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Leonhard Euler's 
Elastic Curves 

(De Curvis Elasticis, Additamentum I to his 
Methodus Inveniendi Lineas Curvas Maximi Minimive 

Proprietate Gaudentes, Lausanne and Geneva, 1744). 

Translated and Annotated 
by 

W. A. OLDFATHER, C. A. ELLIS, and D. M. BROWN 

PREFACE 

In the fall of I920 Mr. CHARLES A. ELLIS, at that time Professor 
of Structural Engineering in the University of Illinois, called 
my attention to the famous appendix on elastic curves by 
LEONHARD EULER, which he felt might well be made available 
in an English translation to those students of structural engineering 
who were interested in the classical treatises which constitute 
landmarks in the history of this ever increasingly important 
branch of scientific and technical achievement. He secured 
photostats of that copy of the original publication which was 
owned by the New York Public Library, and together we spent 
many delightful evenings working over the translation, and 
correcting the occasional errors of printing and calculation which 
such a first edition inevitably contained. We also examined and 
translated a considerable number of the notes in Dr. H. LINSEN- 
BARTH's admirable translation and commentary (Leipzig, I9IO). 
The Ms. was practically completed when Mr. ELLIS left the 
University in order to enter active business in Chicago. For 
some time the various drafts and annotations lay in my files, 
until early in 1932, when I was fortunate enough to secure the 
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LEONHARD EULER'S ELASTIC CURVES 73 

very competent assistance of Mr. DONALD M. BROWN, formerly 
a student of Engineering, but at present an assistant in the 
Department of Mathematics of the University of Illinois, who 
undertook to revise the translation, together with Dr. LINSEN- 
BARTH 's notes, to check all the equations and calculations, 
and occasionally to express the mathematical formulas in the 
more modern and generally current notation. It is to be hoped 
that the combination of an engineer, a classicist, and a mathe- 
matician in translating EULER'S monograph may have reduced 
somewhat the number of errors which any one of the three 
unaided might easily have made. 

Urbana, Illinois, April 27, 1932. 

W. A. OLDFATHER. 

ADDITIONAL NOTE BY DONALD M. BROWN 

Such factual errors and mistakes as were made by EULER, 
and have been pointed out by others, have been corrected in the 
body of the text, the errors themselves being indicated in the 
notes. An exception to this is the error pointed out in note 31, 
where the correction would involve the incorporation of several 
sections of the body of the text into the notes. In this case, 
since the error involved was not great enough to make any essential 
difference in the calculations, the text was included as translated, 
and the correct values have been inserted within square brackets 
immediately following the incorrect values at all places where 
errors had been made. With the exception of the error indicated 
in note 23, all the errors were pointed out by H. LINSENBARTH 
in his German translation of the text in " Ostwald's Klassiker 
der exakten Wissenschaften," vol. 175 (Leipzig, I9IO). In fact, 
all the notes, correctional, explanatory, and introductory, have 
been incorporated as translated, but several of the correctional 
notes have been modified to conform to the plan mentioned 
above of correcting the text, and indicating the errors themselves 
in the notes. 

LINSENBARTH'S admirable translation was used throughout as 
a check, and since this work includes numerous cross references 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


74 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

with the text which are not found in the original, such references 
have been inserted within square brackets. 

The facsimiles of the title page and of the figures are from 
the Harvard Library copy; they are reduced to about two-thirds 
of the original size; Figs. 26, 27, and 28 belong to Additamentum II, 
De motu projectorum in medio non resistente. 

Nothing has been omitted in this translation. 

D. M. BROWN. 

INTRODUCTION 

"It is of the utmost importance," writes Professor G. A. 
MILLER (I), "1 that those students who desire a deep mathematical 
insight should accustom themselves early to go directly to the 
original developments,-at least in those cases where the original 
developments are direct, and are found in a language which does 
not impose too great difficulties." The statement might be 
equally applicable to the same kind of student of engineering, 
and it is for such students of mathematics and of engineering 
that the present translation from the original Latin into English 
is intended. 

LEONHARD EULER (1707-1783), probably the most versatile, 
certainly quite the most prolific mathematician of all time (2), 
needs no commendation from us. CONDORCET, in his celebrated 
E1loge (3), after remarking that " all the celebrated mathematicians 
of today are his pupils," quite justly iists him as " one of the 

(i) Historical Introduction to Mathematical Literature (New York, I9I6) 74. 
(2) By early in I783, 530 studies of his had been published; by i826 the number 

had increased to 77I. In I844 a great-grandson discovered still further material 
in manuscript. (G. DU PASQUIER: Le'onard Euler et ses amis (Paris, I927) i i6). 
His complete bibliography, by G. ENESTROM: Verzeichnis der Schriften Leonhard 
Eulers (Leipzig, I9I0 and I913), lists 866 separate items, together with a volu- 
minous correspondence. The Leonhard Euler-Gesellschaft, a society organized 
for the sole purpose of publishing his works in proper modern form, produced 
its first volume in i9II, and down to date has brought out some 20 volumes. 
The completed undertaking will require 69 quarto volumes, of which 55 are 
assigned to Mathematics, Mechanics, and Astronomy, the remainder to Physics 
and Varia. 

(3) Published in Les Lettres de L. Euler a une Princesse d'Allemagne (Paris, i842), 

xlviii and i. 
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LEONHARD EULER'S ELASTIC CURVES 75 

very greatest and most extraordinary men that nature has ever 
produced." 

The treatise also to which the present study is merely an appendix 
(Methodus Inveniendi Lineas Curvas) is called by Du PASQUIER 
" one of the finest monuments of the genius of EULER," who, 
he continues, " founded the calculus of variations which has 
become, in the twentieth century, one of the most efficient of 
the means of investigation employed by mathematicians and 
physicists. The recent theories of EINSTEIN and the applications 
of the principle of relativity have greatly increased the importance 
of the calculus of variations which EULER created" (op. cit., 50-5I). 

The special interest for engineering in the present little paper, 
lies in the fact that it is the first systematic treatment of elastic 
curves, laying the foundation for subsequent studies, and of course 
most immediately for the celebrated 'Euler formula,' "which ex- 
presses the critical load at which a slender column buckles." (4) 

Referring to the Additamentum I, TODHUNTER and PEARSON 
say, " Euler distinguishes the various species of curves included 
under the general differential equation... 

dy _ _ _(a + fix + yx2) dx [p. 82 of this translation.] 
V a4- (a + Px + yx2)2 

... The whole discussion is worthy of this great master of 
analysis ;" (5) Again, " From page 282 [P. 121 of this translation] 
to the end EULER devotes his attention to the oscillations of an 
elastic lamina; the investigation is somewhat obscure for the science 
of dynamics had not yet been placed on the firm foundation of 
D'Alembert's Principle: Nevertheless, the results obtained by 
EULER will be found in substantial agreement with those in 
POISSON's Traite de Me'canique, Vol. II, pages 368-392. The 
important equations (a) and (a') on POISSON'S pages 377 and 387 
respectively agree with corresponding equations on EULER'S " 
[pages 297 and 287 = pages 135 and 125 respectively of this 
translation] (6). 

(4) H. M. WESTERGARD: One Hundred and Fifty Years Advance in Structural 
Analysis. Transactions American Society of Civil Engineers 94 (I930) 228. Com- 
pare also remarks by S. TIMOSHENKO (ibid. 24I). 

(5) TODHUNTER and PEARSON: A History of the.Theory of Elasticity and of 
the Strength of Materials. Cambridge, University Press, i886, P. 36. 

(6) Op. cit., p. 38. 
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76 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

Referring to EULER'S Sur la force des colonnes, Memoires de 
l'Academie de Berlin, Tom. XIII, 1759, pages 252-282, TODHUNTER 
and PEARSON (7) say, " This is one of EULER'S most important 
contributions to the theory of elasticity. 

The problem with which this memoir is concerned, is the 
discovery of the least force which will suffice to give the least 
curvature to a column, when applied at one extremity parallel 
to its axis, the other extremity being fixed. EULER finds that 

Ek2 
the force must be at least 7T2 -y, where a is the length of the 

column and Ek2 is the ' moment of the spring,' or the ' moment 
of stiffness of the column'..." The volume from which this 
is quoted is intended to be a chronological development of the 
theory of elasticity, but the authors obviously overlooked the fact 
that the problem stated is precisely the one considered in section 37, 
pages 267-268 of the original Additamentum I [pages I02-I03 of 
this translation]. Hence the present work is the first known 
source of the famous ' EULER formula ' mentioned above. 

It might, in conclusion, be observed that the problem of elastic 
curves and the buckling of long thin struts under thrust was first 
worked out by EULER (8). 

