PDP-8/L Minicomputer Restoration and Programming
William Minshew and Eric Schwarzenbach ‘13

Submitted to the
Department of Mechanical and Aerospace Engineering
Princeton University
in partial fulfillment of the requirements
of Undergraduate Independent Work

Final Report

May 2, 2013

Michael Littman
Daniel Nosenchuck
MAE 440D

34 pages

Color photos included

| hereby declare that this independent Work report represents my own work in accordance with
University regulations.

William Minshew

ACKNOWLEDGMENTS
We would first like to acknowledge our advisor Michael Littman for providing weekI\) advice and support
throughout the year. Advice given by Michael Thompson and Warren Stearns of the Rhode Island
Computer Museum (RICM) has been a great help, as they were often able to provide guidance in some
of the more technical aspects of diagnosing and debugging. Special thanks to Brian Shelburne of
Wittenberg University for creating the PDP-8 emulator we used extensiv.eiy. Assistance provided by Jo
Ann Love and Cynthia Menkes for helping us stay on track with deadlines and answering any and all
guestions, no matter how silly, t‘h roughout the year was greatly appreciated. Finally, we would like to
thank Princeton’s School of Engineering and Applied Scien.ce, and Dean Bogucki personally, for supp'lying

the financial funds with which our beloved PDP-8/L was purchased.

Table of Contents

L
i
I
V.

A.

V.

VIl
VI

T LA o0 [V Lot T« 12 OO OO 7
POWET SUPPIY ..o eveevrveeeseeasrsssesestressecsass st esseesr e se s e beb bt ansenrabe e e 9
FIONT PANEL ... ii it e ea e smn e e e 11
00T =300 T2 T Y2 SO 13
HOW COME MBIMOIY WOTKS ..ot e ee e eee ettt rabs s s sbr e s sb sme e s asbn s e s eaeb e s ebsas e b anes s sans s anennan 13
Diagnosis and repair........coec. e e etvrseeearnnnn et e e anneaas 16
Programming OO P S PP O U PP 19
Instruction BB e s 19

Memory reference instructions (MR} ...vevveo i e 19

1/0 transfer instructions (J0T). 20

Microinstructions {OPR).vovrrvvreesieeeeireeeniee e HeeteeieeraevateetrrabreseiaE e rny e et tateraraeeaaeeeeerseeterasrerans 21
1T 1= o] O OO P PSS 22
Diagnostic Programscceccieviimnvennivanrenssvinierarions S OO TSP PP P 22
Current loop to RS-232 converter.....oviiienciccnnnncnins e rre e e re e v s e s e neas 24
DeSIgNING the CIFCUIT - o e e s s sa b et err e e s st e r e e 24
TransmMitting PrOBTAMS .ooviierieiiit it st et es et ea s st n e nb e r e s neenr s 26
FULUEE WOPK et ves s e et e seere e et ere e e saese s eerbeeas e s ra e e ce s ee smmn e o 2 ame e e e e s en e e amane e e bbens e s ibs e et bt s e 27
Works Cited ... OSSP U PRSI STO 28

Table of Figures

Figure 1. General layout ofour 2]]2 O P 3
Figure 2. Side view from the outside of the three electrolytic capacitors in the power supply 9
Figure 3. The front panel.......cc.coveveene. e L LeerEe eI r e e bR RS RS ER T C IR SRR s Rt e e e R s pr b 11
Figure 4. lllustration of 4 X 4 COre MEMONY PIANE ... e ia s s st st ae 14
Figure 5. Important flip chip modules in memory fUnctions ..., 16
Figure 6.. Core memory stack with attached sense and inhibit wires..............o 18
Figure 7. Layout of MRI instructions........c..cccoucenae et et et et ee ettt r et 19
Figure 8. LAyoul OF IOT iNStIUCHIONS vovvevrverrrree et b e e bbb 20
Figure 9. Visual display of Brian Shelburne's PDP-8 emulator........c.ciiiiniiiiiiini i 22
Figure 10. Layout of group 1 PNUCTGINSEIUCTIONS .1 +vvevvesverseeseeseemseeeenseeeess e eesoeeeeeeeeeseeseeeeeoeeeeeeeee 30
Figure 11. Layout of group 2 microinstructions...........cccccovciinicnnnninn, s 31

ABSTRACT

In this project, we succe'ssfully restored a Digital Equipment Corporation (DEC) PDP-8/L minicomputer
and interfaced it to a modern laptop. During its restoration, we repaired the power supply, replaced a
defunct cooling fan, fixed the front panel, repaired the core memory, created a library of basic programs
on an emulator in PDP-8 assembly language {PAL}, ran extensive diagnostics on both the CPU logic and
memory stack, and designed an RS-232 to current loop interface to allow the PDP-8 to communicate

with the terminal of a modern laptop.

