
1

Digital Sampling Oscilloscope
Mary Anne Peters & Joseph Tylka

Department of Mechanical and Aerospace Engineering
Princeton University, Princeton, NJ 08544, USA

INTRODUCTION

This paper summarizes the construction and operation
of a digital sampling oscilloscope, built from discrete
analog and digital components, featuring an Arduino
microcontoller. In Sec. I, we provide an overview of
the primary components of the oscilloscope. We also
provide some background and historical information on
oscilloscopes in general. In Sec. II, we describe, in detail,
the circuit theory behind each of the main components
of the oscilloscope. We also discuss our specific imple-
mentation of these circuits in our oscilloscope, as well as
the mechanisms we have implemented for user control,
data retrieval, and waveform display. In Sec. III, we dis-
cuss the performance of the various components of our
oscilloscope and display some captured data. Finally, in
Sec. IV, we summarize the oscilloscope’s performance,
discuss some issues we faced in our construction process
and the lessons learned. We include circuit diagrams of
our oscilloscope as well as some of the larger figures
in the Appendix. Also included in the Appendix are
parts lists for our specific construction and the Arduino
microcontroller code. We refer the interested reader to
manufacturer datasheets1 for each component in the parts
list for additional information.

I. OVERVIEW

In this section we will give an overview of the digital
sampling oscilloscope’s primary functions, as well as
an overview of the layout of the paper. The purpose of
the digital sampling oscilloscope is to capture a voltage
signal and save it to memory in order to later retrieve and
display the signal. An oscilloscope is advantageous over
a voltmeter because it extracts and displays high time
resolution waveforms of oscillating (AC) and transient
signals over a given time interval rather than providing
a single time-averaged measurement.

The input stage of the oscilloscope consists of a
variable DC voltage offset control and a variable gain
control which allow the user to best display the captured
signal. Since the analog to digital conversion (ADC)

1Most datasheets can be found by simply performing a Google
search for the part numbers listed in Tab. IV in the Appendix.

process takes a finite amount of time to complete, the
signal is fed through a sample and hold circuit prior
to the ADC chip. This step ensures that the voltage
at the input of the ADC is constant over the duration
of the conversion process. The digital representation of
the sampled signal is then sent through a buffer to a
static RAM (SRAM) chip. The data can then be read
out through two digital to analog converters (DACs),
one of which converts the SRAM addresses to provide a
time scale, while the other converts the data stored in the
SRAM to recreate the voltage signal. The analog outputs
of the two DACs are sent to an analog display which
plots the signals against each other. The data from the
SRAM is also read by an Arduino Nano microcontroller
and sent to a desktop computer via USB to be displayed
in National Instruments’ LabView. Figure 1 shows the
main components of the oscilloscope as well as the user
inputs, propagation of information and control signals
throughout the system.

A. Background

Before discussing the details of our project it is
valuable to briefly examine the history of oscilloscopes.
Andre-Eugene Blondel invented the electromagnetic os-
cillograph in 1893 which used a galvanometer to trace a
pen across a roll of paper to capture a waveform.2 These
first oscillographs were limited to a frequency range of
10 to 19 Hz due to the mechanical recording limitations
(i.e. how fast the pen could move across the paper). The
light-beam oscilloscope used a mirror and photographic
plates to record the data improved upon this design. It
could capture higher frequency signals up to about 500
Hz.

Ferdinand Braun invented the cathode ray tube (CRT)
oscillograph in 1897. In the late 1930s, the company A.
C. Cossor designed a dual-beam oscilloscope. It applied
an oscillating sawtooth reference signal to horizontal
deflector plates and the measured input signal to vertical
deflector plates, creating a “sweep” of the input signal as

2Pereira, J.M.D. The History and Technology of Oscilloscopes,
IEEE Instru. & Meas. Mag., vol. 9, pp. 27-35, 2006

2

INPUT
STAGE

CLOCK
UNIT

SAMPLE &
HOLD

ADC SRAM

ARDUINO

DAC

DAC

CT
R
L

VIN

COUNTER

RATE SELECT
SWITCHES

CLOCK

START

DATA

EOC

WRITE SWEEP
PUSH BUTTON

ADDR

DATA

BI
T

9 CTR
L

ANALOG IN

ANALOG OUT
(Y signal)

ANALOG OUT
(T signal)

GAIN

OFFSET

LABVIEW
USB

Fig. 1. Block diagram illustrating the primary components of the sampling oscilloscope. Boxes with solid lines correspond to the one or
more circuit components shown in each OrCAD schematic in the Appendix. Boxes with dashed lines may include user inputs (i.e. the gain
and offset knobs, the sampling frequency rate selection switches, and the write sweep push button) to indicate the contents of each individual
OrCAD drawing.

a function of time on a phosphor display screen. How-
ever, this oscilloscope still had issues with drift because
there was no fixed reference point for synchronizing
the horizontal and vertical signals. In order to obtain a
steady, repeating the signal on the display, the user had
to tune the reference sawtooth signal until the signal no
longer drifted across the display. In 1946 this problem
was addressed by Howard Vollum’s and Jack Murdock’s
invention of the triggered oscilloscope, which synchro-
nizes of oscillatory waveforms by triggering at a given
point on the signal. The Tektronix foundation (founded
by Vollum and Murdock) refined this design for the
commercial market and became the first manufacturer
of the calibrated oscilloscope.

In 1981, Walter LeCroy filed a patent for the first
digital oscilloscope.3 This eliminated the necessity for
horizontal and vertical plates to be used to display a
sweep in the analog CRT oscilloscope. A digital oscil-
loscope uses an ADC to convert the analog inputs to
digital signals, and saves those signals to memory to
be displayed on a digital screen (e.g. an LCD display).
Modern oscilloscopes feature very high input impedance
(typically ∼ 1 MΩ) to effectively isolate the circuit being
measured from the oscilloscope, and are able to measure
signals with frequency content up to ∼ 10 GHz. How-
ever, this bandwidth is often limited by the capacitance of
the cables used to probe the circuit. Essentially, the cable
acts like a low pass filter since the conductors have some
series resistance and capacitance to ground. Another
common feature of modern oscilloscopes is a “scope

3LeCroy, W.O. Test Probe, US Patent 4423373, Filed March 16,
1981, Issued December 27, 1983

probe” with an adjustable input impedance allowing the
user two choose between an input impedance of 1× or
10× that of the oscilloscope. This probe is designed
to have very little capacitance to ground, to allow a
higher frequency range than typical coaxial BNC cables.
Modern day instruments also have the ability isolate the
AC component of a signal, by setting the oscilloscope to
the “AC coupling” mode. This is particularly useful when
the input signal has a large offset, but the user is only
interested in rapid fluctuations in the signal. However,
this removal of the DC offset is often achieved by
simply introducing a “blocking” series capacitor, which
will tend to filter out low frequency signals in addition
to removing the DC offset. Alternatively, oscilloscopes
have a DC coupling mode, which does not employ a
series capacitor. Thus to maximize the bandwidth of
the oscilloscope, users typically utilize the scope probe
on the DC coupling mode. The oscilloscope we have
built and will discuss in this report is a digital sampling
oscilloscope that operates on the same principles at the
one patented by LeCroy in 1981.

II. OSCILLOSCOPE SUBSYSTEMS

In this section we will discuss the circuit theory and
implementation of each of the oscilloscope’s subsystems,
as well as the principles of operation and implementation
of external systems such as the Arduino and LabView.
Each of the following subsections details the function
and operation of a subsystem of the oscilloscope, begin-
ning with the input stage. The final paragraph in each
subsection summarizes the various inputs and outputs
of each subsystem, as well as any mechanisms for user
input.

3

A. Input Stage

The input stage of the oscilloscope consists of com-
ponents which allow the user to adjust the gain and
DC offset of the input signal. The analog input signal
is sent through a series of three operational amplifiers
(op-amps), as shown in Fig. 14 in the Appendix. The
power rails of the op-amps are connected to ±12 V,
meaning the voltage range throughout the entire input
stage is ±12 V. However, as we will see in Sec. II-C,
the sample and hold circuit will clip any signals outside
of the range ±5 V. Thus, our oscilloscope is capable of
accepting signals up to a maximum amplitude of ±12
V, but must fit within the range of ±5 V at the output
of the input stage by removing any DC offset, applying
a gain of < 1, or both.

The first op-amp is wired in a voltage follower config-
uration. This configuration uses feedback to ensure that
the output of the op-amp matches its input (Vout = Vin).
Essentially, the op-amp works to minimize the voltage
difference between its inverting and non-inverting inputs,
thus reproducing the input at the output. This step serves
to increase the input impedance of the entire oscilloscope
to that of the op-amp (∼ 1 MΩ), which will effectively
isolate our oscilloscope from whatever circuit we con-
nect to the input. That is to say, the oscilloscope does
not draw very much current from the external circuit,
so the behavior of that circuit will remain essentially
unchanged. This is the benefit of high input impedances
on voltage measuring devices.

The output of the voltage follower is sent into a
second op-amp, configured as a linear inverting summing
amplifier. This circuit creates a variable DC offset, which
is controlled by adjusting the position of the knob (i.e
the wiper) of a potentiometer whose other terminals are
connected to ±5 V, allowing for a DC offset of up to ±5
V. In our case, we use a 100 kΩ potentiometer, but this
value is not critical, provided that the power dissipated
by the potentiometer (P = ∆V 2/Rpot) is reasonable
(typically < 1/2 W). The output of the voltage follower
and the wiper are connected to the inverting input of the
second op-amp through individual resistors. The output
of the op-amp is fed back to the inverting input and the
non-inverting input is grounded. Thus, the voltage at the
output of the summing amplifier can be calculated using
the two ideal op-amp “golden rules”:

1) The voltage difference between the inputs is zero.
2) The current flow into (or out of) each input is zero.

Employing these rules requires that all current flowing
from the potentiometer and the voltage follower must
pass through the feedback resistor. Also, the voltage at

TABLE I
INPUT STAGE CHARACTERISTICS

Parameter Value
Input Signal Range ±12 V
Signal Range of S/H ±5 V
DC Offset Range ±5 V
Maximum Gain 20×
Output Signal Range ±5 V

the inverting input must be zero.4 Carrying out the circuit
analysis using Kirchhoff’s laws results in the expression
given in Eq. (1), shown below.