W. A. OLDFATHER and D. M. BROWN. 

CONCERNING ELASTIC CURVES 

L. EULER 

i. All the greatest mathematicians have long since recognized 
that the method presented in this book is not only extremely 
useful in analysis, but that it also contributes greatly to the 
solution of physical problems. For since the fabric of the universe 
is most perfect, and is the work of a most wise Creator, nothing 
whatsoever takes place in the universe in which some relation 
of maximum and minimum does not appear. Wherefore there 

(7) Op. cit., p. 39. 
(8) LOVE: The Mathematical Theory of Elasticity. Cambridge, University 

Press, Third Edition, I920. Footnotes p. 407 and p. 4II. See also Introduction, 
P. 3. 
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LEONHARD EULER S ELASTIC CURVES 77 

is absolutely no doubt that every effect in the universe can be 
explained as satisfactorily from final causes., by the aid of the 
method of maxima and minima, as it can from the effective causes 
themselves. Now there exist on every hand such notable instances 
of this fact, that, in order to prove its truth, we have no need at 
all of a number of examples; nay rather one's task should be this, 
namely, in any field of Natural Science whatsoever to study 
that quantity which takes on a maximum or a minimum value, 
an occupation that seems to belong to philosophy rather than 
to mathematics. Since, therefore, two methods of studying 
effects in Nature lie open to us, one by means of effective causes, 
which is commonly called the direct method, the other by means 
of final causes, the mathematician uses each with equal success. 
Of course, when the effective causes are too obscure, but the 
final causes are more readily ascertained, the problem is commonly 
solved by the indirect method; on the contrary, however, the 
direct method is employed whenever it is possible to determine 
the effect from the effective causes. But one ought to make a 
special effort to see that both ways of approach to the solution 
of the problem be laid open; for thus not only is one solution 
greatly strengthened by the other, but, more than that, from the 
agreement between the two solutions we secure the very highest 
satisfaction. Thus the curvature of a rope or of a chain in 
suspension has been discovered by both methods; first, a priori, 
from the attractions of gravity; and second, by the method of 
maxima and minima, since it was recognized that a rope of that 
kind ought to assume a curvature whose center of gravity was 
at the lowest point. Similarly, the curvature of rays passing 
through a transparent medium of varying density has been 
determined both a priori, and also from the principle that they 
ought to arrive at a given point in the shortest time. 

Other similar examples have been brought forward in large 
numbers by the most eminent BERNOULLIS and others, who have 
made very great contributions both to the method of a priori 
solution, and to the knowledge of effective causes. Although, 
therefore, thanks to these so numerous and striking instances, 
there can be no doubt that in the case of all curved lines which 
appear in the solution of physical-mathematical problems, there 
enters in the character of some maximum or minimum; still this 

6 
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78 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

very maximum or minimum is frequently very hard to recognize, 
although one might have reached a solution a priori. Thus, 
although the figure which a curved elastic ribbon assumes has 
long since been known, nevertheless no one has observed as yet 
how this curve can be studied by the method of maxima and 
minima, that is to say, by means of final causes. Wherefore, 
seeing that the most illustrious and, in this sublime fashion of 
studying nature, most perspicacious man, DANIEL BERNOULLI, had 
pointed out to me that he could express in a single formula, 
which he calls the potential force, the whole force which inheres 
in a curved elastic ribbon, and that this expression must be a 
minimum in the elastic curve 1), and since by this discovery 
my method of maxima and minima as set forth in this book has 
had new light cast upon it in a marvelous fashion, and its most 
extensive application is thoroughly established, I cannot let pass 
this most desired opportunity without making clearer the appli- 
cation of my method at the same time that I publish this 
remarkable characteristic of the elastic curve discovered by the 
celebrated BERNOULLI. For that characteristic contains within 
itself differentials of the second order in such a fashion that 
the methods hitherto published of solving the isoperimetric 
problem are not capable of disclosing it. 

ON THE CURVATURE OF UNIFORM ELASTIC RIBBONS 

z. Let the elastic ribbon AB (FIG. i) be curved in any direction 
whatsoever; let the arc AM = s, and the radius of curvature 
MR R; furthermore, according to BERNOULLI, let the potential 
force contained in the portion AM of the ribbon be designated 

Cds 
by the expression J . If the ribbon be of uniform cross 

R2 

section and elasticity, and if it be straight when in its natural 
position, 2) the character of the curve AM will be such that 

in this case the expression 
ds 

is an absolute minimum. 

But since the differentials of the second order appear in the 
radius of curvature R, in order to determine a curve of this 
character we shall need four conditions, and this is precisely the 
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LEONHARD EULER S ELASTIC CURVES 79 

subject of our investigation. For since through the given ends 
A and B, an infinite number of elastic ribbons of the same length 
can be bent, the problem will not have been solved unless, in 
addition to the two points A and B, two other points, or what 
amounts to the same thing, the' position of the tangents at the 
points A and B be given at the same time. For given an elastic 
ribbon which is longer than this distance between A and B, it 
can be curved not only in such a way that it is contained between 
the ends A and B, but also in such a way that its tangents have 
a given direction through these points. Wherefore the problem 
of finding the curvature of an elastic ribbon, which is to be solved 
by this method, must be expressed thus: 

That among all curves of the same length, which not only 
pass through the points A and B, but also are tangent to given 
straight lines at these points, that curve be determined in which 

the value of ds is a minimum. 
4 R2 

3. Because the solution is to be referred to rectangular coordi- 
nates, let any straight line AD be taken as an axis, the abscissa 
AP = x, (FIG. 2) and the ordinate PM = y; then, according 
to this method, letting dy pdx, and dp = qdx, the element 

of the curve Mm will be ds- dx V I + p2. Since the curves 
from among which the curve sought has to be discovered are 

to be isoperimetric, in the first place, the expression dx V I + p2 
will have to be considered; this, compared with the general 

expression r Zdx, gives the differential value 
curvatureis dx / I + 

p2) 

Secondly, since the radius of curvature is dp = 
_ _ _ _ _ 

_2 

C 
d s 

(I +P2)~ = R, the expression (R2 which must be a minimum, 

is transformed into ) 
q 

. Let this be compared with 
+ P2) 

the general expression f Zdx, and this gives Z = e 5, 

and letting dZ = Mdx + Ndy + Pdp + Qdq, then M _ , 
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8o W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

N = o, P = 5pq p) and Q - 2) Therefore the 

differential value to be derived from the expression f 
2 dX 

(I + p2)z 

will be - dP+ -Q. And so for the curve sought we shall 
dx dx2 

have the equation 
d p dP d2Q 

adX V,I +p2 dx dx2 

which, multiplied by dx and integrated, gives 
ap + -dQ 

VI +p2 dx 
Let this equation be multiplied by qdx = dp. 

apdp + Pdp = Pdp qdQ 

Since M - o, and N = o, then dZ = Pdp + Qdq, or Pdp 
dZ - Qdq. 
Substituting this value for Pdp gives 

ap?p + Pdp = dZ-Qdq-qdQ 

Integrating: 

aVI+p2 + ?p + y -Z -Qq 
Now since 

q2 2q 
(I +p) and Q (+ ) 

Z=(+p2)i Qp2= 
q2 

a I+p2 + pp + y (+p2) 

Taking the arbitrary constants negatively, 
dp 

q (i+p2)4 ./ a VI +p2 + pp + ydx 

whence 

dx = dp 
(I +p2) /a \/I +p2 + pp + y 
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LEONHARD EULER'S ELASTIC CURVES 8I 

Then, since dy = pdx, 

dy (I+p2)5 pdp 
dy (I +p2)1 a ,VIp2 + + r 

These two equations would be sufficient for constructing a curve 
by means of quadratures. 

4. Neither of these equations regarded thus in general can 
be integrated, but they can be combined in a certain fashion 
so that the sum can be integrated. For, since 

d Ja VI+p2 + pp + y dp ( yp) 
d2_ 

(I +p2)4 |a /V +p2+ pp +y 

then 2 |/a v/I +p2+pp+y 

(I +p2) - 
PX ' yy + 

Since the position of the axis is arbitrary, the constant 8 can 
be left out without any loss in generality. Moreover, the axis 

-x yy 
can be so changed that the abscissa will become X = 

P 
2-- 2' 

,VP2 + j3 

and the ordinate will become Y = x + PY ) Also y can 
V P2 + y2' 

be safely made equal to zero, because nothing prevents the new 
abscissa from being expressed by x. For this reason we will 
get the following equation for the elastic curve: 

2 /a vI +p2 + pp = (I +p2)4, 

which, after squaring becomes 4a V I + p2 + 4pp =2X2 V + p2. 