I. Introduction

The PDP-8 computer, a table-top machine designed in 1965 by Digital Equipment Corporation (DEC), was

the world’s first true minicomputer. The machine was packaged with a teletype for basic input/output
and priced at a mere $18,000, allowing thousands to be sold worldwide to all kinds of manufacturing
plants, offices, universities, and scientific laboratories,’ leading to its nickname as the “model T of the

n2

industry.”” Composed of discrete flip chip beards, the computer used diode-transistor fogic (DTL) and

was roughly equivalent to a small refrigerator in size.}?

In 1968 the PDP-8/L was introduced; it was the smallest and least expensive model in the PDP

family. The computer was built with medium-scale integration (MSI) transistor-transistor logic (TTL)
integrated circuit modules and uses magnetic cores for memory—the same kind of merﬁory used in the
early space program. It is a single-address machine with a word size of 12 bits and a memory of 4096
(4k) words, subdivided into 32 pages of 128 words each. The computer has four main registers: the
accumulator (AC), program counter {PC), memory address (MA), and memory buffer (MB). The PDP-8 is
considered a “load and store” computer; the 12-bit word size only allows one address to be referenced
pér instruction. Therefore, the accumulator is always assumed to be the other operand in any
instruction requiring two values. This simplistic design requires that the accumulator is often
overwrittén by subsequent instructions. The system runs with a cycle time of approximately 1.6 us,
determined Iarg;ely by memory access; therefore, two c¢ycle instructions such as addition take roughly
3.2 us {~0.313 MIPS). Programming is done either manually with switches on the front panel or by

reading in perforated paper tape.” Figure 1 shows the general layout of the inside of our machine, and

further detail is depicted in Appendix A.

Front Panel
Figure 1. General layout of our PDP-8/L
Over the summer Professor Michael Littman acquired an old PDP-8/L and teletype, which we
restored to working order over the course of the year. After performing some simple diagnostic tests on
the instruction set and memory, we subsequently designed and constructed an interface which allows it
to communicate with a modern laptop. Using this interface, we were able to upload more advanced

diagnostic programs onto the machine to further test the integrity of its components.

II. Power supply
Our first order of business was to repair the power supply to allow us to safely turn on the computer
and begin our diagnosis. The PDP-8 uses three main large electrolytic capacitors (see Figure 2), which

after several decades of nonuse are not safe to immediately power on. This is because the thin film of

oxide used as an insulator between the electrodes requires a small leakage current to prevent
degradation. After a long period of inactivity, this layer may break down completely, causing the
capacitor to form a short. When suddenly powered on to full voltage, the heat generated from excessive
current flow through the short may produce a gas inside the capacitor that ultimately causes an

explosion.”

Figure 2. Side view from the outside of the three electrolytic capacitors in the power supply

In order to avoid this safety hazard, the three capacitors had to be reformed—a process which
attempts to slowly bring the capacitors back up to operating voltage with minimal current in order to

carefully re-oxidize the insulator. We were able to accomplish this with a standard laboratory power

supply, which allowed us to set a maximum allowable current of 10 mA and then slowly ramp up the
voltage over time,

To access the power supply, we first needed to properly document and remove all of the flip
chip modules (see Figure 1). After examining the power supply schematics, we decided it would be safe
to attempt reformation without removing the capacitors from the rest of the power supply.’
Unfortunately, this process was only successful with one of’éhe capacitors and failed to reach
operational voltage on the other fwo. We then carefully disassembled the remaining capacitors for
future réplacement, hut decided it would be prudent to re-try the process now that they were fully
isolated from the system. Fortunately, this time we successfully reformed the remaining. two
electrolytics.

With the capacitors now in safe working condition, we plugged the machine in and turned our
PDP-8 on for the first time in over a decade. We noticed immediately that one of the cooling fans did not
work properly. After removing the defunct fan and soldering on a replacement, we briefly re-tested the
power supply. When everything appeared to be in working condition, we decided it was safe to re-insert
the flip chip boards and attempt to power the whole computer 6n. The_process was successful—our

PDP-8/L had life at last.

10

III. Front panel

Figure 3. The front panet

The front panel of the PDP-8/L is particularly important for the initial debugging process, as the manual
switches are the only way to test the memory and various functionalities until the system is in good
enough condition to read input from perforated tape.

