VI. Ueber die elektrische Flaschenentladung; son W. Feddersen in Leipzig.

II.

Die Methode der Untersuchung - den rotirenden Hohl spiegel, welcher das Bild des Entladungsfunkens in natürlicher Gröfse auf einer bestimmten Ebene projicirt - und die gebrauchten Apparate habe ich in Wesentlichen in diesen Annalen Bd. CXIII S. 441 u. f. beschrieben; ebenso die Hauptsachen hervorgehoben, welche unmittelbar mit dem Auge während des Aufblitzens der Erscheinung wahrzunehmen sind. Indem ich auf ein eigenthümliches Zerfallen des Bildes in regelmäfsige Querabtheilungen aufmerksam machte, wofür ich eine schematische Abbildung beifügte, und die Verhältnisse, unter denen jenes Zerfallen eintrat, näher untersuchte, sah ich mich gezwungen der Uebersichtlichkeit und Deutlichkeit halber eine Theorie zu Grunde zu legen, für deren Richtigkeit ich vorläufit nur die Uebereinstimmung der von mir auf experimentellem \mathbf{W} ege gefundenen Gesetze mit gewissen schon früher bekannten Ergebnissen der Rechnung anführen konnte '). Indem ich aus denselben Gründen jene Theorie ${ }^{2}$) als bekannt voraussetze, möchte ich jetzt auf die Resultate näher eingehen, welche ich mit Hülfe der Photographie erhalten habe, möchte das Variable in der Erscheinung vom Constanten zu trennen suchen, um wo möglich für das Letztere bestimmte Gesetze zu finden.

Daraus, dafs das nach der Breite lang ausgezogenc Funkenbild auf einer präparirten photographischen Platte aufgefangen wird, entspringt der wesentliche Vortheil, dafs nicht nur der überraschende Lichtblitz sich 20 ruhiger Betrachtung fixirt, sondern auch, dafs viel schärfere Zeichnungen sich in Funkenbilde unterscheiden und messen lassen. Doch

1) Diese Annalen Bd. CVIII S. 497.
2) Vergl. diese Annalen Bd. CXIII S. 439.
ich glaube, die Vortheile dieser schon in den Berichten der Königl. Sächs. Gesellschaft der Wissenschaften von 1859 von mir bekannt gemachten Art der Beobachtung siud nach allen Seiten hin so evident, dafs ich kein Wort weiter darüber zu eagen brauche.

Für die Ausführung will ich nur noch erwähnen, dafs gute photographische Prăparate mir in Allgemeinen nicht ibren Dienst versagten; obschon in vielen Fällen, z. B um die anfangende continuirliche Entladung darzustellen, auf die aufserste Empfindlichkeit zu halten war. Das Auge ist zwar im Stande noch schwächere Lichteindrücke von kurzer Dauer wahrzuvehmen, als die photographische Platte; allein gegen das Licht des Funkens zeigt sich auch die letztere ausnehmend empfindlich. Aus den später folgenden Zahlen wird man schliefsen können, dafs in einzelnen Fallen die Einwirknng des Lichtes auf einen Punkt der Platte etwa eiu Milliontel einer Sekunde gedauert, dennoch aber einen bräftigen Eindruck hinterlassen hat. Man wird zunächst daraus folgern, dafs der elektrische Entladungsfunke eine aufserordentliche Menge chemischer Strahlen enthält.

Photographische Bilder') des Eotladungsfunkens bei ruhendem Spiegel.

Theils, weil es zur Deutung des Funkenbildes bei Bewegung des Spiegelrotationsapparates zweckdienlich ist, theils weil auch noch andere Aufschlüsse dadurch gegeben werden, bespreche ich zunächst die zahlreichen Funkenbilder, welche ich bei ruhendem Spiegel dargestellt habe.

Fig. 1 Taf. I giebt das Bild eines Entladungsfunkens zwischen zwei mit keiner isolirenden Substanz uberzogenen Kupferkugeln bei 2war langem aber gut leitendem Schlie-

1) Ich möchte bier ein und für alle Mal bemerken, dafs sämnotiche Funkenbilder in derselben Grüfse dargestellt sind, wie ich sie entweder bei ruhendem oder bei rotirendem Spiegel erhalten habe, ferner dafs die Lage des dem Innenbeleg zunächst stehenden Pöles durch + , die Lage des mit dem Aufsenbeleg näher verbundenen Poles durch - bezeichnet ist.
fsungsbogen, für den die Beobachtungen am rotirenden Spiegel eine beträchtliche Reibe von Querabtheilungen (Oscillationsstreifen) Latten wahrnehmen lassen. An jedem Pole unterscheidet man deutlich mehrere Punkte, von denen die Entladung ausgegangen ist. Wenn dieselben auf dem Bilde in einer Reihe stehen, weil sie auf eine Ebene projicirt sind, so darf man doch anuehmen, dafs sie in Wirklichkeit unregelnäfsig auf den einander gegeuüberstehenden Kugelabschnitten vertheilt sind. Das Ansehen der Kugeloberflächen nach einer solchen Entladung dient zur Bestäligung. Schon früher zeigte ich durch die Darstellung Priestley'scher Flecke '), dafs bei einer Entladung, für welche der rotirende Spiegel eine'Reihe von Querstreifen gab, eine Zeichnung auf den beiden Polkugeln entstand, die, an beiden dem Charakter nach sehr ähulich, auf ein Ausströmen der Elektricität von mehreren discreten Punkten jeder Kugel schliefsen liefs.

Ich erklärte diefs damals durch die Aunahme, dafs die Elektricitat in den verschiedenen Oscillationen nicht geuau deuselben Weg zwischen den beiden Polflächen verfolge, indem ich weiter zeigte, dafs bei Einschaltung eines Widerstandes, bei welchen im rotirenden Spiegel nur die erste der Querabtheilungen sichtbar war, und den ich Gränzwiderstand uannte, die Zeichuungen auf beiden Kugeln einen durchaus verschiedenen Charakter hatten: dafs auf der positiven Kugel ein energischer, auf einen kleinen Punkt concentrirter Eindruck zu bemerken war, auf der negativen Kugel sich dagegen der Eindruck nur wie ein leichter Schleier, jedoch auf einen weit gröfseren Theil der Fläche ausgebreitet zu erkennen gab.

Dieselbe Annahme inöchte ich hier wieder zur Erklärung benutzen, und für die verschiedenen Ansätze, welche der Funke bildet, verschicdene auf einander folgende Oscillationen als Ursache setzen.

Es stimut mit dieser Ansicht uberein, dafs mit wachsendem Widerstande des Schliefsungsbogens die Zahl der beob1) Diese Annalen Bd. CXII S. 456.
achteten Ausatzstellen im Durchschnitt kleiner wird. Bei einem Widerstande, für den der rotirende Spiegel drei bis vier Oscillationsstreifen zeigte, habe ich z. B. Fig. 2 Taf. I erhalten, während Fig. 3 Taf. I eine Entladung darstellt, wo der zweite Oscillationsstreifen bei rotirendem Spiegel kaum angedeutet war, und endlich Fig. 4 Taf. I bei einem Widerstande erhalten ist, der den Gränzwiderstand um etwa das Doppelte übertraf. In letzterem Falle babe ich nie die Andeutung eines zweiten Ausströmungspunktes wahrgenommen. Sind die Kugeln fein polirt, so geben sie noch zu einem Spiegelbild des ganzen Funkens Veranlassung. Ein feiner etwa $1^{m m}$ langer Fortsatz, welcher sich in Fig. 6 Taf. I an das Funkenende der positiven Seite, in Fig. 7 Taf. I an das der negativen Seite, als ein kleiner Schweif anschliefst, wird, wie ich hoffe, auf der Lithographie hinreichend deutlich ein solches Spiegelbild erkennen lassen. Ich erwähne desselben besonders, damit es nicht etwa als cin zweiter Ausströmungspunkt gedeutet werde.

Das Ausströmen der Elektricität von mehreren discreten Punkten der Kugeln bei einem gut leitenden Schliefsungsbogen kann für die Beobachtung der Oscillationen und die Messung ihrer Dauer von Nachtheil seyn, da in der Verbreiterung des Funkens nur zeitliche Veränderungen gesucht werden, die Lage des Funkens selbst aber während der Entladung als unveränderlich vorausgesetzt wird. Uin einer solchen Voraussetzung zu genügen, lassen sich zwei Wege einschlagen: entweder kann man für den zu beobachtenden Funken düune Drähte als Pole anweuden, indem man die Entladung an einem anderen Punkte der Leitung zwischen Kugeln einleitet, oder man kann zu Polen Metallkugeln verwenden, welche, ausgenommen zwei kleine einander gegenüberliegende Punkte, mit einer isolirenden Substanz überzogen sind.

Das Funkenbild Fig. 5 Taf. I zeigt die Form eines Entladungsfunkens bei gut leitendem Schliefsungsbogen, wenn au der positiven Seite ein nackter dünner Kupferdraht, an der negativen eine Kupferkugel, welche bis auf eine kleine etwa
$\mathbf{i}^{\text {m- }}$ weite Oeffnung einen Schellacküberzug hatte, angebracht war. Man sieht, dafs an Ausströmungspunkte der Kugel sich der Funke am meisten verengt, und wird es ans diesem Grunde wohl zweckmäfsig finden, dafs ich zu Pol. körpern bei den Beobachtungen für Bestimmung der Oscillationsdauer Kugeln gewablt habe, die auf solche Art mit Schellack oder Kautschuck uberzogen waren.

Vergleicht man die Lichtentwicklung, welche bei verschiedener Form der Pole stattfand, so springt noch ein anderer Vortheil dieser Wahl in die Augeu. Je mehr ich den Strom der Elektricität künstlich auf einen engen Raun beschränkte, desto gröfser zeigte sich in Allgemeinen die im Funken entwickelte Lichtintensität. Fig. 6 und 7 Taf. I mögen dafür ein Beispiel geben. Eine Entladung von acht Flaschen mit Einschaltung des der Leitung und Flaschenzahl entsprechenden Gräuzwiderstandes lieferte das Bild Fig. 6 als die positive Kupferkugel nackt und die negative bis auf einen kleinen Punkt mit Schellack überzogen war, das Bild Fig. 7 dagegen als die Kugeln mit eiuander vertauscht waren.

Den Entladungsfunken, welcher zwischen zwei bis auf einen kleinen Punkt mit Schellack überzogenen Metallkugeln sich bildet, habe ich unter verschiedenen Verhältnissen in Bezug auf seine Gestalt beobachtet.

Bei gut leitendem Schliefsungsbogen ging, je nachdem die freigelassenen Punkte gröfser oder kleiner waren, das Licht breiter oder enger begrănzt von den Polflächen büschelförmig aus und zeigte in der Mitte zwischen den beiden Funken-Enden die gröfste Ausbreitung (ahnlich wie in Fig. 5). Die Beobachtungen lehrten, dafs diese Ausbreitung mit zunehmender Flächenzahl zunimmt, mit zunehmeudem Widerstande abnimmt, dafs sie aber aufserden auch von der Gröfse und Form der Oeffnungen im Schellacküberzuge, so wie von der Natur des zu den Kugeln genommenen Metalles abhängig ist.