To introduce homogeneity, let a and p 4fl 
a2 a 

then na2p = (n2x2 - ma2) V I + p25 

whence n2a4p2 - (n2x2 - ma2)2 (I + p2) 

and therefore 
n2 X2 - ma2 

p _= .... 
= Vn2 a" - ( y x2 - ma2)2 d 

By changing the constants, and either by increasing or diminishing 
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82 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

the abscissa x by a given constant, 4) the following general 
equation for the elastic curve will be secured 

dy - (a + Px + ? X2) dx 

Va4 (a + fX + yX2)2' 
from which 

a2dx 
ds = __ __ 

a a- (a + fix + yX2)2 
From these equations, the agreement of this discovered curve 
with the elastic curve already determined is perfectly clear. 

5. In order that this agreement be placed more clearly before 
the reader, I shall investigate also a priori the nature of the 
elastic curve. Although this has been done already in a most 
excellent fashion by that very great man, JACOB BERNOULLI, 

nevertheless, since this favorable occasion has been offered, 
I shall add certain things about the character of elastic curves 
and their different kinds and figures which I see have been either 
neglected by other men, or else have been but lightly touched 
upon. 

Let the elastic ribbon AB (FIG. 3) be fixed in a wall or solid 
pavement at B in such a fashion that the extremity B is not only 
held firmly, but also the position of the tangent at B is fixed. 
Now at A let the ribbon have fastened to it the rigid rod AC, 
to which let there be applied normally the force CD =P, 
whereby the ribbon is brought into the curved position BMA. 
Let this straight line AC be considered as produced for an axis, 
and, having assumed that AC - c, let the abscissa AP = x 
and the ordinate PM = y. If now the ribbon at M should 
suddenly lose all elasticity and become perfectly flexible, it would 
assuredly be turned by the force P, the inflexion being caused 
by the moment of the force P = P (c + x). The reason why 
this inflexion does not actually follow, therefore, is that the 
elasticity depends, in the first place, upon the character of the 
material of which the ribbon is composed and which I assume 
always to be the same; but in the second place the elasticity 
depends, at the same time, upon the curvature of the ribbon at 
the point M, in such a way that it is inversely proportional to 
the radius of curvature at M. Therefore let the radius of curvature 
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LEONHARD EULER'S ELASTIC CURVES 83 

at M be R - (ds)3 ; here ds ---- \/dx2 + dy2, and dx remains 
- dxd2y 

Ek2 
constant; and let - express the elastic force of the ribbon at M, 

R 
which stands in equilibrium with the moment of the external 
force P(c + x), in such a manner that 

Ek2 Ek2dxd2y 
P (c + x) R - (ds)3 

This equation, multiplied by dx, becomes integrable, and the 
integral will be 

-XEk2dy 

V\IdX2 + dy2f 
whence 

- Pdx (x2 + CX + f) 
dy= -d ~2 

yE2k4 (- x2IX2 + CX+ ?f)2 
This equation agrees absolutely with that which I have just 
secured through the method of maxima and minima from 
Bernoulli's principle. 

6. From the comparison of this equation with the one found 
before, it will be possible to determine the force which is required 
to produce the given curvature of the ribbon, since the curvature 
is contained in the discovered general equation. In other words, 
let the elastic ribbon have the shape AMB, the nature of which 
is expressed by the equation 

dy = (a + PX + yX2) dx 

V/a4- (a + f3x + yX2)2X 
and let Ek2 express the absolute elasticity of this ribbon in such 
a manner, indeed, that Ek2 at any point you please, divided by 
the radius of curvature, represents the true elastic force. 
To institute a comparison, let the numerator and denominator 

be each multiplied by Ek, so that we have 
a2 

Ek2 dx (a + Px -? yX2) 

a2 
dy - d 

/yE2k4 - E2k4 (a + Px + yx2)2 
F>/ ~ a 
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Therefore 
Ek2y Ek2 a Ek2a 

a2 PC a2 and -Pf 2 

and hence the external force CD =the length a2 ,telnt 

AC= c ,and the constantf --. 
2y 2y 

7. In order, therefore, that the elastic ribbon AB, fixed in 
the wall at one end B, be curved into the shape AMB, the character 
of which is expressed by the following equation 

dy - 
(a + fix ? yX2) dx 
Va4 - (a + fx + yx2)2' 

it is necessary that the ribbon be drawn in the direction CD 

normal to the axis AP (assuming that the distance AC -P ) 
2y 

by the force CD = Ek2y This force will act, of course, 
a2 

in an opposite direction from that shown in the figure, if y be 
Ek2 . 

a positive quantity. Because - is equivalent to the moment 

Ek2 
of the external force, the expression -,, will be equivalent to 

Ek2 
the weight, or to a pure force, which force, -a, for that reason, 

will be determined by the elasticity of the ribbon. Let this 
force be F; then the deflecting force CD will be to this force F 
as - zy is to i, for y will be an abstract number. 

8. Now in addition, the force required to keep the portion 
BM of the ribbon in its position, if the portion AM should be 
entirely cut off, can be determined from this. When this portion 
AM is cut off, the elastic ribbon becomes a rigid rod MT [FIG. 3] 
without any flexure at all, and this is so connected with the 
ribbon that it always makes a tangent at the point M, no matter 
how the ribbon may be bent. If we assume this, it is clear from 
what precedes that to preserve the curvature BM, it is necessary 
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that the rod MT at the point N be drawn in the direction ND 

by a force which equals - ak2 the direction ND will be 

normal to the axis AP, and likewise the interval AC will be equal 

to f-. And thus the distance MN will be 
2y 

ds CP ds +y X (P+2yX) ds 

dx dx 2y 2y dx 
Then 

ds a2 

dx a4-(a + PX + yX2)2 

But if this force ND, which equals k y, be resolved into 
a 

two components, NQ normal to the tangent MT, and NT along 

MT, the normal force NQ = 2-- y- 
dX and the tangential 

force NT 2Ek2y dy 
a2 ds 

9. But now if the part BM be cut off, leaving the part AM, 
which is drawn as before in the direction CD by the force 

- zEkY, in order to preserve the curvature AM, the extremity M, 
a2 

which is understood to be connected with the rigid tangent 
rod MN, will have to be drawn, at the point N, by a force also 

equal to - 
22y, but in the direction opposite to that which 
a 

we have discovered in the preceding case. For the forces which 
will have to be applied to both extremeties of the curved ribbon 
constantly oppose each other, and consequently must be equal 
and opposite. For otherwise the whole ribbon would be moved, 
and to restrain this movement, a force would be necessary to 
cause equilibrium between these forces. Hence the forces to 
be applied at any portion of the part which has been cut off can 
be determined; these forces will preserve the curvature already 
induced. 
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io. Let AM (FIG. 4) be an elastic ribbon, to which, at A 
and M are attached rigid rods AD and MN, and to which in 
opposite directions DE and NR there have been applied equal 
forces DE and NR, which, being in equilibrium, induce the 
curvature AM in the ribbon. For this curvature an equation 
will be sought. First, therefore, let there be taken as an axis 
the straight line AP passing through the point A, and normal 
to the direction ER of the external force. Let the absolute 
elasticity of the ribbon be Ek2; and let the sine of the angle CAD 
which the tangent forms with the axis at A, and which has been 
given, equal m, and the cosine equal n, so that mi + n2 = I. 
Furthermore, let the distance AC c, and the bending force 
DE NR = P. Letting the abscissa AP = x, and the ordinate 
PM y, the character of the curve will be expressed by the 
following equation: 

d Pdx (IX2 + cX + f) 
dy =--2 

'VE2k4 - p2 (-Ix2 + cx + f)2 

But since the direction of the tangent at A is given, when x o, 
dy m whencetm -Pf m Pf 

- Ek2whence and andm= 
dx n n f /E2k4 p2f 2 VI-m2 Ek2 

Therefore the constant f is determined, so that f =- 
P 

and hence the whole curve is thereby determined. 

ii. To produce, therefore, the curvature of the ribbon AM, 
expressed by the foregoing equation, the force DE =- P must 
be applied to the tangent AD, at the point D, in such a way 

that AD , and in a direction parallel to the ordinate PM. 
n 

Let this force DE be resolved into two rectangular components 
Dd and Df (FIG. 5), normal to one another, the force Dd =- Pn, 
and the force Df = Pm. Now in order that the consideration 
of the straight line AD may be eliminated from the computation, 
in place of the force Dd at the given points A and B (assuming 
that AB = h), two forces Aa p and Bb = q can be substituted, 

likewise normal to the rod AB, if we let Ph = Pn.BD = nP(c-h), n 
and q= p + nP. In the next place, because it makes no differ- 
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ence at which point of the rod AB the tangential force Df mP 
be applied, let it be applied at the point A, where AF mP. 
Now let the force AF = r in such a way that the ribbon MA 
is acted upon by the three forces Aa =-- p, Bb - q, and AF = r. 
We shall investigate how the curvature is affected by them. 

