
On Eddy Currents in a Rotating Disk 

W . R. S M Y T H Ε 
NONMEMBER AIEE 

A DEVICE which often occurs in 
electric machines and instruments 

consists of a relatively thin conducting 
disk rotating between the pole pieces of a 
permanent magnet or electromagnet. 
The author has received inquiries as to 
the method of calculating the paths ol the 
eddy currents and the torque in such 
cases. The following rather simple 
method, which is quite accurate for a 
permanent magnet, seems not to be de-
scribed in the literature. It assumes that 
the disk is so thin that the skin effect can 
be neglected. This is true for all fre-
quencies that can be produced mechani-
cally. To facilitate calculation in the 
special case of circular poles it is also as-

Figure 1. Geometrical relations for deriva-
tion of formulas for stream function 

sumed that 2woxiby=ea is much less than 
eue where ω is the angular frequency of 
rotation in radians per second, a the pole-
piece radius, b the disk thickness, and y 
the electric conductivity, all in centi-
meter-gram-second electromagnetic units. 
This produces a fractional error of less 
than ea in the eddy current densities and 
of less than (ea)2 in the torque. In the 
case of the electromagnet the situation is 
complicated by the presence of the per-
meable pole pieces in the magnetic field 
of the eddy currents. This may send a 
iarge demagnetizing flux through the 
electromagnet. An approximate solu-
tion for this case will be considered. 

Maxwell's Formula 

This calculation starts from a formula 
given by Maxwell in 1873,1 but apparently 
little known to engineers. To apply it one 
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should know its derivation which, as given 
by Maxwell, is difficult for modern stu-
dents to follow. A simplified proof which 
brings out the points essential for our 
problem is given below. 

The object is to calculate the magnetic 
induction Β produced by the eddy cur-
cents of density ί induced in a thin plane 
sheet of thickness b, unit permeability and 
conductivity y lying in the xy plane by a 
fluctuating magnetic field of induction 
Bf Evidently the only components of 
ί effective in producing magnetic effects 
parallel its surface. Let the eddy cur-
rents be confined to a finite region of the 
sheet which may or may not extend to in-
finity, and let us define the stream func-
tion U(xy y) at any point in the sheet to 
be the current flowing through any cross 
section of the sheet extending from Ρ to 
its edge. The line integral of Β or Η over 
the closed path that bounds this section 
equals 4TTU, From symmetry the coa 
tribution from the upper and lower halves 
of the path is the same so we may write 

(1) 

where the choice of sign depends on the 
side of the sheet chosen for the integra-
tion. Differentiating this equation gives 

àU By^JL^. àU Bx 

— = ± — bly= =^—X 

ày 2ττ * v àx 2ττ 

HI (2) 

These equations connect the eddy current 
density with the tangential components 

Figure 2. Lines of flow of eddy currents in-
duced in rotating disk by single circular magnet 

pole 

jsf the magnetic induction Β produced by 
ί at the surface of the sheet. 

The eddy currents are generated not 
only by the changes in the magnetic in-
"duction B' of the external field, but also 
by the changes of the magnetic induction 
-B of eddy currents elsewhere in the sheet. 
One of Maxwell's equations combined 
with Ohm's law gives the induced current 
to be 

VXE=Vx- = -~ {B'+B) 
y àt 

(3) 

Writing out the ζ component of this equa-
tion and using equation 2 give 

l / d % àix\ 

y\àx by / 

1 ÎàBx àBj 

2irby\ àx ày 

(4) 

Another of Maxwell's equations states 
that 

àx ày àz 

Combining equations 4 and 5 gives 

J{BZ'+B2)_ 1 àBz 

àt 2wby àz 

(5) 

(6) 

When àBg/àt is known, this equation 
gives the boundary condition on Bz in the 
plane of the sheet. This, combined with 
the equations V Χ Β = 0 and V* Β=0 which 
hold outside the sheet, and the fact that 
Β vanishes at infinity serves to determine 
Β everywhere. By equations 1 and 2 the 
current density and stream function any-
where in the sheet can be found. 