After powéring the system on and briefly testing random inputs to memory, we discovered two
problems.with our front panel. First, many of the switches seemed spotty at best—sbmetimes working,
often not. Because of the sporadic nature of the issue, we thought it hight have to do with faulty
mechanical contacts; after all, the system had béen dormant for quite some time. Fortunately, we were
correct and the problem was quickly rectified with the application of contact cleaner. The second
problem was with the incandescent lamps used to dispiay the contents of the accumulator, memory
address, and memory buffer. Specifically, the lights representing bits 8, 9, 10, and 11 of the AC, bits 0
and 3 of the MA, and bit O of the MB were not working. After inspecting the back of the panel, we
noticed that the previous owner had already replaced several bulbs, and in the process, had damaged
many of the traces; ofthe 7 brok.en lights, only the bulbs on AC bit 11 and MA bit 3 were actually blown.
We diagnosed the remaining bits and ended up replacing transistors dn bits 8, 9, and 10 of the AC. The

malfunction on hit 0 of the MB was due to a bad solder joint—a result of the shoddy prior repair job—

11

and bit 0 of the MA was simply a missing bulb which we subsequently replaced. With all the lights
restored, our front panel was brought bkack to working order, allowing us to focus on the most important

part of our restoration—the core memaory.

12

IV. Core memory
A. How core memory works

The main memaory in the PDP-§ consists of a 12 by 64 by 64 matrix of small toroidal ferrite-cores.

Threaded through the center of each core are X-selection, Y-selection, sense, and inhibit wires, each

with a specific direction (see Figure 4) and wound in a clever 3-D manner. Each magnetic core represents

a single bit with the magnetic state of the core representing the binary value of the bit. The wires are
wound in a way that is easily relatable to the Cartesian cocrdinate system: the x- and y-coordinates
specify the address in memory and the z-coordinate corresponds to the specific bit in that address—

-hence, the 12 by 64 by 64 matrix is equivalent to 4096 12-bit words. Each X-selection wire is threaded

through every core in a given x-plane for a total of 64 wires, while each Y-selection wire is threaded
through every core in a given y-plane, again for a total of 64 wires. Thus, the proper X- and Y-selection
wires will intersect only at the 12 cores corresponding to the 12-bit word we wish to access in memory,

Each sense and inhibit wire is threaded through every core in a given z-plane for a total of 12 wires each.

So by using an X-selection, Y-selection, and either sense or inhibit wire we can access any particular bit

in memory.’

13

HEAD - s
i !
3
& ‘
I

WRITE

WEITE g HE A

INHIEY SENSE
WiNDING WINHEG

Figure 4. lllustration of 4 x 4 core memory plane®

Memory operations on the PDP-8/L consist of five major functions: address selection, read,
sense, inhibit, and write—all five of which must be performed regardless of whether we intend to read
or write. To understand why, we will first define the magnetic state in the ferrite core induced by
current flowing in the “write” direction (see Figure 4) to correspond to a bit with a value of 1
(conversely, the state induced by current flowing in the “read” direction corresponds to a value of 0). In
order to read the memory, the computer first erases the memory by driving a current that sets all of the
values to 0. While it does this, the sense wire detects which bits change magnetic flux and which bits
don’t—those that do were previously 1s and those that don’t were already 0s. Thus, after we are done
we must write the value back into memary {after all, a read function that erased the value permanently
would be quite useless). We will discuss how the computer writes data to the memory after address

selection.?

14

To select an address, the memory address register is firs;t decoded and the passed along to the
X- and Y-Diode Selection Matrices, which cause current to flow through the correct X- and Y-selection
wires, thereby selecting an entire 12-bit word. The direction of this current is dependent on whether the
computer intends to read or write to the address as d.epicted in Figure 4.--Thle decoding is performed by
the G221 flip chip modules surrounding the memory stack (see Figure 5), where the appropriate X-
selection wire is determined by bits 0 to 5 and the Y by bits 6 to 11.%°

To perform any operation on memeory, first the address is selected, and current is run in the
“read” direction. It is important to note at this time that every wire passing through a core is limited to a
low enough current level, known as the “half-select value,” such that no single wire may produce a
strong enough magnetic field to induce a magne;cic state change in any core. Thus, in order to change
the magnetic state of any ferrite core, current must be flowing through both the X- and Y-selection
wires. The rﬁagnetic states of other cores in a given X- or Y-plane, which have only a single selection wire
with current, are left unaltered. The system det_‘ects which bits were 1s and Os and uses this information
to write the value back into memory. Now that the read function has set each bit equal to 0, we only
need to fix the bits that were previously 1s. This is where the inhibit wire comes in. We perform address
selection again, this time running current in the “write” direction. For the bits that we yvish to leave as 0,
the co.mputer runs a current through the inhibit wire, which flows anti-parallel to the Y-selection wire.
This preduces a net effect of no.current in that direction, leaving only the X-selection wire with current,
which is not enough to bring the ferrite core out of the “1” state. Note, however, that this write process
only works when all of the cores begin in the “0” state. This is why it is necessary to read {(and therefore

erase) the memory first, even if our ultimate goal is to write a new value.

15

Figure 5. Important flip chip modules in memory functions

'B. Diagnosis and repair
In order to diagnose our core memory, we first needed to ensure the PDP-8 was correctly selecting the
specified addresses. The eight G221 modules—organized in 4 pairs—facilitate this action via the Diode
Selection Matrices on the core stack. When working properly, each pair only outputs one high line at a
time. This was easily verified with the use of an extender board and osciltoscope.

