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1. Introduction

Seebeck discovered that heating junction of loop composed of dissimilar metals can deflect a
compass in the middle in 1821. Although he did not really notice a voltage hence current was
actually generated, the phenomenon is named after him — the Seebeck Effect.

Joseph Henry was the first one who predicted the production of sparks by thermoelectricity with
connection to ribbon coil. In his lecture on Natural Philosophy in College of New Jersey, he
demonstrated the production of sparks with the use of a thermoelectric battery. The battery was
kept as an artifact left in Physics Department of Princeton University. From the description in
student notebook in his course, the thermoelectric battery is heated from above by a hot iron and
cooled from below by freezing mixture to produce a spark.

Figure 1 Thermoelectric battery of Joseph Henry

Figure 2 Student Notebook by Daniel Ayres Jr.

The thermoelectric battery is made of 25 pairs of bismuth and antimony plates connected in a zig-
zag manner with paper intervening each pair.
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A study to understand the situation when Joseph Henry did the experiment is done. For example,
we want to know what was the voltage created and what coil is needed for production of a spark.
The study began with theoretical deduction, free electron gas theory is again verified to be bad
theory to explain the seebeck effect. The method to arrive at the Mott Expression of thermopower
by Boltzmann Transport Equation is reviewed as well. Study with nearly free electron and
semiclassical transport theory would be time-consuming. Collection of experimental data is
therefore carried out to deduce the seebeck voltage produced at that time.

2. Experimental Determination

The artifact should not be harmed with extreme temperature for historical purposes. Therefore,
relevant data regarding the of study on seebeck coefficients of bismuth and antimony are collected
from reliable sources. A uniform temperature gradient is assumed so that the seebeck coefficient
at certain temperature difference is determined by an average (integration of seebeck coefficient
over temperature).

Data are collected from papers cautiously and a fitting equation was created for each data set. The
data from G.A. Saunders and O. Oktu (1967) showed clear experimental measurement regarding
thermopower of antimony. The data are reproduced for analysis as below.
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Figure 3 Curve Fitting of Antimony Data (y: Thermopower uV/K, x: Temperature K)
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Figure 4 Curve Fitting of Antimony with labels

For Bismuth, since the absolute thermopower (reference to platinum) is not available. However,
The data for bismuth thermopower relative to copper and absolute thermopower of copper were
found. So The difference between the two was used to compute the absolute thermopower of

bismuth.
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Figure 5 Curve Fitting of Bismuth Data (copper as reference, y: Thermopower uV/K, x: Temperature K)
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Figure 6 Fitting of Copper Data (, y: Thermopower uV/K, x: Temperature K)

Fitting equations were created for each curve. The difference between the fitting equations on
figure 5 and figure 6 was used to model the absolute thermopower. The computation made on
matlab explains it.

o Editor- C\Users\Randal\Desktop\Dropbox\HKUST\Princeton REACH\Bismuth and Antimony\Experimental Analysis\CalculationOfSeebeckVoltage.m

File Edit Tet Go Cell Tools Debug Desktop Window Help
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@ This file uses Cell Mode. For inf ion, see the rapid code iteration video, the publishing video, or help.
3= X = sym('x"');
2= a = -0.0002973*x"2 + 0.2771*x - 8.189;; % fitting of Absolute Thermopower of Antimony from data collection
3= bc = -9.524e-05*x"2 + 0.1306*x - 100.5; % fitting of Bismuth-Copper Thermopower
4 = c = —-3.424e-19*x"9 + 5.256e-16*x"8 — 3.434e-13*x"7 + 1.242e-10*x"6 — 2.709e-08*x"S ...
5 + 3.616e-06*x"4 - 0.0002843*x"3 + 0.01166*x"2 - 0.1699*x + 0.2845; % fitting of Absolute Thermopower of Copper
6 % Set up the absolute thermopower
= b =Dbc - c;
8 %% Find Average Seebeck Coefficient assuming constant temperature gradient
9 % between 273.15 K to 373.15 J
10 % For Bismuth
2 = SBi = int(b,273.15,373.15) / 100;
12 % For Antimony
3= S5b = int(a,273.15,373.15) / 100;
14 %% Seebeck Voltage created by Joseph Henry in Lecture
15 % With 25 pairs
16 - SV = (SBi - SSb) * 25 * 10~-6; %in Volts
s 4k double (SV)

