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be the extent of the illuminating surface of the photosphere, the

exterior parts of the corona will only receive an excess of light

over that received by the interior part equal to the amount of

photospheric light received by those parts during totality, or,as

in the case above taken, the excess willbe equal to that given by

a ring of light from the photosphere O'.75 wide (or GE in the

figure ), so that, when a few seconds of photosphere are visible to

the observer, the difference between the spectra of the exterior

and interior parts of the corona would be inappreciable.

5. What spectrum ought the corona to give before totality on

the following side of the moon ? In this case, when the angular

distance of the limits of the sun and moon is some seconds, the

difference between the spectra of the exterior and interior parts

of the coronais small, since no part of the atmosphere in this

case will be illuminated by the photosphere; so we ought to ob

tain a chromospheric spectrum , together with a faint photospheric

one caused by a small amount of photospheric light reflected

from the photosphere by the chromosphere.

6. On the foregoing hypothesis, during totality the parts of the

corona nearest the centre should give a different spectrum from

the more distant portions, since the portions nearer the centre

receive less photospheric light than the more distant parts, and

the same amount of light from the chromosphere.

In order to test the correctness of this theory, advantage may

be taken of the following facts :—1st. At that period of the

eclipse when the limb of the sun and moon are in line with the

observer, there will be a difference between the central and dis

tant parts of the corona ; and this difference will decrease as the

moon passeson , whereas, by the other theory, there should be

the same difference as long as the corona is visible. 2nd. If the

corona be terrestrial, the spectrum of any portion of it ought to

be continually changing during the passage of the moon ; but if

solar, the spectrum should remain unchanged.

XVI. On a Mechanical Theorem applicable to Heat.

By R. CLAUSIUS *.

IN

N a treatise which appeared in 1862, on the mechanical

theory of heatt, I advanced a theorem which, in its sim

plest form ,may be thus expressed :—The effective force of heat is
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proportional to the absolute temperature. From this theorem , in

conjunction with that of the equivalence of heat and work, I have,

in the subsequent portion of that treatise, deduced various con

clusions concerning the deportment of bodies towards heat. As

the theorem of the equivalence of heat and work may be reduced

to a simple mechanical one, namely that of the equivalence

of vis viva and mechanical work, I was convinced à priori that

there must be a mechanical theorem which would explain that

of the increase of the effective force of heat with the temperature.

This theorem I think I shall be able to communicatein what

follows.

Let there be any system whatever of material points in sta

tionary motion . By stationary motion I mean one in which the

points do not continually remove further and further from their

original position, and the velocities do not alter continuously in

the same direction, but the points move within a limited space,

and the velocities only fluctuate within certain limits . Of this

nature are all periodic motions — such as those of the planets

about the sun, and the vibrations of elastic bodies, -further,

such irregular motions as are attributed to the atoms and mole

cules ofa body in order to explain its heat.

Now let m , m ', m ", & c . be the given material points, x , y, 2 ,

a , y ', z ', a ", y", "z", & c. their rectangular coordinates at the

time t, and X , Y, Z , X ', Y', ZI, X", Y " , Z ", &c. the components,

taken in the directions of the coordinates, of the forces acting

upon them . Then we form first the sum

dx ? dy dz

Σ . +
dt

m

for which, v , d , v ', &c. being the velocities of the points, we may

write, more briefly,

m

>

which sum is known under the name of the vis viva of the

system . Further, we will form the following expression :

-13 (Xx + Yy + Z2 ).

The magnitude represented by this expression depends, as is

evident, essentially uponthe forces actingin the system , and, if

with given coordinates all the forces varied in equal ratio, would

be proportional to the forces. We will therefore give to the mean

value wbich this magnitude has during the stationary motion of

the system the name of Virial of the system, from the Latin

word vis ( force ).
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Inrelation to these two magnitudes the following theorem may

now be advanced :

The mean vis viva of the system is equal to its virial.

Distinguishing the mean value of a magnitude from its vari

able value by drawing a horizontal line over the formula which

represents the latter, we can express our theorem by the follow

ing equation :

-02 := - } £ (Xx + Yy + Zz).

As regards the value of the virial, in the most important of the

cases occurring in nature it takes a very simple form . For

example, the forces which act upon the points of the mass may

be attractions or repulsions which those points exert upon one

another, and which are governed by some law of the distance.

Let us denote, then, the reciprocal force between two points of

the mass, m and m ', at the distance r from each other, by $(r) ,

in which an attraction will reckon as a positive, and a repulsion

as a negative force ; we thus have, for the reciprocal action :

x x x x

Xx + X'x ' = $ (r) x +( ) a = - * )- $ (~) (x'— )2

T r r

And since for the two other coordinates corresponding equations

may be formed, there results

- } (Xx + Yy + Z2 + X'x + Y'y' + Z '=') = įr $ ( r).

Extending this result to the whole system of points, we obtain

- 12 (Xx + Yy + Zz ) = 1 {rø (r),

in which the sign of summation on the right-hand side of the

equation relates to all combinations of the points of the mass in

pairs. Thence comes for the virial the expression

Erº (r) ;

and we immediately recognize the analogy between this expres

sion and that which serves to determine the work accomplished

in the motion . Introducing the function (r) with the signi

fication

Þ(r) = 5 ° ( r)dr,

we obtain the familiar equation

- E (Xdx+ Ydy + Zdz) = d & o (r).