The explicit expression for Β in terms 

Figure 3. Lines of flow of eddy currents in-
duced in rotating disk by two circular magnet 

poles 

Figure 4. Geometrical relations for calcula-
tion of demagnetizing flux 
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of Β' which was given by Maxwell1 can 
be obtained as follows. The right side of 
equation 6 is finite at all times which 
means that if At->0 then A(BZ'+BZ)—>0. 
Thus an abrupt change in Β' instan-
taneously induces eddy currents such as 
will maintain B'+B unchanged in the 
sheet. Therefore, for a specified change 
in Β' the initial value of Β is known, and, 
if no further changes in Β' occur its sub-
sequent values as the eddy currents decay 
are found by putting ö £ ' / Ö / = 0 in equa-
tion 4 and solving. A second abrupt 
change in Bf produces a second set of 
eddy currents, and so forth. At any in-
stant the actual field of the eddy currents 
is a superposition of these. As the mag-
nitudes of the discontinuous changes in 
the external field become smaller, and the 
intervals between them shorter, we ap-
proach as a limit a continuously changing 
magnetic field. 

Suppose that the sources of the inducing 
field lie above the xy plane where z>0 . 
At / = 0 the source changes abruptly the 
induction being # i ' = Fi(x, y, z) when 
— oo < / < 0 and B2' = F2(x, y, z) whea 
0 < t< co, As just shown the eddy cur-
rents generated at t = 0 initially keep the 
field on the negative side of an infinite 
sheet unchanged. When s < 0 we have 
therefore 

B t - e - B i ' - A ' - F i O c , y, z)-F2(x, y, z) (7) 

Since B2 is not a function of t, equation 6 . 
reduces to 

1 _ 

2wby àz 
(8) 

piese equations, 7 and 8, are satisfied by 

f = Fi ( x, y, ζ =*= —4—J — 
\ 2irby/ 

F2{xt y, 

Because the eddy currents must die out, 
and their magnetic field must be sym-
metrical about the sheet, we take the plus 
sign when s is positive and the negative 
sign when ζ is negative. Thus equation 
9 shows that, in addition to B2 which 
would exist if no sheet were present, there 
is a decaying field due to eddy currents 
which appears, from either side of the 
sheet, to be caused by a pair of images 
receding with uniform velocity l/(2Tby). 
Suppose our inducing field has the form 

B' = F(t, x, y,z) (10) 

The change in this field in an infinitesimal 
time interval dr is given by 

àB' à 
— dr = -F(t,x, y, z)dr 

The initial field of the eddy currents 
formed in that interval must be equal and 
opposite to this and must die out as if 
their source moved away with a uniform 
speed l/(2irby). Thus the eddy currents 
at a time t due to a change in the interval 
dr at a time r before t is given by 

unprimed or primed according as they 
refer to the axis of rotation or to the pole-
piece axis. The scalar magnetic poten-
ίΐβΙΏ' of its lower face, of area 5, at the" 
point Ρ is seen from Figure 1 to be 

(12) dB= Fit — r, x, y, s ± —^—\ir 
àt \ ' 2Tcby) 

This is Maxwell's formula. It has many 
applications.2 When the field is pro-
duced by moving permanent magnets, it 
is convenient to express U in terms of the 
scalar magnetic potential Ω. Since we 
have unit permeability we may write 

ί 7 = — / Brdr = —- Ι —dr = — 13) 
2ττ J 2τ J ôr 2TT 

Application to Magnet Moving in a 
Circle 

We now take the case of a magnetic 
field produced by a long right circular 
cylinder of radius a, uniformly and per-
manently magnetized parallel to its axis, 
so as to give a total flux Φ. The magnetic 
pole density in the face is therefore 
Φ/(27τα)2. This magnet moves in a circle 
with a uniform angular velocity ω its axis 

(2*o)*J8 R2 ( 

Jo Jo Vh*+rl'
2+r'2-2rl'r' cos θ' 