Figure 7 Computation for Seebeck Voltage created for connecting 25 pairs of bismuth and antimony

Reference for this section:

The Seebeck Coefficient of Bismuth Single Crystals, B.S. Chandrasekhar (1959)

Seebeck effect in heavy rare earth single crystals, P40, Larry Robert Sill (1964)

The Seebeck Coefficient and the Fermi Surface of Antimony Single Crystals, G.A. Saunders and O. Oktu (1967)
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3. Free Electron Gas Model

This model includes both free electron assumption and independent electron assumption. That
means we assume no electron-ion and electron-electron interactions. With this simple model, the
relationship between seebeck effect and temperature is sought.

3.1 Drude Theory
In 1900, Paul Drude applied the Boltzmann’s kinetic theory of free gases to study the motion
within a metal. There are three main assumptions regarding the Drude Theory.

1. Electrons have a scattering time t. The probability of scattering within a time interval dt is
di/t.

2. Electron returns to momentum p = 0 after scattering (p as a vector so on average, it vanishes)

3. In between scattering events, the electrons are subjected to Lorentz force.

So the expectation of p after dt can be written as:
dt
< p(t+db) > = (1 - ?) (p(t) + Fdt) + 0dt

F is the Lorentz force which is —e(E + v x B). (1-dt/t) is the probability that the electron is not
scattered so that the resultant momentum changed by the Lorentz Force. If the electron is scattered
(with probability dt/t), the resultant momentum is 0 (with assumption 2). The term with dt? is
dropped and therefore we have,

which is a first order differential equation with respect to p, so we expect

p =Ae /"

where A is some initial value for momentum.
Under only the influence of electric field, current density can be expressed as
j = —env
with e as charge of carrier, n as the charge density per unit volume of solid and v as the drift
velocity of electron. At steady state, dp/dt is zero, so we have
mv
F=—ee=2=""
T T
eEt

vV=——o

with conductivity 6 = -e?nt/m.
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Because electrons move only due to electric field according to Drude Model (neglected chemical
potential, charge concentration), voltage difference along the metal is the electrical potential.
Seebeck Coefficient is defined as the electric field created caused by temperature gradient.

E =QVT
where Q is the thermopower / Seebeck Coefficient.

Consider a one-dimensional model of metal bar. The mean electronic velocity at a point x due to
the temperature gradient is

2

1 v dE)
vg = [v(x —vr) —v(x +v1)] = =T

Generalizing to 3D we have:

td(w?)  td(®?)
6 dx 6 dT

For equilibrium under no current flowing, vg + ve = 0:

B ( 1 ) d (mv?\ ¢
=G\ 7)) e
where c is the heat capacity for the electron gases. Classically, ¢ is 3nk/2 where Kk is the Boltzmann
Constant. So the value of Q:

ve = VT

Q=- o5 which is a constant

The Drude model makes no sense in explaining the seebeck effect as it is saying that the
thermopower is a universal constant for any materials.

Reference of this section:
Solid States Physics, Ashcroft/Mermin, Chapter 1
The Oxford Solid State Basics, Steven H. Simon, Chapter 3

3.2 Sommerfeld Theory
Sommerfeld incorporated the Fermi Statistics into the Drude’s Theory of metal.

Since we consider free electron gas, the Hamiltonian only needs not to include the potential part
(which is one of the reason the Sommerfeld model does not explain well since electrons in lattice
experience periodic potential). The time-independent Schrodinger Equation is:

h? (0% 9% 09°?
_%<ax2 + 377 + aZZ>L|J(r) = eyi(r)

with periodic boundary condition,

L|J(X, y.z + LZ) = lp(X, Y Z)
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Y(xy+Ly,z) =Y(xy,2z)
where L’s are the dimensions of solid.

The periodic boundary condition gives the quantum confinement of the system. That makes k, the
wave vector, to be 2zn/L, where n is integer for the 3 dimensions. Volume of one cell in the k-
space is 8n°/L. So the k-space density is V/8x® where V is the volume of solid.

The Fermi Function tells us the probability of a state at certain energy being occupied by fermions
(electrons).