The sum sø (r) is that which , in the case of attractions and re
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pulsions, which act inversely as the square of the distance, is

named , irrespective of the sign, the reciprocal potential of the

system of points. As it is advisable to have a convenient name*

for the case in which the attractions and repulsions are governed

by any law whatever, or, more generally still, for every case in

which the work accomplished in an infinitely small motion of the

system may be represented by the differential of any magnitude

dependent only on the space -coordinates of the points, I propose

toname the magnitude whose differential represents the negative

value of the work , from the Greek word èpyov (work ) , the ergal

of the system . The theorem of the equivalence of vis viva and

work can then be expressed very simply; and in order to exhibit

distinctly the analogy between this theorem and that respecting

the virial, I will place the two in juxtaposition

(1 ) The sum of the vis viva and the ergal is constant .

(2) The mean vis viva is equal to the virial .

In order to apply our theorem to heat, let us consider a body

as a system of material points in motion . With respect to the

forces which act upon these points we have a distinction to make :

in the first place, the elements of thebody exert upon one another

attractive or repulsive forces ; and, secondly, forces may act

upon the body from without. Accordingly we can divide the

virial into two parts, which refer respectivelyto the internal and

the external forces, and which we will call the internal and the

external virial.

Provided that the whole of the internal forces can be reduced

to central forces, the internal virial is represented by the formula

above given for a system of points acting by way of attraction or

repulsion npon one another. It is furtherto be remarked that,

with a body in which innumerable atoms move irregularly but in

essentially like circumstances, so that all possible phases of mo

tion occur simultaneously, it is not necessary to take the mean

value of rº (r) for each pair of atoms, but the values of rø (r) may

be taken for the preciseposition of the atoms at a certain moment,

as the sum formed therefrom does not importantly differ from

their total value throughout the course of the individual motions.

Consequently we havefor the internal virial the expression

Erº (r ).

As to the external forces, the case most frequently to be con

sidered is where the body is acted upon by a uniform pressure

uormal to the surface. The virial relative to this can be expressed

• The term force- function , besides some inconvenience, has the disad

vantage of having been already used for another magnitude, which stands

to the one in question in a relation similar to that in which the potential

function stands to the potential.
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very simply ; for, p signifying the pressure, and v the volume of

the body, it is represented by

Ipo.

Denoting, further, by h the vis viva of the internal motions

(which we call heat), we can form the following equation :

h = 1 Erº (r) +pv.

We have still to adduce the proof of our theorem of the rela

tion between the vis viva and the virial, which can be done very

easily.

The equations of the motion of a material point are :

dz

=X ; m = Y ; m = Z .
dk dt2 dt2

dex dạy

m

But we have

d ? ( c ) =2 daxd

dt (-)=2(7)di ?

+2x

dt?

or, differently arranged,

da )2
dºx , dº(x2).

-2.30

dt

+

dt dt?

m

Multiplying this equation by and putting the magnitude X

d'ac

for m

dt?

we obtain

m dx )2

2

7
m dº(x2).

dt = -1Xx+ 4 dt

The terms of this equation may now be integrated for the time

from 0 to t, and the integral divided by t ; we thereby obtain

dx 1 'd (x

)

mrd (x2)
Xx dt +

21 dt 2t 4t dt dt

dexº) d ( )
in which denotes the initial value of

dt dt

The formula

1 'dx \ ?

dt and Xxdt,
dt t

occurring in the above equation, represent, if the duration oftime t

' da 12

idt

( app).

is properly chosen, the mean values of (de ) and Xx, which were

denoted above by (edit )* and Xx.

For a periodic motion the

r
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duration of a period may be taken as the time t ; but for irregular

motions (and, if we please, also for periodic ones) we have only

to consider that the time t, in proportion to the times during

which the point moves in the same direction in respect of any

one of the directions of coordinates is very great, so that in the

course of the time t many changes of motion have taken place,

and the above expressions of themean values have become suffi

ciently constant.

The last term of the equation, which has its factor included

in the square brackets, becomes, when the motion is periodic,

d.x®

=0 at the end of each period , as at the end of the period
dt

resumes the initial value (d(iza) When the motion is not

dt

periodic, but irregularly varying, the factor in brackets does not

so regularly become =0 ; yet its value cannot continually in

crease with the time, but can only fluctuate within certain limits ;

and the divisor t, by which the term is affected, must accord

ingly cause the term to become vanishingly small with very

great values of t. Hence, omitting it, we may write

0

md.x
2

(9 ) --+X2dt

As the same equation is valid also for the remaining coordi

nates, we have

m idx )
2

+
,

2 dt dt

or, more briefly,

mor- } (Xx + Yy + Z2),

and for a system of any number of points we have the perfectly

corresponding one

md = - {{ (Xx + Yy + Zz).

Hence our theorem is demonstrated ; and at the same time it is

evident that it is not merely valid for the wholesystem of mate

rial points, and for the three directions of coordinates together,

but also for each material point and for each direction separately.


