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1 Overview

The next three labs address the control of an inverted pendulum balanced on a rotating beam. In
this first lab, we derive a model for the system and perform some simple experiments to determine
the parameter values. We also verify our models against experiments.

2 Deriving a dynamic model

Figure 1 shows a schematic of the rotary beam system.

Figure 1: Diagram of rotary inverted pendulum.

2.1 Rotary pendulum dynamics

We can derive the equation of motion for the rotary pendulum system using Lagrange’s equations,
yielding
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where T is an applied torque. If we linearize about θ = α = 0, we get
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(1)

2.2 Motor dynamics

In the actual experiment, the input is not literally the force F or torque T , but is actually a voltage
u applied to the motor. You may recall the following relations for a motor:

τ = Kmi e = Kmω.

The first equation is the “law of the motor” and relates the motor torque τ to the current i through
the motor, where Km is a constant. The second equation is the “law of the generator” which relates
the shaft speed ω to the back EMF e induced by the motor.

If the shaft of a motor is connected so as to drive the rotary pendulum system, we obtain

T = K1u−K2α̇ (2)

where we have defined

K1 = KmKg/R

K2 = K2
mK

2
g/R,

R is the resistance of the motor, and Kg is the gear ratio from the motor to the shaft, which yields
an additional relation

α̇ = Kgωmotor.

2.3 Combined dynamics

Combining Equations (1) and (2), the equations of motion are

α̈ = −mgr
J

θ +
1

J
(K1u−K2α̇)

θ̈ = −(J +mr2)g

Jl
θ +

r

Jl
(K1u−K2α̇).

(3)

or, in state-space form,

d
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Using state vector x =
[
α θ α̇ θ̇

]T
we can rewrite Equation (4) as

ẋ = Ax+Bu, (5)

where

A =


0 0 1 0
0 0 0 1

0 −mgr
J −K2

J 0

0 − (J+mr2)g
Jl − rK2

Jl 0



B =


0
0
K1
J
rK1
Jl

 .

3 System identification

To use the dynamic model described by Eqn. (4), we have to plug in values for all the parameters.
Some of these are known constants, such as the gravitational acceleration g. Others are are easy
to measure directly, such as the pendulum length. But parameters such as the motor constants
K1 and K2 are both unknown and difficult (or impossible) to measure, so we will determine them
using carefully chosen experiments. The system identification procedure consists of three parts:

• Pendulum dynamics: Fix the rotary beam. Then determine a model for the pendulum alone,
describing the downward hanging dynamics.

• Rotary beam dynamics: Remove the pendulum. Then determine a model for the rotary beam
alone.

• Combined: Combine these models to obtain a model for the full system, describing the
pendulum balanced in the up position.

Data from this week’s lab will be used in future labs, so be sure to save your
measured constants and responses.

3.1 Pendulum dynamics

The linearized equation of motion for a simple pendulum is given by

mL2θ̈ +mgLθ = 0.

If we assume a rigid body rather than a point mass on the end of a massless rod, we instead have

Jθ̈ +mglcθ = 0

where J is the moment of inertia of the pendulum, measured with respect about the pivot, and lc
is the distance from the pivot to the pendulum’s center of mass.

Recalling that the second-order system

ÿ + ω2
0y = 0 (6)
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describes an oscillator with natural frequency ω0, we see that the simple pendulum has a natural
frequency

ω0,simple =

√
g

L
,

whereas the rigid body pendulum has a natural frequency

ω0,rigid =

√
mglc
J

.

We observe that if all the mass in the rigid body is concentrated at the end of the pendulum, then
lc = L, J = mL2, and these reduce to the same thing.

If the pendulum has uniformly distributed mass, then

lc =
L

2

and

J =
mL2

3
,

so

ω0 =

√
3g

2L
,

and the “effective length” is

l =
2L

3
.

The effective length is the length of an equivalent simple pendulum. That is, a simple pendulum
with length l will have the same dynamics as the rigid body pendulum with effective length l.
We will determine the effective length l experimentally by measuring the natural frequency of the
pendulum.

1. Download the file lab6.zip from Blackboard and unpack it. Move the files nt msvc.tmf and
rotpend template.mdl to your working directory. Make a copy of rotpend template.mdl

and rename it.
We will need this template file for later labs, so you don’t want to overwrite it.

2. Make sure that your rotary pendulum system is connected correctly. There should be a power
cable connecting it to the UPM and two encoder cables connecting it to the Quanser board.
You should be able to identify the encoders on the rotary pendulum system. They look the
same as the encoders on the DC motor test stands. The encoder for the rotary arm should be
connected to channel 0. The encoder for the pendulum should be connected to channel 1.

