Top End Engine Team

Tasman Moskowitz and Mary Christian McCoy FRS 106 - Spring '23

Before Picture: February 6th, 2023

Photo Credit: Paige Walworth

Four-Stroke Engine Overview

- Cycle is complete after two revolutions of the crankshaft
- Power stroke provides the crankshaft with the angular momentum for other 3 strokes
- Air-fuel mixture travels in from the carburetor into head
- Ideal Gas Law

PV = nRT

 Chemical potential energy to mechanical work

Balanced Chemical Equation for Combustion: $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O + Heat$

Valve Timing

 As the cam turns, the pushrods move and push on the rockers.
The rockers then push on the valve spring and move the valves.

- The stiffness of the valve spring controls how fast the valves close and determines rpm

Photo Credit: Spring 2011's '63 Tiger Cub Top Engine Page

Key Terms from Class

Engine Knocking:

- A knocking sound of metal hitting metal within the engine
- May be caused by an incorrect air-fuel ratio or fuel may be igniting at the wrong time in the combustion cycle

Compression Ratio:

- the ratio of the maximum to minimum volume in the cylinder of an internal combustion engine
- 7:1 for our motorcycle
- In general, the higher the compression ratio, the more power output from the engine

Photo Credit: AutoProtips.com

Our Parts

Carburetor

Barrel

Engine Head

Carburetor

- This is where <u>fuel and air mix</u> through the use of jets.
 - Throttle Controls speed by adjusting air and fuel
- Float controls amount of fuel let in.
- Pilot jet works till about 20% throttle.
- Main jet works at 80% throttle and above.
- Needle jet works between 20% and 80% throttle.

Science of our Carburetor: How does it work?

* This model does not perfectly match our carburetor http://ecoursesonline.iasri.res.in/mod/page/view.php?id=677 Bernoulli's Principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure.

- The venturi of a carburetor is a tube with decreasing cross sectional area
- When air flows through the narrowing tube, its velocity increases
- The static pressure in the tube decreases which creates a vacuum drawing in fuel
- $\Delta P \alpha \Delta v^2$

Restoration

- Almost all parts went into sonic cleaner, and then a wire brush was used to clean most of the brass parts

 Aluminum surface —> oxidized in the presence of air to have a coat of aluminum oxide on the surface

- Sandpaper, Scotch Brite, and brushes were used to remove oxidation from the outside

Our Carburetor v.s. Others

Throttle Adjusting Screw (Part #10)

- Springs and a nut are both used to maintain the screw's position

Monobloc Carburetor

- Later carburetors will get rid of the two part carburetor and switch to a one part carburetor.

Head

- Home of the valves and spark plug.
- Combustion chamber.
 - Spark plug starts the combustion that starts the motorcycle.
 - Valves let the air/fuel mixture in and let out the exhaust gases.

- Fun Fact: We had a wasp's nest in here

Disassembly

- Utilized the jam nut technique in order to help free the rocker from the head.

 Used a spring compressor tool in order to push the valve spring down to remove the keepers.

Restoration

- Rust shows that materials are beginning to decay

- "Rust begets rust" - Prof. Littman

- Sandblasted, emory paper

- We used WD-40 in order to remove rusty bolts that were stuck.

- Oil was stuck between fins

Photo Credit: Theisen's

Valve Seat Cutting

Cutting Valve Seats: Ensures that the valves come into contact with the head in a way that maximizes the engines performance and reduces wear

- 3 angles
- Allow gasses to pass valves with less turbulence
- Heat is transferred from valves via conduction, and the angles cut determine the SA of the valve in contact with the head

Valve Seat Cutter Photo Credit: Spring 2011's '63 Tiger Cub Top Engine Page Diagram Credit: John Maher Racing

Lapping

- Used to create a sealing surface between the valve and its seat.

 With a gritty compound, we spun the valve around multiple time in order to make sure the two surfaces meet exactly.

