^{\prime}$

FILAMENT TRANSFORMER WESTINGHOUSE \#6D4298

15 V Tes at 34,000 volts Pri. 115 V.A.C., Sec. 5V @ 6.5 Amp.

ONLY \$8.50

Any Order For
100 pienes $.10 \%$ Off 100 pieses

1/4 WATT-30c				
6.68ω	12.32ω	16.37ω	123.8 ω	+14.3 ${ }^{\text {d }}$
10.48	13.02	20.	147.5	705
10.84	13.52	62.54	220.4	2193
11.25	13.89	79.81	301.8	10,000
11.74	14.98	105.8	366.6	59,148
1/2 WATT-30c				
. 250	2.04	97.8	300	4,451
. 334	2.25	125	400	5,000
. 502	11.1	180	723.1	5,900
. 627	13.15	235	2,500	7,000
. 76	52	260	2.850	7.500
1.01	55.1	270	3.427	8.000
1.53	75	298.3	4.000	8.500
1/2 WATT-35c				
10,000	15,000	17.000	25.000	100,000
14,825	15.750	20,000	37,000	150.000
1 WATT-30c				
1.01	3.39	10.1	270 1250	5,000 7.000
${ }_{5}^{2} .58$	5.05 5.21	10.9	1,2500	9,000
1 WATT-35c				
18,000	30.000	55,000	70.000	75,000
20,00c	50,000			
1 WATT--45c				
100.000	128,000	180.000	470,000	600.1000
120.000	130.000	250.000	522.000	\%\%) 0 (
125,000	160.000	320.000	525,000	

Buded YOUR ONN TEST EQUIPMENT

 rectifier. and instructions.

St Complete your service shop with this instrument. power supply.

$\$ 2450$
Mothing
ELSE to buy

- NEW 1948 HEATHKIT

Nothing eISE to buy
heathkit sine and square wave AUDIO GENERATOR KIT
The ideal companion instrument to the Heathkit Oscilloscope. An Audio Gener afor with less than 1% distortion, high calibration accuracy, covering 20 to 20,000 cycles. Circuit is highly stable resistance capacity funed circuit. Five tubes are used, a $65 J 7$ and $6 K 6$ in the osciliator circuit, a 6517 square wave clipper a 6SN7 as a cathode follower output and 5 Y 3 as transformer power supply

The square wave is of excellent shape between 100 and 5.000 cycles giving adequate range for all audio, FM and television amplifier testing.

Either sine or square waves available instantly at a toggle switch. Approximately 25 V of sine AC available at 50,000 ohm output impedance. Output +1 db from 20 to 20,000 cycles. Nothing else to buy. All metal parts are punched, formed and codmium plated. Complete with tubes, all parts, detailed blueprints

HEATHKIT SIGNAL TRACER KIT Reduces service time and greatly increases profits of any service shop. Uses crystal diode to follow signal from antenna to speaker. Locates faults immediately. Internal amplifier available for speaker testing and internal speaker available for amplifier
testing. Connection for VIVM on panel allows visual tracing and gain measurements. Atso fests phonograph pickups, microphones, PA systems, etc. Frequency range to 200 Atso rests phonograph pickups, microphones, PA systems, etc. Frequency range to 200 3 tubes, diode probe, 2 color panel, all other parts. Easy to assemble, detailed blue prints and instructions
Small portable $9^{\prime \prime} \times 6^{\prime \prime} \times 43 / 4^{\prime \prime}$. Wt. 6 pounds. Ideal for taking on service calls.
Complete your service shop with this instrument.
HEATHKIT SIGNAL GENERATOR KIT Every shop needs a good signal generator. The Heathkit fulfills every servicing need, fundamentals from 150 Kc . to 30 megacycles with strong harmonics over 100 megacycles covering the new television and FM bands. 110 V 60 cycle transformer operated

400 cycle audio available for 30% modulation or audio testing. Uses 6 SN7 as RF osciliator and audio amplifier. Complete kit has every part necessary and detailed blueprints and instructions enable the buider to assemble it in a few
read calibration. Convenient size $9^{\prime \prime} \times 6^{\prime \prime} \times 4^{3 / 4^{\prime \prime}}$. Weight $41 / 2$ pounds.

THE NEW HEATHKIT VACUUM TUBE VOLTMETER KIT The most essential tool a radio man can have, now within the reach of his pocketbook. The Heathkit VIVM is equal in quality to instruments selling transformer power supply 1% glass enclosed di transformer power supply, 1% glass enclosed di-
vider resistors, ceramic selector switches. 11 meg. vider resistors, ceramic selector switches, 11 meg-
ohms input resistance, linear $A C$ and $D C$ scale, ohms input resistance, linear $A C$ and $D C$ scale, electronic $A C$ reading RMS. Circuit uses $6 S N$ in balanced bridge circuit, a $6 \mathrm{H}_{6}$ as $A C$ rectifier and
6×5 as transformer power supply rectifier. In6
cluded is means of calibrating without standards. Average assembly time less than four pleasant hours and you have the most useful test instrument you will ever own. Ranges $0-3,30,100,300,1000$ volis $A C$ and DC. Ohmmeter has ranges of scale times $1,100,1000,10 \mathrm{M}$ and 1 megohm, giving range it ohm to 1000 megohms. Weight 8 lbs 5" OSCILLOSCOPE KIT

A necessity for the newer servicing technique in FM and television at a price you can afford. The Heathkit is complete beautiful two color panel, all metal parts punched, formed and plated and every part supplied. A pleasant evening's work and you have the most interesting piece of labaratory equipment available.

Check the features - large $5^{\prime \prime}$ 5BP1 tube, compensated vertical and horizontal omplifiers using 65 J 7 's, 15 cycle io 30 M cycle sweep gener. ator using 884 gas triode, 110 V 60 cycle power transformer gives 1100 volts negative and 350 volts positive.
Convenient size $8^{1 / 2 \prime} \times 13^{\prime \prime}$ high, $17^{\prime \prime}$ deep, weight only 26 pounds. All contrals on front panel with test voltage and ext. syn post. Complete with all fubes and detailed instructions. Shipping weight 35 pounds.

Order foday while surplus tubes make the price possible.

$\$ 1950$

(ID) SEARCHLIGHT SECTION

Radio-Electronic Components

of Gparrantered avolisy

10 METER

MOBILE ANTENNA

This $8 \mathrm{ft}, 3$ section mobile antenna is by far the best whip we've seen. The elements are copperplated, spring steel tubing, painted O.D. for protection against the weather. A $4^{\prime \prime}$ ceramic insulator reduces losses to a minimum. Long service under extreme vibration conditions is assured by the special molded rubber spring mounting. Positive co-ax connector at base. Mobile Antenna completeonly $\$ 5.75$ each.

MICRO-SWITCHES AND SWITCHETTES
Our Micro-Switch and Switchette stock is one of the nation's largest. Listing 104 A contains popular types at extremely attractive prices.

RELAYS

We have over a million ralays in our warehouse. Huge quantities of hundreds of types make Wells the foremost source of equipment of this kind. Every relay is brand new and has been inspected, rated, individually boxed, and priced far below the market. Tell us your requirements or write for our Relay Catalog.

BALLOONS

AND KITES

These Arniy emergency balloons and box kites were made to carry long wire antennas. They are wonderful for field and DX work. Tubular canvas bag containing 24 -ft. heavy duty balloons (packed in sealed cans), 2 hydrogen generators, an aluminum frame folding box kite, 300 ft . of stranded antenna wire -only $\$ 9.95$.

CO-AX

CONNECTORS

Standard and British Type Co-axial Connectors in stock. Send for Listing 100A.

WALKIE TALKIES

A self-contained portable 10 and 6 metertransmitterreseiver. Wells Walkie-Talkies are shipped ready to operate complete with new batteries, telescoping antenna and handset. Rebuilt by the Government. Price only $\$ 45.00$. Parts, batteries and accessories for Walkie-Talkies and Handie Talkies available from stock. Write for listing No. 20.

