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1. Introduction 
Seebeck discovered that heating junction of loop composed of dissimilar metals can deflect a 

compass in the middle in 1821. Although he did not really notice a voltage hence current was 

actually generated, the phenomenon is named after him – the Seebeck Effect. 

Joseph Henry was the first one who predicted the production of sparks by thermoelectricity with 

connection to ribbon coil. In his lecture on Natural Philosophy in College of New Jersey, he 

demonstrated the production of sparks with the use of a thermoelectric battery. The battery was 

kept as an artifact left in Physics Department of Princeton University. From the description in 

student notebook in his course, the thermoelectric battery is heated from above by a hot iron and 

cooled from below by freezing mixture to produce a spark. 

 

Figure 1 Thermoelectric battery of Joseph Henry 

 

Figure 2 Student Notebook by Daniel Ayres Jr. 

The thermoelectric battery is made of 25 pairs of bismuth and antimony plates connected in a zig-

zag manner with paper intervening each pair. 



REACH Program 2015, Princeton University  Lee Wing Hang Randall 

A study to understand the situation when Joseph Henry did the experiment is done. For example, 

we want to know what was the voltage created and what coil is needed for production of a spark. 

The study began with theoretical deduction, free electron gas theory is again verified to be bad 

theory to explain the seebeck effect. The method to arrive at the Mott Expression of thermopower 

by Boltzmann Transport Equation is reviewed as well. Study with nearly free electron and 

semiclassical transport theory would be time-consuming. Collection of experimental data is 

therefore carried out to deduce the seebeck voltage produced at that time. 

2. Experimental Determination 
The artifact should not be harmed with extreme temperature for historical purposes. Therefore, 

relevant data regarding the of study on seebeck coefficients of bismuth and antimony are collected 

from reliable sources. A uniform temperature gradient is assumed so that the seebeck coefficient 

at certain temperature difference is determined by an average (integration of seebeck coefficient 

over temperature).  

Data are collected from papers cautiously and a fitting equation was created for each data set. The 

data from G.A. Saunders and O. Oktu (1967) showed clear experimental measurement regarding 

thermopower of antimony. The data are reproduced for analysis as below.  

 

Figure 3 Curve Fitting of Antimony Data (y: Thermopower uV/K, x: Temperature K) 
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Figure 4 Curve Fitting of Antimony with labels 

For Bismuth, since the absolute thermopower (reference to platinum) is not available. However, 

The data for bismuth thermopower relative to copper and absolute thermopower of copper were 

found. So The difference between the two was used to compute the absolute thermopower of 

bismuth. 

 

Figure 5 Curve Fitting of Bismuth Data (copper as reference, y: Thermopower uV/K, x: Temperature K) 
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Figure 6 Fitting of Copper Data (, y: Thermopower uV/K, x: Temperature K) 

Fitting equations were created for each curve. The difference between the fitting equations on 

figure 5 and figure 6 was used to model the absolute thermopower. The computation made on 

matlab explains it. 

 

Figure 7 Computation for Seebeck Voltage created for connecting 25 pairs of bismuth and antimony 

Reference for this section: 

The Seebeck Coefficient of Bismuth Single Crystals, B.S. Chandrasekhar (1959) 

Seebeck effect in heavy rare earth single crystals, P40, Larry Robert Sill (1964) 

The Seebeck Coefficient and the Fermi Surface of Antimony Single Crystals, G.A. Saunders and O. Oktu (1967) 
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3. Free Electron Gas Model 
This model includes both free electron assumption and independent electron assumption. That 

means we assume no electron-ion and electron-electron interactions. With this simple model, the 

relationship between seebeck effect and temperature is sought. 

3.1 Drude Theory 
In 1900, Paul Drude applied the Boltzmann’s kinetic theory of free gases to study the motion 

within a metal. There are three main assumptions regarding the Drude Theory.  

1. Electrons have a scattering time τ. The probability of scattering within a time interval dt is 

dt/Ű. 

2. Electron returns to momentum p = 0 after scattering (p as a vector so on average, it vanishes) 

3. In between scattering events, the electrons are subjected to Lorentz force. 

So the expectation of p after dt can be written as: 

▬ὸ Ὠὸ  ρ
Ὠὸ

†
▬ὸ ╕Ὠὸ Ὠὸ 

F is the Lorentz force which is –e(E + v x B). (1-dt/τ) is the probability that the electron is not 

scattered so that the resultant momentum changed by the Lorentz Force. If the electron is scattered 

(with probability dt/τ), the resultant momentum is 0 (with assumption 2). The term with dt2 is 

dropped and therefore we have, 
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╕
▬

†
 

which is a first order differential equation with respect to p, so we expect 

▬ ═Ὡ Ⱦ  

where A is some initial value for momentum. 

