
 

1 

On (Ir)rationality 
 

Kamron Soldozy, Jovana Kondic 
 
 

1. Introduction 
 
Despite the ongoing research of sociologists, economists, psychologists, 
philosophers, and biologists, why and how humans are irrational remains 
poorly understood. Indeed, scholars have historically disagreed even on the 
meaning of the term: although the psychologist Albert Ellis (1975) defined 
irrationality as “any thought, emotion, or behavior that leads to self-
defeating or self-destructive consequences”, researchers have failed to agree 
on what constitutes irrationality, as opposed to, for example, a “cognitive 
illusion” (see Cohen, 1981). Additionally, relatively modern research reveals 
that apparently irrational behaviors may be grounded in evolutionarily 
optimal neurobiological processes (see, for example, Tsetsos et al., 2016).  
 
In the first section of this report, we first briefly describe a sample of 
behaviors widely labeled as irrational by psychologists, neuroscientists, and 
economists. Drawing especially on the Reinforcement Learning (RL) 
literature, we also include computational models explaining these behaviors 
and speak to their neural plausibility. In the second half, we consider the 
practicalities of being “irrational” humans: are our emotions fundamentally 
at-odd with our aspirations for rationality, or is irrationality not nearly as 
“self-destructive” as Ellis pointed it out to be? What are emotions and how 
do they arise? Should we wish to discard our own moods and emotions, or 
can we leverage these affective states to do more good than harm?  
 
 

2. Drivers Of (Ir)rational Decision-Making 
 
2.1. The Behavior 

 
Are you acting rationally? It depends on who you ask. Epistemic 
rationality, as defined by logicians, is reflected by skepticism toward 
unfounded belief. Behavioral game theorists, on the other hand, label 
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decision-making as rational so long as it maximizes one’s expected 
utility. Within economists, definitions span from instrumental 
rationality - taking the means necessary for achieving one’s ends - to 
the axiomatic approach - being logically consistent within one’s 
preferences and beliefs.  Given such diverse definitions, an attempt to 
standardize human fallibility included the development of various 
simple experiments to evaluate one’s reasoning. 
 
As revealed by the popular false-positive paradox, base rate fallacy 
appears to fog our analytical reason in the general low prevalence - 
high true positivity rate scenarios, yielding unexpectedly frequent 
false positives that often defy our intuition. Furthermore, as studied by 
Kahneman and Tversky (1974), we often evaluate the occurrence of a 
single event to be less likely than its joint occurrence with another 
event, in numerous instances of conjunction fallacy. Led by 
availability bias, we violate laws of probability and bet on our favorite 
player losing the first set but winning the match, although just losing 
the first set is generally more likely.  
 
We introduced the class to the framing effect bias by polling half of 
the participants in a reward-oriented manner, and polling the other half 
using a loss-oriented approach. It is interesting to note that ⅔ of the 
class-wide response yielded both risk-avoidance for positive framing 
and risk-proneness for negative framing, in accordance with the 
expected results obtained from the general population. 
 
In summary, while standardized tests based on above-mentioned 
fallacy examples yield compelling results, they are often argued to be 
an insufficient methodology for determining irrational behavior. Some 
psychologists suggest that humans are rational in principle but err in 
practice, and others are proponents of breaking away from the use of 
just standard rules of logic, probability theory, or rational choice 
theory as norms of good reasoning (see Gigerenzer, 2001). 
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2.2. Computational Models and Neurological Implementation 

 
A variety of models and heuristics have been developed to explain 
irrational behaviors, including those mentioned in section 2.1. 
Consider, for example, the principle of loss aversion: the observation 
that many people may prefer to avoid loss more strongly than they 
would acquire an equivalent gain. In a task where a participant may 
opt to receive $20 every trial (option A), or 0% half of the time and $40 
the other half (option B), a majority - but not all - participants opt for 
the former, safer option. What algorithms explain this deviation from 
the anticipated 50/50 split a simple valuation would predict?  
 
An initial explanation - subjective utility - draws on practical 
experience: perhaps the perceived value of $40 is less than twice as 
high as $20. For example, if a college student were to need $20 to 
purchase a new book, they would benefit decreasingly from excess 
quantities of money.  
 
Two similar algorithmic explanations draw on temporal difference 
(TD) learning. The first argues that TD learning, as is, can account for 
this phenomenon. Imagine repetitively choosing between options A 
and B for multiple trials. You are not told the values of options A and B 
before the experiment and must learn them for yourself. You explore 
both options, and after a few trials, have learned that option A has a 
value of $20, and have received $40, 0$, and $40 from option B (a 
valuation of $26.67). You choose option B twice more, getting $0 both 
times, and subsequently never choose option B again: why do so when 
you perceive it to be valued $16, a smaller value than that of option A?   
 