(2ττα)2 

fxdrx'dJà' 

where r / 2 = r 2 + c 2 - 2 r i : cos (ω /+0) . This 
combined with equations 12 and 13 give 
the stream function to be 

U -X 'W Jo Jo ^ 

I n'dn'dB'dr \ 

\V hT*+rl'*+RT'*-2rl'Rr' c o s θ') 
where j R r '

2 = r 2 + c 2 - 2 r c cos (ω ( ί - τ )+0 ) 
anahT = h+r/(2Trby) = h+u. Let us now 
bring the pole piece down close to the 
plate so that hT=r/(2Tby)t and bring up a 
similar pole of opposite sign from the 
other side, so that the eddy current den-
sity is doubled. We now carry out the 
differentiation with respect to t and set 
t±= 0 so that the 0 = 0 line bisects the pole 
piece when t = Q. The integral then be-
comes 

τ(2ττα) •ΙΤί s i n iß-\-eu){Ru' — ri cose')ri'dri'de'du 

i V ( « 2 + V 2 - f i V 2 - - 2 i ? w V i ' c o s θ') 
(15) 

being c centimeters from the ζ axis, and 
its lower end h centimeters above the 
z = 0 plane in which lies an infinite plane 
sheet of thickness b and conductivity 7. 
Its upper end is too remote for considera-
tion. Polar co-ordinates will be written 

I 

χ Λ 350Ύ 

\ Cu cold \Cu hoi 

ι 

where € = 2ττω&τ and Ru'
2 = r2+c2-2rcX 

cos (θ+eu). For 3,000 rpm with a copper 
sheet 0.25 millimeter thick € « 0 . 0 1 so 
that u2 in the denominator has reached 
the value 100 when eu T e a c h e s 0 .1. In 
calculating such a quantity as the torque 
where the current density is integrated 
over the pole piece, the neglect of e pro 
duces a fractional error less than (e/a)2, 
so that the result should be good to one 
per cent for a sheet one millimeter thick. 
We may therefore drop the e terms s e 
that Ru' becomes the r' in Figure 1 and 
integrate with respect to u giving 

Κ s i n θ 
U= — X 

r ( r , - r 1

/ cos e'WdrSdd1 

(16) 

(11) 

400 R β 00 Ρ 1200 M 1600 

Figure 5 . Curves showing torque versus speed 
for large disk rotating between the four rec-
tangular pole pairs of an electromagnet, 

measured by Lentz 

1L ' ' W - a - V c o e e ' 
where we have written Κ for the coeffi-
cient of the integral in equation 15. The 
integral with respect to 0', from Dwight's 
table of integrals 860.2, is zero when 
r ' O i ' and π/r' when r ' > r i ' . Thus the 
upper limit for the r / integration is a 
when r'>a and r' when r '<a , which gives 

r'>a 

r'<a U = 

r ωrcbyΦ s i n θ 

2 ^ 
o)fcby& s i n 0 

2πα2 

(17) 

(18) 
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The next question is how to restrict the 
eddy currents to the interior of the disk 
bounded by the circle r=A. We observe 
that if we use equation 15 to calculate U 
for a second magnet also carrying a flux 
"? but with circular pole pieces of radius 
a"=Aa/c centered at c"=A2/c, so thai 
Ra"