After we confirmed our address selection modules worked properly, we moved on to the
reading and writing processes. We began testing by manually storing the address of each location in that
location by each individual octal digit {e.g. 00000 in 00000, 00010 in 00010, ..., 00070 in 00070, 00100
in 00100, 00200 in 00200, ..., 60000 in 60000, 70000 in 70000). The test was largely successful except
for one glaring pfoblem: bit 2 of the memory buffer {MB) always read high, no matter what address we

examined and no matter what value had been previously stored.

16

In order to diagnose where the problem was located, we did our best to isolate each phase of
memory access for testing. Since each memory éddress contains 12 bits, all stages of memory operation
employ several flip chip modules that perform the same function on a 3 or 4 bit subset of the word. To i
exploit this redundancy, we re-arranged the boards in our PDP-8 one at a time to see if the error
predictably jumped around to different bits. For example, if the problem were located in the memory
buffer, then we would expect to see bit 0 read high consistently and bit 2 behave normally if we
switched the M220 boards at ABOG (responsible for bits 0 and 1 of all major registers, see Figure 1 and
Appendix A for physical location) and ABO7 {responsible for bits 2 and 3).* Unfortunately, after
swapping several pairs, the problem persisted. We returned each module to its original location and
moved on to the next phase—sensing.

When the cores are erased during the “read” process, a small pulse is generated on the sense
wire from the change in magﬁetic flux if the core were previously in the “1” state. This pulse is then
amplified by a G020 module and is used by the computer to determine what value was stored at that
memory location.” To see if we had a problem with our sense amplifiers, we again took advantage of
the redundancy across boards by swapping A18 (fesponsible for sensing bits 0 and 1) and A19
{responsible for bits 2 and 3).2 The problem remained—our A19 G020 appeared functional.

As explained above, inhibit wires are used to write memory. The wires themselves are
controlled by inhibit drivers on the G228 flip chip modules. Sirhi!ar to previous tests, we swapped the
boards at A23 (responsible for bits 0 to 3) and B23 (responsible for bits 4 to 7).* After swapping the
hoards, bit 2 still remained high across all tested memory addresses.

By process of elimination, we determined the problem was likely either a broken inhibit or sense
wire within our memory stack. By testing continuity on both the sense and inhibit wires of bit 2, we

were able to determine that the problem was a break in the sense wire. Qur next task was finding

17

exactly where the break had occurred in the wire. If the break lay outside the stack, we would simply

need to solder a new wire on at the hreak and connect it to the sense wire board.

Figure 6. Core memory stack with attached sense and inhibit wires

If the break were inside the stack, we would need to physically dismantle the core memory to
replace the wire, Fortunately, the break lay just outside the cores, and we were able to replace the wire

successfully. With the sense wire repaired, the memory stack was fully operational again, which meant

we could begin running diagnostic programs on the PDP-8.

18

V. Programming

A. Instruction set
The instruction set for the PDP—S is extremely sim p_listic, yet remains powerfully flexible. The machine
only has 8 different opcodes, corresponding to the first 3 bits of any instruction. However, to allow for
more functionality, these opcodes are subdivided into three groups: memory reference instructions

{opcodes 0-5), input/output transfer (opcode 6), and micreinstructions {opcode 7).
1. Memory reference instructions (MRI)

0 1 2 3 4 5] G 7 8 9 16 i1

s s s e e e T s St Mttt

| OpCode |TA [MP | Offset Address |

e e e e T i i Sk &
Bits O 2 Operaticn Code (opcode)

Eit 3 Indirect Addressing Bit (0:Direct/l:Indirect)
4 Memory Page (0:Zero Page/l:Current Page)
Bita 5 -~ 11 ©Offset Address

Figure 7. Layout of MRI instructions™
Memory reference instructions act on a specified location in memory, denoted by the indirect bit, page
bit, and offset (see Figure 7). These various bits may be combined in a number of manners to allow any

instruction to access any location in memory. The instructions are as follows:

Opcode Instruction - Function

000, AND Logical AND

001, TAD Two's Complement Add

010, ISZ Increment and Skip if Zero

011, DCA Deposit and Clear the Accumulator
100, IMS Jump to Subroutine

101, JMP Unconditional Jump®®

19

2. 1/0 transfer instructions (I0T)

0 1 2 3 4 b 6 7 8 4 19 11
R e S e T et e e e R &
L L &1 device number | function |
s St R e T it SE TR T bl TP
) 2 Opcode €
Bits 3 - 8 : Device Number
g 11 : Extended function field {operation specification bits)

Figure 8. Layout of IOT instructions”’

Input/output transfer instructions are used to interface the PDP-8 with peripheral devices. Though the
PDP-8 can interface with up to 64 different external devices, the most common two are the teletype
{TTY) keyboard and printer. In order to transfer information between the fast CPU and slow peripherals,
the PDP-8 utilizes flags to signify When both components are ready. To input or output data, the
accumulator transfers data with the proper /O device buffer, described in more detail below.