This explanation, however, is flawed. It does not explain why the 
majority of subjects exhibit risk averse behavior. Further, it is 
contingent on a policy that does not adequately explore to eventually 
perceive the value of option B. An alternative account is risk-sensitive 
TD-Learning, in which there exist two different learning rates for 
positive and negative prediction errors. This explanation intrinsically 
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implements subjective utility and is neurologically plausible, given that 
Niv et al. (2012) have demonstrated it to better explain fMRI data in a 
similar task than an untouched TD learning model.  
 
In favor of alternatives to valuation, there also exist various heuristics 
(as well as non-heuristic processes) that can be used to accurately 
reflect and explain our decision-making. One example is the priority 
heuristic. Relatively formulaic, the heuristic argues that people 
iteratively compare outcomes across multiple “dimensions”. For 
example, one might compare the minimum gain of $20 in option A to 
$0 in option B, and determine if the difference between the two ($20) 
is greater than 10% of the maximum possible gain ($4). Since the 
answer is yes, people would choose the option with the best minimum 
gain (option A). If this weren’t the case, a similar logic would be applied 
comparing the probabilities for minimum gain, and then comparing 
the maximum gains. An obvious criticism is that the comparison 
threshold of 10% is arbitrary. Additionally, neurological evidence for 
this algorithm is nonexistent. Nonetheless, it aptly explains human 
behavior in complex decision-making situations.  
 
Traditionally, our actions, motivations, and preferences are all 
ultimately driven by perceived associated value. In this account, 
assigning a universal scalar quantity to options at hand is the first 
necessary step towards meaningful comparison. While most of the 
discussion on rationality centers around the algorithmic side of 
learning and value maximization, the very existence of value is often 
unquestioned and assumed for granted. As Hayden and Niv (2020), 
suggest, just because we associate values with options in our everyday 
decision-making, it does not simply follow that our brain actually does 
the same.  
 
fMRI data collected from nucleus accumbens have been shown to 
highly correlate with value predictions of our computational models. 
However, the alignment between predicted values and neural 
recordings does not dispute the hypothesis that these recorded 
signals represent attention, or, perhaps, plans, or preferences.  
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Contrary to popular assumption, values don’t just sit in our brain but 
rather involve an active process that takes place as decisions are being 
made. While values can change, so can our conditional preferences, 
which makes them practically impossible to decouple from one 
another. 

Ultimately, however, in debating the existence of values, one could 
imagine that some combination of value-driven decision-making and 
heuristic driven decision-making exists: it is undeniable that certain 
paradigms are dramatically more conducive to value-based decisions 
than heuristical ones, and vice versa. Until the mechanisms for 
implementing heuristic-driven methods are better understood, 
however, little progress can be made in reconciling these two options. 

 
3. Do You Want To Be Right Or Happy? 

 
3.1. The Behavior 

 
“Get a grip of yourself!”  
This idiom speaks to the perception of emotions and mood as a 
general inconvenience, perhaps even a source of irrational behaviors. 
In direct contrast to this sentiment, evolutionary psychologists have 
argued that they might instead be adaptive tools for optimizing 
decision-making. For example, whereas humans have a tendency to 
depreciate the value of distant rewards (also known as delay 
discounting, da Matta et al., 2012), emotions like determination and 
motivation may incentivize behavior devaluing immediate rewards 
(Forgas, 2012). Similarly, love and guilt may assist in remaining loyal to 
a loved one. In this framework, love, guilt, determination, and other 
emotions are not intrinsically irrational, but rather correspond to 
different states under which specific behaviors and decision-making 
processes are made more favorable. These states may be thought of as 
irrational when they are undesirably present or more or less intensive 
than is desired by their human host.  
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Comparably, while optimal decision-making may necessitate optimal 
learning in order to maximize the expected utility, certain emotions 
such as happiness, in fact, necessitate the opposite. It has been shown 
that happiness does not depend on the cumulative earnings 
themselves, but rather on whether the cumulative utility is greater 
than expected. In particular, contrary to the goal of successful 
predictive learning, it was found that self-reported happiness directly 
depends on the presence of positive reward prediction errors. 
 
As a matter of fact, in the classroom, we set about documenting the 
effect of certain emotions on decision-making. Students in the class 
were tasked with completing the Ultimatum Game. Here is a brief 
description:  
 
You are the proposer. You have been given $100. You are tasked with 
splitting your money with a stranger, the responder. If the responder 
accepts the split that you propose, you both keep the money after the 
game ends. If the responder does not accept no one keeps the money.  
 
The question: how much money do you decide to offer the responder? 
 
Splitting them into two groups, half of the participants had 5 seconds 
to respond to the question, whereas the other half had 30 seconds. 
After completing the task, participants were asked about their current 
moods. In our analysis, we compared the quantity of money offered to 
the responder between the two groups, finding that the amounts were 
statistically insignificantly different (Figure 1a). The same was true 
when comparing the amount of money offered by proposers reporting 
positive versus negative moods in the 30 second group (Figure 1b). 
Importantly, however, participants reporting positive (and neutral) 
emotions offered less money to the responder than participants 
reporting negative emotions in the 5 second group (Figure 1c). Albeit 
with small sample sizes, our findings suggest that emotions can 
situationally affect decision-making, like when respondents have little 
time to make a decision. It remains unclear, however, why 
respondents in the positive-mood group may have chosen to offer less 
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money in the 5 second condition: perhaps they were more optimistic 
about their prospects.  
 