Vout = −Rf

(
V1
R1

+
V2
R2

)
(1)

In this equation, Rf refers to the feedback resistance
and R1 and R2 refer to the resistances connecting the
inverting input to the signals V1 and V2, respectively. In
our case, the three resistors for the summing amplifier
all have the same resistance (10 kΩ), so R1 = R2 = Rf

and thus the overall gain is simply −1 (inverting). The
output of the voltage follower (i.e. the input signal) is
V1 and the DC voltage at the wiper of the potentiometer
is V2.

The third op-amp is configured as a linear inverting
amplifier used for variable gain amplification. Again
employing the ideal op-amp rules and Kirchhoff’s laws,
we calculate the gain of the inverting amplifier, which is
given by Eq. (2), shown below.

Vout = −
Rf

Rin
Vin (2)

In this equation, Rin is the resistance connecting the
inverting input to the signal Vin. In our case Rf is a vari-
able resistor with 0 < Rf < 10 kΩ and Rin = 470 Ω,
thus we can apply a maximum gain of approximately
20× to the input signal. We see again that this amplifier
inverts the signal, resulting in a non-inverted signal at
the output of the third op-amp, hence there is no need
for an additional inverting amplifier. Table I summarizes
the voltage range and gain characteristics of the input
stage.

We note that the variable offset and gain circuits could
have been combined into a single op-amp circuit, simply
by making the feedback resistance of the summing am-
plifier adjustable. However, we intentionally implement
two separate op-amps to allow for more independent
control for both the offset and gain. Specifically, the
offset control is completely independent of the gain, yet
the gain control will amplify any DC offset as well

4The op-amp creates what is known as a “virtual ground” at the
inverting input.

4

TABLE II
CLOCK UNIT RATE SELECTION

Rate Setting ADC Clock Sampling Frequency
×1 7.2 kHz 150 Hz
×8 57.6 kHz 1.2 kHz
×16 115.2 kHz 2.4 kHz
×64 460.8 kHz 9.6 kHz

as the signal. We also note that a more complicated
circuit could have been used to implement completely
independent gain and offset. This circuit would require
an initial variable DC offset summing circuit, to remove
any DC offset from the original signal,5 a variable
gain linear amplifier to adjust the gain only on the AC
component of the signal, and finally a second variable
DC offset summing circuit, to add any desired offset.

To summarize, the input stage receives an analog input
signal, and features two control knobs, allowing the user
to adjust the DC offset and gain on the signal. The output
of the input stage is sent to the input of the sample
and hold circuit, to be discussed in Sec. II-C. First, we
discuss the clock unit, which will also play a role in the
sample and hold circuit.

B. Clock Unit

The clock unit of the oscilloscope is responsible for
providing the relevant clocks to the digital circuits as
well as necessary control signals. The main clock signals
are provided by a bit rate generator which divides down
the frequency of the signal from a crystal oscillator to
generate many different frequency clock signals. In our
circuit, two clock signals are taken from the bit rate
generator, the first of which is used as the clock for the
ADC chip, while the other sets the sampling frequency.
The frequency of the ADC clock is chosen to be 48×
times the sampling frequency, to allow adequate time for
the analog to digital conversion process to complete. A
useful feature of the bit rate generator is that it has four
different rate selection modes, allowing the oscilloscope
to operate at any of four different sampling frequencies.
The four possible clock frequency pairs are shown in
Tab. II. See Fig. 15 in the Appendix for the schematic
of the clock and control unit circuit.

First, our circuit synchronizes the clocks by feeding
them into an edge-triggered D-type flip-flop, for which
the data (D) input is the sampling frequency clock and
the clock input is the ADC clock. Simultaneously, the
ADC clock is sent to both the clock input of a 4-bit

5Alternatively, a series capacitor could be used to block the DC
component, but this would result in an attenuation of low frequency
signals as well.

counter and, of course, the ADC. The output of the first
flip-flop, denoted Q1, is sent to the CLR input of the
counter, to ensure that the counter is synchronized with
Q1. This means that the counter only counts for the
first 24 ADC clock pulses, and the outputs are set to
logical low (ground) for the next 24. The synchronized
sampling frequency clock (Q1) is also used to count
through addresses of the SRAM, as described in Sec.
II-E.

The input bits of the counter are all set to low and the
outputs are used to create the desired control signals.
We denote the output bits of the counter, from least
significant to most significant, QA, QB, QC, and QD.
Sending the signal QA ·QC to the LOAD input causes
the counter to reset to all low outputs every 6 clock
pulses. This signal is also used to clock a second D-type
flip-flop, for which the data input is Q1. The output of
the second flip-flop, denoted Q2, is a signal which is low
for 6 ADC clock periods, high (+5 V) for the next 18,
and then low again for the next 24, and repeats. Note
that we refer to Q1 and Q2 as the outputs of the first
and second D-type flip-flop chips, respectively, not to be
confused with the outputs of the first and second flip-flop
circuits on a single chip, as seen in Fig. 15. The use of
two flip-flop chips is necessary since each chip uses a
single clock for all of its flip-flops.

The signal Q1 · Q2 creates a “window” pulse 6
ADC clock periods long, which we use to gate the
control signals. This signal is sent simultaneously to
two “AND” gates. The first “AND” gate combines this
signal with QC to create a 4 ADC clock period long
pulse, which is used by the sample and hold circuit to
sample the incoming analog signal. The second “AND”
gate uses QC to create a 2 ADC clock period long
pulse, immediately after the first pulse, which is used
as the “start conversion” signal for the ADC. All of the
timings of the signals described above are depicted in
Fig. 2. The last signal shown in the figure is the “end
of conversion” signal being created by the ADC, which
will be discussed in Sec. II-D.

We note that the operation of this circuit is only
possible due to the propagation delay inherent to the
digital logic gates. The QA ·QC signal (used to clock
the second flip-flop) has a rising edge slightly after the
synchronized sampling frequency clock has its falling
edge. Without the propagation delay, Q2 would remain
high indefinitely, since the only rising edges arriving to
the clock input of the flip-flop would occur while the
data input (Q1) is high. This would eliminate the window
pulse, meaning no control signals would be sent through
their “AND” gates.

To summarize, the clock unit generates four signals

5

Fig. 2. Simulated timing diagram showing the relative timings of various signals in the clock and control unit.

that are used elsewhere in the oscilloscope. One such
signal is the ADC clock, used to clock the ADC, and
chosen to have a frequency 48× times that of the
sampling frequency clock. The sampling frequency clock
is also generated by the clock unit, and is used to count
through the addresses of the SRAM. The clock unit also
generates two consecutive control pulses at the start of
each sampling frequency clock period. The first pulse
has a width equal to 4 ADC clock periods and is used
to control the sample and hold circuit, while the second
pulse has a width equal to 2 ADC clock periods and
is used to start the analog to digital conversion process.
The user is able to select the sampling frequency with
two digital switches, yielding four different frequencies.

C. Sample and Hold

The sample and hold circuit is necessary to ensure
that the voltage at the input to the ADC is held constant
over the duration of the conversion process, as any
fluctuations may result in errors in the conversion. The
circuit consists of two voltage followers, a bilateral
CMOS transistor switch, and a capacitor, as shown in
Fig. 16 in the Appendix. The op-amps are again powered
from ±12 V, and the bilateral switch is powered with
VDD = +5 V and VSS = −5 V. The signal from the
input stage passes through the first voltage follower and
is sent to the input of the bilateral switch. Thus any
signal outside of the range ±5 V will be clipped by

the bilateral switch. The voltage follower is necessary to
isolate the bilateral switch from the input stage, so that
currents from the input stage are not run directly through
the switch.

The output of the bilateral switch is connected by a
capacitor to ground and also to the input of the second
voltage follower. Thus, when the switch is closed, the
first voltage follower charges the capacitor until the
voltage across it matches the voltage at the non-inverting
input of the first op-amp. This process is known as the
“sampling” phase, since the voltage across the capacitor
is continually being adjusted to match the input signal.
When the switch is open, the capacitor maintains that
voltage at the non-inverting input of the second op-amp.
This state is known as the “holding” phase. The second
voltage follower serves to isolate the capacitor from the
subsequent electronics.

The bilateral switch is electronically controlled, mean-
ing setting the control voltage equal to VDD closes the
switch and setting the control voltage equal to VSS opens
the switch. In fact, due to the nature of a transistor
switch, any control voltage less than VDD−VT , where VT
is some threshold voltage (typically ∼ 0.7 V), will open
the switch. Therefore, we can use a TTL level signal (+5
V and 0 V), to control the switch. Thus by sending the
control signal from the clock unit (discussed in Sec. II-B)
to the control input of the bilateral switch, we sample the
input signal for four ADC clock periods, and hold the

6

final sampled voltage for forty four periods. Figure 6
shows some examples of the output of the sample and
hold circuit with a sinusoid input at various sampling
frequencies.

Ideally, the capacitor would be able to maintain
the held voltage constant indefinitely, but due to non-
idealities such as bias currents through the op-amps
(typically ∼ 80 nA), the voltage can only be held for a
short time. The voltage decay rate is given by the formula
below.

dVC
dt

=
ibias
C

(3)

In this equation, VC is the voltage across the capacitor
and ibias is the bias current through the op-amp. Clearly,
increasing the capacitance C would decrease the voltage
decay rate, but we must also consider the charging rate
of the capacitor, whose time constant is given in the
equation below.

τ = (Rswitch +Ro)C (4)

In this equation, Rswitch is the resistance of the bilateral
switch in the closed position, typically ∼ 110 Ω, and
Ro is the output resistance of the op-amp, typically ∼
75 Ω. Thus, as expected, increasing the capacitance will
increase the charging time. Hence, the capacitance value
must be chosen to simultaneously optimize the charging
speed and the hold time for a given sampling frequency.