WELLS TREMENDOUS STOCK INCLUDES A WIDE SELECTION OF THE FOLLOWING COMPONENTS:

[^11]Transformers \& Chokes Terminal Strips Wire Wound Resistors Volume Controls

Rheostats
Dry Disc Rectifiers Tube Sockets Selector Switches

Manufacturers and Jobbers Write for Latest Complete Electronic Catalog

AMATEURS:

See us in Milwaukee at the ARRL Convention. Write for Amateur Catalog H40OC

(ID SEARCHLIGHT SECTION ©

RADIOMEN'S HEADGUARTERS / WORLD WIDE MAIL ORDER SERVICE ! !

BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORS, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASERS, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES EXPORT INQUIRIES ARE SOLICITED BOTH FROM EXPORT HOUSES AND FROM FOREIGN GOVT. PURCHASING COMMISSIONS HERE AND ABROAD. EXPENSE CAN BE REDUCED AND REQUIREMENTS FILLED WITH A MINIMUM OF DELAY BY CONTACT-
ING BUFFALO RADIO SUPPLY INITIALLY.

SOS EMERGENCY TRANSMITTER SOS

COMPRESSED AIR INSTANTLY, Anywhere!!
 Portable Air Compressor and
strage tank. riggedly built of sthrage zank, Ruggedly built of
best materials using lifetime lu-
miruated ball bearing on connectmurated ball-bearing on connect-
ing rod and oil impernated main bearing on shaft. Urenusual desing
forever eliminates valve trouble. the most common fall in a ar
compressors. PATENTE Mhiqut
 larger compressors powered b
hearier motors. Will deliver approximately shot cut
inches of air per ninute at maintained prusure of
 one minute. Comues complete with 100 lh. gauge, al
 mamaned. Works from any $1 / 4$ II. P'. motor. Tsefu]
for spraying paints or lacquers, disinfectants, insee tidider, annealing or brazing with natural gas, infat-
ing tires, etc. Price $\$ 14.50$ postage prepald anwwer in the Ur. S. Efficient, completely adjustable syphor hose avaliable for only $\$ 7.75$ with of 100 ll . testa also prepaid. 25% required on all C.O.D. order.
sout for free catalogs of radio parts and surplus items. TRANSFORMERS-Steps up 110v, or stum
 Wat SI.69. AUDIOTRANSFORMERS: N Nlate to
 FORMER for T-17, Shure microphone. imilar POWER TRANSFORMERS Half-hhell type. 110Y

BUFRAD CAR RADIO ANTENNAS

 condition. We include free parly and diagrams for the perfect trequency coverige in the receiver. The sCk 522 complete with 44 volt dyamotor sells for only $\mathbf{\$ 3 7 . 9 5}$. The SCR 522 is also

STEATITE VARIABLE CONDENSERS

$$
\begin{aligned}
& 10 \mathrm{mmf} \$.35-10 \text { for } \\
& 15 \mathrm{mmf} \$.35-10 \text { for } \$ 2.90-109 \text { for } \$ 83.00 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 140+160 \mathrm{mmIf} \$ 1.00-10 \text { for } \$ 8.50-100 \text { for } \$ 70.00 \quad \$.30-10 \text { for } \$ 2.70-100 \text { for } \$ 25.00 \\
& \text { Hit } \mathrm{minf} \text { \$1.60— } \\
& \text { 13uiterty } \\
& \text { ban bearings and a } 84
\end{aligned}
$$

$$
\begin{aligned}
& \text { So mmf. per section section } \$.70-10 \text { for } \$ 6.50-100 \text { for } \$ 60.00 \\
& \text { Manufacturers and distributors write for prices on larger quantities. } \\
& \text { E HAV゙E OVFR } 250,000 \text { VARIABLE CONDENSERS IN STOCK. }
\end{aligned}
$$

 6F6 output stage high gain, high fidelity amplitip, With 60 cycle. 110 y power supply on the same $131 / \mathrm{x}$ cover over tubes and parts. Made by Western Electric with typical qualite components such as a husky powers transformer tand oil condensers, this unit is
nbriously intended to give years of trouble-free sersis with no more need fir repairs than a telephone. biscomesting one wire each. from the special input and output ilters, will result in as high a fldelity amplifier as can he obtained. Your cost
diagran and narts list incluted $\$ 14.95$. RT.1655-11 tube crystal controlled superhet recejver for $24-2 \times V$ It operation. Beautiful chassis
and cabinet. Ises latest tube types including: miniature 6AJ5's. Tubes and schematic supplied. Only a few available at........................... $\$ 14.95$

BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. 9-E BUFFALO 3, N. Y.

TELEVISION CAMERA EQUIPMENT

Available for immediate delivery. DUMONT TYpe 5027-A IMAGE ORTHICON PICKUP HEADS, with type 5047-A ELECTRONIC VIEW FINDERS, complete with all tubes,-including 2P23 Image Orthicons.
Factory Reconditioned-Periect Condition f.o.b. N.Y.C. Subject to prior sale. WRITE FOR COMPLETE INFORMATION
the national Instrument company FAR ROCKAWAY, NEW YORK

Special Values

D. C. MICROAMMETERS

$0-100$ ua. 4" $^{\text {gq. G.E. DO }} 58 .$, $\$ 12.00$
same with "Volt-Ohm-M.A., scale.

R. F: MILLIAMMETERS

SHUNTS

150 or $240 \mathrm{Amps}-50 \mathrm{Mv}$-alreraft type $\$ 1.00$ PRECISION ELECTRICAL INSTRUMENT CO. 146 Grand Street New York 13, N. Y.

SO-7 RADAR SETS

10-cm Band, 275,000 watts peak pulse watts. Operate on 110 v 60 cps AC, 3 KW

Unused, \$1,950.00
F.O.b. Houston

GULF COAST ELECTRONICS
1110 Winbern St.
Houston 4 Justin 8-1551

(T) SEARCHLIGHT SECTION

RADIOMEN'S HEADGUARTERS Y大゙ WORLD WIDE MAIL ORDER SERVICE ! !

GENERAL ELECTRIC 150 WATT TRANSMITTER Cost the Government $\$ 1800.00$ - Cost to You_-BRAND NEW——\$67.50

This is the famous transmitter lued in T. .s. Amy bombers and ground stations. during the war. lts design construction have been proverl in seribe, under all kinls of conditions, all ower the world. The entire frequenç anke amplifier coils and condensets, and antenna tuning circuits-anl desimed to noperate at top eftciency within it, particular freutuency range. Transnitter and accesories are finished in hard crackle, and the milliammeter" wolt Fo KU and 1500 to $12,500 \mathrm{KG}$, Will operate on 20 and 20 meter hand with slizht modification for which fiagrams ar izedseds.
 Which furnishes 1000 at ;hin MA, from either 12 or 24 wots. Complete instructions are furnished to operate set from

GENERAL ELECTRIC RT-1248 15-TUBE TRANSMITTER-RECEIVER

1949 MODEL MUTUAL CONDUCTANCE TUBE TESTER $\begin{gathered}\text { with new } 9 \text { pin socket to handle } \\ \text { suture } \\ \text { tube } \\ \text { developments }\end{gathered}$

 ordinary emission testers Attractive panel and case equal to any on the market in appearance... Large $41 / 2$
 tested regardess of focation of elements on tube base. Indicates gas content and detects shorts or opens on each individual section of all loctal. octal and miniature tubes including cold cathote, magit eye and voltage regulator tubes Mowell "as, all ballast resistors. Name of the nationally knreading "Cood" as on dynumice conductance testers or Mode! "c'"- Sloping front counter case

HEAT GUN Steamlined pistol grip heat gun in vivid red housing, that delivarts a powerful 20 Cuble Ft. per minute blast of hot	CONDENSERS—PAPER TUBULAR $6(14) \mathrm{WV} .001$. 002,005 8c; .11. . 1 . 9 c ; . $1-10 \mathrm{c}$; .25-23c; .05-35c; ELECTROLYTICS: Sulti 200v-200; 10mifi 356-200; 3umfd 150v-23c; 2H/2hnfi 1.06-35c; 30/20 150*-46c; 50mpd 150w-43c: smfd 475: 34c: thmrd $350 \mathrm{~F}-65 \mathrm{c}$: OIL CONDENSERS: 4 mfl buov $4 \mathrm{Sc}: 2 \mathrm{nfd} 600 \mathrm{v}-29 \mathrm{c}$; $3 \mathrm{X} .1 \mathrm{mfd} 600 \mathrm{r}-29 \mathrm{c}$.
motors. but this has a lifetime-luhricated A(e-b) motor of the rugged vacuum cleantr type, that produces a harricane	alsl". . If thate havy oversize Alnico V magnets.
if either hot or cold air. Perfect for blowing out dirt or	
Ilust from radio chassis, drying out jgnition astems, Warming up earburetors, cuick-drying paint, thawing nut hatia	
tors or water pipets, ete. Warning:-Keep this away fromt	
suour wife, or she will be using it to dry her hair becaun.	$7^{\prime \prime}$ (Car Ratlio size).... $\$ 4.50$.............. 6 for $\$ 21.50$
it will do it in half tha time of her ordinary hair dryer.	
to say nothing of her using it to dry stockings or clothing, or defrost the refrigerator instantly, Gndy	
\$12.93, Satjafaction guaranted or money yefunded if returned prepaid within 5 day.	

