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1 Overview

In this lab we examine the dynamics of the motor-tachometer system. In the first part we briefly
describe a simplified model for the system dynamics. The parameters of this model are estimated
by making measurements. Using this model, we determine the frequency response using Matlab
(we will learn how to find the frequency response analytically later in the semester).

In the second part, we obtain the frequency response of the motor-tachometer system directly
by providing the motor with sinusoidal voltage inputs and observing the tachometer outputs. We
will find that if the input to the system is sinusoidal, then the response (after transients decay) is
also sinusoidal, but with a different amplitude and phase that depend on the forcing frequency.

Lastly, we compare the frequency response of the model with the actual system.

2 Goals

Our hands-on goals for today are to:

• Learn about the important physical parameters that characterize the motor-tachometer-
flywheel system

• Become familiar with the Matlab bode (pronounced, “boe-dee”) command which plots the
system gain (in dB) and phase (in degrees) versus the log of the frequency

• Learn that for sinusoidal forcing one must wait for all transients to decay before true sinusoidal
response is observed. The time that one must wait is equal to the time that it takes to establish
steady state in a step response.

• Compare theoretical predictions of the frequency to empirical measurements.

There is a brief, one-page lab report that you will hand in before leaving the lab.
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3 Modeling of the Motor

The motor can be modeled with an electrical and a mechanical component, see Figure 1. For the
electrical model, we have according to Kirchoff’s voltage law

L
dia
dt

+R ia + e = va, (1)

where R is the resistance, L the inductance, and e is the voltage generated as a result of the rotation
of the motor (electromotive force, or EMF). We also have the “law of the generator” which relates
the angular speed ω to the voltage induced by the motor e, where Ke is a constant:

e = Ke ω. (2)
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Figure 1: Schematic for the electrical and mechanical model of an electrical motor.

The mechanical equations follow from Newton’s law for the rotational moment of inertia

Jm θ̈m + b(θ̇m − θ̇l) + k(θm − θl) = T, (3a)

Jl θ̈l + b(θ̇l − θ̇m) + k(θl − θm) = 0, (3b)

where k, b are the rotational spring and damping constant respectively, and the driving torque T
is given by

T = KT ia. (4)

This is the “law of the motor” and relates the motor torque T to the current ia through the motor,
where KT is a constant.

Note that internal friction of the motor, stick-slip friction due to the brushes and other couplings
present in the motor test stand, is not modeled. For simplicity we introduce two more assumptions:

1. Assume a rigid connection between motor and load (flywheel).

2. Neglect the influence of induction.

The combined set of equations simplifies then to

ia R+Ke ω = va, (5a)

J ω̇ = KT ia, (5b)

where J = Jm + Jl. Recall that the moment of inertia for a cylinder about its axis of symmetry is
given by J = 1

2mr
2, where m is the mass and r is the radius. We will be using equations 5a and

5b throughout this lab and estimating the parameters R, Ke, J , and KT .
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4 Laboratory measurements

Estimate the rotational inertia of the motor and flywheel

As mentioned, the moment of inertia of a cylinder is

J =
1

2
mr2,

where we will use m in kg and r in meters. We will use this formula to estimate the moment of
inertia of the motor’s spinning components, Jm, and of the flywheel, Jl, to find the total needed in
equation 5b.

Measure Jm

1. Measure the mass of the spinning components of the motor (kg).
You will need a disassembled motor, which might be in use by another group. Feel free to skip
ahead to measuring Jl and come back to this step.

2. Measure the radius of the spinning components of the motor (meters).
There are calipers available with the other tools. Remember, radius, not diameter!

3. Compute Jm.
This estimate of the moment of inertia only accounts for the motor. It is not complete because
it does not include the moment of inertia of the shaft, couplings, or the encoder.

4. Verify that your Jm is in good agreement with the one specified by the manufacturer.
Refer to the motor datasheet that lists the manufacturer’s specifications in the back of this
notebook. The motor that we use is the Canon CKT26-T5. Note that the column heading in-
dicating rotor inertia is incorrect – the units should be oz-in-sec2 ·10−4. The units of oz-in-sec2

are converted to kg-m2 by the multiplicative constant 7.06155 · 10−3 kg-m2

oz-in-s2
.

Measure Jl

1. Measure the mass of the flywheel (kg).
Do not disassemble your motor setup. There are extra flywheels in the lab for you to use.
You will need a flywheel of the same size as your own.

2. Measure the radius of the flywheel (meters).
There are calipers available with the other tools. Remember, radius, not diameter!

3. Compute Jl.
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Compute J = Jl + Jm

For comparison, the value suggested for the total rotational inertia for the thin flywheel in your
problem set was J = 2.38 · 10−5kg-m2.