12. First, since mP = r, P -, which value, substituted 
m 

cr nhr nr 
in the former equations, will give ph - -,and q = p + -; 

m m m 

hence - = from which equation first the position of the 
m r 

axis AP becomes known; for tan CAD = . 
q -p 

Hence 
r q-p 

M - -~,andn= - q- 
'Vr2 + (q-_p)2 Vr2 + (q-p)2 

Secondly, from the equation hp - h- hq + hp, 
m m m 

mhq hq 
it follows that c or ch - 2+(_p)2 and 

p -v Vr2 + (q p)2p 
Now since 

-mEk2 - Ek2r 

p r2 + (q p)2' 

then 
?2 X2 hqx Ek2r 
-_ + cx + f = + 

2 2 r2 + (q-p)2 r2 + (q-_p)2 

from which the following equation of the curve sought will be 
obtained: 

r Ek2r . 
dx 

LVr2?(q-p)2 - hqx - x2 /r2 + (q-p)2 

dy = 

JE2k4 - [r'+ - hqx-1 x2 Vr2 + (q-p)22 
Tr2+ (q-p)2 
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Now this equation is very convenient for the most common method 
of bending ribbons when they are held either by forceps or two 
fingers, one of which presses in a direction Aa, the other in the 
direction Bb, while, at the same time, the ribbon can be stretched 
in the direction AF. 

I3. If the tangential force AF = r should disappear, the axis 
AP will fall upon the tangent AF produced, and 

dy = -dx [hqx + f (q-p) x2] 
VE2k4 - [hqx + B (q-p) X2]2 

But if the normal forces p and q should be equal, the axis AP 
will be normal to the tangent AF, because n o, and we shall 
have the following equation for the curve: 

dx (Ek2 - hqx - rX2) 
dy- 

- 2 Ek2 (hqx + r TX2) (hqx + B TX2)2 

Hence if also r = o in such a way that the ribbon at the 
points A and B be subjected to equal and opposite forces Aa 
and Bb, the character of the curve will be expressed by 

dy dx (Ek2 - hqX) 

dY - Vhq (2Ek2x -hqx2)' 
which, when integrated, gives 

/2Ek2x - hqx2 

hq 
This is the equation of a circle, and therefore, in this case, the 
ribbon is bent into the arc of a circle, the radius of which will 

Ek2 
be - 

hq 

THE ENUMERATION OF ELASTIC CURVES 

I4. Since therefore we observe that not only is the circle 
included in the class of elastic curves, but more than that, there 
is an infinite variety of these elastic curves, it will be worth while 
to enumerate all the different kinds included in this class of curves. 
For in this way not only will the character of these curves be 
more profoundly perceived, but also, in any case whatsoever 
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LEONHARD EULER S ELASTIC CURVES 89 

offered, it will be possible to decide from the mere figure into 
what class the curve formed ought to be put. We shall also list 
here the different kinds of curves in the same way in which the 
kinds of algebraic curves included in a given order are commonly 
enumerated 5). 

15. The general equation for elastic curves is 
(a + fix + yx2) dx 

d= 
/a4 - (a + fX + yX2)2 

which, if the origin of the abscissas be moved on the axis through 

the distance , and if a2 be written for-(or making y2 _ 
2y y 

takes the simpler form 

dy - - 
(a + _X2) dX 

d V/a4 - (a + X2)2 

But because a4 (a + X2)2 = (a2 - a - X2) (a2 + a + X2), 

let a2 - a = c2, so that a = a2 - C2, and the equation will be 
transformed into 

(a2 - C2 + X2) dx 
dy - 

d V(c2 - x2) (2a2 - C2 + x2) 

Let the character of the curve AMC (FIG. 6) be expressed 
by this equation, and the abscissa AP =x, and the ordinate 
PM = y. Therefore, since , = o [see FIG. 3, Sec. 6], the 
direction of the force which bends the elastic ribbon will be 
normal to the axis AP at the point A, and therefore AD will 
represent the direction of the acting force. This force will 

equal 2-where Ek2 expresses the absolute elasticity. 
a2 

i6. If x = o, then dy a-c This expression 
dx cV2a2 -c2 

gives the tangent of the angle which the curve AM makes with 

the axis AP at A, the sine of which angle will equal -- 2- 

a2 

Wherefore, if a2 =xo , the ribbon will be normal to the axis AP 
at the point A, and will have no curvature, because the curving 
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zEk2 force 2 - disappears. Therefore, in the case where a2 = 00 

the natural shape of the ribbon appears, that is, a straight line. 
This, then, constitutes the first class of elastic curves, which 
the straight line AB produced in both directions to infinity will 
represent. 

I7. Before enumerating the remaining classes, it will be 
convenient to make certain observations in general about the 
figure of the elastic curve. Now it is understood that the angle 
PAM [FIG. 6] which the curve makes with the axis AP at A, 
decreases as the quantity a2 becomes smaller, that is, the more 

zEk2 2 the curving force 2 is applied. And if a2 should become 
a2 

equal to C2, then the axis AP will be tangent to the curve at A; 
but if a2 < c2, then the curve AM, which hitherto ran downwards 
[as in FIG. 6], will now turn upwards until [as in FIG. 7] the 

point is reached where a2 =-, in which case the tangent of the 
2 

curve will fall upon the straight line Ab. But if a2 < I c2, then 
the angle PAM will be absolutely imaginary, and therefore no 
portion of the curve will exist at A. These different cases will 
constitute a variety of classes. 

I8. Furthermore from the equation it is understood (because 
if x and y are both made negative, the form of the equation is 
not changed) that the curve on both sides of A has similar and 
equal branches AMC and Amc alternately disposed, in such a 
way that A is the point of contraflexure ; whence, the portion 
AMC of the curve being known at the same time, its continuation 
Amc beyond A will be known, in as much as the latter is similar 
and equal to the former. Thus, letting Ap = AP, pm will also 
equal PM. Now in receding from A, the curve on both sides 
is bent back further from the axis, until the abscissa AE = c, 
the ordinate EC will be tangent to the curve; for if x = c, then 

dy = x. It is clear that the abscissa x cannot increase beyond dxc 

AE = c, for otherwise - would become imaginary. Hence 
dx 
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the whole curve will be contained between the extreme ordinates 
EC and ec, beyond which limits it cannot pass. Now therefore 
we have, so far, the two branches AC and Ac of the curve extending 
on both sides from A to the limits. 

I9. Let us see, then, under what conditions the curve may 
pass beyond C and c. To this end let us take the straight 
line CD parallel to AE as an axis, and let these new co-ordinates 
CQ - t and QM = u; then x + t AE = CD c, and 

y + u CE AD = b, whence x c - t, and y b -u, 
or dy - du, and dx = - dt. Substituting these values, 
there will arise an equation for the curve in terms of the new 
co-ordinates CQ t and QM = u; this equation will be 

du =- (a2- ct + t2) dt 
'V t (2C - t) (2a2 - 2ct + t2) 

Here it is clear, in the first place, that if t be taken as infinitely 
a2dt /t 

small, then du = and u = a /- . The latter equa- 
2a Vct c 

tion indicates that the curve beyond C begins to advance towards 
N in a way similar to that in which it extends from C to M 6). 

Now the ambiguity of the radical sign in the denominator of 
the equation shows admirably that the ordinate u can be taken 
negatively as well as positively; whence it is manifest that the 
straight line CD is a diameter of the curve, and moreover, that 
the arc CNB will be similar and equal to the arc CMA. 

2o. Now in a similar way the straight line cd produced 
through c on the other side of and parallel to the axis AE will 
be a diameter of the curve; because the branch Acb is similar 
and equal to the branch ACB. Therefore at the points B and b 
there will also be points of contraflexure as at A; whence the curve 
will extend further in a similar fashion. Therefore the curve 
will have an infinite number of diameters CD, cd, etc., mutually 
distant from one another by the same interval Dd, and parallel 
to one another; and because of this, the curve will consist of an 
infinite number of parts similar and equal to one another; and 
therefore the whole curve will be known if only a single portion 
AMC be known. 
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2I. Because the point of contraflexure is at A, the radius 
of curvature will be infinitely great at that point, which is clear 
from the nature of the curve. For since the curve at A is drawn 

by the force .Ek2 in the direction AD, at any point M, if the 
a2 

radius of curvature be set equal to R, because of the nature of 
2Ek2X_ Ek2 a2 

the elasticity, the force will be a2 - =i?7 whence R = a. 