\$595 Takes Both BIG BARGAINS

Cable Address: BUFRAD

SCR-274N COMMAND SET

The greatest radio equipment value in history A mountain of valuable equipment that includes 3 re ceivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion Also included ore two Tuning Control Boxes; 1 Antenna Coupling Box; four 28V. Dynamotors (easily converted to 110 V . operation); two 40 -Watt Transmitters including crystals, and Preamplifier and Modulator. 29 tubes supplied in all. Only a limited quantity available, so get your order in fast. Removed from unused aircraft and in guaranteed electrical condition. A super value at $\$ 34.95$, including crank type tuning knobs for receivers.

PE-109 32-Volt Direct Current Power Plant

 M1nimum order $\$ 3.00-$ All prices subject to change- 5% deposit with COD orders.

BUFFALO. RADIO SUPPLY, 219-221. Genesee St., Dept. 9-EBUFFALO 3, N. Y.

SELSYN MOTORS Just Arrived
115 Volt AC 60 cycles. Transmitters only. Can be used to turn small beam antenna or as indicators only $31 / 2^{\prime \prime}$ Diameter x $51 / 2^{\prime \prime}$ High. Shipping Weight 10 los. Per Pair. Special $\mathbf{~ P e r ~ P a i r ~}$
\$5.95

CS Differential

Dual coil with armature pivoted between coils. $\begin{gathered}\text { All contacts } \\ \text { normally } \\ \text { oppen. }\end{gathered}$ operates 220 -
 coil, contacts S.P.D.T. Controls
VAC. rated
Ideally amps. at
lifed anced or bridge type circuits where limited current or power is available. Will with stand 12 G vibration up to 60 cycles at 35,000 feet altitude. Special low
price. price

WIRE WOUND

 POTENTIOMETER100.000 ohm, precision made. G.R. type, 25 watt, 8^{n} diameter. New $\$ 1.95$

SUPERIOR powerstats

Variable Transformer for precise Voltage Control. Excellent mechanical construction, design, and durability.

VARIABLE TRANSFORMERS

TYPE 116U: Unmounted; 115 V . input, 0.135 V . output @ 7.5 amps. 1.0 KVA
TYPE 1126: 115V. Input, 0-135-V. output @ 15.0 amps. 2.0 KVA
TYPE 1226: 230V. input, tapped at 115 V ., $0-270 \mathrm{~V}$. output @ 9.0 amps. 2.4 KVA
TYPE 1156: 115V. input, 0-135 V. output @ 45.0 amps. 6.1 KVA

If not rated 25% with order, balance C All wrice order, our warehouse New York. We our warehouse New York. We Write Dept. EL

SURPLUS
 LABORATORY EQUIPMENT

We have in stock, for immediate delivery, the following surplus Laboratory Instruments, fully tested and guaranteed.

General Radio: 107M Variahle Inductors; ${ }^{222}{ }^{2}{ }^{722} \mathrm{~A}^{72 \mathrm{M}}$ Precision Variable Condensers ${ }_{2}^{24 A A}, 724 \mathrm{~A}, \mathrm{~W}$ avemeters; $71 \mathrm{BB}, 740 \mathrm{BG}$ Capacitance Bridges; 736 A Wave Analyzer; 619 E Heterodyne Detector; ${ }^{281 A}$ Twin-T
Monitor. Monitor
Ferris: 18 B Signal Generator; 33A, 34A Crystal Calibrators
Boonton: 120A V.H.F. Circuit Checker; 140A Wide Range BFO; 155A FM Signal Hewlett-Packard: P-6255B Inverpolation L. \& N: 423 Precision Resistor: 6655 1rortable indicators and Standard Cell. Millen: P4E Synchroscopes.
Western Electric: RA 90A High Voltage Power Supplies; SID 353384 VT Reguinrator (Sweep Marker Generator): 15154,

Range Calibrator Modulator; 157A Output Transformers; Breakdown Testers, 500

Weston: Model 1: $0-300$ M.A. 0.500 Volt D.C. Model 45: $0-7500$ M.A.; $0-500$ Volt $0-1500 \mathrm{Volt} ; 0-150 \mathrm{M} . \mathrm{A} . ; 0-300 \mathrm{M} . \mathrm{A}$. D.C.; 785 Industrial Analyzer.
Dumont: 213 Modulation Monitor. G.E.: LU Radar Test Equipment. Distillation Products: Pirani Gauge.
Industrial Instruments: RN-1 Wheatstone Bridges; MB8 Megohm Bridge. Slalleross: 621 Limit Bridge.

WRITE FOR COMPLETE PRIGE LIST

the national Instrument co.

FAR ROCKAWIY, N. Y.

The

"KlLLOGG DEHYDRATOR"

A_{n} all purpose self-reactivating dehydrating unit. To be used for removing moisture from gases. Numerous applications in the fields of Physics, Electronics and Chemistry. Dual insulated tanks with thermostatically controlled heating elements. 8950
Complete with 20 lbs. of Silica gel., heating elements, shut-off and safety valves.
F.O.B., N. Y.

INTERSTATE Appliance Go., Inc.
Dept. KD, 600 Broadway. NEW YORK 12, N. Y.

Scope Transformer

PRI-115 Volts-60 Cycle

Littlefuse-Fuse Holder
Fuse extractor Post. Finger Operated knob \#442002; complete with all hardware; New List. \$3.50 Each. 3 for $\$ 1.00$
G.E. Switch \#16SBICE 25 Brand New-
 C.P. Clare Relay-6P.D.T.-Solenoid 3300 C.P. Clare Relay-6P.D.T.-Solenoid 3300
ohms-\#A21625-New Boxed. Each. $\$ 1.25$ New Bulletin off press-write
GREENWICH SALES CO.
59 Cortlandt St.
Tel. Dlgby 9.3813
New York 7, N. Y.

FOR SALE
 PARALAX SINGLE COMPUTERS

Model 2CH105-R
85 NEW-and in original cartonsShipping weight 85 lbs. Prices on application.
1000 PEII7C POWER UNIT-6 or 12 V
Input. Shipping weight-35 lbs. each. Lots of 100 or more- $\$ 1.25$ each. Write for further details.
Crabtrees wholesale radio 2608 ROSS AVE. DALLAS 1, TEXAS

(ID) SEARCHLIGHT SECTION ID

CRYSTAL MIXER ASSEMBLY, S band, type N fittings, variable oscillator injection coupling, $\$ 5.00$.

TIIEEADED FEED THRU CERKMIC CAPACTKORS, $50 \mathrm{mmfd}, 1000$ V DC, 100 for $\$ 10.00$

DISC TYPE FEEL THRE SILVER BLTTON CAPACITORS, 300 mumfl, 500 i), 100 for \$20.00.

X IBIND S.W.R. Test Sels. TS-12/AP.

X IBNND POWER METER, TS $36 /$ AP,
X ISAND WAVE METER, TS 38/AP, new.
X IBAND POWER LOAI, TSS-108/AP, new.
TUNING UNITS for APR-4 and APR-1 receivers,
$2100-4000$ inc, new.

10 Cm OSCILIATOR BC-1096-B with 36 me pre lF amplifier 1078 B , klystron power supply and 417 -A klystron, 110 v 60 cps, new in transit. case, $1 / 0$ SCR $\overline{2} 4, \$ 125.00$.
(ALIBLATED S BAND fixed attemmator, 19.8-20-2 db. type N fittings, $\$ 10.00$.