Under only the influence of electric field, current density can be expressed as 

▒ Ὡὲ○ 

with e as charge of carrier, n as the charge density per unit volume of solid and v as the drift 

velocity of electron. At steady state, dp/dt is zero, so we have 
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with conductivity ϭ = -e2nτ/m.  
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Because electrons move only due to electric field according to Drude Model (neglected chemical 

potential, charge concentration), voltage difference along the metal is the electrical potential. 

Seebeck Coefficient is defined as the electric field created caused by temperature gradient. 

╔ ὗ​╣ 

where Q is the thermopower / Seebeck Coefficient. 

Consider a one-dimensional model of metal bar. The mean electronic velocity at a point x due to 

the temperature gradient is  
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Generalizing to 3D we have: 
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For equilibrium under no current flowing, vq + ve = 0: 
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where c is the heat capacity for the electron gases. Classically, c is 3nk/2 where k is the Boltzmann 

Constant. So the value of Q: 
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The Drude model makes no sense in explaining the seebeck effect as it is saying that the 

thermopower is a universal constant for any materials. 

Reference of this section: 

Solid States Physics, Ashcroft/Mermin, Chapter 1 

The Oxford Solid State Basics, Steven H. Simon, Chapter 3 

3.2 Sommerfeld Theory 
Sommerfeld incorporated the Fermi Statistics into the Drude’s Theory of metal. 

Since we consider free electron gas, the Hamiltonian only needs not to include the potential part 

(which is one of the reason the Sommerfeld model does not explain well since electrons in lattice 

experience periodic potential). The time-independent Schrodinger Equation is: 
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with periodic boundary condition, 
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ʕØȟÙ ,Ùȟᾀ ʕØȟÙȟᾀ 
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where L’s are the dimensions of solid. 

The periodic boundary condition gives the quantum confinement of the system. That makes k, the 

wave vector, to be 2πn/L, where n is integer for the 3 dimensions. Volume of one cell in the k-

space is 8π3/L. So the k-space density is V/8π3 where V is the volume of solid.  

The Fermi Function tells us the probability of a state at certain energy being occupied by fermions 

(electrons). 
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Because of having 2-spin in one state, so the number of electrons is 
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So the electron density per unit volume 
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And the energy density is 
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For free electrons, the energy is simply related to its momentum by 
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And for large k, the volume in k-space forms a sphere, so we can rearrange the integrals in this 

way 
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where g(ε) is the density of states per unit volume per small interval of energy. 
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Evaluating the integral for electron density yields 
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And by differentiating the integral for energy density we get the specific heat of the electron gas 
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Using this equation of specific heat for the thermopower Q considered in the Drude Model, we 

have 
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Since the thermopower is temperature dependent now, the writer of this report applied the 

Sommerfeld theory to bismuth and antimony and compared the results with the experimental data 

in Section 2 of this report. It was found that free electron gas theory works badly for Seebeck 

Effect prediction.  

The fermi energies εF of bismuth and antimony are 9.90 eV and 10.9 eV respectively. So the 

computation is simple to compute from the equation of Q above 

 

Figure 8 Computation of thermopower of Bismuth and Antimony 
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Figure 9 Sommerfeld Theory prediction on thermopower of bismuth and antimony 

The Sommerfeld model predicts a linear relationship between thermopower and temperature, 

which is not what we observed (see figure 4 and 6). Only fermi energies of metals affect the 

thermopowers. And this theory does not explain positivity of antimony thermopower. 

Reference of this section: 

Solid States Physics, Ashcroft/Mermin, Chapter 2 

The Oxford Solid State Basics, Steven H. Simon, Chapter 4 

4. Semi-Classical Transport Theory 
The semi-classical transport theory, which is derived from Boltzmann Equation, is credible for 

predicting thermoelectric parameters and the theoretical derived result matches the Law of 

Widedemann and Franz. The derivation for the seebeck coefficient from semi-classical transport 

can be referenced to a passage named: Charge and Heat Transport Properties of Electrons. Here 

we extracted the part related to Seebeck Effect. 