Bei einem Widerstaude, der den Gränzwiderstand übertraf, zeigte sich das Bild des Entladungsfunkens meisteus zu
einer Forn zusammengezogen, wie sie Fig. 8 Taf. I darstellt. Eine feine Funkenlinie ') verbindet die Pole, aufserdem tritt aber aus der Oeffnung des Schellacküberzuges an jedem der beiden Pole ein Lichtbüschel hervor, der im Allgemeinen um so schwächer wird, je mehr man den Gränzwiderstand überschreitet. Die feine Funkenlinie scheint der einleitende Partialfunke zu seyn, der auf einem mehr oder weniger geraden Wege die Continuitảt des Schliefsungsbogens herstellt; wảhrend die Entladung ihren weiteren Fortgang nimmt, scheinen von beiden Polen Metalltheilchen losgerissen und aus der Oeffnung im Schellack, wie aus einem Krater herausgeschleudert zu werden. In einzelnen seltneren Fallen, wo die Elektricität in einleitenden Partialfunken einen abnormen Weg eingeschlagen hatte, zeigte sich fïr diese Annahme ein deutlicher Beleg. Fig. 9 stellt das Bild eines solchen Entladungsfunkens zwischen überzogenen Zinnkugeln bei Anwendung von acht Flaschen und überschrittenem Gränzwiderstande im Schliefsungsbogen dar. Die Entladungserscheinung Fig. 9 sowohl als das unter denselben Bedingungen $\mathbf{z w i s c h e n ~ M a g n e s i u m p o l e n ~ e n t s t a n d e n e ~}$ Bild Fig. 10 dürften vielleicht aufserdem zu der Ansicht fübren, dafs die fortgeschleuderten Metalltheilchen, wenu sie losgerissen sind, nichts weiter mit der Elekiricitätsbewegung zu thun haben, dafs sie beim Abreifsen eine Richtung der Bewegung erhalten, nach der sie fortfliegen, gleichviel ob diese Richtung mit der Bahn der Elektricität, welche durch den ersten Partialfunken gegeben wurde, zusammenfält (wie es in der Mehrzahl der Fälle allerdings stattfinden muls) oder ob beide Wege aus einander gehen ${ }^{2}$).

1) Die feine Linie erscheint nicht immer einfach ond continuirlich; in mehreren Fällen habe ich sie wie aus 2 wei Stücken zusammengesetzt beobachter, wovon Fig. 3 eine Vorstellung giebt.
2) Es därfte vielleicht nicht uninteressant segn auf die Preisfrage hinzuweisen, welche von der Königl. Gesellschaft der Wissenschaften ${ }^{20}$ Götlingen für das Jahr 1858 gestellt und für 1861 wiederholt worden ist. Es wird darin in Bezug auf das Ueberführen von Metalliheilchen bei elektrischen Entladungen gefragt:

Indem ich eine Menge von Entladungsbildern darstellte, zeigte sich in Allgemeinen, dafs die fortgeschleuderten Theilchen in dem Bilde um so weiter zu verfolgen waren, je kleiner die Oeffnung in der isolirenden Substanz, je enger also der Krater ist, aus den sie herausflogen.

Ist in der Leitung der für die elektrische Oberfläche und den gebrauchten Schliefsungsbogen gültige Gränzwiderstand überschriften, so habe ich schon früher angenommen, dafs sich die Elektricităt in Funken während der ganzen Dauer der Entladung nur in einer Richtung bewegt. Für diesen Fall können wir daher an die Funkenbilder die Frage richten, wo die gröfste Lichtintensităt stattfinde, da, wo die positive Elektricität aus den metallischen Leiter austritt, oder da, wo sie wieder eintritt. Allein die zahlreichen Bilder, welche ich darstellte, gaben selbst für den Fall, wo ich beide Polflächen von durchaus gleicher Beschaffenheit wählte, keine entschiedene Antwort. Nur in der Mehrzahl der Falle habe ich zwischen gleichartigen Polen am negativen Pole die gröfsere Lichtintensität wahrgenommen. Figur 4 Taf. I zeigt das Ueberwiegen des negativen Lichtes 2 wischen

1. Ob nur von der positiven Elektricitat solche Theilchen abgerissen und forigefülirt werden, oder auch von der negativen und wovon das Eine oder Andere abhänge.
2. Ob die Masse der fortgeführten Theilchen in einem bestimmbaren Verhältnifs zur Elektricität stehe, welche von dem einen Conductor zum anderen entladen wird.

Aus den Fig. 8, 9 and 10 Taf. I, welche einen Entladungsfunken bei einem Widerstande zeigen, der für gewählte Flaschenzahl und Leiterlänge den Gränzwiderstand um mehr als das Doppelte übertraf, läfst sich ohne Bedenken schliefsen, dafs hier von beiden Elektricitäten Theilchen abgerissen werden, indern für den Büschel, welcher von jedem Pole ausgeht, wohl keine andere Ursache gefunden werden kann, als die glübend fortgeschleuderten Metalltheilchen, vielleicht noch begleitet von cinigen mit fortgerissenen Schellackpartikelchen.

Venn aus Fig. 9 wohl geschlossen werden dürfte, dafs die Theilchen nach ihrer Losreifsung nichts mehr mit der Elektricitätsbewegung zu thun haben, so glaube ich doch, wäre es übereilt, daraus für dic aweite Frage eine negative Antwort 20 folgern, und gern bescheide ich mich in vorstehenden Beobarhtungen nur eine Bestätigung und Erweiterung dessen zu finden, was schon früher auf andere WVeise beobachtet ward. (Siehe v. Breda, diese Ann. Bd. 70, S. 326.)

Kupferkugeln, Fig. 11 Taf. I zwischen fein polirten Stahlhugeln (mit alleiniger Weglassung der von den Kugeln herrührenden Spiegelbilder).

Ich möchte zugleich an das erinnern, was ich uber die Verschiedenheit der Priestley'schen Flecke bei Einschaltung des Gräuzwiderstandes in diesen Annalen Bd. CXII S. 456 gesagt habe, und der Bequemlichk eit halber die Zeichnung, welche die continuirliche Entladung auf deu Polflächen von Stahl hervorbrachte, hier noch vorführen. Fig. 11 a und b waren dic Spuren, welche die Entladung durch den Funken Fig. 11, respective auf der mil dem Aufsenbeleg und der mit dem Innenbeleg verbundenen Stahlkugel, zurückgelassen hatte, mit einer zehnfach vergröfsernden Loupe beobachtet ').

Was bei der Vergleichung des photographischen Lichleindrucks und der Pricstley'schen Flecke zunächst auffält, ist, dafs auf der Polkugel, an welcher die meisten chemischen Strahlen sich entwickelten (auf der negativen Kugel), der geringste Eindruck hinterlassen war. Hier zeigte sich jene von mir a. a. O. schon erwäbute Wolke von Oxyd als ein leichter graublauer Hauch. Der positiven Kugel, von der die Elektricität der Flaschen bei der Entladung ausging, entsprach dagegen eine geringere Lichtwirkung, obschon auf ihrer Oberfläche nach der Entladung eine viel tiefere Spur, freilich auf einen engeren Raum, concentrirt zurückgelassen war. Hier zeigte sich nämlich besonders dunkel und scharf jener ebenfalls a. a. O. erwäbnte kleine runde Fleck, der in der Mitte ein mehr oder weniger zerschmolzenes Ansehen hat.

1) Noch einmal möchte ich die Brauchbarkeit der sich hierauf begründenden Methode zur Bestimmung des Gränzwiderstandes hervorheben, sobald man mit beträcholichen Elektricitätsmengen operiren kann, und hinzufügen, dafs die Figuren der Flecke auf feio polirten Kugeln von Stahl besonders klar hervorzutreten sclieinen, während die Unterschiede auf Zinn-oder Zinkkugeln nicht charakteristisch waren. Wenn ich diese Wahrnehmungen mehr nur beiläufig gemacht habe, so glaube ich doch, verlohnte sich cinc eingehende Untersuchung dieser Verhailtnisse wohl der Mühe.

Was die Abhăngigkeit der Lichtintensităt des Funkens von dem angewandten Metall der Pole betrifft, so kann ich hier nur in Allgemeinen sagen, dafs die verschiedenen Metalle sich in dem Grade ibrer Wirkung allerdings verschieden zeigtell; Kupferpole gaben mir zum Beispiel, alle übrigen Umstände berücksichtigt, eine besonders geringe, Magnesium als Pole angewandt, eine besonders hohe Iutensität der photographischen Wirkung des Eutladungsfunkens. Eine bestimmte Classification derjenigen Metalle, welche ich versucht habe, war in dieser Hinsicht bei den auftretenden Unregelmäfsigkeiten der Explosiou unung̈glich.

> Photographische Bilder des Entladungsfunkens bei rotirendem Spiegel.

Die Bilder bieten ein ganz verschiedenes Ansehen, je nachdem sie mehr oder weniger aus einander gezogen sind; dicht an einander liegend und zun Theil sich deckend erscheinen die Querabtheilungen, in welche das verbreiterte Funkenbild unter Umständen zerfält, auf Fig. I2, 30 und 31 Taf. I, wovon die beiden letzteren durch Photographiren zweier Funkenstrecken in demselben Schliefsungsbogen entstanden sind.

Es war bei gut leitendem aber kürzerem Schlie/sungsbogen, wo ich die Bilder wegen unzureicheuder Rotationsgeschwindigkeit nur in dieser Weise zur Anschauung bringen konnte. Selbst mit der gröfsten von mir angewandten elektrischen Oberfläche (16 Flaschen von zusammen ${ }^{\text {ama }}, 21$ einseitiger Belegung) liefs sich, wenn der Schliefsungsbogen auf die nothweudigsten Stücke beschränkt war, das Bild mit dem gebrauchten Rotationsapparate nicht weiter aus einander ziehen, als es in Fig. 12 (bei 87 Spiegelrotationen in einer Sekunde und einem Leitungsweg von über 7 Meter) geschehen ist. An diesem verbreiterten Bilde eines zwischen Kupferkugeln erzeugten Eutladungsfunkens sieht man, wie dasselbe streifenartig sich in lauter äquidistante Abtheilungen zerlegt. Doch nur an den Säumen lassen sich hier die Streifen deutlich unterscheiden, deun wenn man die-
selben gegen die Mitte so gerichtet $2 u$ sehen glaubt, als wenn sie die Mitte durchsetzten, kann dieses Durchsetzen eben 80 wohl auf Täuschung beruhen, indem die Richtung der Streifenenden aufser vor der Geschwindigkeit der geschleuderten Theilchen auch von der Richtung letzterer wesentlich abhảngen mufs (vergl. Fig. 10 Taf. I). Es ist uberhaupt schwer, das Zusammenwirken von Raum und Zeit richtig zu bestimmen, sobald man sich nicht mehr auf die aunfsersten Gränzen des Funkenbandes in der Betrachtung beschränkt, wo die leuchtenden Theilchen der Lage des vom Schellack befreiten Punktes der Kugeln im Bilde geuau entsprechen.

Als charakteristisch springt ein regelmäfsiges Alterniren der Lichtinteusität an' beiden Säumen in die Augen, der Art, dafs die Querstreifen zwar im Allgemeinen gegen das Ende der Entladung an Intensität abnehmen, allein uicht gleichförmig abnehnen. Die Querstreifen, welche der Reihe der ungeraden Zablen entsprechen, bilden für sich, ebenso die Querstreifen, welche der Reike der geraden Zahlen entsprechen, vom ersten angerechnet, wiederum für sich, sowohl am oberen als am unteren Saume eine gleichförmig abnehmende Reihe. Gegen das Ende der Eutladung wird die Intensităt der Streifen schwach und zugleich verschwinden auch die Unterschiede mehr und mehr. Oft sind die Unterschiede überhaupt schwach, wie in den beiden gleichzeitigen Funkenbildern Fig. 30, wo sie auf der Lithographie leider kaum noch wahrgenommen werden.

An dem oberen Saume von Fig. 12 kann es $\mathbf{z w e}$ eifelhaft seyn, wo man den ersten Querstreifen zu setzen habe; ein solcher Zweifel kamn leicht entstehen, wenn die Explosion sehr heftig und unregelmäfsig ist und das Bild nicht stark aus cinander gezogen wird, besonders wenn im ganzen mittleren Theile des Funkenbandes (wie bei Fig. 30) die Querstreifen vollständig in einander verwischt sind.

Jenes regelmăfsige Alterniren der Lichtintensität, wofur ich allerdings aufser Fig. 12 noch deutlichere Abbildungen hătte geben können, läfst sich zu häufig beobachten, als dafs
man es für eine Zufälligkeit balten dürfte, und zwar lafst sich, wenn die Querstreifen auch den mittleren Theil des Funkenbandes deutlich durchsetzen, und die Pole in ihrer äufseren und inneren Beschaffenheit einander möglichst gleich gebildet sind, oft sehr schön verfolgen, dafs wenn das eine Ende eines Querstreifens ein relatives Maximum in der Reihe zeigt, am andern Ende desselben Querstreifens ein relatives Minimum der Intensität auftritt, so wie, dafs sich diese Erscheinung beim folgenden Querstreifen umkehrt, bein nächstfolgenden von Neuem unkehrt usw. Fig. 3I Taf. I zeigt die Unterschiede leider nicht so deutlich als die Originalplatte, weil ich eine zu grofse Besorgnifs gehegt habe vor einer Uebertreibung in der Zeichnung auf dem Steineindem ich es durchaus vermeiden wollte, schematische Ab, bildungen zu geben.