Therefore at the point A (x = o) the radius of curvature is 
infinite; but because AE = Ae = c at the points C and c, the 

a2 
radius of curvature will equal -; in other words, at these places, 

2C 

the farthest distant from the straight line BAb, the curvature is 
greatest 7). 

22. Now although for the point C it is known that the abscissa 
is AE = c, nevertheless the distance EC cannot be determined 
except by the integration of the equation 

(a2 - C2 + X2) dx 
d (C2 - X2) (2a2 - C2 + X2) 

For if after the integration, x be made equal to c, the value of y 
will give the distance CE, which taken twice will give the distance 
AB, or the interval Dd lying between the diameters. Similarly, 
integration will be necessary to determine the length of the curved 
ribbon AC. For since, if the arc AM =s, 

a2 dx 
ds = .-, and 

i (C2 -x2) (2a2 - C2 + x2) 

its integral, evaluated at x = c, will give the length of the 
curve AC 8). 

23. Now since these formulas do not admit of integration, 
let us try to express conveniently by approximation the values 
of the interval AD and of the arc AC. To this end, let 

c2 - x2 z, whence 
(a2 Z2) dx a2 dx 

PM. = = I z and AM =s 
EZV2a2 z2 d za2a2 z2 

Expressed as a series, 
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I I { I~~~ z2 .1 3 Z4 I. 3.5 Z6 
I+ -- 2 + - . g+ .- +. 

Vza2 2Z2 ( 4 a 4.8'a 48.I2 a6 

whence 
I r /a I Z I.3 Z3 1.3.5 Zr 

S =V- )' + *148*aB-~+ 48~ +.)dx, 
S- 2-, Z 4 4a 4.8 a 4.8.12 *a +*Jd 

and 
I (z1 I Z3 1.3 Z5 I.3.5 Z7 

Sy= V2 j) \a 4 a3 +4.8* a+ 4.8.I2 *a7 + . * * 

24. Since we desire these integrals only for the case x = c, 
in which z = o, they can be expressed conveniently by the aid 
of the circumference of the circle. For assuming that the ratio 
of the diameter to the circumference is as I is to 7r, 

J'dx J C dx 7T 

z 0 V \C2-X:2 2 

Now in the same way the following integrals will be determined 9) 
rc I 7rC2 rc I.3 'r 
J zdx = - 

2 z dxc -X * 2 
2 ~~~~2.4 2 

(SC I--5* c13*5*7 7r 
z5dx = 3 -6, and z7dx= _.4.6.8 CS 

2 2 2.4.62.8 2 

By the aid of these integrals we have 
A 7ra ( I2 C2 I2 32 C4 I2 3252 c6 

2'V2 +22 Za 2242 +4a4 2242626+ 86 J 
and 

7ra I2 3 c2 I23 5 c 2 2 

AD=- - - 3 

2V2 < 22 C I 2a2 242 324a4 22426258a6 

If accordingly AE = c and AD = b be given, from these equations 
the constant a and the length of the curve AC will be determined. 
Conversely also, from the given length of this curve AC, and 
from the constant a by which the external force is determined, 
it will be possible to find the distances AD and CD. 

7 
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FIRST CLASS 

z5. Since we have so determined the first class that, in the 
general equation 

(a2 - C2 + x2) dx 

d=V (c2 - x2)-(2a2 -C2 + x2) 

c = o, ora =_ , a straight line represents the natural condition 
C 

of the ribbon; and to this same first class let us refer also those 
cases for which c is an infinitely small quantity, ini such a way 
that in comparison with a it can be regarded as on the point of 
vanishing. However, because x cannot be greater than c, likewise 
x in comparison with a will be on the point of vanishing, and 
therefore the following equation will result: 

a dx 
dy V (c2 - X2) 

a x 
The integral of this is y- = arc sin c-, which is the equation 

for a trochoid curve infinitely elongated 10). Now AD will become 
Tra 

equal to 2Vi' from which the length of the curve differs only 

infinitesimally, because the angle DAM is infinitely small. Let 
the length of the ribbon ACB 4f, and its absolute elasticity 

be Ek2. Because f , the force requisite to produce . Becaue f 2 /2, 
this infinitely small curvature of the ribbon will be of a finite 

Ek2 1T2 
magnitude, and will equal ._ -; that is to say, if the extremeties A 

P 4 

and B be fastened together with a string AB, the string will 

necessarily be stretched by the force 7 
f2 4 

SECOND CLASS 

26. Let the case in which c is contained between the limits 
o and a, constitute the second class. In these cases the angle 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LEONHARD EULER'S ELASTIC CURVES 95 

DAM will be less than a right angle; for the sine of the angle 

PAM, or the cosine of the angle DAM = , - Therefore 
a2 

in this case the form of the curve will be similar to that which 

FIG. 6 represents. Since c < a, therefore -2< -; but since 

C2 tra 8f2 
-2- > o, assuredly AC = f > -ra whence a2 < 2i- za2 2 1/2pW 
wherefore the force whereby the extremeties A and B of the. 
ribbon are drawn together, by the aid of the string AB, will 
be greater than in the preceding case, that is the force will be 

Ek2 77.2 
greater than .k2 .-. 

THIRD CLASS 

27. In the third class I consider the unique case in which 
c = a, because in this case the axis AP is tangent to the curve 
at the point A. This class has the special name of the rectangular 
elastic curve. In this case 

X2 dx a2dx 
dy= E and ds = - 

va 4f 4 - XM 

and hence 

AC=f = 
~ 12 I + 1.32 I 325 21 

AC =f=-(I+V 22 2 22 .42 4 22.4.62 8 / 
and 

AD = b- = 7 (I +_. 3 _ _2.32 5 
I 2.32-52 7 _ 

2 fV 2 22 1.2 22 .423.4 22.42.62 5.8 J 
Now although from this neither b nor f can be accurately 

expressed in terms of a, yet I have elsewhere pointed out that 
there is a remarkable relation between these two quantities 11). 
In other words I have shown that 4bf = wa2, or the rectangle 
formed by AD and AC will equal the area of a circle the diameter 
of which is AE. Now it will be found by introducing calculus 

that f - 5a.ir-approximately, so that a =[f; hence the force 
6 2 57T 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


96 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

by which the extremities A and B must be drawn toward each 

other will equal 2 r2 A closer approximation gives 
f2 72 

a7r 
f= I.I803206-v hence 

1ra2 a f 
b = = whence--- = I.3II006, and 

4f i.i8o32o6Vz2_ a 

b 
= 0.59896 12). 

a 

FOURTH CLASS 

28. If c > a, the fourth class will arise (FIG. 7), the ribbon 
opening out horizontally until AD = b > o. This second 
limit of c will be defined by the equation 

I2 3 + I2.2 32. 2 7 6 . 

22 I 2a2 22 42 3 4a4 22. 42. 62 5 8a6 

In this class therefore, since c > a, the curve at A will rise 
above the axis AE, and will form the angle PAM, the sine of 

C2 a2 
which will equal 2 Now we shall soon see that this 

angle PAM is less than 400 -4I'; since if it reaches this value, 
the interval AD disappears, a case which I refer to the fifth class. 
Hence in the fourth class are included the curves in which the 

c2 

value - is contained between the limits i and i.65I868. Now 

the form of these curves is understood from the figure, provided 
C2 

only that it be observed that the closer 2i approaches the latter 

limit I.65I868, the shorter the interval AD will become, and the 
closer the end points A and B will be brought to each other. 
Therefore it can happen that the humps of the ribbon m and R 
and likewise M and r are not merely mutually tangent, but even 
intersect, and intersections of this kind will be repeated inde- 
finitely until all the diameters DC and dc coincide and merge 
with the axis AE. 
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FIFTH CLASS 

29. If this happens, the fifth class (FIG. 8) will arise,. the 
character of which will be expressed by the equation between 
the co-ordinates AP = x and PM =y, 

dy - W -: ,2X2d 
(c2 X2) (2a2- c2 + 2) 

the following relation existing between a and c, viz., that the 
C2 

interval AD = b = o. Let -= v, and then v must be 

defined by the following equation: 
.3 V+ 3- 5 v2 + ___I 3 3- 5 7V3 + 

2.4 2. 2. 4- 4 2. 2- 4 4. 6 6 
Let there be sought first, by methods familiar to everyone, or 
else by mere trial, the limits between which the true value of v 
is contained, and these limits will be found to be v = o.824, 
and v o.828. But if now both of these values be substituted 
in the equation, from the two errors which are certain to arise, 

it will finally be concluded that v o.825934 -= 2 whence 

C2 C-a 
i = I. 65i868, and o-= o.65i868; andsince this expression 

a2 ~~~~~a2 
equals the sine of the angle PAM, it will be found from the 
tables that the angle PAM = 400 -4I'; and therefore twice this, 
or the angle MAN, will equal 8I? -22'. Wherefore, if the extre- 
mities of the elastic ribbon be brought toward each other until 
they touch, they will form the curve AMCNA 13), [FIG. 8] and 
the two extremities will form at A an angle = 8I0 -22'. 