2 = r2+(A2/c)2-2r(A2/c) cos ( 0 +6 * 0 > 
and change the variables of integration 
from n' to r\A/c, and from u to Au/c, then 
the resultant expression is identical with 
equation 15, except that we have cRJ'/A 
instead of Ru' and Ae/c instead of e. But 
when r=A we see that cRu"'/A=RU'', so 
that both magnets, one outside and one 
inside the circle r=A, give the same U 
on this circle. Furthermore by taking the 
air gap in each magnet small, the fluxes 
are confined to the areas under the pole 
pieces, so that neither induces directly 
eddy currents on the other side of the 
circle r=A. It is evident that if the 
fluxes from the two magnets cut the sheet 
in opposite directions, then U=0 when 
r-A and the currents induced by the 
inner pole are kept inside the circle. This 
is exactly the boundary condition ΐοτ β 
disk of radius A, except that the calcu-
lated system includes the currents in-
duced in the region r<A by the magnetic 
field of the eddy currents in the region 
f>Ay which does not exist in the case of 
the disk. This field is proportional to 
Φ€ which is, by hypothesis, small com-
pared with Φ, and in addition the source is 
further away, so that the fractional error 
in U will be less than e. We should note 
also from the symmetry that the radial 
component of these secondary currents 
is opposite in sign on the two sides of the 
&*=0 line, so that their effect cancels out 
completely in calculating the torque 
which therefore should be accurate to 
terms in e2. The contribution to U from 
the outer magnet is found by putting 
c2R"2/A2 for R2 inequation 17. Adding 
this to equations 17 and 18, we obtain for 
the stream function of the eddy currents 
in the disk | 

R>a U> 
ωτώ^Φ sin θ l 

\r2+c2-2rc cos 0 

c2r2+AA-2rcA2 cos 0 
(19) 

ωrcbyΦ sin θί 
R<a U= - 1 -

2πα2 

A2a2 

c2r2+A*-2rcA2 cos 0 

The torque may be calculated by inte-
grating the product of the radial com-
ponent of the current by the magnetic 
induction and by the lever arm and inte-
grating over the area S of the pole piece. 

Thus, using equation 2, we have 

ΓτΜτΦΊ„ Φ rc+a
 àU 

where 0i and r are connected by the rela-
tion r2+c2—2rc cos 0i = i 2 . Substituting 
for U from equation 20 and integrating 
with respect to 0 give 

i f -^ ωώγφ2 

τ=—ττ-χ 

«y c-a \ 
r2 sin 0, -

a2A2r2 sin ek 

c2r2+A*-2A2rc cos 0 -y 
(21) 

The integration is simplified by taking a 
new variable u so that 4acu2 = r2 — (c—a)2 

which gives the limits 0 and 1. Thus we 
obtain, writing out e, 

ώΊΦ
2ο2( A2a2 \ 

1 * 1 ογΦ 2/λ (22) 2ττα2 V (A2-c2)2/ 

This formula gives the torque in dyne 
centimeters when ω is in radians per 
second, Φ in maxwells, a, b, c, and A in 
centimeters and y in electromagnetic 
units. If we are given the volume resistiv-
ity ρ of the disk in ohm-centimeters y — 
» - » / p . 

If the magnet is fixed, and the disk ro-
tates, the arrangement described exerts 
an undesired force on the disk axis which 
may be avoided by using two identical 
magnets on opposite sides of the axis and 
equidistant from it. This approximately 
doubles the torque given by equation 22. 
The additional torque from the eddy cur-
rents of one magnet flowing under the 
poles of the other may be found by an in-
tegral similar to equation 21 wThich is 

r2+c2+2rc cos 0] 

r2A2 sin θχ 

r2c2+AA+A2rc cos 0] 
\dr (23) 

Integrating by the same substitutions as 
equation 21, adding to equation 22 and 
multiplying by two give 

T = 
ωάΎΦ

2€2/±€2+α2 2a2A2(A*+ 

7TÛ 

= ωτΦ 2 £> 2 ' 

4c2 (A* y ) 
(24) 

This holds when the two magnet fields are 
antiparallel. If we subtract the integral 
of equation 23 from equation 22 and mul-
tiply by two we get 

\ ^ΊΦ
2ο21±€2-α2 ±a2c2A4 \ 

) (20) Γ = - ^ - ^ - ^ ^ Γ ω 7 Φ Ζ ) : 

(25) 

This holds when the two magnetic fields 
are parallel. The arrangement of equa-
tion 24 gives more torque than that of 
equation 25. The eddy-current flow lines 
corresponding to constant values of U as 

calculated from equations 19 and 20 ap-
plied to the cases of equations 22 and 24 
are shown in Figures 2 and 3 where a = 
Λ / 7 cm, c = 7 cm, A = 10 cm and ωδγΦ/ 

( 2 Τ Γ ) = 3.5. The value U on the outer 
boundary is zero and changes by steps of 
one in Figure 2 and steps of two in Fig-
ure 3. 