In our case, we chose C to be 68 nF, which gives us
a charging time constant of ∼ 13 µs. At an ADC clock
speed of 57.6 kHz (the ×8 setting), the capacitor is given
∼ 70 µs to charge, which, compared to the time constant,
is plenty of time. Also, the capacitor holds the voltage
for ∼ 770 µs. The voltage decay rate for this capacitance
is ∼ 1.18 V/s, yielding a total loss of ∼ 0.9 mV over the
entire hold period. As our input signal range is only ±5
V, this loss corresponds to a ∼ 0.01% error, which we
can tolerate, bearing in mind that the calculations above
are based on nominal values given in the datasheets.

When the bilateral switch is closed, the capacitor also
acts like a low pass filter. The cutoff frequency of a
low pass filter is specified as the frequency at which the
amplitude of the input signal is attenuated by −3 dB. The
formula for calculating the cutoff frequency is given the
equation below.

fc =
1

2πτ
(5)

Therefore, using the time constant calculated above, the
cutoff frequency of our circuit should occur around ∼
12.5 kHz. We will see in Sec. III-A that the actual cutoff
frequency of our circuit occurs around 16 kHz, which is
easily within the tolerance of the nominal values we used
in the above calculations.

To summarize, the sample and hold circuit receives
the output of the input stage and the control signal from
the clock unit as inputs, and outputs a sampled version of
the input signal. This signal is then passed to the ADC,
as will be discussed in the next subsection.

D. Analog to Digital Converter

The analog to digital converter (ADC) receives the
output of the sample and hold circuit and calculates a
binary number to represent that voltage. There are many
methods that can be used to perform this calculation,
which vary in speed, accuracy, and complexity. For
example, a “direct conversion” or “flash” ADC is rather
complex but has a very fast conversion time. This type of
ADC consists of 2N resistors and 2N − 1 comparators,
where N is the number of output bits (binary digits).
The ADC functions by feeding the input signal, Vin, to
all of the comparators simultaneously, while the other
inputs of the comparators are connected to a discretized
range of reference voltages, Vref . For example, an 8-bit
flash ADC would have 256 resistors of equal resistance
in series, with each node between resistors connecting to
a different comparator’s reference input. Essentially, the
255 comparators compare the input signal to all of the
reference voltages and output a logical high (or “true”) if
Vin > Vref or a logical low (“false”) if Vin < Vref . The
outputs of the comparators are sent to a logic circuit
which (almost) instantaneously determines the digital
output.

On the other hand, a ramp comparison ADC is very
simple but can take a long time to convert. One im-
plementation of this type of ADC uses an N -bit binary
counter fed into an N -bit DAC (see Sec. II-G) to create
a staircase-like ramp. The input signal is compared to
the ramp signal using a comparator so that the instant
when the output of the comparator changes corresponds
to the ramp voltage crossing the input signal voltage.
Thus the output bits of the counter at that instant are
precisely the digital representation of the analog input
signal. Clearly, this method will be much slower than
the flash ADC, since this ADC must count through all
of the possible digital values. Therefore the speed of the
ADC depends on the clock speed of the counter, and the
conversion time increases as the resolution (number of
bits) increases.

In our oscilloscope, we use a clocked 8-bit successive
approximation ADC, which systematically determines
the 8-bit number which corresponds to the input signal
voltage, Vin, by generating various reference voltages
and comparing them to the input signal. To do this,
the ADC uses a comparator, a resistor network, analog

7

switches, and control logic. The resistor network consists
of 256 resistors of equal resistance in series, which
divide the total voltage difference across the network into
evenly spaced discrete voltages, each of which is sent to
one end of an analog switch. The control logic closes
one of the switches to send a certain voltage, Vref , to
the reference input of the comparator, while Vin is sent to
the other input. The result of the comparison is used by
the control logic to decide which switch to close next. By
repeating this process several times, the ADC is able to
determine which of the 256 reference voltages is nearest
to that of the input signal, and represents that reference
voltage with an 8-bit number.

Our ADC determines the 8-bit output in exactly 40
clock periods, which explains our choice for the ADC
clock to be 48× our sampling frequency. Also, as
specified in the datasheet, the ADC requires a “start
conversion” pulse between 1 and 3.5 clock periods long,
which justifies our choice for a 2 clock period long
pulse. This pulse tells the ADC to begin converting Vin,
and causes the ADC’s output called “end of conversion”
(EOC) to transition to logical low. The EOC output
remains low for the duration of the conversion process
(40 clock periods) and then transitions to logical high to
indicate, as the name suggests, the end of the conversion
process. The EOC signal is simultaneously sent to the
control logic of the SRAM (to be discussed in Sec.
II-E) and fed back to the “output enable” (OE) input
of the ADC. This input controls the data outputs on the
ADC, where a logical low at the OE input prevents data
from being transmitted out from the ADC and a logical
high at the input allows transmission. See Fig. 17 in the
Appendix for the schematic of the ADC.

The data outputs are what are known as “Tri-State”6

outputs, indicating that the output pins are always in one
of three possible states. When the OE input is high, i.e.
the data outputs are enabled, the ADC sets the voltage
at those pins to their designated voltages, either logical
high or low, as determined by the conversion process.
However, when the OE input is low, i.e. the outputs are
disabled, the output pins may take on an intermediate
voltage level or a level not determined by the ADC. The
significance here is that the output pins are no longer
“driven” to a particular value by the ADC itself, meaning
the ADC is not attempting to control the voltages at the
outputs. This allows those pins to be driven by other
components. For example, the outputs of the ADC could
be connected directly to the inputs of the SRAM, which
are also its outputs. The Tri-State property of the ADC

6Tri-State is a registered trademark of National Semiconductor
Corp.

outputs ensures that if the ADC’s output is disabled,
those data pins can be driven by the SRAM without
affecting the ADC.

This feature alone does not solve every problem. For
example, if the ADC’s outputs were enabled and the
SRAM were outputting the saved data at a given address,
both devices would be trying to drive their output pins
to certain levels. Thus, if, on a certain pin, the two
levels were conflicting (e.g. the ADC says high while
the SRAM says low), we end up shorting one of the
devices, and possibly damaging one or both of the chips.
Therefore, care must be taken to ensure that the outputs
of the ADC will never be in conflict with another device.
We discuss the steps we have taken towards this goal in
Sec. II-E.

To summarize, the ADC takes as inputs an analog
voltage (Vin) from the sample and hold circuit, a clock
signal from the clock unit, a start conversion pulse also
from the clock unit, and an output enable (OE) signal
which is fed back directly from the end of conversion
(EOC) output. The ADC passes the 8-bit data values
to the buffer for the SRAM and the EOC signal to the
SRAM’s control logic.

E. Data Storage (Buffer, Memory, and Address Counter)

The SRAM is responsible for storing a sequence of
8-bit values computed by the ADC, so that the sequence
may be retrieved and displayed. The 8 digital signals
being sent from the ADC are passed through digital
buffers to the data pins of the SRAM to be stored to
memory. The lowest 8 output bits of a 12-bit counter are
connected to the lowest 8 address bits of the SRAM to
count through the different addresses of the SRAM. By
synchronizing the counter and the ADC, we can ensure
that each 8-bit value is written to a single address in the
SRAM before the counter moves on to the next address.
The SRAM and buffers are controlled by a “NAND”
gate to coordinate the transmission of data through the
buffers and the writing and reading of data to and from
the SRAM. The operation of the SRAM and the 12-
bit counter is intimately related to the functions of the
Arduino, which will be touched on here, and discussed
in more detail in Sec. II-F. The schematic for the SRAM,
the buffers and the 12-bit counter is shown in Fig. 18
in the Appendix. Note that the data input pins of the
SRAM are also its data output pins.

As mentioned above, the data outputs of the ADC are
connected to the inputs of eight digital buffers. These
buffers are controlled such that when the voltages at the
gate pins (denoted by OE in Fig. 18) are low, the outputs
are enabled, meaning the buffers drive their outputs to

8

TABLE III
SRAM CONTROL TRUTH TABLE

CS WE OE Operation Mode
High × × Not Selected
Low Low × Write
Low High Low Read
Low High High Inactive

match their respective inputs. If the voltages at the gate
pins are high, the outputs are disabled, and are said to be
in a “high impedance” state, in that they are essentially
treated as open circuits. Our buffer chip has two gate
pins, each controlling four of the eight buffers. However,
we send the same signal to both gate pins so all eight
buffers are controlled simultaneously. The control logic
that we have implemented controls both the gates on the
buffers as well as the write enable pin on the SRAM, so
we will discuss the operation of the SRAM first.

The SRAM has three control inputs which are used to
put the SRAM in one of three operational modes. The
three inputs are chip select (CS), write enable (WE,
and output enable (OE). Note that each of these pins
are noted with a bar over the letters, signifying that a
logical low level at the input “activates” that function.
For example, the CS input requires a low level in order
to “select” (or enable) the chip. If a high level is sent to
the CS input, the chip cannot be used. In our case, we
have connected the CS input directly to ground, so that
our chip is always selected.

Provided that the chip is selected (i.e. CS is low), the
WE determines if the chip is in read mode or write
mode. When the WE input is low, the OE input is
ignored, and the chip is in write mode. In this mode,
any signals arriving to the data inputs will be stored to
memory at the address specified by the signals at the
address pins. When the WE input is high, the chip may
either read out the data, or do nothing, depending on the
state of the OE input.

Provided that the chip is selected and is not in write
mode (i.e. WE is high), if the OE input is low, the
outputs are enabled, and the SRAM reproduces, at the
data outputs, the digital values saved in memory. These
values are equal to those stored at the address specified
by the signals at the address pins. If the OE input is
high, then the chip is essentially inactive, since it is in
neither read nor write mode. The truth table describing
the different operational modes of the SRAM is given in
Tab. III.