Da in einem elektrischen Strome nichts Anderes existirt, was seine Richtung wechseln, was sich umkehren kann, als die Richtung des Stromes selbst, so sehe ich die Möglichkeit einer Erklärung nur in der Annahme, dafs in jeder Querabtheilung das Licht eines elektrischen Stromes photographirt wird, der in entgegengesetztem Sinne fliefst wie in der folgenden oder vorhergehenden. Nimmt man aber einmal einen regelnäfsigen Wechsel der Stromrichtung von Querabtheilung zu Querabtheilung an, dann mufs man ihn überall annehmen, wo man das Funkenband unter denselben Bedingungen der Entladung in dieselben Querabtheilungen zerfallen sieht, gleichviel ob das Alterniren der relativen Lichtmaxima deutlich herrortritt oder nicht. Es ist nicht wohl denkbar, dafs die Querabtheilungen unverandert ihre Dauer bewahrten, wenn die Elektricităsbewegung so wandelbar wäre, wie ich es doch im Ganzen von der Lichtwirkung der fortgeschleuderten glühenden Metallpartikelchen behaupten mufs ${ }^{1}$).

[^0]Wenn man hierin eine Gewähr für die Theorie der Oscillationen finden zu können glaubt, so wird man, wenn man sich auf den Standpunkt dieser Ansicht stellt, zunăchst fragen, welcher Pol in jeder Querabtheilung die gröfste Lichtintensität liefere, derjenige von dem die positive Elektricität ausströmt oder der, in welchen sie wieder eintritt.

Eine entschiedene Antwort hat mir das Experiment auf diese Frage nicht gegeben. Zwar habe ich bei Anwendung von Zinukugeln fast ohne Ausuahme den positiven Pol überwiegend gefunden'), bei Anwendung von Eisen oder Stahl (ebenso von Nickel) fast in allen Fällen den negativen, allein es ist leicht möglich, dafs die Gröfse des Kraters, die, wie ich zum Theil schon gezeigt habe und spăter noch weiter zeigen werde, auf die Art des Fortschleuderns der Theilchen 80 wesentlichen Einflufs hat, auch bier wieder eine Rolle spielt. Ich habe wenigstens bei Anwendung von Kugeln aus Kupfer eine Anzahl von Bildern erhalten, wo der negative Pol stets die gröfste Intensităt zeigte, eine andere (geringere) Anzahl, wo der positive Pol der zumeist leuchtende zu seyn schien, aufserden freilich auch noch eine nicht unbedeutende Anzabl, wo ein regelmäfsiges Alterniren nicht deutlich hervortrat.

Bei langem gut leitendem Schlie/sungsbogen habe ich die Querabtheilungeu zu einer Breite aus einander ziehen können, bei welcher eigenthümliche Erscheinungen zum Vorschein kamen.

Aufser der Zeichnung, welche das ganze Funkenband durch die Eintheilung in gleiche Querrảume erhält, tritt in jeder Querabtheilung noch für sich wieder eine besondere Zeichnung hervor. Eine zablreiche Menge von Bildern habe ich dargestellt und eine solche Mannigfaltigk eit der Erscheinungen gefunden, dafs ich anfangs an einer bestimmenten Deu-

[^1]tung verzweifeln zu müssen glanbte. Durch fortgesetzte Beobachtungen darf ich dennoch behaupten, cinige Anhaltspunkte gewonnen zu haben, wenn ich mich auch keineswegs vermesse, die Eigenthümlichkeiten eines jeden besonderen Falles stets auf die Ursachen zurückführen $2 u$ könven.

Zunächst möchte ich auf die Figuren ${ }^{1}$) 17 bis 22 Taf. I, welche bei derselben Rotationsgeschwindigk eit des Apparates erbalten sind, so wie auf die zweite Häfte der Figuren 25 und 26 aufmerksam machen. Dieselben rühren sämmilich von Entladungen her, welche zwischen Polen von Eisen zu Stande gekommen sind. Die den Figuren 17, 18 sowie 20 bis 22 entsprechenden Photographien sind auch noch bei Anwendung derselben elektrischen Oberfläche, sowie ein und desselben Scbliefsungsbogens hervorgebracht; das Einzige, was hier verändert wurde, ist die Form der Pole, indem Fig. 18 eine Eutladung zwischen Drähten, Fig. 17 eine Entladung zwischen Kugeln darstellt, welche letztere die kleinste kraterförmige Oeffnung im Schellackuberzuge besafsen, die ich anwenden konnte, ohne dafs der Schellackuberzug theilweise durchbrochen wurde, während bei Fig. 20 bis 22 die Oeffnung wesentlich gröfser (etwa $\frac{1}{2}{ }^{m m}$) war.

Auf den meisten der angezogenen Figuren bemerkt man einen merkwürdigen Unterschied der beiden Enden einer Querabtheilung. Uin bei der ersten Querabtheilung (z. B. in Fig. 22) zu beginnen, so mache ich hier auf das stofsweise Austreten des Lichtes am Pole des Aufsenbelegs (dem negativen Pole) aufmerksam, welches cinen grellen Gegensatz bietet zu dem Lichte, das weit ruhiger und gleichförmiger von dem Pole des Innenbelegs der positiv geladenen Flaschen ausgeht. Wie sich nach der Theorie der Os_{8}. cillationen der Strom in der zweiten Querabtheilung umkehrt, so zeigt auch die zweite Querabtheilung auf den Abbildungen denselben eigenthümlichen Unterschied in umgekehrter Weise, so dafs man das discontinuirliche Austreten

1) Es braucht wohl kaum erwähnt zu werden, dafs nur der Raumersparnifs halber viele son den gegebenen Entladangsbildern auf der Tafel vor ihrem Ende abgebrochen sind.
des Lichtes nunnehr am Pole des Innenbelegs wahrnimmt. Bei der dritten Querabtheilung tritt eine abermalige Umkehr auf, usw.').

Jenes vorzugsweise discontinuirliche Austreten des Lichtes an dem negativen Pole, welches ich bei Anwendung keines anderen Metalles so charakteristisch beubachtet habe, als wenn die Pole von Eisen gewảhlt waren, zeigte sich bei verschiedener Schlagweite (Fig. 20 und 21 Taf. I) sowobl, als bei verschiedener elektrischer Oberfläche (Fig. 19), war aber durch die Form der Flächen, zwischen denen die Elektricität überströmte, wesentlich beeinflufst. Ich habe gefunden, dafs sich ein der Fig. 21 entsprechendes Funkenbild nur daun sicher erhalten läfst, wenn die feinen Oeffnungen auf den nach mehrfach erwähnter Art überzogenen Kugeln weder zu klein noch zu grofs sind. War die Oeffnung zu klein, so verliefen die meist feineren Lichtstreifen fast senkrecht zur Richtung des Funkenbandes; es fand nicht mehr das Ineinanderflechten der Lichtcurven statt und es konnte zweifelhaft scheinen, von welchem der beiden Enden einer Querabtheilung der unregelmăfige Austritt des Lichtes erfolgt war, Fig. 17. War die Oeffnung zu grofs, dann verlor dic Zeichnung meistens an Feinheit und Bestimmtheit, die Bah nen neigten sich mehr zu gleicher Richtung mit der Richtung des Bandes; die Erscheinung wurde uberhaupt demjenigen Falle ăhnlicher, wo die Polkugeln ganz nackt waren. In diesem Falle nämlich beschrănkte sich das Licht mehr auf die Säume des Funkenbandes [ähnlich, wie bei dem Bilde Fig. 18 einer zwischen Eisendrähten zu Stande gekommenen Eutladung ${ }^{2}$)], die Lichtintensităt der Entladung

[^2]Pogeendorffs Annal. Bd. CXVI.
im Ganzen war geringer und ein discontinuirliches Austreten des Lichtes am negativen Pole höchstens nur undeutlich wahrzunehmen.

Doch selbst wenn die Polflächen scheinbar die günstigste Beschaffenheit hatten, traten in einzelnen Fallen Unregelmäfsigkeiten ein, die (wie z. B. in Fig. 22 Taf. I die Una̋hnlichkeit der beiden Säume) ich nicht inmer zu erklären im Stande war. Indefs fuir die Deutung der Erscheinungen im Allgemeinen lassen die zahlreichen Photographien, welche ich mit Vertauschung und Veränderung der Pole dargestellt habe, wie ich glaube, keinen Zweifel mehr ubrig. Die Lichtbahnen, welche sich in den Figuren verfolgen lassen, entsprechen ohne Frage der Bewegung der vou den Polen fortgeschleuderten glühenden Metallpartikelchen; indem die Lage jedes glahenden Theilchens auf dem Bilde durch die Zusammensetzung der verticalen Ortscomponente mit der horizontalen Zeitcomponente bestiment ist, können uns die in einander verflochtenen Lichtcurven Aufklărung geben aber manche Punkte bei dem Ueberführen ponderabler Theile durch die Elektricitat.

Wenn sich ein leuchtendes Theilchen mit einer gewissen constanten Geschwindigkeit in gerader Richtung von einem Pole zum andern bewegt, so mufs sich diefs Theilchen als eine gerade Linie auf der Platte photographiren, und zwar mufs die Neigung dieser Geraden mit der Richtung des ganzen Funkenbandes eine un so kleinere seyn, je geringer die Geschwindigkeit des Theilchens im Verhăltnifs zur Rotationsgeschwindigkeit des Spiegels ist. Findet das Theilchen auf seinem Wege einen Widerstand, so mufs die Geschwindigkeit abuehmen, und wenn der Widerstand continuirlich wirkt, so mufs die Gerade sich zu einer Curve gestalten, deren convexe Seite demjenigen Pole zugekehrt ist, gegen den das Theilchen geschleudert wurde. Dic Tangente an jeden Punkt der Curve wird dann der Geschwindigkeit des Theilchens im entsprechenden Augenblick proportional seyn.

Dic von jedem Saune (z. B. auf Fig. 21 Taf. I) aus-
gehenden Lichtbahnen zeigen in der That den Charakter solcher Curven und berechtigen, wie ich glaube, izu einigen allgemeinen Schlüssen.

Wenn mir Fig. 9 und 10 Taf. I zu beweisen schienen, dafs die aus der kraterförmigen Oeffnung des Schellackuberzuges herausfliegenden Metalltheilchen nichts weiter mehr mit der Elektricitätsbewegung zu thun haben, so blieb es doch noch nngewifs, ob die Geschwindigkeit, mit der die Theilchen herausgeschleudert werden, abhängig sey von der gerade stattindenden Stromstärke. Im Allgemeinen mufs man wohl einen solchen Zusammenhang voraussetzen, da die Elektricităt ja die letzte Ursache des Fortschleuderns ist. Obwohl sich die Curven in den verbreiterten Funkenbildern im Allgemeinen um so steiler zeigen, einer je früheren Querabtheilung sie angehören; obwohl sie inuerhalb einer Querabtheilang vielfach in der Mitte am steilsten sind, so wird man sich doch wundern können, - dafs - eine regelmăfsige Elektricitätsbewegung nach der Theorie der Oscillationen vorausgesetzt - keine gröfsere Regelmäfsigkeit in der Zeichnung auf den Figuren zu beobachten ist. Man wird zu dem Schlusse gedrängt, dafs entweder die Richtung, nach der die Theilchen fortfliegen, in jedem Augenblick grofsen Schwankungen unterliegt, oder dafs das Band, welches die Geschwindigkeit des Fortschleuderns mit der Stromstärke in einem geraden Verbältnifs verbindet, ein ziemlich loses ist. Mit Rücksicht auf die Schwankungen, welche sich zugleich in der Lichtintensităt zeigen, möchte ich das Letztere annehmen.