MICKOWAVE TEST C.IBLE, 15' RG-9U rable with ${ }^{[T r i-24 \mathrm{l}}$ conneciors 15 feet
long $\$ 4.00$, \& feet long, $\$ 3.50$.

LOSSY CIBLE, 10 dbat 3300 megacyeles, type N connectors $\$ 3.00$.
TYPE CONNECTORA, UG-10, 12, 21.22. $24,25,27,30,58,59,83.86 .190,201,245$.
and UHF
connectors So
$239,1, L$
25983 1 AP . UG 26 f, complete with center contacts. immediate delivery.
KADAR KECEIVER, $B C$ 10f8-A, $1502 / 60$ megacycles, individual tuming for the r.f. stages. bandwidths 4 meqaeveles,
115 volts, 60 eps. 14 tubes. $\$ 45.00$. 115 volts, bo cps. $1+$ tubes. \$45.00.
GENERSK RIDIO PIEEISION WSVE-
 resonance indieator, complete with ac-
ressories and carrying case, new.
Pulse 'Transformer, 13:-AWF, $\$ 3.00$.
Pulse Trabsformerv, L'tah 9280 , S1.00.
D'ulse Forming Network, ${ }^{20} \mathrm{kv}$, 92 microsecond, b0 ohms, \$25.00.
 $0-350$ rolts. 1000 ohms per volt meter,
Westinghouse $N S$ 3. $\$ 1.50$. Westinghouse N犬 $35, \$ 1,50$,

ELECTRO IMPULSE LABORATORY

66 Mechanic St., Red Bank, N. J. Red Bank 6-4247

MOTOROLA HEATERS Itleal for boats, airrooms, trailers. cabins, trucks, etc. The GN-:-24 er is of the internalcombustion type using gasoline as fuel. The ninit operates on 24tinand is thermocontrolled to use miniSelt - contained tank holds fuel for $6-7$hours of opration 15, Dino her.t. The hlower, which supplies 12 j cubic ft //min. of heated air, can be used as a cool air (ircuator control mit. flexible stainless steel exhaust, air duct ellow, und spare parts. With instruction and maintenance manual. Specially priced $\$ 19.50$	"A" ELIMINATOR KIT \#KC 1-10 A well engineered six volt direct current power unit, for Auto-Radio and similar service work, has first time, we are presenting a tine quality unit in kit form, embodying the essential, commonemts neeessiary to easily construct an "A" eliminator at a thrifty. We feel sure that this unit will fultill a long-standing neerd of every serbicetuan amm techin115 V.A.C $50 / 60$ evele source. and helivers 6 V.D.C., well filtered, at eight amperes, with a peak rating of ten annere. cmmplete Price $\$ \mathbf{1 9 . 5 0}$ with simplified instructions.
To avoid shipping errors, kindly order by type \#. All prices subject to change without notice.	
ATTENTION!!! INDUSTRIALS, EXPORTERS, SCHOOLS, GOV'T AGENCIES, LABORÁTORIES. Our engineering staff is at your service to facilitate the application of rectifiers to your specific requirements. Write for quantity discounts on company letterhead.	Minimum order $\$ 3.03$. No C.O.D.'s under $\$ 25.00$. 25% deposit on C.O.D. Add 10% for Parcel Post. Terms: Net 10 days to rated concerns only. Orders Promptly Filled From Our Stocks
71 Warren St. Phone: BEekm	3-7385 New York 7, N. Y.

Mirrored scale $31 / 2^{\prime \prime}$ long, knife-edge pointer. Molded bakelite case dimensions $41 / 4^{\prime \prime} \times 51 /{ }^{\prime \prime} \times$ $21 / 4^{\prime \prime}$. Snaps in place in black wrinkle-tinished steel case $51 / 4^{\prime \prime} \times 6^{\prime \prime} \times 23 / 8^{\prime \prime}$. Furnished with $3 \not \mathrm{ft}^{2}$.
color-coded rubber insulated clip leads.

Basic movement-approximately 12.5 ma. Shunt readily replaced permitting conversion to lower range scale.
Individually packaged in moisture-vaporproof packing.

TV and SCOPE POWER TRANSFORMER Pri
 $4 \mathrm{~A} \ldots . .121 / 2 \mathrm{~V}$. $2 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}, 12.6$ YCT AN/APS-IS 3 CM ANTENNA ASSEMBLY, $\$ 33.25$ HYDRAULIC SERVO CONTROLS SBErY TYPE HyDRAULIC SERVO CONTROLS Sperry Type F GRYSTAL RECTIFIER TEST SET TS-268/U' $\$ 1 \mathrm{l}$. 82 TRANSFORMER-Westinghoum hyperil cote litr 115 V 60 cy . $8 / / \mathrm{KVA}$, Sere $240 / 2+11$ Y.....Sil. 50 FILTER CHOKE-Hermetically swaled lnh at $\$ 0,1$ GENERAL Electric Liquid Level Transmitter. \$2.4t TUBES

1824.	\$2.21	2×2.879.	\$. 49	2050	\$. 83	3AP1.	\$2.44
3 CPl	1.87	FG-172	14.80	8020	. 97	724B.	3.22
3DP1	1.87	204A	17.90	8013	. 92		
5 FP 7.	. 88	FG-235A.	42.50	1625	. 19		

WRITE FOR OUR BARGAIN BULLETIN

Lectronic Research Laboratories

5832 Hegerman St. Philadelphia 24, Pa.
Phone-Cumberland 8-4737

ELECTRONIC SPECIALS

-Priced Right-
Switches-15,000V, 5 Amp., SPDT Motor Driven 110/1/60.
\$ 42.50
Switches-15,000V, 5 Amp., SPDT Motor Driven 110/1/60....... 275.00

RA- 58 Power Supplies, $15,000 \mathrm{~V}$. 035 A 140.00

RA-34 Power Supplies, 1000V-350 MA-DC 12V, 14A-Ac, 12V, 2A, DC 95.00 SCR-533-T2, Trailer borne radar IFF's 1.300 .00

50 Watt Portable Broadcast Transmitters complete, Turntable, mikes, et 750.00 Million Items in Stock-Let us know of your needs

VETERANS SALVAGE CO., Inc.
9 KULIK STREET
Phone: PAssaic 3-6370

BOONTON 120A VHF CIRCUIT CHECKER

This instrument was developed by the Boonton Radio Corp. to permit checking at VHF: CapaciIdeal for Television and FM Tuners, Quality con. trol, etc. Four Frequency Ranges. Available for mmediate delivery.
Catalog price is $\$ 320.00-$ Our price is $\$ 150.00$ f.o.b. N.Y.C. Reconditioned, in good operating condition. ubject to prior sale.

THE NATIONAL INSTRUMENT CO. FAR ROCKAWAY, N. Y.

RADIO ALTIMETERS

Transmitter-Receiver RT7/APN-1 Complete with 14 tubes- 115 to 460 mc . MT-14/Arn $=1$ shock mount included-Navy inspected.
.$\$ 17.50$ өach

GLOBE BASELINER

Model \#G-1401—Provides a baselino (Zero voltage Mode \#G
referenee line) in visual alignment systems. 0 day delivery............................ . $\$ 49.50$ each
"CANDOHN" RESISTORS
50,000 Type F H- 90 ohms tap at 50 ohms- 10 Watt IM plus. Special at. . $\$ 25.00$
All prices $F O B$ Bridgeport
Globe Products Corporation 870 Maplewood Ave.
P.O. Box \# 7 Bridgeport, Conn.

$$
\begin{aligned}
& \text { SHEET METAL MAGMMERY } \\
& \text { NEW and Used - Brakes - Shears } \\
& \text { Forming Rolls - Folders - Punches - Whitney Equip- } \\
& \text { Di-Acro, Pexto, Niagara \& Went. } \\
& \text { R. D. BROOKS CO., INC. } \\
& \text { 36I Atlantlo Avo., Boston, Mass. }
\end{aligned}
$$

We 0ifer For Immediate Delivery

THE FOLLOWING:

15000 Selemium Kectiflers is mils 110 5000 Electrolytic Condensers 3000 mfd.
 . 003 NIFI, e00 V Condensers. . . . \$. 05 ea. 1000 Non-lolarized Electrolytic Condens-
 $40+20+10$ (9) $450 \mathrm{v}+20$ (93) y F.P. $2 \mathbf{5 0 0}$ Phome-Radio Switcher . 10 150003 pole 4 position rotary switches $\$$. 10 Buss Fuse Holders type HCM for $1^{1 / 4}$ " $10 n g$ fuses
Solar Bypass Condensers-1 mfd 400 volts w/leads at each end and bracket it center
Plito dividually hoxed $\boldsymbol{j}^{\prime \prime}$ speaker Cones in-Tubas-1299, $1299 \mathrm{~A}, 9003,9004 \mathrm{standard}$ Trannformers 1110 V 400 ey. Pri. 3 V. 6
 110 V. 400 cy. pri. 220 v. sec. pri. and see. in series Rendix part No. P (

Large quantities of mica condensers in cll sizes at low prices

All Merchandise Guaranteed Write, Wire or Phone

ROLLS RADIO \& TELL. MFG. CORP.
115 W. B'WAY, NEW YORK 13, N. Y. BARCLAY: 7-6063

-RADAR SETS-

MODEL SFl, 10 cm , new, complete with spares. $\$ 1,800.00$
also-Model SL1, 10cm; Model APS/3 and APS/4, 3 cm
APR/4-TN/54 Tuning Units.
LERU LABORATORRIES, INC.
360 Bleecker St. New York City 14

RECORDING EQUIPMENT

Rek.0-Kut $16^{\prime \prime}$ Master Pro M.5S . . . dual speed recorder: Audax head 8 OHMS Rek-0.Kut $12^{\prime \prime}$ dual speed playback
Rek-o-Kut balance meter for rack mounting
3-lead screws: I.O. 120 L.P.I.; O.I. 105 L.P.I. O.1. 120 L.P.I.

- Astatic 400 pickups
- huret 55 . A. power a mplifier

Meter and amplifiel moun
Complete, assembled and din rack
Ready
Practically brand new, original cost $\$ 870$ now only $\$ 400$

FS-5092, Electronics
330 West 42nd St!et, New York 18, N. Y

GRAIN of WHEAT LAMPS

Photograph 3 times actual size Goldering iron removes lamp from Mazda G. E. E 323 3v. 3 . 19A
Mor illuminating Meters, Mazda G. E. 323 3V.
Used for illuminating Meters,
Compass Dials, and Airplane Compass Dials, and Airplane
Instruments.
nstruments.
Great for Models, Dall Houses, Miniature Trains, etc. Dozen..... \$1.50 $\begin{gathered}\text { Post } \\ \text { Paid }\end{gathered}$ Also have G.E. 328 6v. ,2A and 322

Operates on Flashlight batteries. speed depending on the voltage. Fairly strong on 6 volts, full power and speed on 27 volts. Designed to be used in
bombsights, automatic pilots, etc., 250 ($\mathbf{\$ 5 . 0 0}$
RPM. FEW MORE AT............

12 Volt. 100 watt Soldering iron
$\$ 1.30$

HAYDON SYNCHRONOUS MOTOR
to operate switches, etc., can be had either I Rev. per hour or 1 Rev. Der minute at this SPECIAL
PRICE SPECIAL
PRICE
$\$ 3.85$
Many other speeds available at $\$ 4.95$

Experimenters and Inventors Supplies 64 Dey St., New York 7, N. Y.

BOONTON

140-A BEAT FREQUENCY GENERATOR Ranqe 20 CPS to 5 MC . Output Voltage 1 MV to RECONDITIONED GUARANTEED

THE NATIONAL INSTRUMENT CO.
FAR ROCKAWAY
NEW YORK

Industrial Power Supply Equipment

TRANSMITTING	THYRATRONS	RECTIFIERS
RK75/307A 4.50	$2 \mathrm{D21} \mathrm{Min} \ldots9$.	FG32 4.00
450TH/6C21 . 22.50	3C23 4.75	371B 5.95
750 TL 42.50	FG81A 4.75	531 18.00
$\begin{aligned} & \text { WL533 750W U.H.F. } \\ & \text { Triode } \end{aligned}$	C6A 8.50	$872 \times \ldots \ldots .1 .75$
714AY Magnetron... 9.50		3822 2.95
730A Magnetron 10.75	\square Standard Mig.	

RECTIFIERS - Dry Disc Type Continuous Duty Ratings

- 180 V . A.C.- 400 M.A. D.C. G.E. Full

Wave Bridge
6.90

- 3.5 V . A.C. 1.8 V . D.C. 1.0 Amps Full

Wave Bridge

- 6.5 V . A.C. -2.2 V . D.C. @ 3.0 Amps.

Full Wave Center Tap.

- 36V. A.C. 2.2 Amps. D.C. Full Wave

Bridge
Sav. A. 3.75

- 54V. A.C.- 1.6 Amps. D.C. G.E. Full 4.40
- 154V. A.C.- 600 Mil D.C. Full Wave 6.85

CONDENSERS

500 Mfd 50 V dry Electrolytice
2 Mfd 600 V Tubular 0.1
10 Mfd 600 V Oil
2 Mrd 2500 V Oil.
2 Mrd 2500 V Oil.
. M5/.25 6000 V DC or 125 Mfd
12000 V D.C. Oil. or 125 MFd -
1.0 Mfd 25 KV .
.001/25,000V Mica
50 MMF 32 KV Tubular vacuum $\quad 25.00$
RELAY
RC-117-Westinghouse Time Delay Current Relay, Type SC-M. 2 to 1 amp A.C. or D.C 8 amp continuous rating. Rating $20-40 \%$

METERS

M-140 AB Weston Model 476-3" A.C. Ammeter, 3 Amps. full scale, Calibrated $0-120$ Amps.', flush mounting with $40 / 1$ current trans. . $\$ 8.50$ Net wt. 3 pounds

M-143 A.B. Weston Kilovoltmeter-3". Madel $301,20 \mathrm{KV}$. @ 1000 ohms per volt, flush type calibrated for steel panel mountings with 20 meg. 20 KV Weston resistor complete with clips and standotf insulators............. $\$ 18.00$ Net wr. 4 pounds.
Multimeter, supreme model 543-s.. $\$ 12.95$
R. F. ammeter Weston 425-0-3 amps $\$ 5.95$

TRANSTATS

- $115 \mathrm{~V} .50 / 60$ cycle input 103-126 V. output @ 2.17 amps.
- 115/230 V. 50/60 cycle input 0-260 V. output @ $21 / 2$ amps............. $\$ 21.5$
- GR Variac, 115 volts $50 / 60$ cycle input 0-135 \vee output @ 5 amps cased. $\$ 14.50$
- 115 V. 50/60 cycle input, 0-135 V. output@10 amps.................... $\$ 24.50$ THERMOSTAT SWITCH. Fenwall - $50^{\circ}+400^{\circ}$ F. $110-220$ V. 2500 watt contacts, adjustable,

KV Meter Multiplier resistor 1 meg. $1 / 10 \%$
noninductive Wire Wound.

TRANSFORMERS

Net Wrt 134 the. Tim. $25^{\prime \prime}$ w $\times 16^{\prime \prime}$ I) $\times 17 / 22^{\prime \prime} 11$

PE-95G GASOLINE GENERATORS

 $10 \mathrm{KW}, 100 \%$ P. F. $120 / 240$ V. 60 cycle, single phase. Remote stort, new, export packedwith spares, tools. Gross wt. 2128 Cubic 70 $\$ 850.00$
ONAN GASOLINE GENERATORType CDO
73004-A (for TBW Radio Equipment) 120 V . 800 cycle, single phase @ 9.8 amps. and 14 $V . D C$ @ 20 amps. New in watertight metal cose. $\$ 140.00 \mathrm{mps}$. New in warertight metar

WESTINGHOUSE-Type "AB"

De-ion circuit breakers
Thermal trip-without enclosure 3 pole- 50 amp frame size
Style 545-389 D 15 amp rating..... 9.50 ea style 545-391 D 25 amp rating. 9.50 ea style 545-393 D 50 amp rating. 9.50 ea

HEATERS

H-149-Chromolox strip heaters, $300 \mathrm{~W} ., 115$

All merchandise in "as new" condition. Add approximately 20% to net weights for estimated shipping weights. Terms are 30% with order, balance C.O.D. All prices f.o.b. Los Angeles Warchouse.
Write for additional detailed infornation on any of the above items and for special quantity discounts.