Demagnetizing Effects 

So far the magnet pole pieces have been 
assumed to be so hard that they do not 
short-circuit the flux of the eddy currents. 
This is not true for the permeable pole 
pieces of an electromagnet, whose effect 
may be calculated approximately by ob-
serving that the current 2 U is enclosed by 
the rectangular path 1-2-3-4-1 in Figure 4, 
which lies in the upper and lower pole 
pieces except where it cuts across the disk 
and gap normally at r = Y\ and Θ— =*=0i. 
If the reluctance of this circuit lies en-
tirely in the air gaps, each of length g, then 
the magnetic flux density Be due to the 
eddy currents alone at rh =*=0i is 4π Ό I g. 
Substituting for U from equation 20 and 
writing as before e = 2πω& gives 

οβΥιΦ sin in 0i / 

^ \ c2n 

AW 
2+A*-2ricA*cos 

(26) 

This shows that when b and g are com-
parable in size Be cannot be neglected 
compared with the original flux density 
Φ/(7τα 2 ) . The sin 0X term shows that the 
radial component of the eddy currents 
induced by Be have opposite signs under 
the two halves of the pole piece, so that 
they contribute nothing directly to the 
torque, but on the other hand they form 
closed circuits about the central portion 
and so produce a demagnetizing magneto-
motive force in the electromagnet. The 

Ο RPM 800 1600 
Figure 6. Curves showing torque versus speed 
For a large disk rotating between the single pair 
of circular pole pieces of an electromagnet 

as given by equations 22, 27, and 28 
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stream function Ue of these eddy currents 
is calculated as U is, but to simplify mat-
ters we carry out the operations from 
equations 14 to 16 for a single element of 
the pole face, along with its image ele-
ment outside the circle r—A. We then 
give each element the strength indicated 
in equation 26 and set up a definite in-
tegral for U over the pole-piece area. 
This method is less exact than setting up 
equation 14 for the whole face, because it 
ignores that part of the flux threading dS 

from the current induced by Be outside 
this area, which is of the order eB^S. 

The eddy currents Ue are evidently 
equivalent to a magnetic shell of variable 
strength Ue in the sheet and to get ïïe the 
demagnetizing magnetomotive force we 
must find the equivalent uniform shell. 
Thus we have 

UedS 

where 5 is the area of the pole face. We 
now have a complicated quadruple inte-
gral involving the variables r'f R't θ' and 
θχ whose evaluation can be simplified 
somewhat by integrating in the proper 
order. The result is 

r <Jb*y2c2 I 2a2A2(A2-\-c2) 

2 A* 
loge 

c2(A 

(A2-c 

-c 2 ) 2 + 

(A2-c2)' -c2a2)~ 
: β2

Ύ

2ω*Φ (27) 

If the flux penetrating the sheet at rest is 

Φ 0, then when in motion we have, if (R is 

the reluctance of the electromagnet, Φ<= 

Φ 0 - 0 2 7 2 ω 2 Φ/Φ, so that 

Φ = • 
ΟΙΦο 

(28) 

The expressions for the torque now be-

come 

7 = 
œy(R^0

2D 

((R+/3Vo>2)2 
(29) 

where D has the values given in equations 

22, 24, or 25, according to the pole ar-

rangement. There is now a definite speed 

for maximum torque which is found by 

settingör/Οω = 0 to be 

ßy 

Putting this in equation 29 gives 

τ _ 3 λ / 3 0 ΪΦ Ο 2 ^ 

16/3 

(30) 

(31) 

This is independent of the conductivity 
which is surprising, although there is some 
evidence for it in Lentz's experimental 

curves shown in Figure 5 which give hot 
and cold copper disks the same Tm for 
different ω^. 