1
(&) = e 1

Because of having 2-spin in one state, so the number of electrons is

© y
1v=2f0 55 f(e() dk

So the electron density per unit volume

°°f(€(’;)) ik

And the energy density is

[ fe)
), 4m3

e(k) dk

For free electrons, the energy is simply related to its momentum by

And for large k, the volume in k-space forms a sphere, so we can rearrange the integrals in this
way

fe(k) kzdkf (S(k))
-fo 43 k= f

f deg(e)f ((K))
0
u= f deg(e)ef (e (K))

0

where g(¢) is the density of states per unit volume per small interval of energy.

m 2me
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Evaluating the integral for electron density yields

TL'Z
— (kgT)?g(er) 1 (kT
-6 = ¢ep(1 __(7T ) )

U =¢&F 3

g’(gF) 28F

And by differentiating the integral for energy density we get the specific heat of the electron gas

nZ

ou 5 m? kgT
Cy = (ﬁ)n = ?kBTg (ep) = > (?)les

Using this equation of specific heat for the thermopower Q considered in the Drude Model, we
have

w2 (kgT
o T(E)nks w2 gt gy

- _ - _ F — (2 L
0= 3ne 3ne B 6(8F)(e)

Since the thermopower is temperature dependent now, the writer of this report applied the
Sommerfeld theory to bismuth and antimony and compared the results with the experimental data
in Section 2 of this report. It was found that free electron gas theory works badly for Seebeck
Effect prediction.

The fermi energies er of bismuth and antimony are 9.90 eV and 10.9 eV respectively. So the
computation is simple to compute from the equation of Q above

File Edit Tet Go Cell Tools Debug Desktop Window Help ¥|lax
Dl sRB20 | o2-Aef|R-E0RRRB@E|s. ¢ i Ov
BiE| -0 [+ ]| =11 x | ¥ ¥ | O
f'i\‘ This file uses Cell Mode. For information, see the rapid code iteration video, the publishing video, or help. X
I 1 %% Sommerfeld model for Bismmth and Antimony for Seebeck Coefficient D
2 B EpsilonFSb = 10.9 * 1.602176565 * 10-19;
= = EpsilonFBi = 9.9 * 1.602176565 * 10-19;
4 - kB = 1.3806488 * 10-23;
| == ec = 1.60217657 * 10-19;
| &
= T = linspace (0, 700, 701);
g
9 — QSb = -pi~*2/6 * (kB/ec) * (kB * T / EpsilonFSb);
10 — QBi = -pi~2/6 * (kB/ec) * (kB * T / EpsilonFBi):
11
12 — figure
T = plot (T,Q0Sb,'--',T,0Bi,":")
14 - legend (' Thermopower o ntimony Thermopow of Bismuth'
15 - xlabel ('Temp K
16 — yvlabel ('Seebeck Coe -
17

Figure 8 Computation of thermopower of Bismuth and Antimony
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Figure 9 Sommerfeld Theory prediction on thermopower of bismuth and antimony

The Sommerfeld model predicts a linear relationship between thermopower and temperature,
which is not what we observed (see figure 4 and 6). Only fermi energies of metals affect the
thermopowers. And this theory does not explain positivity of antimony thermopower.

Reference of this section:
Solid States Physics, Ashcroft/Mermin, Chapter 2
The Oxford Solid State Basics, Steven H. Simon, Chapter 4

4. Semi-Classical Transport Theory

The semi-classical transport theory, which is derived from Boltzmann Equation, is credible for
predicting thermoelectric parameters and the theoretical derived result matches the Law of
Widedemann and Franz. The derivation for the seebeck coefficient from semi-classical transport
can be referenced to a passage named: Charge and Heat Transport Properties of Electrons. Here
we extracted the part related to Seebeck Effect.

Consider an electron under a small electric field, temperature gradient, and concentration gradient
along the conductor. Consider an infinitesimal point at Z. At this point, the distribution function
of electrons is f, and the number of electrons with an energy between E and E+dE is fD(E)dE
(where D(E) is the density of states per unit of energy, so D(E)dE gives the number of states within
the small energy range). Since the electric field, temperature gradient and concentration gradient
are small, these electrons will have almost the same probability to move toward any direction. Also
because the solid angle of a sphere is 4, the probability for an electron to move in the (6, ¢)
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direction within a solid angle dQ (= sin dd&d¢) will be dQ/4r. A charge q ( = -e for electrons and