SIXTH CLASS 

30. If the two extremities A and B of the ribbon, after they 
have been brought together, should be drawn apart in opposite 
directions by an increased force, there will arise the curve of 
the shape AMCNB (FIG. 9) which constitutes the sixth class. 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


98 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

C2 

Therefore in the curves belonging to this class-, > o.825934; 
2a2 

but a < i. For if c2 = 2a2, there will arise the seventh class, 

to be explained in a moment. In these curves the angle PAM 
which the curve makes with the a-xis at A is greater than 400 -41', 

iSC2-a2 but less than a right angle; for since its sine is , because 

c2 < 2a2, the sine is necessarily less than i, and hence the 
angle PAM cannot become a right angle unless c2 = aa2. 

SEVENTH CLASS 

3I. Now let c2 = 2a2, in which case the seventh class is 
constituted, and the character of the curve will be expressed by 
the equation 

dy= (a2- X2) dx 

xV 2a2-X2 

from which it is gathered that the branches A and B of the curve 
(FIG. io) are extended indefinitely, in such a way that the straight 
line AB becomes the asymptote of the curve. Therefore each 
branch AMC and BNC will become infinite, as is understood 
from the series discovered above for the arc AC; for 

AC= 7a ( I2 I2. 32 i2. 3252 
AC = _ (I+ -2S+ 22~;+ 2-46 + ) zVa ~~ 22?2242?2 246 

the sum of which series is infinite. If therefore the length of 
the ribbon AC be finite and equal to f, it is necessary that a =o, 
and hence also CD = c = o; therefore the ribbon after it has 
been curved to a knot, in this case will be extended again in a 
straight line, for which an infinite force will be needed. But if 
the ribbon be infinitely long, it will form a knotted curve 
converging to the asymptote AB, CD being equal to c. Now 
the equation for this curve can be integrated by the aid of 
logarithms, for 

C C + V C2 - X2 
Y = / C X2 - --log - 

taking t b ahx 
taking the abscissa x on the diameter DC in such a way that 
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LEONHARD EULER'S ELASTIC CURVES 99 

DQ = x and QM = y; for the ordinate y disappears when 
x = CD = c; also at the knot 0 the ordinate disappears. 
To find this point let us put 

2 V c 222- - 2 / C2 _. X. C + A/ C2 2 
I= og +V X 

C X 

Let q be the angle whose cosine is -and whose sine is VC - 

c c 

then 2 sin + log tan (450 + 0 ). 
2 

The logarithm must be taken from a table of natural logarithms. 
If a table of this kind be lacking, let there be taken from a table 
of common logarithms the logarithm of the tangent of the angle 

(450 + k), from the characteristic of which let IO be subtracted, 
2 

and let the remainder be co; by so doing 
2 sin = 2.30258509 c 14). 

Taking common logarithms once more, we have 
log 2 + log sin 0 = log w + 0.3622156886, 
or log sin 0 = log X + 0.06II856930. 
By trying this artifice, a value of the angle q very close to the 
true value will soon be secured; whence by the rule of the false 
value the true value of the angle qb will be determined, and from 
it the abscissa x = DO. Now in this way the angle qb is found 

to be 730 -I4' -I2", whence it results that x 
= 0.2884I9I, and 

V c2 -~~~~~~~~~~ 
560 -X -- 0.9575042. But the angle QOM is 20 - 900- 

c 

560 -28' -24", and therefore the angle.MON =- II20 -56' -48". 
Therefore, since in the fifth class the angle at' the knot was 
8I0 -22', in the sixth class the angle MON at the knot will be 
contained between the limits 8I0 -22' and II20 -56' -48". In the 
fourth class, if the knot appears, its angle will be less than 8I0 -22'. 

EIGHTH CLASS 

32 Now let C2 > Wa2, and C2 = 2a2 + g2;since a2 = 

2 -2 
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IOO W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

the equation of the curve will be 
(x2 - C2 - a g2) dx 

dy - -- - - 
-V (C2 - X2) (X2 -g2) 

By this equation the eighth class is expressed (FIG. ii), and 
if the straight line dDd represents the direction of the external 
force, then x = DQ, and y = QM. First therefore, it is clear 
that the ordinate y cannot be real unless x > g; but x cannot 
exceed the straight line DC = c, whence, putting DF g, 
the whole curve will be contained between the straight lines 
parallel to dd drawn through the points C and F, and these lines 
will be tangent to the curve. Now it is indifferent which one 
of the straight lines c and g be the greater, provided only that they 
be unequal; for the equation is not changed if the straight lines c 
and g be interchanged. Furthermore this curve will also have 
an infinite number of diameters parallel to one another DC, 
dc, dc, etc., and also straight lines which are drawn through 
the individual points G and H, likewise normal to dDd 15). 

But nowhere along the whole curve will there be a point of 
contraflexure, and therefore the continual curvature will progress 
in both directio-ns indefinitely, as the figure shows; and the angles 
MON, mon, etc., which are made at the knots will be greater 
than II20 -56' -48". 

NINTH CLASS 

33. Since in the eighth class are contained not only the cases 
in which g2 < C2, but also those in which g2 > C2, there remains 
but the one case in which c = g; in which case, because CF = o, 
the curve is reduced, vanishing into space. But on the other 
hand, if we take c and g both as infinite, but in such a way that 
their difference is finite, the curve will occupy a finite space. 
Therefore, to find this curve, let g = c - 2h, and x = c - h -t, 
and, because c - oo , but the quantities h and t are finite, 

C2 g2 c2 g2 
+ C2 2 ch, and x2 -C--_- 2- ct; 

2 2 2 2 

Then C2 - -2 -c (h + t), and X2 - g2 = ac (h - t), from 
which the following equation 
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LEONHARD EULER S ELASTIC CURVES 101 

tdt 
dy= Vh2 ---t2 

for the circle will result. Therefore the elastic band in this case 
will be curved into a circle, as we have already observed above. 
Wherefore the circle will constitute the ninth and last class. 

34. Now that we have enumerated the classes, it will be easy, 
in any given case, to determine to which class the curve belongs. 
Let the elastic ribbon be fixed in the wall at G (FIG. I2), and 
from the end A let there be hung the weight P, by which the 
ribbon is curved into the shape GA. Let the tangent AT be 
drawn, and the whole decision will have to be sought from the 
angle TAP. For if this angle be acute, the curve will belong 
to the second class; but if it be a right angle, the curve will 
belong to the third class, and it will be an elastic rectangular 
curve. But if the angle TAP be obtuse, yet less than 1300 -41', 
the curve will belong to the fifth class; if, however, the angle TAP 
be greater than I300 -41', the curve will belong to the sixth class. 
Now it would belong to the seventh class if the angle should 
be equal to two right angles, but that cannot happen. This class, 
therefore, together with the following classes, cannot be produced 
by hanging a weight directly to the ribbon. 

35. Now in order that it may appear how the remaining 
classes can be produced by curving the ribbon, let a rigid rod AC 
be firmly fastened at A, the end of the ribbon fixed at B (FIG 3), 
and let the weight P, which draws in the direction CD, be 
appended at C. Let the interval AC be h, the absolute elasticity 
of the ribbon be Ek2, and the sine of the angle MAP which the 
ribbon makes with the horizontal at A be m. All this being 
stipulated, if we let the abscissa AP = t, and the ordinate 
PM = y, the following equation will be found for the curve 

dt (m E k2 - Pht Pt2) 
I. dy = 

I/ E2k4 (m E k2- Pht B pt2)2 

Now let CP = x = h + t, whereby the equation is reduced to 
the form which we have used in the division of the classes, viz., 

dx (m E k2 + 2 Ph2 - P x2) 
II.dy - 2)2 E2 4 -(m E k2 -tBP2 ff p x) 
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which, compared with the form 
dx (a2 - C2 + xk2) 

dy = v (c2 - -x2) (2a2 - c2 -+ x2) 

or III. dy _ dx(a-c2+x2) ,16) 
V/ a4 - (a2- C2 + x2)2 

will give BPa2 = Ek2, or a2 _ 2Ek and Pc - P P42 = m Ek2 

+ BIPh2; therefore 

C2 ,2(I + m) E k2 

36. Therefore the curve will belong to the second class if 
2mEk2 - 2mEk2 

+ h2<o,orP< h2 

Hence unless the angle PAM be negative, the force P will have 
to be negative, and the rod at C will have to be drawn upwards. 