1527 E.
Seventh Street

Los Angeles
21, California

"UHF" COAXIAL CABLE CONNECTORS

COAXIAL CABLES

-
BIRTCHER TUBE CLAMPS
 926 A....19d еа. 926 B5 .. 19¢́ ea. $\overline{926}$ A2 .. 19¢ ea. 926 B33.. 19¢ ea

TYPE F2L MICA CAPACITORS
CM 70 TYPE

. 024 MFD 1500 U. Pk. Wkg. .ea. $75 ¢$. 033 MFD 1500 U. Pk. Wkg. eea. 75 .056 MFD 1500 U. Pk. Wkg.. ea. 75 ¢ . 0001 MFD 5000 U. Pk. Wkg..ea. 75 \&

LIFE ELECTRONIC SALES

91 GOLD STREET, N. Y., N. Y. TELEPHONE DIGBY 9-4154-5

7,000 NEW STORAGE BATTERIES
 PORTABLE TYPE

Plastic and Hard Rubber Containers

waterproof, lead acid type terminals, 6 volts, 15 amp. hrs., 3 cells, 2 volts each, $1^{1 / 2}$ amps. for 10 hrs .. size $4^{1 / 2^{\prime \prime}}$ width by $4^{1 / 2^{\prime \prime}}$ length by $55 / 8^{\prime \prime}$ height, manufactured by Willard and Gould, packed in wood boxes of 9, 12 and 18 each. At $\$ 2.00$ each, f.o.b. Allentown, subject to prior sale.

Sample orders upon request

Phone
 3-7497

Wm. Rabinawity \& Sans 214-222 hamilton street - allentown, Pa.

PHONE
3.7498

FOR SALE

TRANSFORMERS

Western Electric transiormer 223A per
D-163041 torroid type core imped ance 600 to 600igige......... W.E transformer D-16is W.E. transformer $\mathrm{D}-161634$ torroidal
W.E. retard coil 307 B per D-161818B, 10 henries W.E. telephone induction coil 178A per D.162927A

FILTERS

W.E. 128B per D-165796 V.F. low pass 600 ohm impedance $\$ 3.95$
W.E. D-165627 band pass 600 ohm 1.95 impedance

MICA CONDENSERS

00005 CD 5000 test transmitting type
per 100 1000 fest transmitting type per 100 $\$ 19.50$ $.02 C D 1000$ test fransmitting type

SILVERED MICAS

W.E. 0994 type AR per D-162051 $\pm 1 / 2 \% 250$ wvdc..................... $\$ 1.95$ W.E. . 0002 402D 300 wvde per 100.... $\$ 9.50$

MICELLANEOUS

W.E. regulated power supply KS15036

115 VAC operated, 135 volt, DC
output, complete with tubes...... $\$ 25.00$ Varistor 34A per D-162482
Telephone switchboard cords, 2-con
ductor tinsel rubber covered $61 / 2$
long, both ends lugged. per 100 , $\$ 4.00$ per $1000 \$ 35.00$
Write for Quantity prices
No orders less than $\$ 5.00$ accepted
RaIL WAY COMMUNICATIONS, INC.
P. O. Box 1783 Phone 2-6487 Lincoln, Nebraska

MEMOVOX

REFERENCE RECORDING EQUIPMENT

Record $621 / 2$ Minutes on each side of α $161 / 2^{\prime \prime}$ MemoDisc.
4 Model AA Dual Rack-Mounted continuous recorders.
3 Model AP Portable Recorders. Complete with Playbacks, Monitors, etc., and a large quantity of MemoDiscs.

WRITE FOR COMPLETE INFORMATION
AND PRICES

THE NATIONAL INSTRUMENT CO. far rockaway

NEW YORK

ELECTRONIC TUBE-MAKING MACHINERY

For manufacturing radio tubes, electronic For manutacturing radio tubes, electronic
tubes, cathoderay tubes, lamps. New and tubes, cathode-ray tubes, lamps. New and
used. Reasonably priced, satisfaction guaranteed.

AMERICAN ELECTRICAL SALES CO.

FOR SALE

THESE ITEMS SURPLUS TO OUR PRESENT NEEDS

4-Scott SLRM-New... \$125.00 ea.	
Lyman CM-10	
Lyman CM-20	10.00
Lyman CM-205 Us	
2-Lyman CM-30 Good	10.0
$\begin{aligned} & \text { 1—Leland—1/4 HP-32vdc } \\ & \text { Motor Used } \ldots \ldots . . \end{aligned}$	
2-250 Rolls-DHFA-3	
1-PE-73-E DM Unit	
1-BD-77-C DM Unit	
1-PE-73-CM DM Unit	
$\begin{aligned} & -G E-27 v / 60 v-530 w \\ & \text { Amplidyne } \mathrm{M} / \mathrm{G} \end{aligned}$	
-RCA-AVR-20A-Rec.	

EIECTRONICS IISTRIBUTORS

P. O. Box 5455

JACKSONVILLE 7, FLORIDA

INDEX TO ADVERTISERS

ment, inc
derovos Cord
Aircraft Radio Corp
Allen Con, Ine., L. Is,
Allan-Bradley
Alliance Manufacturing
Allied Control Co.,
A!phat Metals, Inc.
Attec Lansing Corp.
American brass Co.
American Electrical
American Hectrical Heater Co
American Lava Corp...
American fhenolic co
Imerican Television \boldsymbol{E} Kadio Co.
American Time products, lnc.
Amperite Company
Anaconda Wire and Cable Corp
Arnold Engineering Co.
Irrow Electronies, Inc.
Irt Wire \& Stamping Co.
Astatic Corporation
ludak Company
ludio bevelopment
Audio Devices, Inc.
Avimo, LAd.
Batlantine Laboratories, In
Barker and Williamson. Inc
Barry Corporation
Beach-Rnss Co
Beaver Gear works Inc
Bell Telephone Laboratories
Bentles. Harris Migg Co..
Beta Electronies Co.
Biwax Corb.
Hlaw-Knox Co.
Bliley Electric Co.
Boland \& IBosce, Inc., ipubishers
Boonton Radio Corp.
Borg Corp.. Gieorge W
Bradley Laboratories. Ine
Brand and Co. Wm.
Brown-ibridge Mills, Inc
Buck Engineering Co., Inc.
Buringion
Cambridge Therm
Cambridge Thermionic Corp
(apilol Radio Lingineering Insitut
Carby Mfa Co
Central Paber Co Inc
Central Sheet Metal Works, Inc
'entralab. Div, (ilobe-tnion, Inc. 14,15
Chicago Transformer, liv, of Ensex
Wirt Corp.
lach Mfy. Co
Clarostat Mig. Co.. Ine
Cleveland Container Co.
Coln Corp., Sigmundi.
Collins Airdio Products Co., Ine
Condenser I'roducts Co
Conn. Ltd., C. ©
Consolidated Molded Products Corp.
Gontinental Electric Co
Cornell-Dubilier Electrio Corp
Cross Co., H.
bano Co., If
Deven Cow Buand........ Inside Back Cover
Dial Light Co. of Amer
Dow Corning Corp
river Co., IV B
river-Harris C
Dumont Electric Corporation
Dumont Labs, Inc.. Allen B.
Edison Inc., Thomas 1.
Fisler Fngineering Co.
Witel-veCultough.
Wlectricad Insulation Co., In
Electrical Reactance Corb..
Electro Enginearing Works
Certro-Motive Mfg. Co
Electro-Teeh Fauipmoratories
Electronic Controls Co of \mathbf{V}, Inc.
Electronic Measuraments of Co .
Electrons, Inc.
Elliott Mfg. Co
Erip Resistor Corporation
Essex Electronies
Essicx Wirr Corp
Fairchild Camera \& Instrument Corn.
ederal Talecommonication Laborator
fes
Fcherai Tel. \& Kadio Corp itron Co.. Inn
Fisher Radio Cornoration
Formica Insulation Co.
Freed Transformer Co.. Ine
Frioli, Vm. I.
Figle-Miller Laboratories
Furst Electronies
famewell Comonans, TheCo., Inc
remier Metal Etching Co.
Presto Recording Corp.
Progressive Mfg. Co..
I'yroferric Co.
Kadio Corp of
Railway Express Agency....................... 19
Railway Express Agency, Air Gxpress
Raytl
Reeves Soundcrafi Cor
Reeves Sounderaft Corp....
Revere Copper \& Brass, Inc
Riehardson Co.
Rockbestos Pro
Roller-Smith Co
Royal Diamond Tool Co.
Sams \& Co., Ine. II. W.
Scientifie Electric Div, of "،s," Corri-
gated Ouenched Gap Co..
Cintilla Magneto Div., Bendix iviation Corp.
Shalleross Mife. Co
Sheffeo Mantufacturine Ca
Gisma Insiruments, Ine
. $\underset{2}{28}$
Sisalliraft Co
Sola Electric Co.
Solar Manufarturine Corporation 14
Sorensen and Co.. Ine.