In Bezug auf diese Schwankungen der Intensitat des von jedem Pole ausgehenden Lichtes und in Bezug auf das, was sich trotz dieser Schwankungen als vorwiegend erkennen lafst, möchte ich noch Einiges bemerken. Im Allgemeinen sieht man auf den vorliegenden Entladungsbildern far Eisenpole ein Alterniren in Lichtintensitat, der Gestalt, dafs an der Seite, wo das discontinuirlichere Ausströmen des Lichtes stattfindet (am negativen Pole) auch zugleich ein Intensitatsonaximum herrscht. Allein, dafs die

Unterschiede der Intensitảt variabler sind als die Unterschiede der Zeichnung, kann z. B. Fig. 19 Taf. I beweisen, wo der untere Saum zwar ein Alterniren, aber, wenigstens in den sechs ersten Querabtheilungen in entgegengesetztem Sinne, wie nach der vorher beschriebenen Weise zeigt, nämlich so, dafs das ruhigere Licht des positiven Poles die gröfsere Intensităt besilzt.

Fig. 18 stellt eine Entladung dar, wie ich sie meistens 2wischen Eisendrähten beobachtet habe; als eigenthümlich springt in die Augen, dafs das Licht am positiven Pol in der ersten Querabiheilung fast ganz unterdrückt ist '). Wenn die Mehrzahl der Bilder in dieser Weise ausfiel, so habe ich doch unter scheinbar ganz denselben Umständen ein Entladungsbild erhalten, wo die positive Seite in analoger Weise, wie die in Figur 18 allein hervortretende negative und mit oollkommen derselben Stärke entwickelt war.

Trotz der Entschiedenheit, mit der ich das Alterniren der Lichtintensität an dẹn Euden der einzelnen Querstreifen beobachtet habe, wird man daher begreifen könuen, dafs es mir doch nicht möglich gewesen, zu finden, weshalb in dem einen Falle das positive, im andern das negative Licht die relativen Maxima zeigte. Die Lichtintensităt scheint im Einzelnen wie im Gauzen, aufser von den bekannten auch noch von mubekannten Umständen abhängig, die nicht in der Hand des Beobachters liegen. Zwei Entladungsbilder, die scheinbar unter genau denselben Bedingungen erzeugt waren, brachten selbst auf ein und derselben Platte, mochten sie nun gleichzeitig an zwei verschiedenen Stellen der Leitung oder durch zwei gesonderte Entladungen entstanden seyn, zuweilen Bilder von sehr verschiedener Stärke der Lichtwirkung hervor, verschiedener als sie durch die Annahme selbst beträchtlicher Schwankungen in der Stärke der durch den Rotationsapparat vermittelten Entladungen erklärt werden können ${ }^{2}$).

1) Einc ähnliche Erscheinnng in deniselben Sinne habe ich bei Anwendung. von Zinn-, Silber- und anderen Drähten beobachtet.
2) Ist das Bild weit seitich auf die Platte gefallen, so war die Ladung

Bei Anwendung eines vom Eisen verschiedenen Metalles der Pole verringerte sich im Allgemeinen der Unter. schied in der Weise des Fortschleuderns der Theilcben an beiden Polen. Nicht so schön, aber in demselben Sinne wie für Eisen habe ich die Unterschiede der Zeichnung unter andern an Polen von Nickel, Blei, (Fig. 16) Magnesium und Zink beobachtet. Der Entladungsfunke zwischen Kupferpolen hat mir uberhaupt keine derartigen Lichtstreifen auf der Platte geliefert, ebenso wenig zwischen Polen aus Kohle, während Gold, Silber, Platin und Zinn mir keine ganz entschiedenen Resultate in Bezug auf die Stromrichtung gaben

Fig. 16 stellt das Bild ciner Entladung dar, welche zwischen in erwăhuter Art überzogenen Bleikugeln ') entstanden war. Für Fig. 15 war das Blei mit Zinn, für Fig. 14 mit Silber, für Fig. 13 mit Kupfer vertauscht. Nach allen Beobachtungen scheint mir aufser der Form der Pole auch die Natur derselben auf das verschiedenartige Abreifsen der Theile durch die Elektricităt von Einflufs zu seyn.

Doch noch in anderer Weise modificirt die Natur des Metalls den Charakter der Erscheinungen und dieser Einflufs scheint mir keinen so wesentlichen Schwankungen zu unterliegen. Die Lănge der Zeit, wảhrend welcher die einmal ins Glähen gebrachten Theilchen ihre Temperatur erhielten, zeigte sich nach der Art des Metalles sehr verschieden. Die Theilchen des Zinn schienen am schnellsten die einmal empfangene Lichtintensität zu verlieren. In Fig. 15 zum Beispiel sind die Querabtheilungen durch cinen ganz durchgehenden vollkommen dunklen Raum von einander getrennt, und ein Nachleuchten der Theilchen uber den Nullpunkt der Stromstärke hinaus, ist kaum zu bemerken, Dem Zinn kam das Zink in dieser Eigenschaft zunăchst.

[^3]Waren die fortgeschleuderten Theilchen Platin, so schien iu Vergleich zu den andern von mir versuchten Metallen die Lichtwirkung am Längsten zu dauern, so dafs eine Unterscheidung der Querabtheilungen in dem mittleren Theile des Funkenbandes kaum möglich war. Dem Platin kam in dieser Eigenschaft das Silber am năchsten, wăhrend die abrigen untersuchten Metalle ${ }^{\text {t }}$) mit verschiedenen Nüancirungen eine mehr mittlere Stellung zwischen Platin und Zinn einzunehmen schienen. Die Dauer des Leuchtens der einmal ins Glühen versetzten Theile war im Uebrigen allerdings von der Intensität abhängig, sowie von dem Grade Anhäufung materieller Theile in der Funkenstrecke, allein der Einflufs der metallischen Natur liefs sich durchaus nicht verkennen.

Für eine leichte und präcise Beobachtung der Oscillationsdauer scheint hiernach empfehlenswerth, die Kugeln, zwischen denen der zu photographirende Entladungsfunke sich bilden soll, aus Zinn zu wăhlen.

Gesetze der Oscillationen.
Wenn ich in dem Vorhergehenden mir erlaubt habe, die negativen Resultate mit derselben Ausfuhrlichkeit zu besprechen, als die positiven, so glaubte ich diefs thun zu müssen, um eine richtige Anschauung von der Complication der Verhältnisse zu ermöglichen. Ich habe daher auf die Verschiedenheit in den Abbildungen aufmerksam gemacht, weniger aber hervorgehoben, wie ausnahmslos unveränderlich die Dauer einer beliebigen Querabtheilung ${ }^{2}$) sich herausstellt, sobald die Brẹite scharf zu bestimmen ist,

1) Diefs waren Eisen, Nickel, Blei, Magnesium (welches ich der Güte des Hrn. Prof. Erdmann verdanke), Antimon, Gold und Kupfer, wie ich auch Kohle hinzarechnen kann.
2) VVenn die erste Querabtheilung in ihrer Breite zuweilen merklich von den folgenden abzuweichen schien, so möchte ich diefs, weil ich besonders bei nur wenig aus einander gezogenen Querstreifen beobachtet habe, auf Rechnung der unregelmäfigen Explosion setzen, indem die leuchtenden Theilchen oft schon in einer sehr kurzen Zeit von dem einen Pole die Fläche des anderen erreichen und dadurch hier den Austrittsponts der Elektricität unkennulich machen können.
gleichviel, zwischen welchen Polen die Entladung statifindet; wenn nur elektrische Oberfläche und Leitung constant sind. Die Entladungsbilder 13 bis 22 Taf. I, ausgenommen jedoch Figur 19, sind bei Constanz dieser Elemente crhalten; dafs in den Figuren 13 bis 16 die Querabtheilungen eine etwas andere Breite haben als in den folgenden, rührt lediglich davon her, dafs für jene die Rotationsgeschwindigkeit eine etwas abweichende gewesen ist.

An mehreren der gegebenen Abbildungen (z. B. Fig. 14, 17, 19, $28^{\text {b }}$ Taf. I) sieht man den Aufang der ersten Querabtheilung durch einen Partialfunken bezeichnet. Dieser feine Funkenstrich, durch welchen die Entladungserscheinung eingeleitet wird, ist in vielen Fällen (besonders wenn die sphärische Abweichung ihn verbreitert) zu lichtschwach, um sich zu photographiren. Allein, dafs er stets vorhanden, scheinen die Beobachtungen mit blofsem Auge, so wie die Photographien bei ruhendem Spiegel zu beweisen. Durch diesen Partialfunken ist die Continuilat des Schliefsungsbogens hergestellt und die Elektricitatsbewegung vimmt nun ihren regelmäfsigen undulatorischen Verlauf.

Um die Dauer einer Oscillation möglichst genau zu finden, habe ich stets die Ausdehnung einer Anzahl Streifen gemessen, durch ihre Zahl dividirt und aus dem arithmetischen Mittel mehrerer so an einem Bilde gefundenen Werthe ein Element zur Berechnung gewonnen. Ist die Zahl der Querstreifen grofs ') und die Funkendistanz nicht zu gering, so lafst sich die Messung an mehreren Stellen jeder Seite und wenn zwei Funken sich gleichzeitig gut abbildeten, an beiden Bildern ${ }^{2}$) ausführen, so dafs der aus der Messung selbst entstehende Fehler im Ganzen klein ist.

1) Da die Zahl der Querstreifen cet. par. bei der gröfsten Oberffäche auch am gröften ist, so wird der Fehler, welcher aus der Breitenmessung entsteht, bei 16 Flaschen im Allgemeinen am kleinsten ausfallen müssen, weshalb ich häufig den bei 16 Flaschen erhaltenen Werth der Oscillationsdauer der Berechnung für die übrigen zu Grunde gelegt habe.
2) Ist eins der Bilder nicht vertical und symmetrisch anter dem zugehörigen Fanken entstanden, sondern weit nach einer Seite verschoben (oder

Es concurrirt indefs noch eine andere Fehlerquelle, die von der Bestimmung der Rotationsgeschwindigk eit herrührt und wesentlich gröfser ist. Der rotirende Spiegel erlangt nămlich nach einer gewissen Zeit das Maxinum der Geschwindigkeit, ohne aber eine vollkommen gleichmäfsige Bewegung zu bekommen. Je kleiner die Bewegungsgeschwindigkeit durch Schwungrad und Windfluggel und je gröfser gleichzeitig das treibende Gewicht gemacht wird, desto geringer fallen die Schwankungen aus. Da sie aberhaupt aber nicht ganz zu vermeiden sind, so habe ich die Rotationsgeschwindigkeit im Allgemeinen während eines Zeitabschnittes bestimint, in welcher zugleich die Beobachtung fiel. In der Regel, darf ich wohl behaupten, den wahrscheinlichen Fehler, welcher auf diese Weise den Beobachtungen anhaftet, auf 2 Proc. der beobachteten Grôfse zurückgefüht zu haben, und diefs genügte in den meisten Fällen, um die vorhandenen Gesetze mit hinreichender Schärfe zu erkennen.

Die Schlagweite oder die Höhe der Ladung hat keinen merklichen Einflufs auf die Oscillationsdauer.

Bei Entladung von 10 Flaschen durch einen zienlich kurzen Schliefsungsbogen beobachtete ich:

Für 4mm Schlagweite.
Zahl der Quer- Ausdehnung abheilungen. in Millim. 9

$$
\begin{equation*}
10 \tag{6}
\end{equation*}
$$

9	17,7
47^{-}	$-92,6$

Mittlere Breite einer Querabtheilngg $1 \mathrm{~mm}, 97$.

Für $\mathbf{8 m m}^{\mathrm{mm}}$ Schlagweite.
Zahl der Quer- Ausdehnung abtheilungen. in Millim.

8
15,5 17,8 20,3 14,0 19,6 13,8 15,6 116,6
Milllere Breite einer Querabtheilung $1=\mathrm{m}, 98$.
dehnt es sich auch nur über einen sehr grofsen Raum aus), so darf bei genauen Bestimmungen die Correction nicht vergessen werden, welche daraus entapringt, dafs die horizontalen Dimensionen des Bildes im Verhälınifs der Tangenten des doppelten Drehungswintels zu cinander stehen.