The calculated moments of inertia and suggested values are to be included in your
lab report. Be sure to check with an AI to make sure your values are correct.

Estimate the torque constant of the motor, KT

Having found the parameter J , we will now determine the torque constant KT . We will use
Equation 5b, which is repeated here for convenience:

J ω̇ = KT ia.

We will apply a constant current ia = 0.5 A to the motor and record its angular speed, ω(t), as it
increases linearly in time. Then we will use the slope of this line to solve for KT , since J and ia
are known.

1. Create a Simulink model as shown below in Figure 2.
The scope will record the angular speed in units of rad/s. This model will output the angular
speed, but doesn’t use the Quanser board for the input applied voltage like in last week’s lab.

100s

s+100

Transfer Fcn

2*pi / 4096

Gain

Quanser
MultiQ-PCI ENC

Encoder Input

Angular Speed

Figure 2: Block diagram for angular speed of the motor in rad/s.

2. Configure the Simulink model by setting the WinCon solver Simulation to ODE5 (Dormond-Prince),
as in the previous lab.

3. Connect the motor to the current-regulated DC power supply (GW Instek), then...

(a) Before you switch on the power supply, check that both sides of the power supply are
set to “independent” tracking, and have your setup checked by an AI or lab
technician.

(b) Switch on the power supply, slide the display switch to “AMPS” and turn the current
knob fully clockwise.

(c) Slide the display switch to “VOLTS” and set the voltage to 12 V (the motor should be
spinning).

(d) Slide the display switch to “AMPS” again and turn off the power supply.

(e) Start your Simulink model and open up a Scope to plot the angular speed of the motor.

(f) Hold the flywheel so that the motor cannot spin, and turn on the power supply. Do
not hold the motor at stall for longer than about 15 seconds at a time or you
could damage it.
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(g) Rotate the Current Control knob until the meter reads “0.5 amps”, then release. You
will see the angular speed increase linearly (constant acceleration), following Equation
5b. Stop after a few seconds.

(h) Save the Scope data to Matlab.

(i) Determine the slope of the line (after initial transients are gone) from current to angular
speed.
The slope is the angular acceleration in rad/s2.

4. Compute KT from Equation 5b, using your estimated value of J .

5. Compare your measured value with the one in the datasheet. Check with an AI to make
sure your value is reasonable.
To convert the table value in oz-in/A to N-m/A, multiply by 7.06155 · 10−3 N-m

oz-in . Your agree-
ment should be good.

Estimate the back EMF constant Ke and resistance R

We found the J and KT parameters, now we need Ke and R to complete Equations 5a and
5b. These values are given to you, and require no extra work. The value of this constant for a
permanent-magnet motor is numerically equal to the value of KT (in theory), but with the units
volts/(rad/sec). The value of R is listed in the data sheet in Ohms.

A brief set of equations showing your calculation of all of the paramters, as well as
the comparison with suggested values, should be included in your lab report.

System Model in Matlab

Now we are ready to model the system using Matlab. The dynamic model for the angular speed
can be obtained from Equation 5a and Equation 5b by eliminating the current, ia, via substitution.
The result is

ω̇ +K1 ω = K2 va,

where K1 = KTKe

JR and K2 = KT
JR .

To make the model complete, we also need a measurement equation. Our measurement will be
the tachometer voltage, as in Lab 1. Since the model is formulated in terms of ω in units of rad/s,
we need the tachometer constant to convert to voltage. Recall from lab 1: Ktach = Tach Voltage

Angular speed in
units of Volts/RPM.

1. Restate the equations of motion in state space form:

ẋ = Ax+Bu

y = Cx+Du,

where x = ω, u = va, and y = vtach. These calculations must be included in your lab
report.
Make sure to double-check your expressions for A, B, C, D in terms of the variables and
constants before you proceed with numerical calculation. Be careful about the units in C and
y (rad/s vs. RPM).
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2. Create a state-space model in Matlab by defining A, B, C, D and using the command sys =

ss(A, B, C, D).

3. Compute the step response by running the command step(sys).
This creates a plot of the step response, and it should look like your open-loop response from
last week’s lab.

4. Run the command bode(sys) to see what the frequency response looks like.
You don’t have to do anything with this yet, just observe that you can find the frequency
response with this model using this built-in Matlab command.

Collecting experimental frequency response data

We will now find the same frequency response you saw in the Bode plot of the model, but we
will do it experimentally by inputting several sine waves of different frequencies and observing the
magnitude and phase of the output.

1. Build the Simulink model in Figure 3 with the subsystem shown in Figure 4.
There are multiple sine wave blocks. Use the one from the Sources library.