\#B103—Provides from 1 KV to 5 KV D.C. at 1 ma. for Television Nuclear Research, etc.

External power required 6.3 V 60 cycle A.C. and 250 V D.C.

Entirely enclosed in Aluminum Case.... $35 /{ }^{3 / \prime} \times 43 / 4 \times 43 / 4$ high

Other voltages available \#B101-10 KV • \#B102-30 KV

Laboratory models available for prompt shipment. Inquiries for production runs are solicited.

Precision manufacturers of all types of IF and RF coils, chokes, and transformers.

Audax

TINBD－RIBBod

reprealucers

MICROWAVE－79．L
 VERTICAL—sudio 99
 LATERAL—Sudio 81

The finest performing reproducers－barring none

＂The Standard by Which Others Are Judged and Valued＂，

MUSIC CRITIC AND REVIEWER OF RECORDS
＂My new AUDAX reproduces better than anything else I have heard，－anywhere．＂

> RADIO SIATION: Our experience with TUNED-RIBBON lateral reproduction compels us to seek improvement in our vertical reproduction as well, by a change to your STUDIO-99. Please ship us one.
A RADIO STATION
Received the SA－79 AUDAX
Units and are very well satistied
whth them．They are much better
than anything we have ever
used．＂
＇Can you do us a bíg favor and ship duplicate TUNED－RIBBON order Thursday sure？We are your biggest boosters．＂
＂The new AUDAX units have seen hard service，being handled by people who mishandie them， but they keep on delivering．＂

Meets every requirement
－NO INTER－MODULATION DISTORTION
－Your EAIRS will easily Linow the difference：
What is the life of a＂Permanent＂needle？Write for Complimentary Pamphlet on this important subject．

AUDAK CDMPANY

500 Fifth Avenue
New York 18
＂Creators of Fine Electro－acoustical Apparatus since 1915＂

SEARCHTTGHT SECTION

（Classified Advertising）
EMDION MENT
Position Vacant．．．．．．．．．．．．．．．．．．．．．．．236， 237

Selling Opportmaities Wanted．
Employment Services ．．．．．．．．．．．．．．．．．．． 236
SPECIAL，SERVICES
Contract Work．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 236
EDVCATLONAL

EQUIPMENT
Far Sale Surplas New
WANTED
Equipment
Airborn Instruments Labs．．．．．．．．．．．．．．．．．．． 237
Air King Prodtucts Co．．Itıc．．．．．．．．．．．．．．．．．．．．．．．． 236
American Electrical Sales Co．．Inc．．．．．．．．． 262
Amperex Electronics Corp ．．．．．．．．．．．．．．．．．．． 237
Applied Science Corp of Princeton．．．．．．．． 236
Avco Nianufacturing Corp．．．．．．．．．．．．．．．．．． 236
Avco Manufacturing Corp．．．．．．．．．．．．．．．．．．．．．．．．． 236
Bendix Aviation Corp．．．．．．．．．．．．．．．． 237
Blan Ariation Corp．
Brooks Inc．：R．D．
Commalo Radio Supply．．．．．．．．．．．．．．．256， 257
Communications Equipment Co．．．．．．．．．．．．．．． 247
Crabtree＇s Wholesale Radio．．．．．．．．．．．．．． 258
Crabtree＇s Wholesale Radio．．．．．．．．．．．．．．．．．． 258
Dannemiller Assoc．．J．R．．．．．．．．．．．．．．．．．．． 236
EPCO
epe
Electro Tmpulse Laloratory
Electro Sales Co．．
Electronics Distributors
Electronics Research Publ．Co ．．．．． 23 n
Globe Products Corp．
Gulf Coast Electronics
Heath Company．
Instrument Associates．
Thterstate Appliances．
Klein，Manuel．．．．．．．．．．．．．．．．．．．．．
Leeds Radio Co．．．．．．．
Leru Laboratories Inc
Maritime Switchboard．
Natitime Switchboard．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26
National Union Radio Corr．258．260，261，
National Radion Rudio Corp．
Oklahoma A \＆MI Collegre．
Peak Electronics
Powertron Electrical Equip．Co．
Precision Electrical Instrument Co．
Rabinowitz \＆Sons，Wm．
Railway Communications．Inc
Reliance Merchandising Co．．
Rolls Radio \＆Tele．Mfg．Corp．
Servo－Tek Products Co．，Tinc
Spectra Products
Thomas Mfe．Co
Thiversal Cieneral Corf．
Veterana Salyage Co．．Tir
Wells Sales Tnc． 262
260
258
260
262 262
245
261 245
262
237
239 237
239
237 239
237
259
249 59
249
252
256 249
252
256
262 256
24.
2. 262
24.3

262 | 24.3 |
| :--- |
| 253 | $\begin{array}{r}253 \\ 260 \\ 236 \\ \hline 3\end{array}$ $\begin{array}{r}260 \\ 236 \\ 250 \\ \hline 206\end{array}$ $\begin{array}{r}236 \\ 250 \\ 236 \\ \hline\end{array}$ 236

244
236 244
236
361
260
\qquad
 258
262
260

．．．．．．．．．．．．．．．．．．．． 246 3
3

1
4
3

[^12]

[^13]6
 6
 ．
 1

[^14]

11
21
23

 ， 7 8

[^15]電

路析
教

18．RCA Prefeiplpd Tubes fulfill the maior engineer－ freferred Types are recomminded becouse their
centrated on fewer types．The longer manufacturing runs reduce costs－lead to improved quality and greater uniformity．These benefirs are shared alike by the equipment manufocturer and his customers

RCA Tube Application Engineers are ready to sug gest the best types for your circuits．For further infarmation，write RCA，Commercial Engineering， Section IR 40，Harrison，N．J