The five instructions for input from the TTY keyboard are:

Instruction Value Function

KCF 60300 Clear keyboard flag

KSF 60310 Skip on keyboard flag

KCC 60320 Clear keyboard flag and AC

KRS 60340 Read keyboard buffer static; keyboard buffer is OR'd with
bits 4 to 11 of the AC

KRB 60360 Read keyboard buffer dynamic; combination of KCC and
KRS

Despite having five separate instructions, in practice only two are used, KSF and KRB. The five

instructions for output to the TTY printer are:

Instruction Value Function

TFL 60400 Sets printer flag

TSF 60410 Skip on printer flag

TCF 60420 Clear printer flag

TPC 60440 Load printer buffer and print

TLS 60460 Load printer sequence; combination of TCF and TPC

Again, only TSF and TLS are commonly used.*®

20

3. Microinstructions (OPR)
Microinstructions use the accumulator-link pair as the sole operand, freeing up the remaining
instruction bits for functional use. This set can be further subdivided into two groups based on bit 3: one
that acts on the AC-link pair {group 1), and ancther that focuses on conditional branching based on the
AC-link pair (group 2). Because each bit represents a distinct microinstruction, often multiple
microinstructions can be combined into one instruction. For example, in group 1, bit 4 clears the AC
{72000} and bit 5 clears the link {71000); therefore, when both bits ar.e high {73000} both the AC and

link are cleared. See Appendix B for detailed diagrams of bit functionality in each instruction group.

21

B. Emulator

While restoring our PDP-8, we simultaneously familiarized ourselves with the architecture by using an
emulator created by Brian Shelburne. The program came with a user’s manual and a series of labs
designed to introduce students to the PDP-8 Assembly Language (PAL) and the unique coding process

involved with a “load and store” computer.”

=== PDP-% Debugger Screen

#7388 1388 1381 3382 7482 52
Accunulator aooe BoRa 0608 DBEA BRGH 51516 15]
[5151516151515151515 15153 BRes B0Ba 0B85 BBB8 BABE 51 67]
© HOP8 BERO BBE6 BERO BYRR an6a
Ac MO < OPB0 PABA 0006 BLHDO BGBGR Baas
151515 B 11513104 - PE06G DPEG GUYe BBNE PORB 615 15]5]
S BUBE 9008 80808 BGBE 6HB6A 2964
PC IR © 9886 BRG BRBE BOAG 0860 515 1575]
a8 a © PEB2 89803 BeBE BBAE 606G 614 15]5]
Pegy 48808 BEOB YO0 BOLY 514 15:0]
GPMA MB PEAB OBRG BBHB GUA8 BBBa 1516 15:]
aBde Beov » H8H8 8000 BBNE BEOB PBES 514 15:6]
el B0A8 BEU0 BOBR BEAB ABBA (615 15:0]
SH Run v PR0R 0RBG BNOA QOB BARA 5151525
auva a < OBAE PRBE BBOB G606 BBDO 516 1535]

e 098 8e0n 6BPE Beae BoRa

Figure 9. Visual display of Brian Shelburne's PDP-8 emulator®

The emulator is fairly straightforward to use. Programs can be written in PAL and then

assembled, or can be entered manually with machine code on the debug screen shown in Figure 9. The
debug screen displays the contents of the major registers on the left half of the screen and the contents
of a specific memory page on the right half. Programs may be run contihuously or single-stepped
through with the space bar. Working with this emulator prior to the restoration of the physical

computer helped expedite future programming on our PDP-8.

C. Diagnostic programs

With the sense wire repaired, we were finally able to run programs on our PDP-8. However, before we

could fully diagnose the state of the core memory, we had to verify that the PDP-8 could still properly

22

execute its entire instruction set. In order to accomplish this, we used the switchés to input small
programs testing the various instructions one at a time (see Appendix C for a list of test programs). Once
we verified the CPU was fully functionai, we moved on to memory diagnostics. First, we rana basic
memory test that checked each memory address one at a time, storing all 1s or Os in each location and
then verifying the contents. Next, we began testing for interference between adjacent locations by
alternating between all 1s or Os in every location, and then checking a single location to make sure it
hadn’t been affected. If it encountered any contaminated memory locations, the program would store
the addressina pre\.riously hand—tested section of memory. The test ran flawlessly—our memory proved
functional. With considerable confidence in our core memory, we began designing an interface to allow
the PDP-8 to communicate with a modern laptop in order to facilitate the loading of longer, more

advanced diagnostics.