- zmEk2 
The curvature will belong to the third class if P 

h2 

The fourth class will appear if 2mEk2 + Ph2 > o, but at the 
same time 2mEk2 + Ph2 < 2aEk2, a being equal to o.65i868. 

But if P 2(a - m)Ek2-, then the curve will belong to the fifth 

class. If, however, Ph2 > 2(a - m)Ek2, but at the same time 
Ph2 < 2(I - m)Ek2, the curve is to be referred to the sixth class. 
The seventh class will arise if Ph2 -2( - m)Ek2. The eigth 
class will be obtained if Ph2 > 2(I - m)Ek2. Wherefore if the 
angle PAM be a right angle, because i - m = o, the curve 
will always belong to the eighth class. Finally, the ninth class 
will arise if h = oo , as I have already observed above. 

STRENGTH OF COLUMNS 

37. That which has been observed above about the first 
class can help us judge of the strength of columns. For let 
the column AB (FIG. I3), sustaining the load P, be placed 
vertically upon the base A. If the column be so constituted 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LEONHARD EULER'S ELASTIC CURVES I03 

that it cannot slip, nothing else need be feared from the weight P, 
if it be not excessively great, except the bending of the column; 
therefore in this case the column can be considered as elastic. 
Let the absolute elasticity of the column be Ek2, and let its height 
AB 2f4 a. As we have seen above in section 25, the force 
necessary to bend this column even in the least degree is 

3r2Ek2 if2 
=*Ek2. 

4f2 a2 

Therefore, unless the load P to be borne be greater than E7r2k2 
a2 

there will be absolutely no fear of bending; on the other hand, 
if the weight P be greater, the column will be unable to resist 
bending. Now when the elasticity of the column and likewise 
its thickness remain the same, the weight P which it can carry 
without danger will be inversely proportional to the square root 
of the height of the column;. and a column twice as high will 
be able to bear only one-fourth of the load. This principle can, 
therefore, be applied in the case of wooden columns, since they 
are subject to bending. 

DETERMINATION OF THE ABSOLUTE ELASTICITY BY EXPERIMENT 

38. Now in order that the force and' the bending of any 
elastic ribbon whatsoever may be determined a priori, it is necessary 
that the absolute elasticity which we have hitherto expressed 
by Ek2, be known. This can be conveniently determined by a 
single experiment. Let the uniform elastic ribbon, the absolute 
elasticity of which is to be investigated, be fixed at one end F, 
in a solid wall GK (FIG. 14), in such a way that it is held 
horizontally, for here we may neglect the weight of the ribbon. 
To the other end H let there be hung any weight P by which 
the ribbon is curved to the position AF. Let the length of the 
ribbon AF = HF f, the horizontal distance AG = g, and 
the vertical distance GF - h, all of which values will be known 
by experiment. Now let this curve be compared with the general 
equation 

(C2-a2_X2) dx 
dy V(C2-X2) (2a2-0c2+x2)' 
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in which, if a and c have been determined by f, g, and h, the 

curving force P will equal 2 
. Therefore the absolute elasticity 

a2 
Ek2 = Pa2. 

39. Because now the tangent at F is horizontal, dy _ 
dxc 

and therefore x = c2- a2. Hence AG = g = V C2 - a2, 
and a2 = C2 g2; and therefore 

dy (g2-x2) dx 

V (c2-x2) (C2-2g2+X2)' 

and if we let x = g here, y will have to be equal to GF h, or 
s = AF = f; whence 

ds (c2 -g2) dx 

V(c2 x2) (C2-2g2+X2) 

Now if the weight P be taken as very small, so that the ribbon 
be depressed only a very little, then c will become a very great 
quantity, and therefore 

4- (C4 c2g2 + g2 x4)-i 

V(C2 -x2) (C2 -2g2+2) 

I g2 3g4 g2X2 3g4x2 X4 3g2x4 

c2 C4 2C+ Cd 8 2C6 
8 

?C 

and therefore by integration we have approximately 
(C2 -g )X (C2 -g2)g2x 3(c2-g2)g4X (c2 g2)g2x3 

S _ + 4-.- ? 6 6 
C2 C 2C6 3c6 

(C2 g2)g4Xs (c2-g2)X5 3(c2 -g2)g2x5 

?8 I oc6 IoC8 

and 
g2x g4x 3g9x g4x3 g6x,3 g2X5 3g4X5 

c2 C4 2c6 3C6 C8 I OC6 I Oc8 

Xs3 g23 g4X3 g2x5 3g4X5 X7 3g2X7 

3C2 3C4 2C6 5C6 5C8 14C6 I4c8 

Now letting x = g, we have 

f -g + 15C4 17) and h== 3C2+ 3C4 
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Therefore if the straight line FG = h be called into use 

= gS C2 = - 
3n 

g (2g2 -3gh) 
and a2 = 3h 

Whence the absolute elasticity is secured as 

Ek2 _Pg2 (2g - 3h) 
Ek2= ~6h 

This value will differ hardly at all from the true value, provided 
that a not too great curvature of the ribbon be caused. 

40. Now this absolute elasticity Ek2 will depend in the first 
place upon the character of the material out of which the ribbon 
has been made; *whence one material is said to have more 
elasticity than another. Also, in the second place, it so depends 
upon the breadth of the ribbon that the expression Ek2 ought 
everywhere to be proportional to the breadth, other things being 
equal. But thirdly, the thickness of the ribbon contributes a 
great deal to determining the value of Ek2, which seems to be 
composed in such a way that, other things being equal, Ek2 is 
proportional to the square of the thickness. Therefore, taken 
all together, the expression Ek2 will have a total ratio composed 
of the ratio of the elasticity of the material, the breadth of the 
ribbon, and the square of the thickness. Hence by experiments 
in which it is possible to measure the width and thickness, the 
elasticity of all materials can be compared one with another 
and determined. 

CURVATURE OF ELASTIC RIBBONS OF VARIABLE CROSS SECTION 

41. As hitherto I have taken the absolute elasticity Ek2 as 
constant throughout the whole length of the ribbon the curvature 
of which I have determined, so the solution can also be made 
by the same method if the quantity Ek2 be taken as a variable 
in any manner. In other words, if the absolute elasticity of 
the ribbon AM (FIG. 2) be any function S of the arc AM = s, 
and if the radius of curvature at M be R, the curve AM, which 
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the ribbon takes on, will be so constitu.ted that among all other 

curves of the same length, J S 
is a minimum. This case 

will therefore be solved by the second general formula 18). 

Let dy = pdx, dp - qdx, and dS = Tds. Among all curves 

in which fdxA/ V + p2 is of the same magnitude., that curve is 

to be determined in which f S _dx 
J (I + P2 

is a minimum. The first formula, fdx AV I + p2, gives for 

d p 
differential value -- -. dx V/ I + p2' 

The second formula f Siqdx 5,compared with C Zdx, will 

Sq2 

give z (I + pT)s 

Now if we let dZ = Ldl + Mdx + Ndy + Pdp + Qdq, where 
1I= f [Z]dx, then d[Z] = [Mdx + [Nldy + [P]dp, and 

_ q2Tds 
LdrI (I + p2) T 

whence L = 
p2)51, 

and dni= ds =dx 'V I + p2. 