Da die Summe der Abstände des Spiegels vom Funken und des Spiegels von der photographisċben Platte auf die Rotationsebene projicirt, nahe $1054^{m m}$ betrug und bei beiden Beobachtungen der Spiegel 98 Rotationen in der Sekunde gemacht hatte, so ergab sich die Dauer einer Oscillation in Theilen einer Sekunde angegeben:

Für 4me Schlagweite. (",0000031)4

Für 8me Schlagweite.
$0 ", 00000305$

Bei Entladung von 16 Flaschen und einem sehr langen Schliefsungsbogen berechnete ich auf ahnliche Art aus angestellten Beobachtungen:

Oscillationsdauer bei einer	Os
Schlagweite von ${ }^{1} \mathbf{m m m}$	Schlagweite von 9 mm
0",0000511	0",0000514

Die Veränderung der elektrischen Oberfäche oder der Zahl unter sich gleicher Flaschen bei sonst gleichen Verbăltnissen ăufsert einen Einflufs nach dem Gesetze:

$$
t=a V s
$$

wo \boldsymbol{t} die Oscillationsdauer, a eine nur von den Schliefsungsbogen sowie von der Natur der Leidener Flaschen abhăngige Constante und s die Flaschenzabl ist.

Folgende Beobachtungen sind bei einenn nur $161{ }^{\mathrm{m}}, 3$ langen, aber nicht gerade ausgespanuten, sondern seinem gröfsten Theile nach in verschiedenen (neun) Rollen aufgewickelten Schliefsungsdrabte gewonnen worden.

16 Flaschen
Zahl der Quer- Aasdehnung abtheilungen in Mm.

8

12	51,4
6	28,2
8	
34	
161,4	

Mittere Breite einer Querabtheilang 4mex.76.

8 Flaychen.
Zahl der Quer- Ausdehnung abtheilungen in Mm.

5
24,6
24,3
34,6
39,1
7
-32 $\begin{array}{r}34,0 \\ 156,6\end{array}$
Mitlere Breite einer Querabtheilung $\mathbf{4 m m}^{\mathrm{mm}} \mathbf{8 9}$.

4 Flaschen.		2 Flaschen.	
Zahl der Quer-	Ausdehnung	Zahl der Quer-	Ausdehnung
abheilungen	in Mm.	abtheilungen	in Mm.
8	39,8	5	17,9
8	39,9	5	17,6
8	40,0	5	17,7
5	25,2	6	21,2
6	30,0	7	24,1
35	174,9	8	27,7
		36	126,2
Mittere Breite einer Querablheilung 5 mm,00.		Mitlere Breite einer Querabtheilung $3^{\mathrm{mm}}, 51$.	

Da der Spiegel zu 925 Rotationen während der Entladungen von

16 Fl.	8 Fl.	4 FL.	2 FI.
$54^{\prime \prime}, 5$	$37^{\prime \prime}, 3$	$26^{\prime \prime}, 0$	$25^{\prime \prime}, 8$

Zeit gebrauchte, so ergeben sich, (weil die Summe der Abstande dieses Spiegels von Funken und von der pholographischen Platte, auf die Rotationsebene projicirt nahe $1000^{\text {ma }}$ betrug) folgende Werthe der Beobachtung:

Flaschenzahl	Oscillationsdauer in beobachtet	
$\mathbf{1 6}$	$\mathbf{0 , 0 0 0 0 4 4 6}$	berechnet
$\mathbf{8}$	$\mathbf{0 , 0 0 0 0 3 1 4}$	$\mathbf{0 , 0 0 0 0 3 1 5}$
$\mathbf{4}$	$\mathbf{0 , 0 0 0 0 2 2 4}$	$\mathbf{0 , 0 0 0 0 2 2 3}$
$\mathbf{2}$	$\mathbf{0 , 0 0 0 0 1 5 6}$	$\mathbf{0 , 0 0 0 0 1 5 8}$

Wenn man nach oben gegebener Formel aus der Beobachtung für irgend eine Flaschenzahl (z. B. hier für 16) die Oscillationsdauer für irgend eine andere Flaschenzahl berechnet, so erhalt man einen Werth, dessen Abweichung von der Beobachtung durchaus zwischen den Grănzen der Beobachtungsfehler eingeschlossen ist ').

1) Auch bei ganz kurzem Schliefsangsbogen findet das erwähnte Gesetz seine Anwendung, allein die Beobachtang bei kleiner elektrischer OberGäche war wegen mangelnder Rotationsgesch windigkeit schwieriger; auch liefs sich die Rotationsgeschwindigkeit schwieriger bestimmen. Uebrigens stimmen folgende bei einem etwa 7 = langen Schliefoungsbogen and 88

Das eben bewiesene Gesetz möchte ich indefs noch verallgemeinern, ich möchte den Begriff der elektrischen Oberflăche mit dem der Capacitat vertauschen, wie derselbe in abnlichem Sinne schon von Thomson, Siemens u. A. gebraucht ist.

Denke ich mir einen constanten Entladungsapparat (etwa ein bestimmt gestelltes Funkenmikrometer) in der Weise in dem sonst continuirlichen Schliefsungsbogen angebracht, dafs die Art der Vertheilung auf beiden unveränderlichen einander gegenubberstehenden Kugeln sich nicht wesentlich ändert, wenn die elektrischen Oberflächen oder die Flaschen samust ihrer Verbindung geăndert werden, so kann ich Capacitat diejenige Elektricitätsmenge nennen, welche eine Selbstentladung - eine Ausgleichung in dem ganzen System von Leitern - herbeifuhrt, und welche nach der Entladung mit entgegengesetztem Zeichen von jeder der beiden Belegungen verschwunden ist. Oder mit anderen Worten: Capacităt ${ }^{1}$) kann diejenige Elektricitătsmenge genanut werden, welche - von dem Zustand einer gleichnăfsigen Vertheilung der Elektricitaten aber alle Theile der Leitung ${ }^{2}$) angerechnet - jeder der beiden elektrischen Oberflächen (natürlich mit entgegemgesetztem Zeichen) hinzugefügt werden mufs, damit die freie elektrische Spannung ${ }^{3}$) an einem unverănderlichen Punkte der Leitung einen bestimunten Werth

Spiegelrotationen in einer Sekunde erhaltene Beoachtungen recht wohl unter einander überein.

Plaschen	Oscillationsdaner 16	
$\mathbf{b e o b a c h t e t}$		
12	0,00000222	-
8	0,00000196	0,00000192
4	0,00000158	0,00000157

1) Die so definirte Capacität ist zugleich auf dem Potential der gesammten Elekericität auf sich selbst proportional.
2) Dafs dieser Zustand u. A. anch dann hergestellt ist, wenn pirgends freie Elektriciăten mehr vorhanden sind, leuchtet wohl von selbst ein.
3) Die freie Elektricität auf der Leitung wird dabei als verschwindend gegen die Elektricität der betrachteten Oberflächen angenommen, ebenso wie auch die Fernwirkung der betrachteten Oberfächen auf den danach gewählien Punkt constanter Spannung als versebwindend onzusehen ist.
erhält, z. B. etwa einen solchen Werth, dafs for denselben am Entladungsapparat gerade eine Selbstentladung zu Stande komint.

Habe ich z. B. zwei gleiche und gegen die Oberflăche der Leitung sehr grofse leitende Kugeln, welche durch jenen constanten Entladungsapparat verbunden sind, und sey die eine vollkommen abgeleitet, wäbrend die andere mit positiver Elektricităt geladen wird: sey ferner x diejenige Elektricitätsmenge, bei welcher eine Selbstentladung erfolgt, so kann ich nach dem Vorangegangenen x die Capacitat des Leitersystems nennen. Habe ich aber die zweite Kugel, gegen welche die erste sich entladen soll, nicht abgeleitet, so wird die Elektricitatsmenge, welche auf der anderen Kugeł angehäuft seyn mufs, damit eive Selbstentladung im Entladungsapparat eintritt, zwar dieselbe x seyn, allein nach der Entladung haben beide Kugeln sich in die Elektricitatsmenge x getheilt; es ist nicht mehr so, wie in dem vorigen Falle, als wenn die eine Kugel (die abgeleitete) von Hause aus die Elektricitätsmange $-x$ besässen hätte, sondern der Zustand gleichmăfsiger Vertheilung, von welchem angerechnet werden soll, ist derjenige, in welchem beide Kugeln die Elektricitătsmenge $\frac{1}{2} x$ besitzen. Denke ich mir bei diesem Zustande, der einen Kugel - $\frac{1}{2} x$, der anderen $+\frac{1}{2} x$ hinzugefügt, so habe ich die elektrische Vertheilung, welche in deın Entladungsapparate die Selbstentladung berbeiführen kann. In diesem Falle mufs also die Capacität durch $\frac{1}{2} x$ ausgedrückt werden. Kann man die Formel S. 153 also in der Weise verallgemeinern, dafs man die Oscillationsdauer mit der Wurzel aus der Capacität proportional setzt, so müfste man in dem zweiten Falle der beiden Kugeln die Oscillationsdauer berechnen können, dadurch dafs man die für den ersten Fall gefundene Oscillationsdauer mit $\sqrt{\frac{T}{2}}$ multiplicirt.

Hat diefs Raisonnement und die Substitution der "Capacilăta allgemeine Guiltigkeit, so läfst es sich leicht prifen, wenn man:

1) Die Leidener Flaschen nicht gegen die ăufsere Bele-
gong (die vollkommene Ableitung) sondern gegen die inuere Belegung anderer gleichartiger, vollkommen abgeleiteter Flaschen entladet ').
2) Condensatoren von anderen Dimensioneu mit den gebrauchten Flaschen vergleicht.
Eutlade ich also 8 Flaschen, statt gegen ihre ăufsere Belegung, gegen andere gleichartige 8 Flaschen, so kommt nur die Hălfte der angehäuften Elektricität zur Ausgleichung. Die Capacitat des jetzigen Flaschensystems ist also nur die Hälfe gegen den Fall, wo ich 8 Flaschen gegen ihre cigne äufsere Belegung entlud; die Oscillationsdauer mufste also $V_{\frac{1}{2}}^{-}$Mal diejenige seyn, welche ich auf $S .154$ bei gewöhnlicher Entladung von 8 Flaschen gegeben habe, vorausgesetzt, dafs an dem Schliefsungsbogen sonst nichts geändert ist. Der Versuch ergab mir eine vollstăndige Bestätigung, denn es ist:

> | Oscillationsdauer | |
| :---: | :---: |
| benbachutet berechnet | |

8 Fl. entladen gegen 8 Fl. $0,00002220,0000222$
Entlade ich 4 Flaschen gegen die innere Entladung von 8 Flaschen, so ist die Elektricitatsmenge, welche vom Zustande gleichmäfsiger Vertheilung angerechnet entladen wird, $\frac{2}{3}$ von derjenigen, welche bei der Entladung gegen die eigene äufsere Belegung zur Ausgleichung kam. Dic früher S. 154 für 4 Flaschen gefundene Oscillationsdauer muls also mit

1) Abgesehen von der besonderen Art der Bindung an den Flaschenbelegangen ist der Fall allerdings nicht ganz derselbe, wie in dern Beispiel der Kugeln, weil sich an den Flaschen stets auch negative condensirte Elektriciaat befindet, indem der positiven Elektricität im Innern entsprechend ein Aequivalent negativer Elektricitat auf dem Aufsenbeleg angehäuft ist. Allein es ist möglich einerseits die Ableitung durch gute Leiter herzustellen, andererseits alle Flaschen nahe und gut leitend (bei mir durch cinen wenigor als 1^{m} langen Drahiweg) zu verbinden, so dafs man annehmen kann, die negativen elektrischen Theilchen beweglen sich von oder z.wischen den aufseren Belegungen mit einer solchen Leichtigkeit, dafs sie verschwindenden Einflufs häten auf die Bewegung der positiven Elektricität xwischen den inneren Belegungen. Hierdurch wäre man in der That in der Lage, die positive Elektricität allein ins Auge fassen zu könaen.
$\sqrt{\frac{2}{3}}$ multiplicirt werden, um dic jetzt stattindende zu erhalten. Analog mufs die für 2 Flaschen gefundene Oscillationsdauer mit $\sqrt{\frac{\pi}{3}}$ multiplicirt werden, um die Oscillationsdauer zu finden, wenn man die 2 Flaschen gegen die innere Belegung von 8 Flaschen entladet. Beobachtung und Rechnung gaben für beide. Fälle:

4 Fl. entladen gegen 8 Fl. $0,00001780,0000183$
2 Fl. entladen gegen 8 Fl. 0,0000136 0,0000139
und man sieht, dafs beides nur wenig von einauder abweicht ${ }^{1}$).

