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1 Overview

This lab addresses the control of an inverted pendulum balanced on a rotary beam. The state of
this system has four elements, corresponding to the rotary beam angle, the pendulum angle, and
their rates of change. However, the only sensors available to us are two encoders which measure
the angular positions. In order to apply full-state feedback laws, we implement an observer that
reconstructs the full state from these two measurements. We then use observer-based feedback to
control the pendulum.

2 Goals

Our hands-on goals for today are to:

• Design an observer to track the state variables of the pendulum system, using

– Pole placement

– Linear Quadratic Estimation (LQE)

• Use Bode plots to design an LQR controller for full-state feedback

• Use Bode and Nyquist plots to design observer-based controllers (LQR + observer)

• Implement observer-based control in experiment and verify its effectiveness

3 Pendulum down

First, we focus on observer design alone. That is, we do not apply any control to the system. As
such, we must consider the pendulum in its down position. (The pendulum-up system is unstable
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and requires control to stay near its equilibrium, where the linearization is valid.) The dynamics
of this system are given by

d

dt


α
θ
α̇

θ̇

 =


0 0 1 0
0 0 0 1

0 −mgr
J −K2

J 0

0 − (J+mr2)g
Jl − rK2

Jl 0



α
θ
α̇

θ̇

+


0
0
K1
J

rK1
Jl

u, (1)

where y =
[
α θ

]T
is the output vector and u = Vin is the input voltage.

Recall that the state-space realization of an observer is given by

˙̂x = Ax̂ +Bu+ L(y − Cx̂)

y = Cx,

where x̂ is the state estimate. Using the shorthand notation for state-space systems, we can also
write this as

Gobsv(s) =

[
A− LC

[
B L

]
I4×4 04×3

]
. (2)

We can also draw this as a block-diagram:

˙̂x = (A− LC)x̂ +Bu+ Ly
-

-
-

y

u
x̂

3.1 Pole placement

First, we design observers using pole placement.

1. Choose a set of closed-loop poles for the observer. Then compute the corresponding gain
matrix L using the command L = place(A’, C’, desired poles)’.
We must use the dual system because the place command assumes we are trying to place the
poles of A−BK, whereas we are really interested in the form A− LC.

2. In Matlab, use the ss command to create a state-space system for the observer. Name this
system downobsv.
Remember, the dynamics of the observer are given by (2).

3. Create and build the simulink model shown below.
The black bars are Mux (multiplexer) blocks, found in the Signals and Systems library.
The block in the middle called Observer is an LTI System, found in the Control System

Toolbox library. Set its value to be the state-space system downobsv. The Gain block provides
negative feedback to bring the pendulum to its rest position. For now you can set the gain to
0, allowing you to move the pendulum freely.

4. Create four scopes, each comparing a state variable to its estimate.
In other words, plot α and α̂ in the same plot, etc. For the derivatives, also plot the signal
computed via direct differentiation within the Rotary pendulum block (e.g., Alphadot).
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Figure 1: Simulink model for an observer.

5. Run your Simulink model. Move the pendulum and rotary beam around manually. Monitor
the scopes to see if your observer tracks the state variables as desired.

6. Change the value of the Gain block to some negative value. Try swinging the pendulum
(remember to use small amplitudes) and see if your observer still tracks the motion.
Due to the structure of our Simulink model, we must use a negative value to achieve negative
feedback.

7. By choosing different sets of closed-loop poles, design observers that exhibit:

(a) poor tracking (too slow)

(b) good tracking (fast).

Check your observer gains L. Are these realistic for implementation in experiment? Think
about sensor noise.

8. Check in with an AI before proceeding.

3.2 LQE

Next, we design optimal observers using LQE. These observers will balance the effects of input
disturbances and sensor noise. We define the LQE weights to be

W = 1

V =

[
v 0
0 v

]
,

where v is a design parameter whose value we get to choose. W is related to the magnitude of
input disturbances, and V to the magnitude of sensor noise.
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1. Choose a weight on the sensor noise, v. Compute the corresponding LQE observer gains using
the command L = lqe(A, B, C, W, V).

2. Recompute the LTI system downobsv using the new gains L and run your Simulink model.

3. Vary v until you achieve good observer performance. What does the value of v tell you about
how good your model is compared to how good your sensor measurements are?
Hint: think about what it means if V is much larger than W , or vice versa.

4. Check in with an AI before proceeding.

4 Pendulum up

Next, we use the intuition gained in the previous part of the lab to design observers for the pendulum
in the up position, where the dynamics are given by

d

dt


α
θ
α̇

θ̇

 =


0 0 1 0
0 0 0 1

0 −mgr
J −K2

J 0

0 (J+mr2)g
Jl

rK2
Jl 0



α
θ
α̇

θ̇

+


0
0
K1
J

− rK1
Jl

u. (3)

We will combine these observers with a state-feedback controller to stabilize and control the
pendulum. The pairing of an observer with a state-feedback controller yields something commonly
referred to as a “compensator.”