23

VL. Current loop to RS-232 converter

Having finished our own memory diagnostic tests, we then moved onto our final task—interfacing our
PbP—S with a modern computer. To do this, we needed to convert the PDP-8’s output into a forrﬁat
readable by a modern laptop. The PDP-8 uses a 20 mA current loop interface; however, this is no longer
a viable form of communication with modern day electronics, which require voltage based interfaces
such as RS-232.

As its name implies, a current loop interface uses the presence of current rather than voltage
levels for signaling. The.absence of current signifies high (space), and the presence of current within the
loop signifies low {mark). The PDP-8 receives and transmits data by sending or reading incoming current
through these loops. RS-232, on the other hand, uses voltage levels to determine data bits. Any value
between +3V and +15V is interpreted as a logic zero (space), while any \f_oltage between -3V and -15V is_
interpreted as logic one (mark). Voltage levels between -3V and +3V are not a valid signal. This standar_d
is now outdated due to its low transmission speeds and high voltage requirements. However, the low
transmission speed that makes this technology obsolete is also what makes it so useful for
communicating with the PDP-8, which operates at a 110 baud rate. While RS-232 is seldom used in
modern laptops, many older computers still have a COM port which use this standard. -

A. Designing the circuit
We began designing our circuit by further researching the technelogy standards online. We quickly
realized it would be necessary to electrically isolate the RS-232 voltages from the current loop inputs
and outputs, and began designing a circuit based on one we found online utitizing four optoisolators.
After constructing the circuit, we began testing it and noticed seQeraI key flaws: First, our assumed
pinouts were wrong. We had based our design off of pinout schemes located online, which incorrectly
attributed DCE/DTE roles to our laptop and PDP-8. Furthermore, the layout of the circuit did not provide

enough current to fully unlock all of the optoisolators, causing our data to be lost in transmission. After

24

much frustration and considerable effort to rectify our initial circuit, we decided to scrap it entirely and
produce our own design from scratch,

We began by running our own tests to determine which pinouts from the laptop and PDP-8
were responsible for sending and receiving data. Once correctly identified, we moved on to our second
issue of fully unlocking the transistors within our optoisolators. Our new design utilized two
optoisolators and a MAX232 with an intermediary current amplifier to ensure full transmission of the
data. As a simple way to test our circuit without involving the PDP-8, we initially constructed it in a
loopback format (see Appendix D).

In the loopback circuit, RS-232 data output from the laptop’s TX pin is converted to TTL by the
MAX232. Next, the TTL logic is run through a current amplifier because our MAX232 was unable to
source enough current to fully unlock the optoisolator. This output acts as a switch to open or close the
current loop, which would normally be sent to the PDP-8. in our lcopback design, however, the oqtput
drives another optoisclator via a second current amplifier—whiéh is where the PDP-8 would normally
input its data. The output of the second optoisolatar is then connected to a pull-up resistor to produce
TTL voltages. The final signal is then inverted and fed back into the MAX232, which subsequently
outputs R5-232 data to the RX pin of our laptop.

The circuit was successful—we were able to echb data from a windows terminal on our laptop.
We then split cur Ioopback.into “send” and “receive” components with the PDP-8 now connected {see
Appendix D). To confirm that our circuit still functioned properly, we toggled in simple character input
and output programs. Both programs were able to successfully send and receive data to and from the

PDP-8—our computers could now communicate.

25

VII. Transmitting programs

With some minor tweaking to the parameters of our windows terminal {see Appendix E for specifilc
settings), we discovered we were now able to continuously transmit data between our machines. All
PDP-8s begin with a clean memory lstack, meaning an initial program must be toggled into the machine
by hand in order to receive data from a perforated tape, or in our case a laptop. The two most basic
forms of data are Read-in-Mode (RIM) and Binary (BIN). Since the PDP-8 uses 12-bit words, but the I/O
buffer is only capable of sending 8 bits at a time, each transmission consists of & data bits with a 2 bit
header. In RIM, the absolute address is sent first, followed by the content of said address. Therefore,
each word sent requires four 8-bit transmissions—a pair each for the address and content. In BIN, only
the starting address is specified, and then subsequent 8-bit pairs transmit the confents of consecutive
addresses. This means that a program in BIN format uses as little as half the tape and can therefore be
sent twice as fast. Consequently, programs are usually stored in BIN format. Because of this, the
standard BIN foader program is larger and more robust with a checksum error included. Since the PDP-8
starts off with a clean slate, it is common practice to toggle in a simple RIM loader, which is then
subsequently used to upload the more rigorous BIN loader via paper tape.

We located a wealth of DEC PDP-8 programs—in both RIM and BIN formats—in the “Software
Archive” of www.bitsavers.org, as well as other online sources {see Appendix C)." After toggling in the
RIM loader from the PDP-8 handbook, we then used it to successfully upload the BIN loader. With the
BIN loader in placé, we were then able to complete our PDP-8 diagnostics using a number of DEC’s
official festing programs, including rigorous instruction tests and checkerboard memory diagnostics with

varying patterns.