The control logic for both the gates of the buffers and
the write enable input of the SRAM is a “NAND” gate.
The inputs to this “NAND” gate come from the ADC

and the Arduino. Recall that a “NAND” gate produces a
low voltage only if both inputs are high. If either input
is low, the other input is irrelevant and the output of
the “NAND” gate must be high. The signal from the
Arduino is high for exactly the time it takes for the
counter to cycle through all of the addresses7 in the
SRAM. The other input of the “NAND” gate is the end of
conversion (EOC) signal from the ADC, which goes high
as soon as the conversion is complete, and returns low
again at the start of the next conversion. Recall that this
signal is fed back to the output enable (OE) input of the
ADC, meaning that the data is only fed into the buffers
during that gap between conversions. Therefore, when
the Arduino signal (from pin D13, to be discussed in Sec.
II-F) is high, the control signal from the “NAND” gate
will go low for the exact same gap between conversions.
Thus for that small window of time, the ADC’s outputs
are enabled, the buffers’ outputs are enabled, and the
SRAM is put into write mode. Conversely, for the
entire duration of the conversion processes, the ADC’s
and buffers’ outputs are disabled, and the SRAM is
in read mode. We note that this causes the SRAM to
essentially “hold” those values which were just written
until the SRAM’s address inputs are changed. However,
when the D13 signal from the Arduino is low, no data
can be written to SRAM, and the buffers’ outputs are
always disabled. Therefore, the outputs of the SRAM
will continue to read out the values stored in memory at
whatever addresses are being specified.

As mentioned above, the first 8 output bits of the
counter are connected to the first 8 address bits on the
SRAM. The other 3 address bits are all connected to
ground. Therefore, we are essentially only using one
eighth of our memory capacity. This choice is necessary
since we use an 8-bit DAC to convert the outputs of
the counter into a sawtooth wave. The purpose of this
sawtooth wave will be explained in Sec. II-G. The
counter is clocked by the sampling frequency clock
generated by the clock unit, as discussed in Sec. II-B.
The clock input is denoted by CLK, indicating that the
falling edge of the clock signal triggers the transition to
the next value. As can be seen from the timing diagram
in Fig. 2, the SRAM’s address changes long after the data
has been written to the previous address, which occurs
during the high pulse of the EOC signal.

The reset input of the counter is connected to the write
sweep push button, shown in Fig. 19 in the Appendix.
This means that when the user presses the button, all

7Strictly speaking, we only use a subset of the possible SRAM
addresses since we also use an 8-bit DAC to convert the addresses
to an analog signal. See Sec. II-G for more details.

9

of the outputs of counter are set and held low. When
the user releases the push button, the counter may begin
to count through the addresses. The push button is also
connected to the Arduino input D3 (see Sec. II-F), which
monitors that pin for a rising edge. When a rising edge
is detected, the Arduino changes its D13 output to high,
indicating that the SRAM may be written to. The 9th

output bit of the counter, Q9, is sent to the Arduino
input D2, which also monitors that pin for a rising edge.
For this pin, when a rising edge is detected, the Arduino
changes its D13 output to low. Therefore, the counter
begins to count up indefinitely as soon as the push button
is released, but once Q9 transitions from low to high, the
D13 output of the Arduino becomes low, which prevents
any more data from being written to the SRAM. In this
way, the SRAM is guaranteed to only cycle through
all of its addresses once without overwriting any stored
data. We note that the counter simply continues to count
through all of its possible values, and repeats once it
reaches its maximum. Therefore, Q9 will experience
many rising edges, but this has been accounted for the
in the Arduino code, as we will discuss in Sec. II-F.

The data inputs/outputs of the SRAM are connected
both to the data inputs of an 8-bit DAC and to 8 digital
inputs of the Arduino, to be discussed in Sec. II-G and
Sec. II-F, respectively. The lowest 8 output bits of the
counter are also connected to an 8-bit DAC (also in Sec.
II-G). These connections will allow us multiple ways of
displaying our captured waveforms.

To summarize, the digital outputs of the ADC are
sent via the digital buffers into the data inputs of the
SRAM. The data inputs of the SRAM are simultaneously
connected to the data inputs of an 8-bit DAC and 8
digital inputs of the Arduino. The “NAND” gate receives
an input from the Arduino’s D13 output as well as
the ADC’s EOC signal. This control logic coordinates
sending data through the buffers as well as writing that
data to the SRAM. The 12-bit counter which counts
through the addresses of the SRAM is clocked by the
sampling frequency clock generated in the clock unit
and is reset when the user presses the write sweep push
button. The addresses of the SRAM are also sent to an
8-bit DAC, and the Q9 output of the counter is sent to
the Arduino.

F. Arduino Nano Microcontroller

As is evident in the previous section, the Arduino
plays an integral role in the operation of our oscilloscope.
It is responsible for initializing the procedure to fill the
SRAM with data corresponding to one sweep of the input
signal. Additionally, the Arduino reads the data that is

present at the data input/output pins of the SRAM and
sends those 8 bits as a byte across a serial line to the
computer. The data can then be viewed in LabView,
as will be discussed in Sec. II-H. The write sweep
push button is connected to the Arduino, which the user
presses to start the writing process. The schematic for
the Arduino is shown in Fig. 19.

Before discussing our specific Arduino code, we will
discuss the Arduino programming environment and code
structure in general. The Arduino programming envi-
ronment is very similar to C and C++, but with many
unique built-in functions. The primary purpose of the Ar-
duino is to repeatedly execute the code within the main
loop, called with void loop(), while the Arduino is
powered on. Of course, as with any other programming
environment, some initialization steps must be taken. The
very first lines of code are the variable declaration and
initialization commands.

Immediately following the variable declarations is
the setup routine, called with void setup(). Many
important actions are performed inside this function.
For example, the programmer may specify which of
the digital pins on the Arduino will be used as digital
inputs (reading digital signals) and which will be digital
outputs (producing digital signals). Similarly, the analog
pins can be declared as analog inputs (reading analog
signals through and ADC) or analog outputs (producing
pulse-width modulated analog signals). Also, the com-
munication settings on the Arduino are declared in the
setup function, such as initializing a serial connection
and specifying its baud rate.

A useful feature of the Arduino are its “interrupt”
pins. These pins may function as regular digital pins,
or as interrupts, which are given special priority in the
Arduino’s processing. To function as an interrupt, the
interrupt pin must be configured to detect a certain signal
feature, such as a low to high transition (using RISING),
a high to low transition (using FALLING), or either
transition (using CHANGE). The interrupts may also be
configured to detect when the signal is either high or low
using HIGH or LOW, respectively. When the specified
feature is detected, the Arduino immediately abandons
whatever processing it was running, and executes the
interrupt’s designated function. Once the interrupt task
is completed, the Arduino returns to the main loop. Note
that the interrupts are given numbers (typically 0 and 1)
which may differ from the digital pins on which they are
enabled (typically 2 and 3, respectively).

Digital pin D13 is unique in that it is connected to
an LED on the Arduino’s circuit board in addition to
functioning as a regular digital pin. This makes pin D13
especially useful for debugging, as visual feedback can

10

READ BYTE

SEND

COMPILE

LOOP

D3 _

D13 _

D2 _

D13 _

INTERRUPT INTERRUPT

REPEAT

if D13 _

Fig. 3. Block diagram of Arduino code. Boxes with dashed lines
indicate independent functions within the code.

be given the user immediately. Once the Arduino code
has been compiled, it must be uploaded to the device
via USB. All subsequent communication between the
Arduino and the PC (such as data being sent to the serial
port) also takes place across the USB.

We will now discuss the control code we have imple-
mented in the Arduino. The pseudocode version of the
code is given in Alg. 1 and the actual code is reproduced
in Fig. 9 in the Appendix. Line numbers given in this
section refer to the pseudocode in Alg. 1. Also, Fig. 3
depicts the structure of the Arduino code as a block
diagram.

Algorithm 1 Arduino Control Code
1: loop
2: Read inputs D5 through D12
3: Compile data into byte
4: Send byte across the serial line
5: end loop
6: interrupt (D3: low → high)
7: Set D13 = high
8: end interrupt
9: interrupt (D2: low → high)

10: if D13 == high then
11: Set D13 = low
12: end if
13: end interrupt

For capturing data with the Arduino, we have 8 digital
pins, D5 through D12, configured as digital inputs. The
primary loop of the Arduino begins by reading the
signals at those digital inputs (line 2). The Arduino then
compiles those 8 bits of data into a single byte (line
3) which is sent over the serial line to the PC (line 4).
This data can then be viewed using LabView, as we will
discuss in Sec. II-H.

We have two digital pins, D2 and D3, which are
configured as digital inputs and are used as interrupts.
Both interrupts are set to monitor their respective inputs
for a rising edge, i.e. a low to high transition (lines

6 and 9). We also have the D13 digital pin configure
as a digital output. The write sweep push button is
connected to D3, so when the user presses the button,
the Arduino immediately executes the function specified
as the interrupt response. In our case, the function that
we execute sets the D13 pin to high (line 7), which, as
discussed in Sec. II-E, enables the SRAM control logic
so that data may be written to memory. Also from Sec.
II-E, the Q9 output of the counter is sent to D2, so when
the last address is reached by the counter and Q9 goes
high, the second interrupt function is executed. In our
case, the function begins by checking the state of D13
(line 10) and, if D13 is currently high, the function sets
it to be low8 (line 11). When D13 returns low, data may
no longer be written to memory.

We note that, regardless of the interrupt functions, the
Arduino is always streaming the data from the outputs
of the SRAM to the PC. This means that even when data
is no longer being written to memory, the Arduino will
continue to stream the same waveform to the PC, since
the counter will continue to cycle through addresses and
the SRAM will be locked in read mode until the user
presses the write sweep push button.

To summarize, the Arduino has two interrupt pins,
D2 and D3, which monitor the Q9 output of the 12-bit
counter and the write sweep push button, respectively,
for rising edges. The output D13 sends a control signal
to the SRAM’s control logic to indicate that data may be
written to the SRAM. Also, the data pins on the SRAM
are connected to 8 digital inputs on the Arduino, D5
through D12, so that the Arduino may send that data to
the PC. The write sweep push button essentially starts
a chain reaction of events to facilitate the writing of a
single sweep of the input signal to memory. First, the
12-bit counter is cleared, so that the SRAM will begin
writing at the very first address. Simultaneously, the D13
output of the Arduino is set high, so that the SRAM’s
control logic may allow data to be sent through the
buffers and written to memory. When the user releases
the push button, the counter begins to count and the
ADC begins filling the memory. Exactly 256 sampling
frequency clock periods after the push button is released,
Q9 goes high and the D13 output is set low, so that data
may no longer be written to memory.

G. Analog Display

The digital to analog converters (DACs) that we use
allow us to view the sweep of the input signal that is
being written to, or already stored in the SRAM on an

8Without that “if” statement, the Arduino would waste processing
time by setting the D13 pin low when it is already low.