Um einen Condensator von anderen Dimensionen mit den gebrauchten Flaschen zu vergleichen, nabm ich eine Scheibe Bilderglas und bildete zwei Franklin'sche Tafeln daraus. Das Glas von ziemlich gleichförmiger Stärke, hatte eine durchschnittliche Dicke von $2^{\mathrm{mm}}, 53$. Die einseitige Be legung beider Tafeln betrug zusammen $0,460 \square$ Meter.

Um die Capacität eines solchen Condensators im Verhältnifs zu den bisher gebrauchten Flaschen zu ermitteln, giebt es nun einen einfachen Weg. ${ }^{\text {Nach }}$ der vorber gegebenen Definition von Capacităt findet man nämlich diese Relation, wenn man durch dasselbe Funkenmikrometer bei unveränderter Stellung der Kugeln einnal die Flaschen, ein andermal die Tafeln entladet und die Ausschlage eines in beiden Fallen in der Leitung befindlichen Galvanometers

1) Vünscht man den Ausdruck der Capacität zu vermeiden, so läfat sich diefs bei Anwendung gleichartiger Flaschen allerdings than. Nach den vorliegenden Beobachtungen mufs man dann die (S. 153) für die Oscillationsdauer bei constantem Schliefsungsbogen gegebene Formel

$$
t=a \sqrt{\frac{b \cdot b_{1}}{b+s^{2}}}
$$

schreiben, wo : die geladene Belegung und s_{I} diejenige Belegung ist, gegen welche entladen werden soll. Dabei ist zu berücksichtigen, dafs eine vollkommen abgeleitele Belegung eine unendliche Oberfläche besitzt; ferner, dafs der Einflufs gleichzeitiger elektrischer Bewegungenf auf andere Oberflächen als sund ε_{1} als verschwindend angesehen wird, was natürlich immer nur unter besonderen Umständen der Fall sejn kann.
mit einander vergleicht. Bei einem zweckıăfsig construirten Galvanometer mufs bekanntlich für Ströme von kurzer Dauer die Geschwindigkeit, mit welcher der Magnet aus der Rubelage herausgeworfen wird, der schliefslich entladenen Elektricitatsmenge proportional seyn. ')

Das Galvanometer gab bei $10^{\text {mm }}$ weitem Abstand der 25-0 ${ }^{\text {De }}$ Durchmesser haltenden Kugeln des Funkenmikrometers folgende Werthe:

	Beide Tasfln		Zwei Flaschen
	51,5		43,1
	52,2		44,0
	51,0		44,3
	51,0		43,0
	51,7		43,8
Mittel	1 51,5	Mittel	el 43,6

Die Entladung der beiden Franklin'schen Tafeln mit Hülfe des Spiegelapparates liefs mich mit Anwendung des früher gebrauchten Schliefsungsbogens (von 161,3" Lẳnge) eine Oscillations von

0",0000164

1) Indem ich dieser Elektricitätsmenge die Capacität proportional setzte, glaubte ich den Rückstand vernachlässigen za können. Die Versuche über den Rüctstand, welche ich früher zu meiner eigenen Orientirung über die Brauchbarteit der Galvanometerangaben gemacht habe und bei denen ich (in ganz ähnlicher WVeise wie neuerlich Hr. v. Oettingen, jedoch meist nur bei gröfserer Schlagweite experimentirend) nicmals negative Rückstände wahrnahm, ferner die unter Umständen geringe Gröfse des Rückstandes und endlich der Umstand, dals durch eine Messung und Berücksichtigung des Rückstandes die Schwankungen in den Galvanometerangaben nicht ausreichend erklärt werden können, hat mich zu der Ansicht geführt, dafs bei Anwendung einés einfachen gut verbundenen Leitangsdrahtes von nicht zo grofsern VViderstande der Rüctstand am Ende der Entladung verschwindend klein ist, und sich von diesem Zeitponkte an erst bildet. Die mair so eben zugegangene Abhandlung des Hrn. v. Oettingen (diese Ann. CXV, S. 413) scheint dieser Auffassung nicht günstig 20 seyn. Ein weiteres Eiugehen auf diesen Punkt, so wie eine Controle der vorp mir als Capacitäten angenommenen VVerthe erscheint daher nothwendig.

Zugleich möchte ich bemerten, dafs gewifs auch in jedem Momente der Entladung der passive Rückstand veränderlich ist, und dafs daher, erst wenn bestimmte Data der Beobachtung über diese schwierige Frage sich haben gewinnen lassen, die von Hrn. v. Oettingen a a. O. S. 516 gegebene Stromeurve exact genommen und die strenge Güligkeit der Formeln behauptet werden darf.

Sehr interessant wäre es, wenn die Beobachtungen am Galvanometer feststellen könnten, in welcher VVeise die nach den Versuchen des Hrn. v. Oeltingen wahrscheinliche Zanalıme des Gränzwiderstandes mit wachsender Schlagweite stattiode.
finden; während die nach den Verhältnissen der Capacitäten berechnete
0",0000169
ist. Die Abweichung ist in der That also nur gering und ich glaube daher, dafs der Verallgemeinerung der S. 153 gegebenen Formel durch die Einfürung der „Capacităt" statt der elek trischen Oberfläche von Seiten des Experimentes nichts im Wege steht ').

Wie richtig diese Verallgemeinerung ist, leuchtet von selbst ein, weil hierdurch das Gesetz auf jedes beliebige Leitersystem anwendbar wird.

Bevor ich das Kapitel uber den Einflufs der Capacitat auf die Oscillationsdauer schliefse, möchte ich noch eine Beobachtungsreibe anführen, welche ich mit einem Schliefsungsbogen von ungefâhr 1400^{m} Länge erbalten habe.

1) Mit Hülfe des Galvanometers lassen sich auf ähnliche VVeise auch die Capacitäten der gebrauchten Flaschen bestimmen. Der Versuch gab als Nitiel aus je zehn Beobachtungen:

Fl.	\boldsymbol{A}	\boldsymbol{B}
16	235,0	235,0
8	119,3	116,9
4	58,0	58,2
2	27,5	28,4

wo in der Columne A die Beobachitungen stehen, welche an einem Galvanometer direkt bei Entladung der betreffenden Flaschenzahl erhalten wurden, während \boldsymbol{B} aus den Verthen berechnet ist, welche ich erhielt, als ich bei einern onderen Schliefsungsbogen und durch ein anderes Galvanometer immer je 2 Flaschen für sich auf ibre Capacität untersuchte. Die gröfsten Abweichungen zweier Galvanometerangaben in einer aus 10 Beobachtungen bestehenden Reilie betrug im Durchschaitt $4 \frac{1}{2}$ Proc. Indem man zwar sieht, dafs das Verhälınifs der Capacitäten auf beide WVeisen nicht absolut genau als dasselbe gefunden wurde, möchte ich doch das Mittel aus je zwei zusammengehörigen WVerthen der beiden Columnen als einen angenäherten Ausdruck der Capacität zu selzen versuchen. Nimmt man hiernach die Capacitäten für:

16	FI.
8	235,0
4	118,1
2	58,1
	28,0

und berechnet danach die Oscillationsdauer für die übrigen Flaschen aus der S. 22 erhalıenen Oscillationsdauer für 16 Flaschen, so erhält man

Oscillationsdauer $0,0000316 \quad 0,00002220,0000154$
dessen Abweichung von den beobachteten VVerthen ebenfalls 2 wischen die Gränzen der Reobachtungsfehler fällt.

Flaschenaabl	Oscillationsdauer		$\begin{gathered} \text { Differenz } \\ \text { in Zehnmillionte } \end{gathered}$
	beobachtet	berrechnet	Setunden
12	0",0000172	$0{ }^{\text {O,}, 0000479}$	$+7$
10	0,0000435	0,0000441	$+6$
8	0,0000392	0,0001394	$+2$
6	0,0000338	0,0000341	+ 3
4	0,0100282	0,0000278	-4
2	0,0000207	0,0000194	-13

Es scheint hier eine Abweichung von dem gegebenen Gesetze in dem Siune aufzutreten, dafs die Oscillationsdauer mit der Capacität der entladenen Oberfläche nicht so rasch abnimmt, als das Gesetz es verlangt. Denn die Differenzen der Beobachtung und der Rechnung, wie dieselbe mit Hülfe der an Galvanometer für je 2 Flaschen gefundenen Capacităten nach dem zuvor gegebenen Gesetze ausgeführt ist, lassen sich, wenigstens für die letzte Beobachtung, selbst nicht einmal in gezwungener Weise aus den Beobachtungsfehlern erklären.

Zwei andere Beobachtungen nach Ausschaltung der in dem Schliefsungsbogen befindlichen Drabtrollen, wodurch die Leiterlänge auf $1313^{\text {m }}$ reducirt ward, lieferten mir:

Flaschenzahl	Oscillationsdauer benbarhetet 16	
2	$\mathbf{0 , 0 0 0 0 5 0 4}$	berechnet

Da fast alle Theile der Leitung $\mathbf{l}^{\mathbf{m}}$ oder darüber von einander entfernt waren, so wird die vertheilende Wirkung der Leitertheile auf einander in Vergleich zur Wirkung des umgebenden Raumes sehr klein gewesen seyn; es liegt daher die Vermuthung nahe, dafs die freie sich auf der ganzen Oberfäche des Drahtes vertheilende Elektricitat die Ursache jener Abweichung sey, indem von der anderen Seite ins Gewicht fällt, dafs die gesamnte Oberfläche des $\mathbf{1 m m}^{\mathbf{m m}}, 35$ dicken Drahtes keine ganz unbedeutende war.

Hr. Dr. Siemens bat, diese Annalen Bd. CII S. 108, die Capacilăt eines oberirdischen Telegraphendrabtes mit der Capacităt einer belegten Glastafel verglichen. Er hat in derselben Abhandlung bewiesen, dafs die Capacităt eines

[^4]Condensators der Glasdicke umgekehrt proportional ist. Wollte ich danach meinen Leitungsdraht mit den von mir gebranchten Flaschen vergleichen, so würde sich für denselben eine Capacilăt nahe gleich derjenigen von 3 Flaschen ergeben. Allein die Vergleichung ist vicht ohne Weiteres statthaft, erstens weil die von mir gebrauchte Glassorte nur zufällig mit der von Hru. Dr. Siemens gebrauchten in Bezug auf ihr specifisches Vertheilungsvermögen identisch seyn künnte, zweitens weil der $\mathbf{l}^{\mathrm{mm}}, 35$ dicke Draht meiner Leitung zum gröfsten Theil in geringer Entfernung von Wänden sich befand, während Hr. Siemens den zwei Linien dicken Telegraphendraht unter freiem Himmel $\mathbf{S}^{\text {m }}$ über dem Boden ausgespannt hatte. Wie weit die Capacität meiner Leitung von der vorher nach den Angaben von Siemens berechncten abweicht, lafst sich nicht wohl ubersehen. Dagegen hätte mir eine Entladung von einer Anzahl gut abgeleiteter Flaschen gegen den an seinem einen Ende isolirten Draht vielleicht eine Beobachtung der Oscillationsdauer ermöglichen können, aus der sich ein Schlufs auf die Capacität machen liefse. Der Versuch zeigte mir in einzelven Fällen zwar eine oscillatorische Entladung, allein die Ausgleichung kam bei dieser Anordnung in so verschiedener W eise und oft so unregelmäfsig zu Stande, dafs ich hier keine sichere Basis zur Vergleichung gewinnen konnte.