+e for holes) moving in the (6, ¢) direction within a solid angle d© causes a charge flux of qvcos6
and energy flux Evcos6 along the conduction, where 6 is defined as the angle between the velocity
vector and along the conduction. Hence, the charge flux and energy flux in the Z direction carried
by all electrons moving toward the entire sphere surrounding the point are respectively

- 192 f(D(E)aveoso)tE = | - dg fsinocosato | DENME (1)
4”4 EZ0 ¢= 0472' 0=0 E=0
- jd—Q [(D(E)(EveosO)dE = | —-dg fsinocosale | D(E)EVEE (L)
TE_o $= 0472' =0 E=0

With the relaxation-time approximation, the Boltzmann Transport Equation for electrons take the
following form:

q+\70Vf +qE01: fo— T
ot op

()

T

where q=-e for electrons and +e for holes. For the steady state case with small
temperature/concentration gradient and electric field only, the variation of the distribution function

in time is much smaller than that in space, or % << Ve Vf , sothat we can assume % ~0. The

temperature gradient and electric field is small so that the deviation from equilibrium distribution
o Ao _ Mo dE G0 \vith these

fo is small, i.e. f,— f <<f,, so we have Vf ~Vfj, and —
8p op oE dp aE

assumptions, egn. 2 becomes

o[V +GE S0]= 00 ©
The equilibrium distribution of electrons is the Fermi-Dirac distribution
—~ 1 1 E-
fo(k) = = n=——F (4)

expEO =y o)1 keT
kgT
where x4 is the chemical potential that depends strongly on carrier concentration and weakly on
temperature (See section 4.2 for the Sommerfeld theory) temperature. Both E and x are measured
from the band edge (e.g. Ec, for the bottom of conduction bands). This reference system essentially
sets Ec = 0 at different locations although the absolute value of Ec _measured from a global
reference varies at different location as shown in Fig. 6.9b in Chen ( «=EFr in Chen, (Nanoscale
Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and
Photons). In this reference system corresponding to Fig. 6.9b in Chen, the same quantum state k

. . R (kG +kZ+k2) .
= (kx, ky, kz) has the same energy E(k) =E(k) -E¢ = o at different locations.
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Hence this reference system yields the gradient VE (k) = O (the writer of this report interprets it as
constant band structure), simplifying the following derivation. If we use a global reference level
as our zero energy reference point as in Fig. 6.9a in Chen, the same quantum state K = (k, Ky, kz)
1 (kg +kJ +k7)

2m
VE(K) = VEc #0, making the following derivation somewhat inconvenient. However, both
reference systems will yield the same result.

has different energy E (k) = + E¢ because Ec changes with locations. In this case,

From eq. 4,
Ay _dioon_dfg 1 dy_ )
OE dnoE dnkgT dn oE
From eq. 5,
df of
Vig=—2Vn=kgT =2V 6
0 dn =Kg o n (6)
Also because VE(k) =0 for the reference system that we are using, from (4)
1 —~ E-u 1 E-u
Vn=—-(VE()-Vu)- VT =- Vu-— VT 7
1=t (VEE -V o Ve ™
From egs. 6-7,
of E-—u
Vig=——2(Vu+ VT 8
0 =g (Vu+=—5VT) ®)
Combine egs. 3 and 8, we obtain
_ E - M — 8f0 fo - f
Ve[-Vu——EVT +gE] =2 =0 — 9
o[-Vu T qE] E )
Note that
E-= Ve (10)
where ¢, is the electrostatic potential (also called electrical potential, which is the potential
energy per unit of charge associated with a time-invariant electric field E );
From egns. 9-10, we obtain
_ E—u ofg fo—f
Ve[-Vu—-—=VT -V, ] — = 11
[-Vu T aVee] oE (11)

From eqn. 11, we obtain
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_ E-u
f="f—Ve[-VO-—=VT 12
0 [ = ] aE (12)
where @ = u+qe,, is the electrochemical potential that combines the chemical potential and

electrostatic potential energy (two reasons to flow of carriers, diffusion current is the part that
caused by chemical potential). Electrochemical potential is the (total) driving force for current
flow, which can be caused by the gradient in either chemical potential (e.g. due to the gradient in
carrier concentration) or the gradient in electrostatic potential (i.e. electric field). When you
measure voltage AV across a solid using a voltmeter, you actually measured the electrochemical
potential difference Ad per unit charge between the two ends of the solid, i.e. AV =A®/q. If
there is no temperature gradient or concentration gradient in the solid, the measured voltage equals

A@,.