4.1 LQR design

In last week’s lab, we designed LQR controllers using intuition. This week, we will do a more
systematic design, using Bode plots. Recall that for state-feedback control, the loop gain is given
by

LLQR(s) =

[
A B

K 0

]
. (4)

1. Consider the Bode magnitude plots given below. Do the labels make sense? Can you explain
them?
Hint: think about performance and bandwidth.

2. Choose three sets of LQR weights that you think will yield controllers that are too slow, too
fast, and just right. Compute the corresponding controller gains K and plot the resulting
Bode magnitude plots. Verify that they are similar to the ones shown in Fig. 4.1.
Use the intuition you gained from the previous step to choose the LQR weights Q and R. If
you forget how to do compute the LQR gain K, refer to your Matlab scripts from last week.

3. Implement your LQR controllers in experiment. Do they perform as expected?
You should be able to use your Simulink model from last week’s lab.

4. Check in with an AI before proceeding.
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Figure 2: Sample Bode magnitude plots.

4.2 Observer-based feedback

Recall that in practice, we often cannot measure every element of the state. For instance, in this
experiment we have two encoders that measure the two angular positions. We cannot directly
measure their derivatives. Thus to implement state feedback (nominally u = −Kx), we will have
to estimate the full state. This will allow us to apply feedback laws like u = −Kx̂.

1. What is the problem with simply differentiating the signals for α and θ to get their deriva-
tives? Can you prove this rigorously?
Hint: think about the transfer function that corresponds to taking a derivative. What does
this look like at high frequencies?

2. Do the following, first for an observer designed with pole placement, then one designed using
LQE:

(a) Using your “good” poles/weights from above, design an observer gain L for the pendulum-
up dynamics.
Remember to change the A and B matrices!

(b) Create a state-space system for the compensator, which has the transfer function

Gupcomp(s) =

[
A−BK − LC L

K 0

]
.

Name this variable upcomp.

(c) Create a state-space system for the plant, whose transfer function is

Pup(s) =

[
A B

C 0

]
.

Name this variable upplant.
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(d) Multiply the upplant and upcomp systems together to get the loop gain for the observer-
based system, Lobs(s).
Be careful about the order in which you do this multiplication.

(e) Compare the Bode and Nyquist plots of this system to those of the state-feedback loop
gain LLQR(s). Adjust your poles/LQE weights if necessary to get good Bode and Nyquist
plots for your observer-based loop gain.
Think about things like performance, bandwidth, and robustness/margins. Remember,
our LQR loop gain is optimal for the cost function we chose (defined by Q and R). If
our estimator is good, it should achieve similar performance to the LQR state-feedback
system.

(f) Create a state-space system for the observer alone, whose transfer function is given in
Eq. (2). Name this variable upobsv.

(g) Create and build the Simulink model below.
In the Gain block, be sure to select Matrix multiplication (K*u) from the drop-down
menu. Note that here u here is just what Matlab calls the input to the Gain block. It is
not the motor voltage u. Set the value for the gain to be −K, where K is the matrix of
LQR gains.

Thetahatdot
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K* u

State Feedback

Motor input
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Theta

Alphadot

Thetadot

Rotary pendulum

upobsv

Observer

Alphahatdot

Alphahat

Figure 3: Simulink model for observer-based control

(h) Run the Simulink model. Does the system perform as well as you expect? If not, adjust
the poles/LQE weights as necessary to achieve good performance.
If you need to adjust your designs, use the Bode and Nyquist plots of the loop gain to
guide you.

(i) As in the previous two labs, modify your model so that you can track a reference value
αref.
For your Scope on Alphahat to make sense, you will have to apply the same alpharef

offset to the Alphahat signal, before it reaches the Scope.
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(j) Run the following experiment and save the data for your lab report:

i. Set αref to 10 degrees.

ii. Run your model.

iii. After the rotary arm settles in at its commanded position, tap the pendulum to give
it a disturbance.

iv. Let the system come to equilibrium.

v. Save this data.

(k) Demonstrate the performance of your observer-based controllers to an AI.

5 Deliverables

The following should be included in your lab report, for both the pole placement-based compensator
and the LQE-based compensator:

1. Desired poles/LQE weights used for observer design.

2. Weights used for LQR design.

3. Bode magnitude plot of LQR loop gain and loop gain for observer-based control (together in
one plot).

4. Nyquist plot of LQR loop gain and loop gain for observer-based control (together in one plot).

5. For each state variable, a comparison of the measured and estimated state from the observer-
based control experiment (four plots total).

7