Ich stelle daher einen anderen Versuch an, um nur im Allgemeinen meine Vermuthung zu bestätigen oder zu widerlegen. Ich nahm den früher schon gebrauchten zum gröfsten Theil in Rollen aufgewickelten Schliefsungsbogen von $161^{m}, 3$ Drahtlănge und brachte ungefähr 70^{m} von seinem mit der Aufsenhelegung verbundenen Ende eine Nebenleitung durch einen dicken 5^{m} langen gerade ansgespannten Kupferdrabt an. Diese Nebenleitung, welche den mittleren Theil des Schliefsungsbogens verband, war jedoch nicht geschlossen, sondern es befand sich die isolirende Schicht einmal von 8 Flaschen, ein andermal von 4 Flaschen als tremnender Isolator in derselhen: während in einem dritten Falle die Nebenleitung ganz ausgeschaltet war.

Da auf dem geraden und kurzen Wege der Nebenschliefsung die elektrischen Gleichgewichtsschwankungen - wie aus später anzuführenden Versuchen deutlicher hervorgeben wird - ungleich rascher erfolgen mufsten, als auf dem Wege der Leitung durch die betreffenden Drahtrollen, so schien mir von einer Seite der Leitung wenigstens ein ähn: liches Verhältnifs wie bei dem langen Schliefsungsbogen bergestellt. In dem Schliefsungsbogen selbst konnte eine Quantilät freier Elektricităt gebunden werden, (analog der Bindung zwischen den Bodenwänden und der Drahtoberfläche der langen Leitung) und der Versuch konnte mir zeigen ob und in welchem Sinne eine solche Bindung die Oscillationsdauer zia veräudern im Stande sey. Der Versuch ergab:

Flaschenzahl in der unter- Oscillatioǹsdauer bei Entbrochenen Nebenleitung lading von 8 Flaschen
$0^{\prime \prime}, 0000331$
400,0000322
0 0,0000314
Als ich die Oscillationsdauer von 4 Flaschen bestimmen wollte, indem sich 8 Flaschen in der unterbrochenen Ne benleitung befanden, war die scharfe Trennung der Oscillationen stark verwischt. Das Bild erinnerte an Zeichnungen von verschiedenen uber einander gelagerten Wellensystemen. Soweit sich die Querabtheilungen erkennen und bestimmen liefsen, leitete ich daraus die entsprechenden Zeitgröfsen ab und fand die Oscillationsdauer zwischen den Werthen $0^{\prime \prime}, 0000247$ und $0^{\prime \prime}, 0000260$ eingeschlossen, während wir nach $S .154$ wissen, dafs 4 Flaschen bei demselben Schliefsungsbogen, jedoch ohne die seine Capacität vergröfsernde Nebenleitung $0^{\prime \prime}, 0000224$ Oscillationsdauer gaben.

Aus Vorstehendem scheint sich wenigstens der Schlufs ziehen zu lassen, dafs die Capacität des Scbliefsungsbogens zur Vergröfserung der Oscillationsdauer beiträgt.

Die Inductionswirkungen, welche durch Länge und Aufspannungsart der Leitung bedingt sind, zeigen sich von weit bedeutenderem Einflufs auf die Oscillationsdauer, als die oben betrachteten clektrostatischen Bindungserscheinungen.

Die Länge') der Leitung vergröfserte ich in der Art, dafs die einzelnen Theile des angefügten $1 \mathrm{~mm}, 35$ dicken Drahtes so weit von einander entfernt blieben, als die Aufspannung in den gegebenen Räumen es crlaubte. Ich glaubte anfangs die Inductionswirkungen der einzelnen Leitertheile auf einander vernachlässigen zu können, weil die zugefügten Drahtlängen einander im Allgemeinen nicht näher kamen, als im Durchschnitt $1^{\text {mu }}$. Mit den verschiedeneu Längen des Leiters bei Entladung von 10 Flaschen der früher angege. benen Dimensionen habe ich folgende Beobachtungen gemacht:

Länge des Scllifelsungobogens in Meter 5,26	Oscillationsdauer in' Sekunden 0,00000132
15,26 ${ }^{2}$)	0,00000312
2.7,26	0,000004410
45,26	0,00000601
65,26	0,00000753
85,26	0,00000845
115,26	0,00000935
180,3 ${ }^{3}$)	0,0000131
317,0	0,0000177
445,3	0,0000227
1343	0,0000398 ${ }^{4}$)

Aus vorstehenden Beobachtungen erkennt man die wesentliche Zunahne der Oscillationsdauer mit zunehmender Leiterlănge; man sieht ferner, dafs die Oscillationsdauer in einem langsameren Verhältnifs wächst, als die Länge des Schliefsungsbogens. Einen bestimmteren. Zusammenhang möchte ich aus den Beobachtungen nicht ableiten, denn

1) Die Flaschen waren mit ihrem Innenbeleg und Aufsenbeleg so unter einander und mit der Leitung verbunden, dafs die Elektricität auf jeder Flasche von der innern zur äufsern Belegung dieselbe VVegstrecke ${ }^{2 \prime \prime}$ durchlaufen hatte. Diese VVegstrecke betrug, wenn nur die Verbindung durch den Entladungs- und Rotationsapparat die Leitung bildete, $\mathbf{5 m}^{\mathbf{m}}, 26$, und war zugleich der unter allen Umständen unveränderliche Theil der leitung.
2) Die hinzugekommenen $10^{\text {m }}$ waren hier im Beobachtungstimmer im Viereck aufgespannt, während bei allen späteren Leiterlängen der Schliefsungsdraht aufserhalb des Zimmers forigeführt war.
3) Die Form des Schliefsungsbogens näherte sich einem rechtwinkligen Dreiecke ron etwa 20^{m} Länge der kleinsten Kathete.
4) Diese Oscillationsdauer ist aus einer fïr 16 Plaschen gefundenen aach dem zuvor gegebenen Gesetzo berechnet.
wenn man auch aus den Rechnungen von Thomson und Kirchhoff eine Formel für den Zusammenhang finden kann, so bieten die von mir angeführten Versuche doch nicht die gewtinschte Uebereinstimmung. Ich finde indefs hierin kein Zeugnifs gegen dic Anwendbarkeit jener Theorie auf den Fall der Flaschenentladung im Allgemeinen; denn dafs die Aufspannungsweise der Leitung, selbst bei der von mir gevählten Entfernung der Leitertheile nicht zu vernachlässigen ist, werden besondere Versuche zeigen, und da eine analoge Art der Aufspannung verschiedener Drahtlängen nicht nur überhaupt schwierig, sondern im vorliegenden Falle geradezu unmöglich war, so steht nichts der Annahine in Wege, dafs ein einfaches Geselz in vorstchenden Beobachtungen nur durch die uns ermeidliche Mangelhaftigkeit des Experimentes verdeckt wurde.

Die Induction von parallelen Leitertheilen auf einander verlängert die Oscillationsdauer, wenn der Strom in ihnen gleichgerichtet fliefst, verkürzt sie, wenn er entgegengesetzt gerichtet ist, und zwar kann man die Gröfse der Inductionswirkung im letzten Falle aus folgenden Versuchen erkennen, bei denen 75^{m} eines $105^{\mathrm{m}}, 26$ langen Schliefsungsbogens in zwei parallelen Windungen aufgespannt waren. Jede der beiden Windungen bildete nahezu ein Parallelogramm von $15!_{2}^{m}$ Länge und $3 \frac{1^{m}}{}$ Breite. Indem ich den senkrechten Abstand beider Windungen von einander änderte, erbielt ich folgende Werthe der Beobachtung.

Induction entgegengerichteler Strönce.

Abstand der beiden Windungen	Osrillationsdaner	Differenz in Hundert milliontel-Sckuoden
$062^{\text {mm }}$	$0{ }^{\prime \prime}, 010001782$	
125	0,00000813	37
253	0,00000850	28
500	0,00000878	28
1000	0,00000906	28

Aus diesen Beobachtungen scheint hervorzugehen, dafs die Oscillationsdauer in arithmetischem Verhältnisse zunimmt wenn die Enlfernung zweier paralleler entgegengesetzl gerichteter Leitertheile in geometrischem Verhältnisse wächst. Auf gröfsere Abstände habe ich die Versuche nicht ausge-
dehnt, weil sich danu einerseits die Veränderung der Länge, andererseits die veränderte Inductionswirkung der gegenuberstehenden Seiten des Parallelogramms nicht hätte aufser Acht lassen dürfen. Denn dafs die Induction gleichgerichteter paralleler Leitertheile ebenfalls, nur in ungekehrtem Sinne, auf die Oscillationsdauer eiuwirkt, mögen folgende zwei Beobachtungen zeigen, bei denen die beiden veränderlichen parallelen Drahtstrecken des $105{ }^{\mathbf{m}}, 26$ langen Schliefsungsbogens zusamnen einen Weg von $68^{\text {m }}$ bildeten.

Induction gleichgerichteter Ströme.

Abstand der beiden Drähto

$$
62^{\mathrm{mm}}
$$

1000

Oscillationsdauer
0,00001084 0,00000986

Erkennt man hieraus den retardirenden Einflufs, welcher parallele gleichgerichtete Windungen auf die Dauer einer Oscillation haben müssen, so wird man es nicht überraschend finden, dafs ich bei nur $161^{\text {m }}, 3$ Drahtlänge die Oscillationsdauer für 2 Flaschen schon zu 0 ", 0000156 und daraus berechnet für 10 Flaschen die Oscillationsdauer 0 0,0000354
erhalten konnte, wenn von diesen $161^{\mathrm{m}}, 3143^{\mathrm{m}}$ in 9 Rollen aufgewickelt waren.

Zugleich erkenut man aus den Beobachtungen, dafs wenn Theile des Schliefsungsbogens selbst nur bis auf ein Meter einander nahe kommen, die Wirkung auf die Oscillationsdauer nicht zu vernachlässigen ist, sobald diese Theile ein wesentliches Stück in Verbăltuifs zur ganzen Länge des Schliefsungsbogens ausmachen.

Schon aus den vorher angeführten Beobachtungen dürfte man wohl die Ueberzeugung gewinnen, dafs es die Dauer der Oscillationen verlängern mufs, wenn man einen wesentlichen Theil des Leiters in mehrere gleiche Zweige spaltet. Nach der eben gefundenen Art der Inductionswirkung darf man nänlich erwarten, dafs zwei Zweige einen un so mehr retardirenden Einflufs auf die Elektricitätsbewegung in jeder Oscillation ausüben, je näher die gleichgerichteten Ströme in den Zweigen einander liegen, und dals das Maximum dieser Retardation dann statifiudet, wenn die Zweige mit
einander in ihrer ganzen Länge in Berührung gebracht sind, oder, was nahezu dasselbe, wenn man statt der Zweige einen einfachen Leitungsdraht anwendet.

Die Versuche, welche ich in dieser Richtung gemacht, sind zwar nicht mit Annäherung hervorgebracht, allein ich glaube sie beweisen dasselbe. Bei Entladung von 10 Flaschen und einem Schliefsungsbogen, bei welchem die Zweige wegen Mangel an Raun zickzackförmig in Zimmer aufgespannt waren, erhielt ich:

$$
\begin{align*}
& \text { Länge des Schliefsungsbogens Oscillationsdauer } \\
& 5^{\text {min }}, 3+30^{\text {m }} \quad 0^{\prime \prime}, 0000040 \\
& 5,3+\left\{\begin{array}{l}
30^{\mathrm{m}} \\
30
\end{array}\right\} \quad 0,0000030 \\
& 5,3+\left\{\begin{array}{l}
30 \mathrm{~m} \\
30 \\
30
\end{array}\right\} \quad 0,0000025 \\
& 5,3+\left\{\begin{array}{l}
30^{m} \\
30 \\
30 \\
30
\end{array}\right\}
\end{align*}
$$

Die eingeklammerten Zablen bezeichnen die neben einauder eingeschalteten Z weige.

Aus denselben Gründen, weshalb die Oscillationsdauer sich verkürzt, wenn man den Schliefsungsbogen in mehrere Zweige spaltet, mufs auch die zunehmende Dicke des Leiters eiue Beschleunigung in der Elektricitätsbewegung der Oscillationen herbeiführen. Denkt man sich nämlich den Draht in lauter lineare Elemente zerlegt, so kann man diese Elemente gewissermafsen als Zweige betrachten, die mit zunehmender Dicke des Leiters an Zahl sich vermehren.