11

analog display. As mentioned previously, we have two
DACs, one which converts the addresses being sent to
the SRAM to create a sawtooth wave, while the other
converts the data saved in memory at those addresses.
The schematic for the wiring of the two DACs is shown
in Fig. 20 in the Appendix, and the circuit design can
be found in the “Typical Application” section of the
datasheet9 with power and reference voltages changed
from ±10 V to ±5 V. Note that each of our DACs
are wired in the exact same configuration, with the only
differences being the data bits coming in, and therefore
the analog signals coming out.

The DAC receives 8 bits of data and determines, in
approximately 100 ns, the appropriate output relative to
its reference voltages. In our case, we give the DAC
references to +5 V and ground (inputs VR+ and VR−,
respectively), and the DAC assumes symmetry about the
ground reference. Thus the DAC produces −5 V when
all inputs are low, and +5 V when all inputs are high.
Strictly speaking, the DAC operates using a reference
current, and drawing relative amounts of current from
the outputs. For example, the +5 V reference voltage
is connected to the DAC through a 5.1 kΩ resistor.
This corresponds to a reference current of ∼ 1 mA
flowing into the DAC from VR+. Also, the outputs of
the DAC are connected through 10 kΩ resistors to +5 V.
Therefore, when all of the data inputs are high, the DAC
draws ∼ 1 mA from the IOUT output while drawing no
current from the IOUT output. Conversely, when all data
inputs are low the DAC draws no current from the IOUT

output while drawing ∼ 1 mA from the IOUT output. In
both cases, the current flows through a 10 kΩ resistor,
yielding either a voltage drop of 10 V from 1 mA, or no
voltage drop. Therefore, the voltage at the IOUT output
is exactly the digital input values mapped to an analog
voltage range of ±5 V. The voltage at the IOUT output
is the same signal but inverted (i.e. a gain of −1).

To display the outputs of the DACs, we send the
converted addresses to channel 1 of a commercially
available, professionally built oscilloscope10 and we send
the converted data to channel 2. The professional oscil-
loscope has the ability to plot these two functions against
each other, known as “X-Y mode”, which produces the
sweep as a function of address. The result is exactly
the sweep of the input signal that we have captured and
stored to memory being displayed on the screen of the
professional oscilloscope. We emphasize that the purpose
of using a professional oscilloscope is simply for the

9Texas Instruments DAC0800 Datasheet, June 1999, revised Febru-
ary 2013.

10We used the Tektronix TDS 210.

ease of access to an LCD display. Figure 8 shows the
output of each DAC as well as the X-Y mode output.
We refer to the analog signal produced by converting the
addresses as the “T” signal, indicating that this sawtooth
wave acts as our time base, and we refer to the analog
signal produced by converting the data as the “Y” signal,
since it is exactly the captured waveform. We note that
our T signal exhibits some flattening near the ends of the
diagonal ramp, which will be discussed in Sec. III-A.

As discussed in Sec. I-A, the professional oscillo-
scope generates its own internal “sweep” to display
the incoming signals on the screen. In its standard
operational mode, known as “Y-T mode”, each channel
is plotted as an independent function of time. However,
the oscilloscope triggers its internal sweep by setting
a threshold on one of the channels. Hence when the
incoming signal crosses the trigger threshold, the signal
is swept across the screen. An oscillating signal may
cross the threshold many times, and thus if we have a
repeating portion of a signal which does not match up
exactly at the start and end of the sweep, the result on
the screen is the same signal being overlaid many times,
but starting at different points in the sweep. In our case,
the signal being sent to the professional oscilloscope is
exactly a repeating portion of the input signal, since we
are reading through the SRAM continuously. Of course,
our sweep of the input signal need not match up at the
beginning and the end, so we will have discontinuities
in the signal. This behavior can be seen in the top panels
of Figs. 12 and 13 in the Appendix.

In X-Y mode, this is not the case. The T signal
that we are providing is used as the sweep for the
display, meaning a negative voltage (e.g. −5 V) would
correspond to the left half of the time axis, while a
positive voltage (e.g. +5 V) would correspond to the
right half of the time axis. Essentially, the voltage of the
T signal maps directly to the horizontal position of the
signal seen on the screen. Simultaneously, the voltage of
the Y signal directly controls the vertical position of the
signal on the screen.

To summarize, the DACs take as inputs the 8-bit
address used for the SRAM and the 8-bit values stored
at those addresses, and produce two analog signals, T
and Y, respectively. The T signal is simply a sawtooth
wave corresponding to a linear progression through all
of the addresses. The Y signal is exactly the portion of
the input signal we have stored in memory.

H. LabView

Once the byte of data has been sent from the Arduino
to the PC via USB, we display the data using National

12

Instruments’ LabView program. The overall goal of the
program is to plot the data on a graph in real-time. To
do this, we use the Arduino as a serial device (see Sec.
II-F) which communicates through a COM port on the
PC. We refer the interested reader to other references
on serial port devices and communication for a more
detailed explanation on their operation and functionality.
LabView monitors the COM port for data, and converts
the bytes it receives to decimal, to be plotted as a
function of time.

The two main components of all LabView programs
are the block diagram and the front panel. The block
diagram is essentially the programming environment for
LabView, where the program’s instructions are defined.
The front panel is essentially the graphical user interface
(GUI) that is displayed while the program is running.
Many blocks in the block diagram correspond exactly to
elements on the front panel, which the user may interact
with.

Fig. 10 in the Appendix shows the block diagram for
our LabView program and the front panel. The blocks
on the left side of the block diagram (external to the
thick black box) are responsible for retrieving the data
from the serial port and passing it elsewhere in the
program. The pink, left most block titled “Serial Port
Settings” corresponds to a selection of drop-down boxes
on the front panel, where the user may specify the
serial port settings. The information is passed from the
serial port settings block and separated by the yellow
block to its immediate right. This block passes the
serial port settings to a LabView VISA11 block which
communicates directly with the COM port, using the port
settings specified by the previous blocks.

The VISA passes the bytes of data arriving at the serial
port and passes them to the instrument block (denoted
“Instr”) inside the outer of the two black boxes. The
outer of the two black boxes is a programming loop,
while the inner of the two is a case structure. The loop
runs continuously while the program is running, and
the case structure checks a condition in order for its
contents to be evaluated. Our case structure is checking
to see if the number of bytes at the serial port is greater
than zero. If the number of bytes at the serial port is
greater than zero, three events are triggered. First, the
bytes of data are converted to ASCII characters, and
sent to the block titled “RAW ASCII”. These ASCII
characters are displayed on the front panel when the
program is running. We note that since we are sending
bytes of data that correspond to a waveform, the ASCII

11Visit the National Instruments website for more information on
VISA structures.

characters are essentially meaningless. However, the user
will be able to see the characters change if data is indeed
flowing to the serial port. Simultaneously, the bytes of
data are converted to decimal and sent to “Waveform
Chart”, which displays the real time values of the data on
the front panel. The “Waveform Chart” block is located
outside of the case structure so that chart will continue
plotting, even if no new data is arriving at the port.
Finally, the number of bytes at the port are plotted on
“Waveform Chart 2”, thereby displaying the real time
data rate through the serial port. This chart is also shown
on the front panel. The loop also has an “Iterations”
counter, which, like the RAW ASCII block, serves as
a debugging tool, since the counter will continuously
increase if the loop is running. The pseudocode for this
LabView program is given in Alg. 2.

Algorithm 2 LabView Code
1: loop
2: if Bytes at Port > 0 then
3: Convert data to ASCII and decimal
4: Display ASCII data
5: Plot data rate
6: end if
7: Plot decimal data
8: Increment counter
9: end loop

To summarize, LabView receives a stream of bytes
of data from the Arduino via the USB COM port and
displays the decimal equivalents of that data on a graph
in real-time. LabView also displays its incoming data rate
as a function of time. The user may adjust the serial port
settings in LabView to match those set by the Arduino.

III. RESULTS

In this section we present collected data from our
oscilloscope and measurements of the oscilloscope’s
performance. The first set of measurements discussed
in Sec. III-A were collected using a professional bench
top oscilloscope, captured with Tektronix’s WaveStar
program, exported as .csv files and plotted in MATLAB.
These signals were measured at the output of the sample
and hold circuit, prior to digital conversion, and are
intended to illustrate the capabilities and limitations of
our oscilloscope. Thus, we have assumed that the analog
to digital conversions will be completed accurately and
that the resulting digital values will be stored to memory
without errors. Unless otherwise stated, the input signal
to the oscilloscope was a sine wave with frequency 72
Hz.

13

0 5 10 15 20 25 30 35 40 45 50−8

−6

−4

−2

0

2

4

6

8
Offset

Vo
lta

ge
 (V

)

Time (milliseconds)

Input Signal
Offset = +5V
Offset = −5V
Offset = 0V

Student Version of MATLAB

Fig. 4. Variable DC offset capabilities of the oscilloscope. The blue
dotted line is the input signal, the solid lines correspond to an offset
of −5 V (red line), 0 V (blue line) and +5 V (green line). The
inversion of the signal is due to the measurement location and is not
present in the final signal produced by the input stage.

To demonstrate the end-to-end oscilloscope perfor-
mance, we obtained oscilloscope captures with LabView
via the Arduino along with the outputs of the DACs
viewed on the professional oscilloscope for comparison.
The LabView data is presented in Sec. III-B. Please note
that many of the larger figures have been placed in the
Appendix consolidate the bulk of the text.

A. Measured Performance and Limitations

Our oscilloscope has adjustable gain and offset as
discussed in Sec. II-A. The output of the summing
amplifier is shown for three different offset values (−5
V, 0 V and +5 V) in Fig. 4. These signals were obtained
prior to the variable gain linear amplifier, so the signal
is inverted relative to the input signal. This also means
that an offset of +5 V shifts the signal down to −5 V,
and vice-versa. This inversion is of course corrected by
the variable gain amplifier as discussed before. Figure
4 displays the maximum (+5 V) and minimum (−5 V)
range of the offset circuit. The noise added to the signal
from the offset circuit is minimal (< 1%).