Tach VoltageSine Wave

Vin Vout

Motor - Tachometer

Input

Figure 3: Block diagram for experimental frequency response of the motor-tachometer system.

1
Vout

Coulomb &
Viscous Friction

Quanser
MultiQ-PCI DAC

Analog Output to Motor

Quanser
MultiQ-PCI ADC

Analog Input from Tachometer

1
Vin

Figure 4: Motor - Tachometer subsystem of the block diagram in Figure 3.

2. Set the range of the Quanser Analog Input module to 10.

3. Set the amplitude of the sine wave to 6 V.

4. Set the Coulomb & Viscous Friction block as you did last week.

5. For each frequency in the set {0.5, 1, 2, 5, 10, 20, 50, 100} rad/s, capture 20 seconds of data and
save the results in files resp to freq0p5.m, resp to freq1.m, resp to freq2.m, etc. Notice
these are “.m” files, not “.mat”. Be sure to save both the input signal and your motor
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response.
Set the buffer to 25 seconds in the Update pull-down menu. This is most easily accomplished
by plotting both signals on the same Quanser scope, which you can do by selecting both the
Input and Tach Voltage variables for the Scope.

Comparison of frequency responses: model versus measurement

We are going to compare the model frequency response (computed using bode) to the frequency
response data you just collected manually at a range of frequencies. First we will determine the
magnitude and phase change for each frequency you tested with a function provided to you called
motorbodepoints.m (this can be downloaded from Blackboard).

1. Download motorbodepoints.m to your working directory. Open this function in the Matlab
editor to see how it works.

2. For each frequency data set, do the following.
It’s not required, but it may save time to write a Matlab script which loops over this procedure.

(a) Run the m-file of the frequency response for a particular frequency.
We will be graphically extracting data from this plot. It may be helpful to turn on the
grid by typing grid on in the Matlab command window.

(b) In the plot window, zoom in on a section of the data representative of the settled response
containing 2-3 periods.
This should be after a delay of approximately 2s. Recall from the open-loop step response
last week that the system’s initial transients were completely gone after about 2s.

(c) Enter [x, y] = ginput(3) in Matlab. This will turn your mouse pointer into cross-
hairs on the plot.
This allows you to click on the plot 3 times, and the x and y values will be recorded to
the x and y variables, each having three entries.

(d) Click on the plot three times: first where the input crosses the x-axis (from negative to
positive), second where the motor response first crosses the x-axis after the input crosses
(from negative to positive), and third where the input period ends, again crossing the
x-axis (from negative to positive).
The input period ends on its third crossing of the x-axis. As a check, display the vectors x
and y and check that the values of y are all essentially zero and x values are in ascending
order.

(e) Before closing the plot, enter [u, v] = ginput(1), and click on the apex of one of the
motor response curves.
As a check, display the value of v and check that it is the amplitude of your motor
response.

(f) Set the applied voltage to 6 by entering vApp = 6;.

(g) Run [magPoint, phasePoint] = motorbodepoints(x, v, vApp).
This is computing one point on the Bode magnitude and phase plots.

(h) Record magPoint and phasePoint so we can use them later.
This is best done by entering the points into Matlab arrays. If you’re unfamiliar with
how to do this, ask an AI.
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3. Recreate your state space model from before and have Matlab compute the frequency response
of your model with the following commands.
sys = ss(A,B,C,D);

[sysMag, sysPhase, w] = bode(sys);

sysMag = mag2dB(squeeze(sysMag));

sysPhase = squeeze(sysPhase);

You need the four values that characterize your motor system (A, B, C, D) in your Matlab
workspace. Note that we again converted to dB, this time using the built-in Matlab function,
mag2dB. Feel free to use this in the future.

4. Make a Bode plot of your experimentally measured and model-based frequency responses on.
Do they match? If not, which one is “right?” Discuss with an AI before moving on.
Remember, a Bode plot contains a magnitude plot and a separate phase plot. For both, plot
the input frequency on the x-axis using log-scale. You can do this easily using semilogx.
The model sysMag and sysPhase lines should be solid, with measured data overlayed as
discrete marks of a different color (for instance, using hollow circles). The experimental data
points should match the theoretical model curves. An example plotting command could be
semilogx(w, sysMag, ’k-’ ,freqs, magPoints, ’bx’). Use help plot or doc plot to
see many other options.

5 Deliverables

• You need to include all calculations mentioned above:

– The moments of inertia and comparison to the manufacturer’s values

– The torque and back EMF constants and comparison to the manufacturer’s values

– The state space matrices A, B, C, D (scalars in this case)

All results should be expressed in SI-units.

• Comparison of the theoretical and experimental frequency responses. Two plots are to be
included: one for magnitude and one for phase.

One report per group is fine.
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