Als ich an 10 Metern bei einem $15 \frac{1}{4}$ mangen Schliefsungsbogen die Dicke änderte, gab mir dic Beobachtung kein hinreichend in die Augen fallendes Resultat. Später habe ich einen wesentlicheren Theil des ganzen Schliefsungsbogens genommen, nämlich 100^{m} von 105,26 Gesammtlänge, und für denselben bei möglichst gleicher Aufspannungsart verschiedene Dicken gewählt. Die Entladung von 10 Flaschen gab:

Dicke des Drahts.	Oscillationsdauer ${ }^{\text {' }}$)
2,55	$\mathbf{0 , 0 0 0 0 (1) 9 6}$
$\mathbf{1 , 3 5}$	$\mathbf{0 , 0 0 0 0 0 9 9}$
$\mathbf{0 , 7 0}$	$\mathbf{0 , 0 0 0 0 1 0 3}$
$\mathbf{0 , 3 5}$	$\mathbf{0 , 0 0 0 0 1 0 8}$.

Wenn ich nun aus den Beobachtungen schliefse, dafs die Zunahme der Dicke des Schliefsungsbogens eine Verkürzung der Oscillationsdauer bewirkt, so könute man vielleicht einwerfen wollen, dafs diese Verkürzung wohl von dem zugleich veränderten Leitungswiderstand herrühre.

Es hat sich mir indefs gezeigt, dafs die Oscillationsdauer keine merkliche Aenderung erleidet, wenn man die Oscillationen durch Einschaltung von Fäden verdünnter Schwefelsäure oder von dünnem Neusilberdraht in ihrer Zahl immer weiter und weiter beschraukt. Nur eine Beobachtung will ich als Beispiel anführen, welche ich mit 16 Flascheu bei dem schon mehrfach erwähuten zun grofsten Theil aufgerollten Schliefsungsbogen von 161,3 Meter Länge gemacht habe, nachden cine Säule verdünnter Schwefelsăure in der Leitung eingeschaltet war. Ich erhielt nămlich eine Oscillatiousdauer von

$$
0^{\prime \prime}, 0000442
$$

auf einer Platte, wo nur die siebente Querabtheilung angedeutet war und nur auf eine Ausdehnung von 5 genau gemessen werden konute, wäbrend bei der S. 154 angefübrten Beobachlung für den ganz metallischen Schliefsungsbogen 20 Querabtheilungen scharf auf der Platte zu un terscheiden waren; die Oscillationsdauer für den letzten Fall war aber, wie man sich erinuern wird, $0^{\prime \prime}, 0000446$, also nicht wesentlich verschieden.

Zum objectiven Beweise der Abnahme der Oscillationszahl mit zunchmendem Widerstande und zur Charakterisirung der continuirlichen Entladung habe ich auf Taf. I dic Entladungsbilder wiedergegeben, wie ich sie mit 16 Flaschen, einem gegen 1400 Meter langem Schliefsungsbogen

1) Wenn ich bei dem $2^{m m}, 55$ dicken Drahte gegen 30 Oscillationen auf der Platte angedeutet fand, so war bei denen von $0 \mathrm{~mm}, 35$ Dicke etwa nur die achte zu erkennen; präris und deutich zeigten sich aber noch weniger, so dafs hierin der Fehler, der beim Mussen der Breite entsteht, merhlich segn kann.
und Anwendung nahe derselben Rotationsgeschwindigkeit des Spiegels erhielt.

Figuren.
23^{1})
24
25
26
27
28
29
ganz metall. Leitung ungefähr $=\mathbf{0 , 0 0 1}$
Die Widerstände sind hier auf $1^{\text {mm }}$ dicke Fäden verdünnter Schwefelsäure vom spec. Gew. 1,25 reducirt.

Von den beiden gleichzeitigen Bildern, jeder Figur ist das schmälere Band zur Linken durch den Uebergang der Elektricität zwischen Zinkkugeln, das breitere zur Rechten zwischen Eisenkugeln bei jedesmal derselben Entladung eutstanden, und zwar lag die breitere Funkenstrecke der inneren Flaschenbelegung zunächst.

Ich glaube nicht, dafs es nölhig ist, Versuche, welche ich auch mit Bleidraht ausgeführt habe, und welche die Unabhängigk eit der Oscillationsdauer von der chemischen Natur des Leiters noch weiter bestătigen könnten, hier anzuführen.

Wenn ich in Vorliegendem einige Hauptgesetze der wellenarligen Bewegung der Elektricitat, nach einem schon 1859 gegebenen vorlăufigeu Berichte ${ }^{2}$) näher erörtert und begründet habe, wenn es mir gelungen ist, die Oscillationen, welche bei der Entladung eines elektrischen Condensators durch einen gut leitenden Schliefsungsbogen eintraten, zur objectiven Anschauung zu bringen, so hätte ich doch gern noch manche Fragen beantwortet, die weiter in's Einzelne gehen, oder das Gefundene verallgemeinern. Indefs mit dem Rotationsapparate allein ist diefs nicht möglich.

Die Frage z. B., ob in allen Theilen des Schliefsungsbogens in jedem Momente dieselbe Stromstärke herrsche,

[^5]ist nach theoretischen Betrachtungen zu verneinen. Wenn ich aber zwei Funken derselben Entladung in einem gemessenen Abstande den einen am Ende, den anderen am Anfang oder in der Mitte einer langen Leitung eintreten lasse, so ist bei den Dimensionen meiner Apparate und Hülfsmittel doch nicht zu erwarten, dafs eine etwaige Verschiebung der Querabtheilungen des einen Bildes gegen die des anderen wahrzunehmen wäre.

Das Instrument, welches hier bestimmtere Aufschlüsse geben könnte, ist vor Allem das Dynamometer; mit diesem würden sich zugleich durch Interferenz verschiedener Wellenphasen in den beiden Rollen Schlüsse auf die Geschwindigkeit der Elehtricität ziehen lassen. Die Hindernisse, welche sich mir entgegenstellten, um abermals eine Leitung von über 1300^{m} frei aufzuspannen, haben mich von weiteren Versuchen bisher abgehalten.

Ebenso habe ich darauf verzichten müssen, dic Capacität der gebrauchten Flaschen auf eine bestimmte, allgemeinere Eiuheit zurückzufübren.

Wie die Constanten bei meinen Versuchen aber auch mit den theoretisch zu Grunde gelegten Einheiten übereinstimmen mögen, wie die Bewegung während eines Hin und Rückganges der Elektricität in Einzelnen auch anzunehmen sey, so glaube ich doch, dafs ein Zweifel an der unter Umständen oscillatorischen Bewegung der Elektricität, wic sie den theoretischen Betrachtungen von Helmholtz, Thomson, Kirchhoff entspricht, nicht wehr statt haben kann, zumal da meine in der Vcröffentlichung von Jabre 1859 als für die Eutladung der Leydener Flasche wirklich maafsgebend bezeichneten Principien durch mannichfaltige und interessaute Versuche des Hru. Dr. Paalzow Beslätigungen erfahren haben. Ich glaube zugleich annehmen zu dürfen, dafs es sich in Bezug auf die gewonnene Lehre nur um einen weiteren Ausbau derselben, sey es auf theorelischem, sey es auf experimentellem Wege, handelt, um zu gleicher Zeit den Zusammenhang der hier maafsgebenden Verhältnisse mit den schönen Untersuchungen vou Riefs,
denen von Savary'), von Hankel u. A. in ein klares Licht $\mathbf{z u}$ setzen.
> VII. Ueber die Zersetzung des chlorsauren Kalis bei niederer Temperatur durch Braunstein, eine sogenannte katalytische Erscheinung; con Dr. E. Wiederhold,
> Lehrer an der höberen Gewerbeschule in Cassel.

Wenn man chlorsaures Kali erhitzt, so schmilzt dasselbe bei einer Temperatur, die uber $350^{\prime \prime}$ C. liegt und zersetzt sich bei einem noch höher liegenden Wärmegrade unter Abgabe von Sauerstoff. Wird die Temperatur nicht weiter gesteigert, so besteht die alsdann zähflüssig gewordene Masse aus einem Gemenge von überchlorsaurem Kali und Chlorkalium. Erst bei erhöhter Wärnezufuhr tritt cine völlige Zersetzung ein, unter Freiwerden der Gesammtmenge des Sauerstoffs. Mischt man dagegen zu dem chlorsauren Kali ein gleiches Volumen gepulverten Braunstein, so tritt schon bei gelindem Erhitzen eine vollkommene Zersetzung ein, die unter Unständen mit einer Licht - und Wärmeentwicklung verbunden ist, ohne dafs man eine intermediäre Bildung von überchlorsaurem Kali nachweisen könnte. Diese Thatsache wurde meines Wissens zuerst von Döbereiner

1) In der Veröffentichung von Savary, wo allerdings von Oscillationen die Rede ist, war es mir nicht möglich, wie Hr. v. Oettingen, die Vorstellung abwechselad enigegengesetzier Ströme zu finden.

Schlieflich noch folgende Berichtigungen zu meiner früheren Abhandlung Bd. CXIII dies. Annalen
S. 4.38 Z 1 stat: eigenthümliche lies: irrthümliche.
S. 438 Z. 26 statt: Bewegung lies: Belegung
S. 141 Z. 17 statt: Beobachtungsreihe lies: Beobachtungsweise
S. 445 Z 34 statt: Flasche lies: Fläche
S. 446 Z 12 statt: ziemlich lies: zugleich
S. 453 Z. 10 statt: Funkenschweife lies: die lichatarken Theile der Funkensrhweife
S. 453 Z. 10 statt: $\frac{1}{2}$ bis 1 Decimeter lics: gegen 3 Centimeter

$$
\text { Digitized by } \mathrm{GOOg}
$$

. Inn .d. Miys.u. Chem.Bd.CXVI.St.I.
Digitized by $\pi O O g l e$

Ann. d.Phÿs. u. Chem. Bd. 116 St. 3.

-
Digitized by GOOgle

[^0]: 1) Bei dem Gange meiner eignen Untersuchungen mufs ich auf diese Schluffolgerungen ein besonderes Gewicht legen, da sie mich auf eine bis dahin noch nicht weiter bestätigte Theorie führten, bevor Mr. Dr. Paalıow seine Beobachtungen an den Geifaler'schen Röhren usw.
[^1]: gemacht batte, bevor ich wufste, dafs die Theilung des Entladungsstromes 2wischen 2wei Paaren ungleicher Polfächen im lufiverdünnten Raume (diese Annalen Bd. CXV S. 336) so eclatante Resultate liefern kann.

 1) Auch für Blei and Silber erhielt ich diesem entsprechende Bilder, allein die Unterschiede waren nicht so frappant wie beim Zinn.
[^2]: 1) Dafs diese Erscheinungen nicht etwa nur von dem die Oeffnung umkleidenden Schellack oder Kautschuck herrühren, beweist der Umstand, dafs ich ähnliche Unterschiede, freilich nicht so scharf und präcisc, auch dann häufig benbachtet habe, wenn die Kugeln der Pole frei waren, oder wenn Drähte die Pole bildeten.
 2) VVenn die Anwendong von Drähten statt der nackten Kugeln eive ähnliche Figar lieferte, so schien mir die Lichtintensität im Ganzen doch für Drähte bei Entladung nahe derselben Elektricitätsmenge gröfser zu seyn, als für nicht überzogene Kugeln aus demselben Material.
[^3]: meistens von dem mittleren Werthe, welcher der Anordnung des Entladungsapparates entsprach, abweichend. Uebrigens waren die Abweichungen in der Quantitat der entladenen Elektricitätsmenge unter sonst gleichen Umständen nicht sehr grofs.

 1) Genau genommen waren meistens nur die gegenüber stehenden Kuppen der Kugeln aus dem bezeichneten Material.
[^4]: Poggendorffs Annal. Bd. CXVI.

[^5]: 1) WVenn man sieht, dafs es mir auch gelungen ist, die continuirliche Entladung charakteristisch $z u$ photographiren, so mufs ich doch beroerken, dafs es sich nur bei Anwendung grofser Elekiricitätsmengen erreichen liefs.
 2) Diese Annalen Bd. CVIII S. 497 u. f.