Fig. 5 shows the output of the linear amplifier for
several different gain settings compared to the input
signal (shown in the top panel of Fig. 5). The oscillo-
scope is capable of applying a 20× gain (second panel)
to the input signal, but unless the signal has a very
small amplitude (∼ 0.25 V), this amount of amplification
will lead to clipping in the sample and hold circuit
(see Sec. II-C). The third panel displays the maximum

−10
0

10
Gain

−10
0

10

−10
0

10

−10
0

10

−10
0

10

−10
0

10

0 10 20 30 40 50
−10

0
10

Time (milliseconds)

Student Version of MATLAB

Unity gain

0.5x gain

Zero gain
Vo

lta
ge

 (
V)

Input signal

Full gain with clipping (~20x)

Full gain without op-amp clipping (20V pk-to-pk)

Full gain without sample and hold clipping (10V pk-to-pk)

Fig. 5. Variable gain capabilities of the oscilloscope. The input
signal is shown on the top panel. Panels two through six show the
signal with various gain settings in decreasing order. The gain setting
is given on the left side of each panel.

gain the op-amp can tolerate without clipping the signal
itself (i.e. within ±12 V). The forth panel shows the
maximum gain without clipping from any components
in the oscilloscope (i.e. within ±5 V). The fifth panel
displays the signal with unity gain (0 dB), the sixth with
0.5× gain (−6 dB) and the sixth with zero gain (−∞
dB). The noise in the zero gain data has a standard
deviations of σG = 0.1 V. As this noise is constant
amplitude noise, this results in a signal-to-noise ratio
(SNR) of ∼ 30 dB for a 10 V peak-to-peak signal.

As discussed in Sec. II-B, the oscilloscope is capable
of sampling the input signal at four different frequencies.
Figure 6 shows the same signal sampled at each of the
four different sampling frequencies (150 Hz, 1.2 kHz,
2.4 kHz and 9.6 kHz) compared to the original input
signal, shown in the top panel. Note that the sample
and hold circuit produces an apparent delay equal to the
hold time. This is due to the fact that the output of the
sample and hold is exactly equal to the input signal only
for the very brief window of time when the circuit is
“sampling” the signal (see discussion in Sec. II-C). If
the sampling frequency is less than twice the frequency

14

−5
0
5

Sample and Hold Signal

−5
0

5

−5

0

5

−5

0

5

0 5 10 15 20 25
−5

0

5

Time (milliseconds)

Student Version of MATLAB

Input signal

Sampling Frequency = 150Hz

9600Hz

2400Hz

1200Hz

Vo
lta

ge
 (

V)

Fig. 6. The output of the sample and hold circuit at various sampling
frequencies for the same input signal. The top panel shows input
signal, while the remaining panels show sampled signals from lowest
to highest sampling frequency.

of the input signal, aliasing will occur. We note that the
150 Hz sampling frequency shown in the second panel
of Fig. 6 is close to the Nyquist rate of ∼ 144 Hz for
the input signal.

To obtain the frequency response of the analog portion
of the oscilloscope, we send sine waves of various
frequencies into the system and then measure the peak-
to-peak voltage of the signal at the output of the sample
and hold circuit. This data set was collected at a sampling
frequency of 2.4 kHz. Figure 7 shows the peak-to-peak
voltage (normalized) as a function of frequency. Our os-
cilloscope begins attenuating the signal at approximately
5 kHz and the amplitude continues to decay as the signal
frequency increases. The “cutoff frequency” of a system
occurs when the signal is attenuated by −3 dB, which,
for our oscilloscope, is at approximately 16 kHz. This
attenuation is due to the capacitor in the sample and hold
circuit (see Fig. 16). The amplitude falloff is consistent
with that of a low pass filter, as discussed in Sec. II-C.

Fig. 8 shows the output from the sample and hold (top
panel) compared with the output of the DACs (bottom
two panels). Recall that the signal from the sample and
hold circuit is converted to digital and then back to
analog. It is this signal which has been reverted to analog
that is shown in Fig. 8 in the center panel (green line).
The address signal that counts up while the input signal
is recorded is also converted to analog (center panel,
blue line). Plotting the blue line (T signal) against the
green line (Y signal) gives the analog output of our
oscilloscope (bottom panel, red line). As discussed in
Sec. II-G, the bottom panel is the X-Y mode output.

101 102 103 104 105−6

−5

−4

−3

−2

−1

0

1
Sine Wave Frequency Response

Frequency (Hz)

N
or

m
al

iz
ed

 P
ea

k−
to
−P

ea
k

Vo
lta

ge
 (d

B)

Student Version of MATLAB

Fig. 7. The oscilloscope’s frequency response (peak-to-peak voltage
as a function of frequency), measured with a sine wave at frequencies
ranging from 20 Hz up to 21 kHz. Sampling frequency is 2.4 kHz.
Signal attenuation of −3 dB occurs at ∼ 16 kHz.

Clearly, this output in good agreement with the sample
and hold output signal. Although it is not shown here,
Figs. 12 and 13 in the Appendix show the T signal
flattening near the start and end of the linear ramp.
We are unsure of the source of this flattening, but we
have noticed a similar clipping pattern on other devices
regardless of power supply voltage. The flattening causes
the ends of the sweep of the input signal stored in
memory to be “squished” in X-Y mode, since the Y
signal is changing while the T signal is essentially
constant.

The timing diagram shown in Fig. 11 in the Appendix
is the measured version of the simulated timing diagram
shown previously in Fig. 2 and discussed in Sec. II-B.
The timing signals in this diagram correlate well to
the modeled version. One noticeable difference in the
noise present in the signal with a standard deviation of
approximately 0.06 V or ∼ 1% of the 5 V digital signal.
This noise level corresponds to a 35 dB SNR for a 5 V
digital signal.

B. Measurements with LabView

Prior to this point, the data shown in this section were
captured using the professional oscilloscope and replot-
ted with MATLAB. Here we discuss data captured with
LabView via the Arduino which is the end product of
our oscilloscope. Capturing data with LabView is a three
step process described in Sec. II-E, II-F and II-H. Figure
12 in the Appendix shows the LabView capture with
a sampling frequency of 1200 Hz. The bottom plot is

15

−5
−2.5

0
2.5

5

S1: Sample
 & Hold Output

−5
−2.5

0
2.5

5

Vo
lta

ge
 (V

)

S2: DAC−Time Out
S3: DAC−Signal Out

0 2 4 6 8 10 12 14 16−5
−2.5

0
2.5

5

Time (milliseconds)

S2 vs. S3

Student Version of MATLAB

−5
−2.5

0
2.5

5

S1: Sample
 & Hold Output

−5
−2.5

0
2.5

5

Vo
lta

ge
 (V

)

S2: DAC−Time Out
S3: DAC−Sampl’d
Signal Out

0 2 4 6 8 10 12 14 16−5
−2.5

0
2.5

5

Time (milliseconds)

S2 verses S3

Student Version of MATLAB

−5
−2.5

0
2.5

5

−5
−2.5

0
2.5

5

Vo
lta

ge
 (V

)

0 2 4 6 8 10 12 14 16−5
−2.5

0
2.5

5

Time (milliseconds)

Student Version of MATLAB

−5
−2.5

0
2.5

5

Signal 1: Sample & Hold Output

−5

−2.5

0

2.5

5

Vo
lta

ge
 (V

)

S2: DAC T signal
S3: DAC Y signal

0 2 4 6 8 10 12 14 16−5
−2.5

0
2.5

5

Time (milliseconds)

Signal 2 vs. Signal 3

Student Version of MATLAB

−5
−2.5

0
2.5

5

Signal 1: Sample & Hold Output

−5

−2.5

0

2.5

5

Vo
lta

ge
 (V

)

S2: DAC T signal
S3: DAC Y signal

0 2 4 6 8 10 12 14 16−5
−2.5

0
2.5

5

Time (milliseconds)

Signal 2 vs. Signal 3

Student Version of MATLAB

Fig. 8. The outputs of the DACs. The top panel shows the sample
and hold output signal. The center panel shows the time output from
the DAC (T signal) and the data output from the DAC (Y signal).
The bottom panel shows the T and Y signals plotted against each
other on the X and Y axes, respectively.

taken from LabView while the top plot was captured with
the bench top oscilloscope for comparison. LabView
repeatedly plots the same data stored in memory until
the user writes new data to the memory. Approximately
two sweeps through the memory are shown in Fig. 12.
A discontinuity is visible when the signal repeats (this
occurs twice in the figure) indicating that the input signal
was at different points in its period at the beginning of
the sweep and at the end. The top plot shows the T
signal counting up (blue line) and the Y signal (green
line) being produced by the DACs. Note that time on
the X axis in LabView is in milliseconds. The duration
of one sweep of the data is approximately 213 ms
(256 periods/1200 Hz) for this case. The amplitude of
the sampled signal can be at maximum ±5 V which
would correspond to a minimum of 0 counts (−5 V)
or a maximum of 255 counts (+5 V) on the Y axis
(labeled amplitude) of the LabView plot. In our case,
the sampled signal has a max/min of roughly of ±2 V
which corresponds to an amplitude between 80 and 180
counts in LabView, which is what we observe. Thus, to
use the LabView display as an oscilloscope, one simply
reads the X axis as time in milliseconds and the Y axis
can be converted to a voltage by subtracting 128 from
the amplitude and multiplying the resulting value by the

ratio 5 V/128 counts.
Fig. 13, also in the Appendix, shows a second wave-

form captured in LabView, now with a sampling rate of
9600 Hz. In both of these LabView measurements, the
frequency of the input signal was ∼ 65 Hz. Notice that
the higher sampling rate makes the discretization from
the sample and hold circuit less noticeable. However,
the consequence of higher temporal resolution is that
fewer oscillations are captured to memory for a given
input signal frequency, as the size of the memory is
fixed. In this case, only slightly more than one period
of the input signal is captured and stored to memory.
At a sample rate of 9600 Hz, approximately 27 ms
(256 periods/9600 Hz) of the signal is captured.