26

VIII. Future work

With a fully functional PDP-8 and robust I/Q interface, it is now possible to install more advanced
operating systems and language interpreters. Future projects should seek to upload and utilize systems
such as BASIC, FORTRAN, and FOCAL-69, which greatly expand the programming capabilities of the PDP-
8, These languages also come with their own loaders; however, the relay control line is required for their
use. Thus, our R$-232 to current loop converter could be further developed to interface CTS and DTR

lines of the RS-232 with the relay control of the PDP-8.

Y “Internet Histery” 1965

* Jones FAQ

* McMurran 88

* PDP-8/L Maintenance Manual Vo! | 1-1

® Hazell

¢ PDP-8/L maintenance Manuzl Vol [l D-C5-718-0-1
’ PDP-8/L maintenance Manual Vol 1 4.12

® Ibid. Figure 4-8

? thid. 4.12

° ppp-8/L maintenance Manual Vol Il D-BS-8L-0-16
" Ibid. D-BS-8L-0-8

2 ppp-8/L maintenance Manual Vol 1 4.12

" pDP-8/L maintenance Manual Vol 1l D-BS-8L-0-14
** Ibid. D-BS-8L-0-14

Y Shelburne 1.4.4

*® Introduction to Programming 2-8

Y Shelburne 1.4.4

" Shelburne 6.2

' shelburne Home Page

“ Ibid.

o Thompson, Michae! and Warren Stearns

27

IX. Works cited

Gesswein, David. Online PDP-8 Home Page, Run a PDP-8. N.p.. Web.
<http://www.pdp8.net/index.shtml>,

Hazell, Mike. "Capacitor Reforming." VMARS. The Vintage and Military Amateur Radio Society, Apr 2000.
Web. <http://www.vmars.org.uk/capacitor_reforming.htm>,

"Internet History." Computer History Museum. Web. 1965.
<http://www.computerhistory.org/internet_history/>.

Introeduction to Programming: PRP-8 Family Computers. Digital Equipment Corporation, 1969. Print.

lones, Douglas. The Digital Equipment Corporation PDP-8. University of lowa Department of Computer
Science. Web. <http://homepage.cs.uiowa.edu/~jones/pdpd/>.

MeMurran, Marshall. Achieving Accuracy: A Legacy of Computers and Missiles. Xlibris Corporation, 2009.
88.

McQuiggan, Kevin, ed. Highgate's PDP-8 Page. N.p., 10 Jan 2003. Web.
<http://highgate.comm.sfu.ca/pdp8/>.

PDP-8/L Maintenance Manual. 1. Digital Equipment Corporation, 1968. Print. <http://bitsavers.trailing-
edge.com/pdf/dec/pdp8/pdp8l/DEC-8L-HR1B-D_8LlmaintVoll.pdf>.

PDP-8/L Maintenance Manual. 2. Digital Equipment Corporation, 1968. Print. <http://bitsavers.trailing-
edge.com/pdf/dec/pdp8/pdp8l/DEC-8L-HR2A-D_8Lschem_Feb70.pdf>.

"PDP-8/L Restoration." Rhode Island Computer Museum, 18 Nov 2012, Web.
<http://www.ricomputermuseum.org/Home/equipment/pdp-8-1/pdp-8-I_blog>.

Shelburne, Brian. Brian Shelburne’s PDP-8 Home Page. University of Wittenberg. Web.
<http://wwwd. wittenberg.edu/academics/mathcomyp/bjsdir/PDP8HomePage.htm>. Emulator.

Shelburne, Brian. The PDP-8 Emulator Program User's Manual. Web.
<http://wwwd.wittenberg.edu/academics/mathcomp/bjsdir/pdp8.zip>.

The Digital Small Computer Handbook. Digital Equipment Corporation, 1967.

Thompson, Michael and Warren Stearns. "PDP-8/L Reconstruction Help." Message to William Minshew
and Eric Schwarzenbach. E-mail.

Skyngstad, Vince. "Repair Stuff.” PDP-8 Stuff. N.p., 20 12 2011. Web. 11 Jan 2013. <http://so-much-
stuff.com/pdp8/repair/repair.php>.