RECEIVING TUBES

POWER AMPLIFIERS AND OSCILLATORS

type	Class	MAXIMUM INPUT POWER VS FREQUENCY Values shown are Class C Telegraphy Ratings for Continuous Commercial												UNITS Mc
		1.6	7.5	15	25	50	75	110	150	200	250	300	600	
$\begin{aligned} & 802 \\ & 2 \mathrm{E} 26 \\ & 832 \cdot \mathrm{AO} \end{aligned}$	Pentode Beom Beam	$\begin{aligned} & 25 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & 16 \\ & 30 \\ & 36 \end{aligned}$	$\begin{aligned} & \overline{30} \\ & 36 \end{aligned}$	$\begin{aligned} & \overline{25} \\ & 36 \end{aligned}$	$\overline{36}$	$\overline{32}$	二	－	wotts wotts wotts
$\begin{aligned} & 2 \text { E24 } \\ & 807 \\ & 8150 \end{aligned}$	Beam Beam Beam	$\begin{aligned} & 401 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \neq \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 401 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \ddagger \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 401 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$	$\frac{33 \ddagger}{55}$	40	二	二	二	watts wolts wotts
$\begin{aligned} & 8025 \cdot \mathrm{~A} \\ & 829.8 \curvearrowright \\ & 826 \end{aligned}$	$\begin{aligned} & \text { Triode } \\ & \text { Beam } \\ & \text { Triode } \end{aligned}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{aligned} & 75 \\ & 120 \\ & 125 \end{aligned}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{aligned} & .75 \\ & 120 \\ & 125 \end{aligned}$	$\begin{array}{r} 75 \\ 120 \\ 125 \end{array}$	$\begin{array}{r} 75 \\ 105 \\ 125 \end{array}$	$\frac{75}{100}$	75	wotts wotls watts
$\begin{aligned} & 812 \\ & 811 \\ & 828 \end{aligned}$	Triode Triode Pentode	$\begin{aligned} & 155 \\ & 155 \\ & 200 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \\ & 200 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \\ & 200 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \\ & 200 \end{aligned}$	$\begin{aligned} & 155 \\ & 155 \\ & 160 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 130 \end{aligned}$	二	－	－	－	二	二	watts waits watts
$\begin{aligned} & 8005 \\ & 5588 \\ & 813 \end{aligned}$	Triode Triode Beam	$\begin{aligned} & 240 \\ & 250 \\ & 360 \end{aligned}$	$\begin{aligned} & 240 \\ & 250 \\ & 360 \end{aligned}$	$\begin{aligned} & 240 \\ & 250 \\ & 360 \end{aligned}$	$\begin{aligned} & 240 \\ & 250 \\ & 360 \end{aligned}$	$\begin{aligned} & 195 \\ & 250 \\ & 300 \end{aligned}$	250	250	250	250	250	＇250	250	watts wotts wolts
$\begin{gathered} 8000 \\ 4.125 \mathrm{~A} / \\ 4 \mathrm{D} 21 \end{gathered}$	Triode	500 500	500 500	500 500	500 500	400 500	300 500	500	500	425	335	－	－	walts
$\begin{aligned} & 6 C 24 \\ & 833 \cdot \mathrm{~A} \\ & 7 \subset 24 \end{aligned}$	$\begin{aligned} & \text { Triode } \\ & \text { Triode } \\ & \text { Triode } \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.8 \\ 5 \end{array}$	$\begin{array}{r} 1.5 \\ 1.8 \\ 5 \end{array}$	$\begin{gathered} 1.5 \\ 1.8 \\ 5 \end{gathered}$	$\begin{array}{r} 1.5 \\ 1.75 \\ 5 \end{array}$	$\begin{array}{r} 1.5 \\ 1.5 \\ 5 \end{array}$	$\begin{array}{r} 1.5 \\ 1.2 \\ 5 \end{array}$	$\frac{1.5}{5}$	1.5	－	－	二	－	kw kw kw
$\begin{aligned} & \text { BD210 } \\ & 889 R \cdot A \\ & 889 \cdot A \end{aligned}$	Telrode Triode Triode	$\begin{aligned} & 10 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \\ & 16 \end{aligned}$	$\begin{array}{r} 10 \\ 9.6 \\ 14 \end{array}$	$\frac{10}{11}$	$\frac{10}{8}$	10	10	10	－	kw kw $\mathrm{k} w$
$\begin{aligned} & 892 \cdot R \\ & 892 \\ & 9 C 25 \end{aligned}$	Triode Triode Triode	$\begin{aligned} & 18 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{r} 13.5 \\ 22.5 \\ 40 \end{array}$	$\begin{array}{r} 10.5 \\ 17 \\ 40 \end{array}$	－	25	$\overline{25}$	$\overline{25}$	－	二	二	－	－	$\begin{aligned} & \mathrm{kw} \\ & \mathrm{kw} \\ & \mathrm{kw} \end{aligned}$
$\begin{aligned} & 9 C 27 \\ & 5592 \\ & 9<22 \\ & 9 \subset 21 \\ & \hline \end{aligned}$	Triode Triode Triode Triode	$\begin{array}{r} 40 \\ 50 \\ 100 \\ 150 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 50 \\ 91 \\ 9150 \end{array}$	$\begin{array}{r} 40 \\ 50 \\ 80 \\ 150 \\ \hline \end{array}$	$\begin{array}{r} 40 \\ 50 \\ 70 \\ 105 \\ \hline \end{array}$	25 50 -	25 44 -	25 33 -	－	－	二	二	－	$\begin{aligned} & \mathrm{kw} \\ & \mathrm{kw} \\ & \mathrm{kw} \\ & \mathrm{kw} \end{aligned}$

[^16]OTvin Type－Input volues per tube for push－pull operotion．§Miniature Type．
©IGAS Roting－This type is recommended only for applications of o highly intermittent noture
The world＇s most modern tube plant

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

To Measure the Lowest Values of Current

and Voltage Accurately

We Recommend These

High-sensitivity Instruments

THE high sensitivity, excellent responsiveness, sturdiness, and depend ability of our complete line of galvanometers rake them ideal for ase in:

1. Laboratory measurements of temperature, resistance, etc.
2. Production tests of instruments and materials where rapid readings and minimum fatigue to operators are essential.
These galvanometers are portable and are easily connezted into a circuit. jeventy-five ranges are available for immediate shipment. With such a arge number of ratings you can be sure to find one that has the characterstics required for your particular application.
D-c Inkless Recorder-Its low power consumption rakes it particularly well suited for high-sensitivity measurements. This recorder can be ,btained as an ammeter, voltmeter (1000 ohms per volt), microammeter, nillivoltmeter, milliammeter (for example, I ma- 16 ohms).
It is accurate within 2 per cent, sturdy, and portable. Its inkless feature means there's no pen to start, no ink to spill, and rapidly fluctuating loads will not cause "painted" charts.
Eor a-c measurements, the companion Type CF-I instrument is available as an ammeter awd voltmeter.

[^0]: distaibutors: in ihe iv sa Groybor Electric Compony in Canada and newfoundiant -Northern Electric Compony, LId.

[^1]: ALLIANCEMANUFACTURINGCOMPANY• ALLIANCE, OHIO Export Department: 401 Broadway, New York 13, N. Y., U. S. A.

[^2]:

[^3]: Binary operations
 (1) A single input 1 generates a 1 and no carry
 (2) Two input l's generate a carry but no output
 (3) Three input I's generate both and output and a carry

 ## Functions of Elementary Adder

 Transmit a digit if A OR B OR C and not A AND B, A AND C, nor B AND C, or if A AND B AND C
 Generate a carry if A AND B, A AND C, or B AND C

[^4]: In Canada: Federal Electric Manufacturing Company, Ltd., Montreat, P. O. Export Distributors: International Standard Electric Carp. 67 Braad St., N.Y

[^5]: (1) S. Ballantine, Electronics, p 472, 1931 , and Jour Acous. Soc. Am, 10 , 5, 1933 ; also F . V. Hunt, $R S I, \mathrm{p} 672,4$, frea W. Holle and E. Lubeke, Hoch1936; M. Nuovo, Ricerca Scientifica, p 52%, 1936; M.
 (2) M. Lambrey, Comptes Rendus, 1 1023, 201, 1934 , and also M. N゙uovo, Alta Freguenza, p $206,8,1939$ Freguenza, $\mathrm{G} 206,8,1939$. G . Thilo, Zeits. f. Tertm.
 phosis. Phusik., p 558, 1\%, No. 12, 1436.

[^6]:
 Write or phome (HARTFORD 2-4271) our Research Department
 THE J. M. NEY 〔UMPANY 179 ни simet - hanfohb i, CON.

[^7]: The Linde Air Products Company
 Unii of Union Certide ond Corton Corporetion
 30 Eost 42nd St. UCC New York 17, N. Y.

[^8]: Radio Maintenance
 Technical Manuals
 Radio Date Book
 Monual Division M-3
 Video Handbook Montclair, N.J. CHICAGO: 228 No. LaSalle St.

[^9]: ANTENNA
 LEAD IN BOWLS
 Made of genuine Pyrey
 3^{3} in dianneter; brass rod
 $51 / 2$ long-complete with
 rubleer Easkets.
 Special—\$1.49

[^10]: Telephone RIttenhouse 6-4927

[^11]: Transmitting Tubes
 Mica Condensers
 Transmitting Condensers Wire \& Cable

[^12]:

[^13]: $$
 35
 $$

[^14]:

 B

[^15]: ICS

[^16]: tHigh－Transconductance Types．＊Included for television damper applications only．