3. Open your model for the rotary pendulum system in Simulink and build it. Bring up a Scope

and verify that the system behaves as you expect. Is the position absolute or relative?
Move the pendulum and rotary arm around. Make sure the signals corresponding to those
variables change correctly. To determine if the position is absolute or not, try stopping the
model and starting it again from another initial condition.

4. Collect data to determine the natural frequency of the pendulum alone.

(a) Start your model with the pendulum hanging down.

(b) Hold the rotary beam steady.
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(c) Bring the pendulum up to some initial angle, then let go, allowing it to swing freely.
What initial angles make sense for this test? Think about problems that may occur in
the limit of small and large angles.

(d) Save the data to a mat file.

(e) Turn off the model and remove the pendulum from the rotary arm. Measure its length
and mass.
Leave the pendulum off, as we won’t need it for the next part of the lab. Make sure to
record the pendulum mass. We don’t need its value now, but we will need it later.

5. Compute the effective length of the pendulum.

(a) Load your data into Matlab and determine the period of oscillation from a plot θ.
In order to avoid any bias, take the average over many oscillation periods.

(b) Compute the effective length from the equation

ω0 =

√
g

l
.

(c) Compare this to the theoretical value

l =
2L

3
,

where L is the full length of the pendulum.

6. Discuss your results with an AI before moving on to the next section.

3.2 Rotary Beam dynamics

With the pendulum removed, the dynamics of the rotary beam are simply

Jα̈ = τ.

Plugging in from Eqn. (3), this is just

Jα̈+K2α̇ = K1u.

In experiment, we can choose the input u and then measure the resulting values of α and α̇.
Suppose we choose to apply proportional-derivative feedback such that

u = −(kpα+ kdα̇). (7)

Then the governing equation becomes

Jα̈+ (K2 +K1kd)α̇+K1kpα = 0 (8)

This is just a standard second-order linear system, like a spring-mass-damper, where K1kp is the
spring constant and K2 + K1kd is the damping coefficient. Recall that a second-order system of
the form

ÿ + 2σẏ + ω2
0y = 0 (9)
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has a solution
y(t) = e−σt cos(ωdt),

where
ω2
d = ω2

0 − σ2.

Thus, solutions of Eqn. (8) will be damped sinusoids, and we can determine the various constants
in Eqn. (8) by measuring the frequency ωd and decay rate σ of the solutions.

P control

Eqn. (8) tells us that the rotary arm will behave like a damped oscillator for any choice of kd. In
this part of the lab, we will investigate whether or not pure proportional control (kd = 0) is an
appropriate way to modify the dynamics for system identification. Remember, we are trying to
identify the decay rate and oscillation frequency of the system, which we can use to determine the
model parameters.

1. Modify the Simulink model you downloaded so that it looks like the one shown in Fig. 2. Set
the Gain block kp to 8. Make sure the block Gain1 is set to −1, to get negative feedback.
For this part of the lab you can set the Constant block alpharef to 0.

Figure 2: Simulink model for PD control.

2. Build the model and create two Scopes: one for α and one for Motor volts.

3. Start the model and pull on the rotary arm to test its response. Does it behave as you expect?
Try out different gains in the feedback loop, including small gains, large gains, and even (very
small!) negative gains.
You don’t have to stop the model between each test. The gain can be changed in real-time.

4. Determine if there is an appropriate gain value to use for system identification. Discuss
with an AI before proceeding.
Hint: remember, we want to take experimental data from which we can identify a damping
rate and an oscillation frequency. But the system identification procedure is only valid if the
experimental data match the theoretical model. What physical effects cannot be captured by
the model?
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PD control

Part 1. Choosing appropriate gains
You should have seen in the previous part of the lab that pure proportional control did not

yield a response suitable for system identification. (Did you figure out why?) In this part of the
lab we will try using proportional-derivative control to modify the dynamics such that we get the
desired response.

1. Modify your Simulink model from before to get the one shown in Fig. 3.

Figure 3: Simulink model for PD control.

2. Change the value of alpharef (αr) to make the rotary beam move. Can you explain why
this happens?
The reference angle is given in radians, not degrees.

3. Vary the gains kp and kd. Keep them within the ranges 0 ≤ kp ≤ 15 and −0.6 ≤ kd ≤ 0.6.
Choose values that give you a suitable response for system identification.
Remember, we are trying to identify a frequency and a damping rate from the experimental
data. Can you clearly identify these values from your data?

4. Once you have found suitable gains, collect a step response of 20 degrees and save the data
for processing later.

Part 2. Determining the moment of inertia
If we plot the step response collected above, we can determine the frequency ωd and damping

rate σ of this system. Comparing Eqn. (8) and (9), we see that

2σ =
K2 −K1kd

J

ω2
0 =

K1kp
J

.