In the current case all the gradients and E are in the Z direction, so from eq. 12,

f= fo—wcose[—d—ﬂ—ud—TJrqEz]%: fo—zvcose[—di)—ud—-r %o
dz T dz oE dz T dZ° ¢E
(13)
Combine egns. 1 and 13, we obtain the charge flux and energy flux respectively
j —d¢5 jsm 6 cos&do ijD(E)quE
4=047 -0 E=0
] g (14a)
+ j id(;ﬁ jsmecos Ao j =9 p(E)qv? ( ﬂ E-pdl —qE,)dE
p= 0472' 6=0 =0 oE T dZ
and
j 4—d¢ jsm @cosd o jfoD(E)EVdE
T
$=0 6=0 E=0 d d (14b)
+ j id¢ [sin @cos® ado j 20 D(E)Ev? o ” LECAAT e yaE
p= 0472' 6=0 =0 OE T dz
Note that the first term in the right hand of eqn. 14 side is zero and the second term yields
17 ofy d,u E—pdl
== D(E)qv E,)dE 15a
J, 3£ (E)av? (1 @z 9 (15a)
1 < d E dT
Ez"g j D(E)Ev o “ T/jdz qE,)dE (15b)

Note that

E :%mvz (16)
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Use egn. 16 to eliminate v in eq. 15, we obtain
_2q9 7 oy d E dT
Mme_g oE T dz

2 d(D E—udT
29 7 4 S D(EEA(
"~ 3m gL, OE T dz

—qE,)dE

(17a)
—)dE
2 OIO oy D(E)E2; (dy+E—yd_T

J
Bz " 3mgl, oE iz T dz

—qE,)dE (17b)

The energy flux from Eq. 17b can be broken up into two terms as following

_2 7 [ %D(E)EZ d/” E-pdr
®2 " 3m g, OE iz T dz

2 @ of dy E—pdT
=3m | ag PE)EE-# )(ﬂ TudZ
E=0
ofy d,u E—pdl
= Ez
”3 EIOaE PEEA T &

—qE,)dE
qE,)dE
—-qE,)dE (18)

= D(E)E(E - E,)dE + —=
3EIOaE()( ey + O

of do E-pdl, o
= D(E)E(E - dE
am Ejoﬁ (E)E( #)( T dz) ]

where Jz is the current density or charge flux given by eq. 17a. At temperature T = 0 K, the first
term in the right hand side of eq. 18 is zero, so that the energy fluxat T =0 K is

JEZ(T:OK):% (19)

Because electrons don’t carry any thermal energy at T = 0 K, the thermal energy flux or heat flux
carried by the electrons at T # 0 is

Jq (T)=Jg, () ~Je, (T =0)

do  E—pdl (20)
J S DE)E(E - e+ =5 - )dE
Equations 17a and 20 can be rearranged as

1do dT
J, = |—11(———) Lo (- d_Z) (21a)

1do dT
Jg = - —— 21b
q, = Lo ( qu) Lo ( dZ) (21b)
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where
L - —% Eiogf—EO D(E)E dE (224)
Ly = -2k EJO?EO D(E)E(E - 1) (22b)
LZl__s_Ewongo D(E)E(E — u)wdE = TLy, (220)
Lzzz—%EIO%D(E)E(E )2 dE (22d)

Writer of this report remarks that this is the Onsager Relation (Coupled Current Equation).

Electrical conductivity:

In the case of zero temperature gradient and zero chemical potential, 3—; =0and j—g =0, eqn.
21a becomes
1dod 1du
J =Ly(-=-2) =L (-==E+E,) = ;E, 23
;=g ) =l g gz tE) =l (23)
The electrical conductivity is defined as
J 2 w®
o=z 1, =29 7 JopE)Ege (24)
E, 3m g_g 0E

Equation 24 will be simplified further in the following section on Wiedemann-Franz law.
Seebeck Coefficient:

In the case of non-zero temperature gradient along the Z direction (along the conductor), a
thermoelectric voltage can be measured between the two ends of the solid with an open loop
electrometer, i.e. J; =0 (Seebeck voltage is measured when there is not electrical flow). Hence

from eq. 21a we obtain

J, = '—11(—l dcp) |—12( ) (25)