These calculations of demagnetizing 
effects have been worked out for a single 
pole. For an even number of poles with 
alternating signs, we have seen that the 
torque per pole is increased, but the de-
magnetizing forces are also increased so 
that the torque obtained by multiplying 
equation 29 by the number of poles will 
probably not be far wrong. The speed for 
maximum torque given by equation 30 
wiH certainly be decreased, perhaps con-
siderably, because of the increase in β. 

The only formula we can find for this 
torque is one derived by Rüdenberg.3 

This formula is written as a double infinite 
series and is derived by considering a thin 
conducting strip bounded by straight 
lines which moves lengthwise in the nar-
row gap between magnetic poles with 
rectangular faces. The fields of adjacent 
poles are antiparallel, so that the inducing 
fields can be expanded in a double series 
of odd harmonics. This formula was 
checked qualitatively by Zimmermann,4 

but could not be verified quantitatively, 
as the theoretical and experimental 
boundary conditions did not agree. Lentz 
found only those terms involving the 
lengthwise harmonics were of importance 
and dropped the rest. His experimental 
brake had the center of the disk removed 
to simulate a ring whose width roughly 
equaled that of the postulated strip. His 
four poles were so far apart that their 
action was nearly independent. We have 
redrawn in Figure 5, his experimental 
curves giving the torque in meter kilo-
grams against angular velocity in revolu-
tions per second. The ring had inner and 
outer radii of 5 centimeters and 25 centi-
meters and was 0.4 centimeter thick. 
The air space was 1.2 centimeters, and 
the centers of the rectangular pole pieces 
were 20.75 centimeters from the rotation 
axis and were 6 centimeters (radial) by 8 
centimeters (tangential). The inducing 
field was 2,150 gauss at rest. The figures 
on the hot copper curve show the esti-
mated stable mean temperature for that 
speed. 

A direct quantitative comparison of our 
formula with Lentz's data is difficult, be-
cause he used rectangular poles, his air 
gap was so large as to spread the inducing 
field over an unknown area, the center of 
his disk was cut away, and we do not 
know where his flux density was meas-
ured. Although our formulas are inac-
curate for such large dimensions at the 

k f g h speeds, it is interesting to see what 
results they give for a comparable case. 
Let us take δ = 0.4 cm, A = 25 cm, a = 4 
cm, c = 21 cm, g = 0.6 cm, 5 = 2,000 gauss 
and assume the reluctance entirely in the 
air gap. In equation 22, Pi =1.23, in 
equation 27, 0 = 3.85 and in equation 28 
(ft = 0.012. The angular velocity for maxi-
mum torque for copper (γ = 1/1,700) is 
given by equation 30 to be 27.9 radians 
per second or 267 rpm. Tm is 1.15 Χ1Θ* 
dyne cm or 1.17 kilogram-meters for this 
single pole and roughly four times this for 
four poles. Expressing T' in kilogram-
meters and ω ' in rpm, equation 29 be-
comes 

0 . 00785a/ 

(ί +o.ooœo47 w

, 2) 2' k g~m 

This formula is plotted in Figure 6. A 
comparison of Figure 5 with Figure 6 
indicates that our formula gives too rapid 
a falling off in torque at high speeds. It 
should be pointed out that other condi-
tions, such as the degree of saturation of 
the iron in the magnet will upset the as-
sumed relation between magnetomotive 
force and Φ and may modify equations 38, 
29, 30, and 31 considerably. 

The methods given in this paper may be 
extended to any number of poles by the 
method used for two and to other than 
circular faces. Several such calculations 
have been carried out, but it is doubtful 
if the additional theoretical accuracy jus-
tifies publishing them. The difference 
between the ideal boundary conditions 
used here and those found in apparatus 
is such that we recommend that the 
torque for one pole be calculated by equa-
tion 22 for permanent magnets or by 
equation 29 for electromagnets, and the 
result multiplied by the number of poles 
to give the total torque. In power ap-
paratus the heating of the disk will change 
its resistivity and may cause it to expand 
and buckle and otherwise upset the cal-
culations. 
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