 
 

 
Figure 1. Comparing Amounts of Money Offered to a Theoretical 
Respondent Across various Categories. (A-C). Panels A-C are organized 
from left to right and top to bottom. The amount of money offered is 
compared between the 5 and 30 second games, the positive and 
negative emotional categories in the 30 second group, and the positive 
and negative emotional categories in the 5 second group, respectively. 
Black bars indicate double standard error bars, and the y-axis is the 
amount of money proposed by the participants (USD).  
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3.2. Computational Models and Neurological Implementation  
         
Thus, in contrast to the lay opinions that our moods and emotions are 
irrational remnants of our evolutionary ancestors, neuroscientists are 
aware of the importance of emotions and aim to better characterize 
the influence of mood on decision-making. Thus far, it is clear that 
positive mood induces risk-taking, depressed mood increases 
attention to negative information, and current perceived mode of 
thought is biased by the mood category. To explain the evident 
correlations, computational models of mood dynamics suggest that 
mood can be used to approximate average reward value, as well as its 
momentum - the accelerator of learning (see Eldar et al., 2015).  
 
Mood can be particularly useful for learning about an environment, as 
opposed to an individual state. In a common scenario in which current 
changes in reward predict its later changes, a positive mood, for 
example, as a result of inference of a positive momentum, biases the 
perception of subsequent rewards upwards, thus updating 
expectations accordingly to catch up the agents perceptions with the 
rising rewards.  
 
While neuroeconomics has led to fundamental changes in the 
understanding of how humans make decisions, many important 
behavior-influencing motives are not included in the strategic 
analysis. Given the recent formalizations of the mood-action 
dependency, it is critical that the reasoning about optimal 
(equilibrium) solutions, accordingly, considers parameters beyond the 
standard beliefs and utilities.  
 
In a similar manner, Tamarit et al. (2016) adapted the standard 
Ultimatum game to reflect the findings of Kahneman on the effects of 
cognitive (System 2) and emotional (System 1) impulses on decision-
making. In contrast with standard models, this utility function includes 
emotions as characterized by a psychological model. They suggest 
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that, if no emotion is triggered during the game, the judgement is 
entirely determined by System 2. In the case when emotions are 
triggered, a purely rational decision can be overcome as a result of the 
extent of its influence on the utility function (that is characteristic of 
each individual). 
 
Of course, how the brain even generates emotions has been a long 
standing question in neuroscience and psychology. Two directly 
competing theories posit that distinct brain regions correspond to 
distinct emotions (locationist theory) or that emotional categories are 
encoded by functional networks commonly employed across various 
emotions (psychological constructionist approach) (Lindquist et al., 
2012). In favor of the psychological constructionist theory, Raz et al. 
(2016) found that the intensity of various emotions experienced as 
subjects viewed movie scenes was positively associated with the 
functional connectivity strength between two existing networks: the 
ventrolateral amygdala network (within the default mode network, or 
DMN) and the dorsal salience network. The former region is known to 
be recruited during emotional experiences, and the latter is thought to 
be responsible for detecting and filtering stimuli as well as recruiting 
other functional networks.  
 
Although the authors don’t speak to the practical relevance of 
emotions given their findings, one might imagine that the intensity of 
emotions could modulate key cognitive functions underlying decision-
making. Indeed, Pessoa (2017) makes a similar claim, arguing that 
“Emotions … mobilize brain responses”, which likely occurs through 
the activity of various functional networks. Pessoa explains that, for 
example, the close connection between the amygdala (known as the 
“danger detector” or “information gathering system” and the 
hypothalamus enables the control of neuroendocrine signaling, and 
that the connections between the amygdala and ventral striatum 
enable the emotional modulation of reward-related behavior. 

 
4. Conclusion 

 



 

10 

Surprisingly, then, a cursory overview of studies exploring seemingly 
irrational human behaviors reveal that many of the most fundamental human 
idiosyncrasies - like emotions - remain poorly understood. Although the 
relatively recent dawn of the neurosciences came with promises of 
groundbreaking insights in fundamental human behaviors and emotions, 
progress remains minimal and the error-learning theories stemming from 
Rescorla-Wagner remain among some of the most capable methods for 
modeling human behavior. Although it is difficult to judge, it seems that a 
critical impeding assumption to the development of this field is finally losing 
its prominence: indeed, the belief that nonoptimal behaviors are simply a 
result of computational inefficiencies of the human brain, rather than 
corresponding to dedicated, unique, and meaningful (both in the personal 
and evolutionary sense) brain mechanisms, is beginning to fade.   
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