Suspension Group Spring 2023

Timothy Tymecki Bakari Edwards

Lab Summary

- During this semester, we took apart the front and rear suspension and spent a great deal of out time using the parts cleaner to clean the grease, oil, etc. from the parts.
- We also used the sandblaster to knock off the rust from the front fork.
- Lastly, we used the diagrams from the manual to piece together the parts assemble the front and rear suspension.

Front Fork

- x Our motorcycle uses a Triple Tree fork design
- x The front fork controls the movement of the front wheel and controls the springs that absorb shock.
- When the front fork dives (meaning the springs are allowed to compress), such as when a motorcycle brakes, this is called compression
- x Coming back up, this force is called rebound

Spring for Front Suspension

To calculate the forces on a compressed spring , we use this formula below:

Equation 13.1 $F = k \cdot x$

where: **k** = spring stiffness; **x** = working range of the spring.

Front Fork Force P.2

The situation described by our calculations is: braking force applied to the wheel:

$$m \cdot t = (0.5 \cdot 3000) = 1500N$$

Speedometer

- To determine the "speed", better noted as velocity, the bike needs to note two pieces of data
- 1– How many complete revolutions the
 (back) wheel makes
 2– The change in time
 Using this information, the speedometer
 - can estimate the velocity.

 $\overline{b} = rac{\Delta x}{\Delta t}$

 \overline{v} = average velocity

- Δx = displacement
- $\Delta t\,$ = change in time

Rear Suspension

 The rear suspension, in simple terms, controls the upward and downward motion of the back wheel.

- Also absorbs a lot of the shock that the motorcycle takes
- Almost universally in motorcycles, the design used is the swinging arm rear fork with shock absorbers.
 Our motorcycle uses a plunger-type suspension, however.

Progressive Rate

Fig. 15.5: progressive rate suspension.

Our motorcycle uses linear rate, however

Ending Slide

Thanks for your time!