Consider an electron under a small electric field, temperature gradient, and concentration gradient 

along the conductor. Consider an infinitesimal point at Z. At this point, the distribution function 

of electrons is f, and the number of electrons with an energy between E and E+dE is fD(E)dE 

(where D(E) is the density of states per unit of energy, so D(E)dE gives the number of states within 

the small energy range). Since the electric field, temperature gradient and concentration gradient 

are small, these electrons will have almost the same probability to move toward any direction. Also 

because the solid angle of a sphere is 4p, the probability for an electron to move in the (q, f) 
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direction within a solid angle dW (= fqq ddsin ) will be dW/4p. A charge q ( = -e for electrons and 

+e for holes) moving in the (q, f) direction within a solid angle dW causes a charge flux of qvcosq 

and energy flux Evcosq along the conduction, where q is defined as the angle between the velocity 

vector and along the conduction. Hence, the charge flux and energy flux in the Z direction carried 

by all electrons moving toward the entire sphere surrounding the point are respectively 
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With the relaxation-time approximation, the Boltzmann Transport Equation for electrons take the 

following form: 
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where q=-e for electrons and +e for holes. For the steady state case with small 

temperature/concentration gradient and electric field only, the variation of the distribution function 

in time is much smaller than that in space, or fv
t

f
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temperature gradient and electric field is small so that the deviation from equilibrium distribution 
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The equilibrium distribution of electrons is the Fermi-Dirac distribution 
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wherem is the chemical potential that depends strongly on carrier concentration and weakly on 

temperature (See section 4.2 for the Sommerfeld theory) temperature. Both E and m are measured 

from the band edge (e.g. EC, for the bottom of conduction bands). This reference system essentially 

sets EC = 0 at different locations although the absolute value of EC measured from a global 

reference varies at different location as shown in Fig. 6.9b in Chen (m=EF in Chen, (Nanoscale 

Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and 

Photons).  In this reference system corresponding to Fig. 6.9b in Chen, the same quantum state k
C

= (kx, ky, kz) has the same energy 
m
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 at different locations. 
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Hence this reference system yields the gradient 0)( =Ð kE
C

(the writer of this report interprets it as 

constant band structure), simplifying the following derivation. If we use a global reference level 

as our zero energy reference point as in Fig. 6.9a in Chen, the same quantum state k
C

= (kx, ky, kz) 

has different energy C
zyx

E
m

kkk
kE +

++
=

2

)(
)(

2222>C
because EC changes with locations. In this case,

0)( ¸Ð=Ð CEkE
C

, making the following derivation somewhat inconvenient. However, both 

reference systems will yield the same result.  

From eq. 4, 

 
Tkd

df

Ed

df

E

f

B

1000

h

h

h
=

µ

µ
=

µ

µ
     Ą        

E

f
Tk

d

df
B
µ

µ
= 00

h
                    (5) 

From eq. 5, 
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Also because 0)( =Ð kE
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 for the reference system that we are using, from (4) 
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From eqs. 6-7, 

)(0
0 T

T

E

E

f
f Ð

-
+Ð

µ

µ
-=Ð

m
m                                                 (8) 

Combine eqs. 3 and 8, we obtain 
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Note that  

                                                                     (10) 

where ej is the electrostatic potential (also called electrical potential, which is the potential 

energy per unit of charge associated with a time-invariant electric field E
C

);  

From eqns. 9-10, we obtain 
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From eqn. 11, we obtain 

eE j-Ð=
C
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where eqjm+=F , is the electrochemical potential that combines the chemical potential and 

electrostatic potential energy (two reasons to flow of carriers, diffusion current is the part that 

caused by chemical potential). Electrochemical potential is the (total) driving force for current 

flow, which can be caused by the gradient in either chemical potential (e.g. due to the gradient in 

carrier concentration) or the gradient in electrostatic potential (i.e. electric field). When you 

measure voltage VD across a solid using a voltmeter, you actually measured the electrochemical 

potential difference DFper unit charge between the two ends of the solid, i.e. qV /DF=D . If 

there is no temperature gradient or concentration gradient in the solid, the measured voltage equals 

ejD .  