- Held on to the engine case with four large bolts

- Piston moves up and down inside the barrel

- Sandblasted to remove rust

- Painted black to return to factory appearance, most likely black, because color increases emissivity

Honing & Boring

Honing: Removes surface layer of metal to remove surface defects and ensure proper piston ring seating

- Used a lathe and paddle hone the MAE shop
- Cutting Fluid: Lard Oil

Boring: Repairs wear and tear due to friction in engine cylinders by widening and tapering it

- Used T-gages to determine that the cylinder was egg shaped and needed to be bored
- Prof. Northey bore our cylinder
- Was originally a standard bore of 63 mm

2.48

Piston and Rings

- Since our barrel was bored, we needed a larger piston and new rings
- Piston rings prevent fuel and combustion gasses from leaving combustion chamber and oil from entering it. Also transfer heat to cooling walls
- 3 rings: Two compression rings and one scraper
- Ring gaps should be offset from each other
- Ring gaps will close when the rings undergo thermal expansion

Removing our Piston 2/15/23 & Photo Credit: University of Windsor

Evolution of the Barrel: Convective Heat Transfer

- We have a round barrel, but the shape of the barrel later changed to a square and then an oval shape
- Based upon Convection heat transfer equation,

 $Q = hA\Delta T$

QαA

- The surface area of the fin is proportional to the heat carried away
- Why not add more fins to have greater surface area?

1964 Tiger Cub https://www.ebay.co.uk/itm/1665078891

1961 Tiger Cub https://www.ebay.co.uk/itm/155078891561

—-> Impedes flow

More Science: Convective Heat Transfer Calculation

Calculate the heat dissipation	g off 0.05 m cooling fin attached to our 1954 Triumph Tiger Cub Motorcycle engine
it travels at 40 bm. The an	ibient air temperature is 27°C and the surface temperature of the fin is
236°C.	
L = length of fin = 0.05 m	$V = 40 \frac{Km}{b}$
3	constant & there are two sides of the fin
$q' = \frac{heat}{1enath} = \frac{q}{L} = -$	hL (Ts-Tm)2 Units: W
t J canstont	Reynolds constant Prandtl supplies
h = No KE	$\frac{1}{Na} = f(R_e, P_c) \qquad \qquad R_e = (V, S, L)$
 L	velocity Juscosity
* approximate for as flat pla	te
from a table:	/
KF = 0.0346 mm	
8= 27.85 × 10-6 m2	$ \longrightarrow $
$P_{\rm r} = 0.69$	

Calculation Continued

Question Adapted from Nathaniel Nelson's Heat Transfer Notes

Bibliography

"Head - 63 Tiger Cub Motorcycle." 2011. McGraw Commons. https://commons.princeton.edu/63-tiger-cub/head/.

Nelson, Nathaniel, director. *Convective Heat Transfer over a Flat Plate - Example Problem. YouTube*, University of Colorado Boulder, 16 Dec. 2015, https://www.youtube.com/watch?v=P2eN2EApGEY. Accessed 3 May 2023.

Triumph Workshop Instruction Manual: Tiger Cub Models. 1964. Allesley, Coventry: Triumph Engineering Co. Ltd. https://commons.princeton.edu/1954-tiger-cub/wp-content/uploads/sites/345/2023/02/triumph_tiger_cub_shop_manual.pdf.

Ullman, T. J. 2003. NOTES ON AMAL MOTORCYCLE AMAL MOTORCYCLE CARBURETTOR CARBURETTOR DEVELOPMENTS DEVELOPMENTS 1924 -1976.

"Understanding the Parts of a Motorcycle Carburetor," Motorcyclist Magazine, March 12, 2019, https://www.youtube.com/watch?v=0DPyzPkk-qg.

"Valve Spring Rate." 2017. Help Center. https://help.summitracing.com/app/answers/detail/a_id/4771/~/valve-spring-rate.