IV. CONCLUSIONS AND LESSONS LEARNED

In this report we discussed the construction, perfor-
mance, and operation of our homemade digital sampling
oscilloscope. Our final product was a fully operational
oscilloscope that allowed the user to adjust the gain and
offset of an input signal, sample the signal at one of
four possible sampling frequencies, convert the signal
to digital and write the data to memory to retrieve and
display it in LabView via the Arduino. Our oscilloscope
can capture waveforms with a SNR of 30 dB for fre-
quencies up to ∼ 16 kHz with ≤ −3 dB amplitude
attenuation and up to 4.8 kHz without aliasing. At the
highest sampling frequency (9.6 kHz), the memory can
hold ∼ 27 ms worth of data, while the lowest sampling
frequency (150 Hz) allows 1.7 seconds worth of data
to be stored in memory. We believe that this sampling
frequency flexibility gives this oscilloscope a unique
ability to sample waveforms of various frequencies at
the required fidelity.

There were several lessons learned looking back at the
project. During the oscilloscope construction, we ran into
a couple of technical hitches. For instance, the occasional
connection was omitted while wiring up analog compo-
nents. The lesson learned here is that if a component is
not operating properly it is most likely due to human
error (such as a missing wire or insufficient power),
and not a broken component, although the latter might
be the instinctive first guess. There is certainly an art
to troubleshooting and isolating problems to individual
components and eventually finding the problematic (or
missing) connection. By the completion of our project
we had come to appreciate the importance of color
coding our wires to ease troubleshooting and visual
comprehension of our circuit board. We also learned
that it is essential to have a big picture understanding of
how all the components will integrate and work together
while still in the planning phase of the circuit. Initially,

16

we considered each component (e.g. the sample and hold
circuit) as an individual module, and began building the
oscilloscope by completing one module and then moving
on to the next. We soon learned that if we did not
plan ahead and take into account the interaction between
various modules, we would often have to rebuild or
rearrange components.

APPENDIX

TABLE IV
INTEGRATED CIRCUIT COMPONENTS

Component Quantity Part #
Arduino Nano 1 ATmega328
Op-Amp (package of 2) 3 UA747CN
Bilateral Switch (package of 4) 1 TC4066BP
NAND Gate (package of 4) 1 SN7400N
NOT Gate (package of 6) 1 SN7404N
AND Gate (package of 4) 1 SN74LS08N
Digital Buffer (package of 8) 1 SN74LS244N
D-Type Flip-Flop (package of 4) 2 SN74S175N
Analog to Digital Converter 1 ADC0800PCD
Digital to Analog Converter 2 DAC0800LCN
4-Bit Counter 1 SN74LS163AN
12-Bit Counter 1 CD4040BE
Static RAM 1 HM6116P
Bit Rate Generator 1 MC14411

TABLE V
DISCRETE COMPONENTS

Component Quantity Value
Resistor 1 470 Ω
Resistor 4 5.1 kΩ
Resistor 7 10 kΩ
Resistor 1 15 MΩ
Variable Resistor 1 10 kΩ
Potentiometer 1 100 kΩ
Capacitor 2 10 nF
Capacitor 1 68 nF
Capacitor 4 100 nF
Crystal 1 1.8432 MHz
Push Button Switch 1 –
SPDT Switch 2 –

17

Fig. 9. The Arduino control code.

18

Fi
g.

10
.

To
p:

B
lo

ck
di

ag
ra

m
of

th
e

L
ab

V
ie

w
pr

og
ra

m
.B

ot
to

m
:

Fr
on

t
Pa

ne
l

of
th

e
L

ab
V

ie
w

in
te

rf
ac

e.

19

Measured Timing Diagram

0 50 100 150 200 250
Time (microseconds)

Student Version of MATLAB

ADC clock (48x)

Q_1 (1x)

QA

QC

~(QA*QC)

Q_2

Q_1 * ~Q_2

S/H CTRL

ADC Start

ADC EOC

Fig. 11. Measured timing diagram. Shows the measured timing pulses used to control the Sample and Hold circuit and to start the ADC
conversion. The timing diagram and the modeled timing signals are discussed in Sec. II-B.

20

Lab View Capture

signal repeats

0 25 50 75 100 125 150 175 200 225 250−5
−4
−3
−2
−1

0
1
2
3
4
5

Oscilloscope Capture with 1200Hz Sampling Frequency

Time (milliseconds)

Vo
lta

ge
 (V

)

T signal (time signal)
Y signal (data signal)

Student Version of MATLAB

Fig. 12. Oscilloscope data taken with LabView via the Arduino (bottom) compared with data measured after analog conversion via the
bench top oscilloscope. Sampling rate: 1200Hz.

21

signal repeats

Lab View Capture

0 5 10 15 20 25 30 35 40−5
−4
−3
−2
−1

0
1
2
3
4
5

Oscilloscope Capture 9600Hz Sampling Frequency

Time (milliseconds)

Vo
lta

ge
 (V

)

T signal (time signal)
Y signal (data signal)

Student Version of MATLAB

Fig. 13. Oscilloscope data taken with LabView via the Arduino (bottom) compared with data measured after analog conversion via the
bench top oscilloscope. Sampling rate: 9600Hz.

22
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

V
O
L
T
A
G
E

F
O
L
L
O
W
E
R

V
A
R
I
A
B
L
E

D
C

O
F
F
S
E
T

V
A
R
I
A
B
L
E

G
A
I
N

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 IN
P

U
T

 S
T

A
G

E

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
3

=
 +

12
V

V
3

=
 +

12
V

V
3

=
 +

12
V

V
4

=
 -

12
V

V
4

=
 -

12
V

V
4

=
 -

12
V

V
1

=
 +

5V

V
2

=
 -

5V

R = 100k
POTENTIOMETER

- +

U
1A

U
A

74
7C

N

21
12

413
14 3

R
 =

 1
0k

R
E

S
IS

T
O

R

R
 =

 1
0k

R
E

S
IS

T
O

R

- +

U
1B

U
A

74
7C

N

67
10

49
8 5

- +

U
2A

U
A

74
7C

N

21
12

413
14 3

R
 =

 1
0k

R
E

S
IS

T
O

R

R
 =

 0
.4

7k
R

E
S

IS
T

O
R

R
 =

 1
0k

R
E

S
IS

T
O

R
 V

A
R

S
IG

N
A

L
IN

T
O

 S
/H

 IN
P

U
T

Fi
g.

14
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

In
pu

t
St

ag
e.

23
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

B
I
T

R
A
T
E

G
E
N
E
R
A
T
O
R

D
-
T
Y
P
E

F
L
I
P
-
F
L
O
P

D
-
T
Y
P
E

F
L
I
P
-
F
L
O
P

4
-
B
I
T

C
O
U
N
T
E
R

C
L
O
C
K

S
P
E
E
D

S
E
L
E
C
T
I
O
N

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 C
LO

C
K

 U
N

IT

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
1

=
 +

5V

V
1

=
 +

5V
V

1
=

 +
5V

V
1

=
 +

5V

U
9B

S
N

74
LS

08
N

4 5
6

U
11

S
N

74
LS

16
3A

N

3 4 5 6 2

14 13 12 11 15

1 7 10 9

A B C D C
LK

Q
A

Q
B

Q
C

Q
D

R
C

O

C
LR

E
N

P
E

N
T

LO
A

D

R
 =

 1
5M

R
E

S
IS

T
O

R

U
9C

S
N

74
LS

08
N

9 10
8

U
10

B

S
N

74
04

N

3
4

S
W

3

S
W

 S
P

D
T

U
9A

S
N

74
LS

08
N

1 2
3

U
8

S
N

74
S

17
5N

9 14 5 12 13

3 6 11 142 7 10 15

C
LK

C
LR

D
1

D
2

D
3

D
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

S
W

2

S
W

 S
P

D
T

U
6

M
C

14
41

1

10

13 14 15 16 17

20 21 22 23
1236 789 451819

R
S

T

F
13

F
12 F

6

F
4

F
2

X
2

X
1

R
S

B
R

S
A

F
1

F
3

F
5

F
10 F

9

F
11

F
14 F

7
F

8

F
15

F
16

U
7

S
N

74
S

17
5N

9 14 5 12 13

3 6 11 142 7 10 15

C
LK

C
LR

D
1

D
2

D
3

D
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

U
10

D

S
N

74
04

N

9
8

1.
84

32
M

H
z

C
R

Y
S

T
A

L

U
9D

S
N

74
LS

08
N

1213
11

T
O

 S
/H

 C
T

R
L

T
O

 A
D

C
 S

T
A

R
T

T
O

 A
D

C
 C

LO
C

K

T
O

 S
R

A
M

 C
O

U
N

T
E

R
 C

LO
C

K

Fi
g.

15
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

C
lo

ck
U

ni
t.

24
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

V
O
L
T
A
G
E

F
O
L
L
O
W
E
R

V
O
L
T
A
G
E

F
O
L
L
O
W
E
R

B
I
L
A
T
E
R
A
L

S
W
I
T
C
H

V
S
S

7

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 S
A

M
P

LE
 A

N
D

 H
O

LD

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
4

=
 -

12
V

V
3

=
 +

12
V

V
1

=
 +

5V

V
3

=
 +

12
V

V
4

=
 -

12
V

V
2

=
 -

5V

- +

U
3A

U
A

74
7C

N

21
12

413
14 3

U
4A

T
C

40
66

B
P

1 2
1413

A B
V

D
D

C

- +

U
2B

U
A

74
7C

N

67
10

49
8 5

C
 =

 0
.0

68
uF

C
A

P
A

C
IT

O
R

F
R

O
M

 IN
P

U
T

 S
T

A
G

E
T

O
 A

D
C

 IN
P

U
T

F
R

O
M

 C
LO

C
K

 U
N

IT
 C

T
R

L

Fi
g.

16
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

Sa
m

pl
e

an
d

H
ol

d.