28

Appendix A - Documented layout of flip chip modules

SLOT

A

B C

Memory Stack

XeH
Xt

G611

Key:

Optional data break interface
Optional memory parify
Optional power fail

Optional high speed read and/or punch

Creen-tabbed flip chip
Magenta-tabbed flip chip

_“Flip chip not in machine .
‘White-tabbed/mon-tabbed flip chip

29

Appendix B - Microinstruction subgroups

Group 1 .
| i 2 2 4 5 & 7 g 8 e 11

i T T ot e T e

Pl] 1 F 0 |CRAICLLICMAE|OMLIBARIRAEL | O/ | IAC]

T s i e T e S

RBostate 1 Position 1f O
2 Positzons if 1
Figure 10. Layout of group 1 microinstructions

Instruction Value Function
NOP 70000 No operation
CLA 72000 Clear AC
CLL 71000 Clear link
CMA 70400 Complement AC .
CML 70200 Complement link
IAC 70010 Increment AC
RAR 70100 Rotate AC-link right
RTR 70120 Rotate AC-link right twice
RAL 70040 Rotate AC-link left
RTL 70060 Rotate AC-link left twice

30

Group 2

a : z 3 4 5 £ 7 g 8 i 11
A b e b — b ——— b —— —p———
1o 1o 1 | 208 3R] BNE| O | PoE g
St S e s itk P e

LR]

Eit 8. = O SME ocxr 524 or SWL

5 i 2 2 4 z = 7 a g to 11
e T e ety S s 3

1|11 o1 |BPA][8NE | S5 1 & | PG
e b e b e m — e —— b —— o ——— &

Eit 8 = 1 : S5P2 and SNBE and 2IZL

3 4 5 ¢ 7 & & ip 11

g i el
e T s o T B s SR 3
L1] £ 11 iCna| i f | JOSRIBLT| & |
o —— el s T et it 2
Figure 11. Layout of group 2 microinstructions

Instruction Value Function

SMA 75000 Skipon AC< 0

SZA 74400 Skinon AC=0

SNL 74200 Skin onlink=1

If multiple microinstructions from this set are combined, the individual results are ORed

SPA 75100 Skipon AC>=0

SNA 74500 Skipen AC =0
SZL 74300 Skip on link =0

If multiple microinstructions from this set are combined, the individual results are ANDed

SKP 74100 Skip always

CLA 76000 Clear AC

OSR _ 74040 OR switch register with AC
HLT 74020 Halt program

31

Appendix C ~ List of programs

1) Coded for emulator
a) Counter
b) AdditionA+B
¢) Subtraction A—-B
Multiplication {loops)
e} Division
f! Absolute value |A—B|
g) GCD (Euclid’s algorithm)
h} Array summation {indirect addressing)
i} Unpacking octal digits {shifts / rotations)
I} Read character, display back
k) “Hello, world”
I} Reads string, displays back
2) Coded for PDP-8 diagnostics
a) lInstruction tests
i} Group 1 microinstructions
ii} Group 2 microinstructions
lii} MRIinstructions
iv) Single character input
v} Single character output
b) Self-coded diagnostic programs
i} Continuous character output
ii) Basic memory diagnostic
i) Advanced memory diagnostic {checkerboard — single run and continuous)
iv) RIM loader from own core memory
v} ASCll loader from modern computer
vi) 1/O echo with modern computer
¢} DEC official diagnostic programs
i) Instruction tests 1-3
ii) Checkerboard memaory tests
ili) Memory protect test
3) DEC programs
a) Symbolic editor
b) FOCAL

More official DEC programs can be found online at:
http://bitsavers.informatik.uni-stuttgart.de/bits/DEC/pdp8/
http://www.dbit.com/pub/pdp8/paper/

32

Appendix D - RS-232 to currentmloop circuit

P2 Ve
otE ¥
o8
Q_.A%LMX e ggué WCC s
PR N
o
o
Ty
Ol
X;
Laptop COM pat .
' o2
Veg - vee 23004
== & R4 580K i
Z0F 240
[y o
=
e 23304
B 18
a o :
2 vs 15 o 5 Rio
el GND - 5A0K
24
3 . Yo
et .
9T [i .
22 o et T R
TN TtouT ~
] 9 . "R 240
M2 B2 F—
13 RN RIGUE 2 W\/\—KG”
MANZZL 00 2M3A04
Loopback schematic
ves }
= £2
1 s
o2 ol
HauF T e ><-~£~>€ 3_;0
: Ko
X""l"'“—o
_ v vee | 18 2
o4 ‘J“_I—"""?'V* 15 AT
2UF) 4|2 O e * Py
3
E Ty 9
& ‘[—’—L e . R I Lagtop COM port
20F) ie e R4,
- M TaN - TEOLE (¢ :
Adrin - vour 4 2492
] e s
: H—=- RN E20LT
: E Rt FOUT (2 w33
o vee yee WA rm -
; e) g 560K
R P
e, o
500 2Ma904 - 7o
4
= B
o,
7
w0
se—L o

Final design

33

FDP-8 connector

Appendix E - Terminal settings

1} General settings

a. COM1

b. 110 baud
c. 8 data hits
d. No parity
e. 2 stop bits

2) HyperTerminal
a. Flow control: none
b, Settings
i. Emulate TTY
ii. Force incoming data into 7 bit ASCH
3) Warren’s modified MTTTY windows terminal
a. Flow control: none, with disabled CTS and DTR control

34