If we knew the moment of inertia, J , we could calculate K1 and K2 using these equations. Unfor-
tunately, we don’t, so we will conduct another experiment to determine its value.

Suppose we add a mass to the end of the rotary arm. Then Eqn. (8) becomes

(J +m0r
2
0)α̈+ (K2 +K1kd)α̇+K1kpα = 0.
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From this, we see that the frequency and damping rate of the system will change. (In the above
expressions, simply replace J with J +m0r

2
0.) If we collect a step response for this new system and

compare the new frequency ω′d and damping rate σ′ to the old ones (ωd and σ), we can back out
what the values of K1, K2, and J are.

1. Find the extra motor flywheel in your toolbox, weigh it, and secure it to the shaft of the
rotary arm with a set screw.
Make sure the mass is well secured!

2. Measure the radius of the rotary arm r0, from its rotation axis to the point where the flywheel
is mounted.

3. Using the same Simulink model from before, collect a step response for a reference angle of
20 degrees and save the data for later processing.
Make sure to use the same gains kp and kd from before.

Part 3. Calculating parameter values
In our Simulink model we added a reference alpharef that changes the control signal to

u = −
[
kp(α− αr) + cα̇

]
. (10)

Thus the equation governing the above experiments is actually

Jα̈+ (K2 −K1kd)α̇+K1kpα = K1kpαr, (11)

which has a response

α(t) = αr

[
1− e−σt

(
cos(ωdt) +

σ

ωd
sin(ωdt)

)]
. (12)

We will use this equation to identify our unknown parameters. We now determine the unknown
parameters of the systems, namely K1, K2 and J .

1. Determine ωd and σ.

(a) Plot the step response taken without the extra mass attached to the rotary arm.

(b) Estimate the frequency and guess a value for the damping rate.
You should be able to get a good estimate of the frequency, but don’t worry about getting
a good guess for the damping rate. Just guess!

(c) Plot the theoretical response given by Eqn. (12) on top of the experimental data.

(d) Adjust your values of ωd and σ until the two curves match.
The two curves will likely not match perfectly. Which part of the data (beginning/end,
large/small amplitudes) is more important to match?

(e) Save this plot to turn in for your lab report, as well as your values of ωd and σ.

2. Determine ω′d and σ′, using the same procedure as above.

(a) Compare the experimental step response (with the extra mass attached) to the theoret-
ical response given by Eqn. (12).
Here, replace ωd with ω′d and σ with σ′ when working with Eqn. (12).
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(b) Adjust your values of ω′d and σ′ until the two curves match.

(c) Save this plot to turn in for your lab report, as well as your values of ω′d and σ′.

3. Solve the overdetermined system
kd 1 −2σ
kp 0 −(σ2 + ω2

d)
kd 1 −2σ′

kp 0 −(σ′2 + ω′2d )


K1

K2

J

 =


0
0

2m0r
2
0σ
′

m0r
2
0(σ′2 + ω′2d )

 ,
which we can write as Mx = b, using the command x = M \ b.

4. Save your parameter values K1, K2, and J for later use.
You will need these values for the next two labs, so don’t lose track of them!

5. Discuss with an AI before moving on.

Combined dynamics and parameter validation

In the last part of this lab, we will combine the parameters determined above to get a model for the
full rotary pendulum system. Then we will do an experiment to verify that our parameter values
are reasonable.

1. Reconnect the pendulum to the rotary arm.

2. Using the same Simulink model from before, collect a step response, letting the pendulum
swing for at least 4 or 5 periods. Save this data for later processing.
What value should you give for the step? For what values of θ and α are our linear models
valid? What must be taken into account for large angles? For small angles?

3. Input the matrices A and B from Equation (5). Create a model of the open-loop system
using the command

sys = ss(A,B,eye(4),0).

4. Create a model for the closed-loop system using the command

sys closed = feedback(sys, K, -1),

where the controller gain vector is given by K =
[
kp 0 kd 0

]
.

5. Simulate an initial condition response of the system using the command

[y,t] = initial(sys closed , x 0 , 0:dt:tend),

where x0 =
[
−αr 0 0 0

]T
.

6. Plot the simulated initial condition response on top of the experimental step response. Why
is the initial condition response equivalent to a step response? Discuss with an AI before
proceeding.
If your two plots don’t agree well, think about whether or not your initial condition is valid.
They should at least agree for the first oscillation or two. If your initial condition is valid and
your plots still don’t agree, then you will have to repeat your system identification procedure.
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7. Save your plot and print it out for your lab report.

4 Deliverables

• Plots of curve fits used to find ωd, σ, ω′d, and σ′, along with their values

• Comparison of experimental step response to simulated initial condition response

10