25
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

A
/
D

C
O
N
V
E
R
T
E
R

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 A
D

C

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
4

=
 -

12
V

V
1

=
 +

5V

V
1

=
 +

5V

V
2

=
 -

5V

U
5

A
D

C
08

00
P

C
D

12 15 5 6711 10 8

13 14 16 17 1 2 3 4 9

V
IN

R
-T

O
P

R
-B

O
T

S
T

A
R

T
O

E

C
LK

V
S

S
-V

G
G

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

E
O

C
F

R
O

M
 C

LO
C

K
 U

N
IT

 S
T

A
R

T

F
R

O
M

 S
A

M
P

LE
 A

N
D

 H
O

LD
 O

U
T

P
U

T
T

O
 S

R
A

M
 D

A
T

A
0

T
O

 S
R

A
M

 D
A

T
A

1
T

O
 S

R
A

M
 D

A
T

A
2

T
O

 S
R

A
M

 D
A

T
A

3
T

O
 S

R
A

M
 D

A
T

A
4

T
O

 S
R

A
M

 D
A

T
A

5
T

O
 S

R
A

M
 D

A
T

A
6

T
O

 S
R

A
M

 D
A

T
A

7

F
R

O
M

 C
LO

C
K

 U
N

IT
 C

LO
C

K

T
O

 S
R

A
M

 C
O

N
T

R
O

L
LO

G
IC

Fi
g.

17
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

A
D

C
.

26
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

D
I
G
I
T
A
L

B
U
F
F
E
R
S

S
R
A
M

1
2
-
B
I
T

C
O
U
N
T
E
R

C
O
N
T
R
O
L

L
O
G
I
C

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 S
R

A
M

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
1

=
 +

5V

V
1

=
 +

5V

U
13

H
M

61
16

P

8 7 6 5 4 3 2 1 23 22 19

9 10 11 13 14 15 16 17

2420 21 18

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

V
C

C

O
E

W
E

C
S

U
12

S
N

74
LS

24
4N

2 4 6 8 1

18 16 14 12
11 13 15 17

9 7 5 3

19

A
1

A
2

A
3

A
4

1O
E

Y
1

Y
2

Y
3

Y
4

A
5

A
6

A
7

A
8

Y
5

Y
6

Y
7

Y
8

2O
E

U
16

C
D

40
40

B
E

10 11

9 7 6 5 3 2 4 13 12 14 15 1

16

C
LK

R
S

T

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

V
C

C

U
17

A

S
N

74
00

N

1 2
3

T
O

 A
R

D
U

IN
O

 D
5

T
O

 A
R

D
U

IN
O

 D
6

T
O

 A
R

D
U

IN
O

 D
7

T
O

 A
R

D
U

IN
O

 D
8

T
O

 A
R

D
U

IN
O

 D
9

T
O

 A
R

D
U

IN
O

 D
10

T
O

 A
R

D
U

IN
O

 D
11

T
O

 A
R

D
U

IN
O

 D
12

T
O

 D
A

C
 A

D
D

R
0

T
O

 D
A

C
 A

D
D

R
1

T
O

 D
A

C
 A

D
D

R
2

T
O

 D
A

C
 A

D
D

R
3

T
O

 D
A

C
 A

D
D

R
4

T
O

 D
A

C
 A

D
D

R
5

T
O

 D
A

C
 A

D
D

R
6

T
O

 D
A

C
 A

D
D

R
7

F
R

O
M

 A
D

C
 D

A
T

A
0

F
R

O
M

 A
D

C
 D

A
T

A
5

F
R

O
M

 A
D

C
 D

A
T

A
3

F
R

O
M

 A
D

C
 D

A
T

A
6

F
R

O
M

 A
D

C
 D

A
T

A
1

F
R

O
M

 A
D

C
 D

A
T

A
7

F
R

O
M

 A
D

C
 D

A
T

A
4

F
R

O
M

 A
D

C
 D

A
T

A
2

F
R

O
M

 A
R

D
U

IN
O

 D
13

F
R

O
M

 A
D

C
 E

O
C

T
O

 A
R

D
U

IN
O

 D
2

F
R

O
M

 C
LO

C
K

 U
N

IT
 Q

1

T
O

 D
A

C
 D

A
T

A
3

T
O

 D
A

C
 D

A
T

A
7

T
O

 D
A

C
 D

A
T

A
6

T
O

 D
A

C
 D

A
T

A
2

T
O

 D
A

C
 D

A
T

A
1

T
O

 D
A

C
 D

A
T

A
0

T
O

 D
A

C
 D

A
T

A
5

T
O

 D
A

C
 D

A
T

A
4

F
R

O
M

 A
R

D
U

IN
O

 P
U

S
H

 B
U

T
T

O
N

Fi
g.

18
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

SR
A

M
.

27
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

U
S
E
R

P
U
S
H

B
U
T
T
O
N

T
O

S
T
A
R
T

W
R
I
T
I
N
G

A
R
D
U
I
N
O

N
A
N
O

M
I
C
R
O
C
O
N
T
R
O
L
L
E
R

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 A
R

D
U

IN
O

A

1
1

S
un

da
y,

 M
ay

 1
2,

 2
01

3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
1

=
 +

5V

V
_U

S
B

 =
 +

5V

V
_U

S
B

 =
 +

5V

S
W

1

S
W

 S
P

D
T

IC
1

A
T

m
eg

a3
28

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1516171819202122232425262728

P
C

6
(R

E
S

E
T

)
P

D
0

(R
xD

)
P

D
1

(T
xD

)
P

D
2

(I
N

T
0)

P
D

3
(I

N
T

1)
P

D
4

(X
C

K
/T

0)
V

C
C

G
N

D
P

B
6

(X
T

1/
T

O
S

C
1)

P
B

7
(X

T
2/

T
O

S
C

2)
P

D
5

(T
1)

P
D

6
(A

IN
0)

P
D

7
(A

IN
1)

P
B

0
(I

C
P

)
(O

C
1A

)
P

B
1

(S
S

/O
C

1B
)

P
B

2
(O

C
2/

M
O

S
I)

 P
B

3
(M

IS
O

)
P

B
4

(S
C

K
)

P
B

5
A

V
C

C
A

R
E

F
A

G
N

D
(A

D
C

0)
 P

C
0

(A
D

C
1)

 P
C

1
(A

D
C

2)
 P

C
2

(A
D

C
3)

 P
C

3
(S

D
A

/A
D

C
4)

 P
C

4
(S

C
L/

A
D

C
5)

 P
C

5
T

O
 S

R
A

M
 C

O
U

N
T

E
R

 R
E

S
E

T

F
R

O
M

 S
R

A
M

 D
A

T
A

4
F

R
O

M
 S

R
A

M
 D

A
T

A
5

F
R

O
M

 S
R

A
M

 D
A

T
A

0

F
R

O
M

 S
R

A
M

 D
A

T
A

7

F
R

O
M

 S
R

A
M

 D
A

T
A

1
F

R
O

M
 S

R
A

M
 D

A
T

A
2

F
R

O
M

 S
R

A
M

 D
A

T
A

6

F
R

O
M

 S
R

A
M

 D
A

T
A

3

F
R

O
M

 S
R

A
M

 C
O

U
N

T
E

R
 Q

9

T
O

 S
R

A
M

 C
O

N
T

R
O

L
LO

G
IC

Fi
g.

19
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

A
rd

ui
no

.

28
5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

V
+

V
-

V
-

V
+

3 31
3

1
3

1

D
IG

IT
A

L
S

A
M

P
LI

N
G

 O
S

C
IL

LO
S

C
O

P
E

 D
A

C

A

1
1

F
rid

ay
, M

ay
 1

0,
 2

01
3

T
itl

e

S
iz

e
D

oc
um

en
t N

um
be

r
R

ev

D
at

e:
S

he
et

of

V
1

=
 +

5V

V
1

=
 +

5V

V
2

=
 -

5V

V
1

=
 +

5V
V

1
=

 +
5V

V
1

=
 +

5V

V
1

=
 +

5V

V
1

=
 +

5V

V
1

=
 +

5V V
2

=
 -

5V

R
 =

 1
0k

R
E

S
IS

T
O

R
R

 =
 1

0k
R

E
S

IS
T

O
R

R
 =

 5
.1

k
R

E
S

IS
T

O
R

R
 =

 5
.1

k
R

E
S

IS
T

O
R

C
 =

 0
.1

uF

C
A

P
A

C
IT

O
R

U
14

D
A

C
08

00
LC

N

12 11 10 9 8 7 6 5 14 15

4 2 16 1

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

V
R

+

V
R

-

IO
U

T

IO
U

T

C
O

M
P

V
LC

C
 =

 0
.1

uF

C
A

P
A

C
IT

O
R

C
 =

 0
.1

uF

C
A

P
A

C
IT

O
R

U
15

D
A

C
08

00
LC

N

12 11 10 9 8 7 6 5 14 15

4 2 16 1

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

V
R

+

V
R

-

IO
U

T

IO
U

T

C
O

M
P

V
LC

R
 =

 1
0k

R
E

S
IS

T
O

R
R

 =
 1

0k
R

E
S

IS
T

O
R

R
 =

 5
.1

k
R

E
S

IS
T

O
R

R
 =

 5
.1

k
R

E
S

IS
T

O
R

C
 =

 0
.0

1u
F

C
A

P
A

C
IT

O
R

C
 =

 0
.1

uF

C
A

P
A

C
IT

O
R

C
 =

 0
.0

1u
F

C
A

P
A

C
IT

O
R

A
N

A
LO

G
 O

U
T

 Y

A
N

A
LO

G
 O

U
T

 T

F
R

O
M

 S
R

A
M

 D
A

T
A

0
F

R
O

M
 S

R
A

M
 D

A
T

A
1

F
R

O
M

 S
R

A
M

 D
A

T
A

2
F

R
O

M
 S

R
A

M
 D

A
T

A
3

F
R

O
M

 S
R

A
M

 D
A

T
A

4
F

R
O

M
 S

R
A

M
 D

A
T

A
5

F
R

O
M

 S
R

A
M

 D
A

T
A

6
F

R
O

M
 S

R
A

M
 D

A
T

A
7

F
R

O
M

 S
R

A
M

 A
D

D
R

0
F

R
O

M
 S

R
A

M
 A

D
D

R
1

F
R

O
M

 S
R

A
M

 A
D

D
R

2
F

R
O

M
 S

R
A

M
 A

D
D

R
3

F
R

O
M

 S
R

A
M

 A
D

D
R

4
F

R
O

M
 S

R
A

M
 A

D
D

R
5

F
R

O
M

 S
R

A
M

 A
D

D
R

6
F

R
O

M
 S

R
A

M
 A

D
D

R
7

Fi
g.

20
.

O
rC

A
D

sc
he

m
at

ic
of

th
e

D
A

C
.