)
dz _ quZ (26)

Therefore
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As discussed above, the voltage that the electrometer measure between the two ends of the solid
ISAV = Ad/q. Similarly, dV =dd/q. The Seebeck coefficient is defined as the ratio between

the voltage gradient and the temperature gradient for an open loop configuration with zero net

current flow

dv do 6f0
S = (dZJ (de L, 1 j D(E)E(E—,u)de

(de q(de L, qT ojoafOD(E)Esz
dz dz Lo OF

o]

[ o D(E)E%zdE

1 =
B
[ ~°D(E)EE
E—o OE
1dd
Combine eq. 27, 24, and 21 a, we can write J_ —0(———) oS(——)

The scattering mean free time depends on the energy, and we can assume
r=1oE"
where 7 is a constant independent of E.

When E is measured from the band edge for either electrons or holes, the density of states

/
D(E) — (2m)3 2 El/2

27°h®
Combine eqns. 27 & 29
j o D(E)E?rdE of Mo pasrarizge
1 £ o OE 1 =
—_ /l [ —_
qT OJ? %D(E)E'ldE qT OJ? %E]&H»llsz
-0 OE E—o OE

The integrals in Eg. 30 can be simplified using the product rule

EdE_fE| —s fESldE——s 11,65 1dE
0 0 O 0
E=0

Using eq. 31 to reduce eq. 30 to

(27)

(28)

(29)

(30)

(31)
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F+5/2) [ f.ET324E
( ) [ fo

S=-—|u- = (32)
q (r+3/2) [ f,EY2dE
E=0

The two integrals in eq. 32 can be simplified with the reduced energy ¢ = E/kgr

ETJo(E,u)E”dE =(kBT)””Zfo(c,n)¢“dc=(kBT)””Fn(n): n=ulkgT (33)

where the Fermi-Dirac integral is defined as
Fo(m) = [ fo(¢,m¢"dS (34)
0

Use Eq. 33 to reduce eq. 32 to

5 5
1 (r + 2)Fr+3/2(77) ‘ (r + 2j|:r+3/2(77)
S = - | u—kgT __ke

77_
T 3 3
f (r +2)Fr+1/2(77) f (r +2)Fr+1/2(77)

Seebeck coefficient for metals:

(35)

For metals with 77 = ¢/ kgT >> 0, the Fermi-Dirac integral can be expressed in the form of a
rapidly converging series

R = figmag = S [ Theas
1 Ooafo el N dm(§n+l)| (gﬂ)m]

RTYEE Y LA Yy d¢

n+1£ag{ oodgm | m (36)
— _iwa_fo n+l n _ n-1 (é/ _77)2
= n+108§(77 +(n+D)r" (& —n)+(n+Dny 5 +...jdcj
B nn+l n—lﬂ-_z
= n+1+n77 5 +...

If we use only the first two terms of eq. 36 to express the two Fermi-Dirac integrals in eg. 35, we
obtain the following (q = -e for electrons in metals)
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5 3 5
2k LTS _[re2F
ke (r+ 2) r+3/2(7) ke U(r+ 2) r+1/2(7) (r+ 2) r+3/2(1)

S = n- 3 3
e
| (r+2jFr+1/2(’7) (r+2jFr+1,2(77)
r+3/2 2 r+5/2 2
ﬂ(r+3j n +[r+1jnr—1/27f —(r+5) n +(r+3jnr+1/27r
2 3 2 6 2 5 2 6
r+_ r+—
ke 2 2 (37)
B e ( 3) r+3/2
r+>
2) 43
2

2

kg kgT,,63
:_”3_B(L)(_+r)

e u 2

Note that this is the Mott Expression for seebeck coefficient of metals.

This value can be either positive or negative depending on r, or how the scattering rate depends
on electron energy. We can ignore the weak temperature dependence of x and assume u = Er, the
Fermi level that is the highest energy occupied by electrons at 0 K in a metal.

To apply the theory of semiclassical transport, the band structure of bismuth and antimony need
to be obtained. Scattering data (form factor) and crystal structure need to be understood in advance
to that. The writer of this report will put it in another document for detailed analysis

Reference of this section:
Charge and Heat Transport Properties of Electrons, Li Shi, University of Texas at Austin