In the current case all the gradients and E
C

are in the Z direction, so from eq. 12,  
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Combine eqns. 1 and 13, we obtain the charge flux and energy flux respectively 
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 Note that the first term in the right hand of eqn. 14 side is zero and the second term yields 
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Note that 
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Use eqn. 16 to eliminate v in eq. 15, we obtain 
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The energy flux from Eq. 17b can be broken up into two terms as following  
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where JZ is the current density or charge flux given by eq. 17a. At temperature T = 0 K, the first 

term in the right hand side of eq. 18 is zero, so that the energy flux at T = 0 K is 
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Because electrons don’t carry any thermal energy at T = 0 K, the thermal energy flux or heat flux 

carried by the electrons at T ≠ 0 is 
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Equations 17a and 20 can be rearranged as  
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where  
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Writer of this report remarks that this is the Onsager Relation (Coupled Current Equation). 

Electrical conductivity:  

In the case of zero temperature gradient and zero chemical potential, 0=
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The electrical conductivity is defined as  
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Equation 24 will be simplified further in the following section on Wiedemann-Franz law. 

Seebeck Coefficient: 

In the case of non-zero temperature gradient along the Z direction (along the conductor), a 

thermoelectric voltage can be measured between the two ends of the solid with an open loop 

electrometer, i.e. 0=ZJ (Seebeck voltage is measured when there is not electrical flow). Hence 

from eq. 21a we obtain 
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As discussed above, the voltage that the electrometer measure between the two ends of the solid 

is qV /DF=D . Similarly, qddV /F= . The Seebeck coefficient is defined as the ratio between 

the voltage gradient and the temperature gradient for an open loop configuration with zero net 

current flow 
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Combine eq. 27, 24, and 21 a, we can write )()
1
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The scattering mean free time depends on the energy, and we can assume 

rE0tt=                                                        (28) 

where t0 is a constant independent of E. 

When E is measured from the band edge for either electrons or holes, the density of states 
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Combine eqns. 27 & 29 
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The integrals in Eq. 30 can be simplified using the product rule 

dEEfsdEEfsEfdEE
E

f

E

s

E

ss

E

s
ñ-=ñ-=ñ

µ

µ ¤

=

-
¤

=

-¤
¤

= 0

1
0

0

1
000

0

0 |                          (31) 

Using eq. 31 to reduce eq. 30 to 
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The two integrals in eq. 32 can be simplified with the reduced energy BTkE /=z   
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where the Fermi-Dirac integral is defined as  
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Use Eq. 33 to reduce eq. 32 to  
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Seebeck coefficient for metals: 

For metals with 0/ >>= TkBmh , the Fermi-Dirac integral can be expressed in the form of a 

rapidly converging series 
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If we use only the first two terms of eq. 36 to express the two Fermi-Dirac integrals in eq. 35, we 

obtain the following (q = -e for electrons in metals) 



REACH Program 2015, Princeton University  Lee Wing Hang Randall 

)
2

3
)((

3

2

32

3

62

3

2

52

5

62

1

2

32

3

)(
2

3

)(
2

5
)(

2

3

)(
2

3

)(
2

5

2

2/3

2
2/1

2/52
2/1

2/3

2/1

2/32/1

2/1

2/3

r
Tk

e

k

r

r

r

r

rr

r

r

e

k

Fr

FrFr

e

k

Fr

Fr

q

k
S

BB

r

r
r

r
r

B

r

rr
B

r

r
B

+-=

ö
ö
ö
ö
ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ
æ
æ
æ
æ

ç

å

+

ö
÷

õ
æ
ç

å
+

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
++

+

ö
÷

õ
æ
ç

å
+-

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
++

+

ö
÷

õ
æ
ç

å
+

=

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
+

ö
÷

õ
æ
ç

å
+-ö

÷

õ
æ
ç

å
+

=

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

ö
÷

õ
æ
ç

å
+

ö
÷

õ
æ
ç

å
+

--=

+

+
+

-
+

+

++

+

+

m

p

h

p
h

hp
h

h
h

h

hhh

h

h

h

 (37) 

Note that this is the Mott Expression for seebeck coefficient of metals. 

This value can be either positive or negative depending on r, or how the scattering rate depends 

on electron energy. We can ignore the weak temperature dependence of m and assume m = EF, the 

Fermi level that is the highest energy occupied by electrons at 0 K in a metal.  

To apply the theory of semiclassical transport, the band structure of bismuth and antimony need 

to be obtained. Scattering data (form factor) and crystal structure need to be understood in advance 

to that. The writer of this report will put it in another document for detailed analysis 

Reference of this section: 

Charge and Heat Transport Properties of Electrons, Li Shi, University of Texas at Austin 

 