Therefore [Zl =V:I + p2, [M]= o, [N] =o, and 
__I__ 

But then M =o, N = o, and also P S and 

_ Sq _ _ _ _ _ 

Q ,so that dZ= + Pdp +qQdd 
( +p2)'1 + Pdp +Qd 

Now let Ldx q2Tdx q2dS 
42.NwltJ zs_ J ( + p2)7 .9( + p2)3 

and let H be the value of this integral when x = a. The 
consideration of the constant a will soon disappear again from 

rq2 dS 
the calculation. Therefore V - H - f ( + d2)S whence 
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the differential expression will become -ddx [P]V +d 2Q 
dx dx dx2 

Wherefore from these two differential values, the following 
equation for the curve sought will arise 

d p dP d d2 Q 
dx = + dx + dx 

[P] V- -dx 
dx VI+p2 dx dxdx 

This, being integrated, gives 

ap__ dQ 
+ PP?I[PIV dx-- 

+ p2 dx 

or 
ap + H p q a Adq dQ 

V Ap2 .1Vx?p2 
- 

/I +p21 (I+ p2)3 P x 
The constant H can be absorbed into the arbitrary constant a, 
whereby the constant a disappears from the calculation. On this 
account, the following equation will result: 

ap_ dQ p q2dS 
V P2 dx VI +p2 (I +p2)3 

43. Let this equation be multiplied by dp qdx, and there 
will result 

a pdp pdp q____ 

g 2+ P dp = Pdp-qdQ- pPdp q2) 

q2 dS 
Now since dZ-(I +p2)5 + Pdp + Qdq, 

q2 dS 
then Pdp = dZ - Qdq + p2)2 

If this value is substituted, the following integrable equation will 
result: 

a pdp q2 dS 
v + 2+ fl dp dZ -qdQ -Qdq- 

pdp2 
q2 dS 

V I + p2 J (I 4 p2)3 

the integral of which is 

+pVf2dS a \/ I + p2 + p p + y = Z-Qq - A I + P2J I+p33 
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Sq2 ( qjdS 
oraVi +P2+PP+Y=7 +p2)s VI+PJ(.p2.3 
In order to eliminate the integral sign, divide the equation by 
V I + p2 and differentiate again, obtaining 
p dp y pdp 2 q2dS 2 Sqdq 6 Spq2dp _ 

(I+p2) (I+p2)3 (I+p2) (I+p2)- ('+P2)4 

which, multiplied by ( + P2) , gives 
2q 

,6 dp y pdp qdS+Sdq 3 Spqdp 
+ I o0. 

2q 2q (I + P)2 (I+p2)9 

The integral of this, because dp = qdx, and dy pdx, will be 

Sq 
a 

+ ,8nc + 

(I+p2)2 

But ( + P2) is the radius of curvature R; whence, by doubling 
q 

the constants fi and y, the following equation will arise: 
S 
R = a + fix yy. 

This equation agrees admirably with that which the second or 
direct method supplies. For let a + fix - yy express the 
moment of the bending power, taking any line you please as 
an axis 19), to which moment the absolute elasticity S, divided 
by the radius of curvature R must be absolutely equal. Thus, 
therefore, not only has the character of the elastic curve observed 
by the celebrated BERNOULLI been most abundantly demonstrated, 
but also the very great utility of my somewhat difficult formulas 
has been established in this example. 

44. If, therefore, the curve be given which a variable elastic 
ribbon, acted upon by the force CD = P (FIG. 3) forms, the 
absolute elasticity of the ribbon at any point can be found. 
For, taking the straight line CP, which is normal to the direction 
of the force, as an axis, and putting CP = x, PM = y, the arc 
of the curve AM = s, and the radius of curvature at M equal 
to R, because the moment of the force with reference to the 
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point M is Px, then R Px, and therefore the absolute elasticity S, 

at the point M, is PRx. Hence, since the radius of curvature R 
is known at every point when the curve is given, the absolute 
elasticity at any point becomes known. Therefore, if the material 
of the ribbon together with its thickness be everywhere the same, 
but the width is variable, because the absolute elasticity is 
proportional to the width, the width of the ribbon at every point 
is learned from the form of the curve. 

45. Let the triangular tonguelet fAf (FIG. I 5) be cut out 
of an elastic ribbon of uniform thickness. Since the width mm 
at any section M is proportional to the length AM, if we let 
AM = s, the absolute elasticity at M will be proportional to s. 
Let the absolute elasticity be Eks, and to the ribbon fastened 
at the endff horizontally in a wall let there be hung, at the point A, 
the weight P, by which the median straight line AF is bent into 
the curve FmA (FIG. I4), the character of which curve is sought. 
Now on the horizontal axis let the abscissa Ap = x, the ordinate 

Eks 
pm = y, and the arc Am 

= s; then Px -R in which R 

denotes the radius of curvature at m. Let this equation be 
ds3 

multiplied by dx, and because R assuming dx as 

-dEksdx2 d2y 
constant, we have Px.dx - d2y 

ds83 
Pxdx sdX2.d2y 

or Ek + - -ds3- - 

d sd2y sdyd2s sdX2.d2y 
But since -- sdy =d - ds3 + dy = + dy, 

dyd2y 
and because d2s = -, then 

('sdx2d2y sdy 
J ds3 ds Y 

Whence by integration, 
Px2 - sdy 

+ a = +Y. 
2Ek ds 
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z Ek 
46. Let dy =pdx, so that ds = dx VI + p2,and-p = c; P 

x2 SP 
thena + -_ v I and therefore 

a V/ I + p2 2V I + p2 y vI+P2 

p cp p 

This, differentiated, gives 
adp 2 x dxV I + p2 x2 dp - dyv +p2 

p2 Vf I + p2 Cp Cp2 V I + p2 p 

__ dp -y dp 

p2 V I + p2 p2v I + p- 

2pxdx (I + p2) x2 
Hence a - y results. 

cdp c 
Let dp be taken as constant and differentiate; then 

2 pXd2x (? +p2) 2pdX2 (I+p2) 2 xdx (?+3p2) 2xdx 
-pdx c + + - >4 

cdp cdp c c 
or 
cdxsdp ? zxsd2x (I + p2) ? zdx2 (I + p2) ? 6pxdx - o 
A further solution of this equation is impossible. The most 
simple equation for the curve is the following: 

yds - sdy Px2 

ds 2Ek' 

for when x = o, both y and s must vanish, and the constant a =o 

THE CURVATURE OF ELASTIC RIBBONS WHICH IN THEIR 
NATURAL STATE ARE NOT STRAIGHT 

47. In the previous discussion the curvature of a ribbon, 
whether uniformly elastic or not, is determined if it be subjected 
to a single force, and, which is especially to be noted, if the ribbon 
be naturally straight. But if the ribbon in its natural state be 
already curved, then it will certainly take on a different curvature 
due to the acting force. To find this, one must know its natural 
shape in addition to its elasticity and the acting force. Let, 
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LEONHARD EULER S ELASTIC CURVES III 

therefore, the elastic ribbon Bma (FIG. i6) be naturally curved; 
let the elasticity of it be everywhere the same, viz. Ek2, and let 
it be curved by the force P into the shape BMA. Through the 
point A let there be drawn the straight line CAP normal to the 
direction of the acting force, and let this line be taken as the 
axis; let also the distance AC = c, the abscissa AP - x, the 
ordinate PM = y; and the moment of the acting force at the 
point M be equal to P(c + x). 

48. Furthermore let the radius of curvature of the curve 
sought be equal to R at the point M; let the arc am in the natural 
state be AM = s, and let the radius of curvature at the point m 
be r; this radius, because the curve amB is known, will be giveni 
by the arc s. At M, therefore, because the curvature is greater, 
the radius of curvature R is less than r, and the excess of the 
elementary angle over the angle in the natural state will be 
ds ds 

R--, which excess will be the effect produced by the acting 
r 

force. Wherefore p(c + x) = Ek2 ,which, since r is 

given by s, will be the equation of the curve sought; and this 
considered thus cannot be reduced to one of the previously 
described classes. 

49. Therefore let us assume that the ribbon has a circular 
shape amB in its natural state; r will be the radius a of that 

circle, whence P(c + x) = Ek2 ( Let this equation be 

multiplied by dx and integrated; then [see sec. 5 towards the end] 
p ss2 - dy X 
E22- + C:C + f -ds- a IEI2 (2 ?c ?f ds a' 

Ek2 
will arise, which, if c -P be written for c, will go over into 

P 0) dy 
Ek2 2 +C + ds 

This is the same equation that we discovered above for the ribbon 
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II2 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

which was straight in its natural condition [sec. 5]. Let, therefore, 
the ribbon which is circular in its natural condition be curved 
into the same curves which are produced for the ribbon that 
is straight in its natural state; of course, the place of the application 
of the force, or the distance AC = c will have to vary for each 
case according to the given law. Therefore the same nine classes 
of curves will appear for the figures which the ribbon that is 
circular in its natural state can produce, and these we have 
enumerated above. For the circular ribbon, if the distance AC 
be taken as infinite, can be drawn first into a straight line 
[see class 9]; then any force whatever applied in addition will 
produce the same effect as if it were applied alone to the elastic 
ribbon which was straight in its natural state. 

50. Now let us assume that, whatever be the natural shape 
of the ribbon, the point C is infinitely distant, in such a way 
that the moment of the acting force be everywhere the same, 

and let the moment, when divided by Ek2 be taken as b- then 

I I I I I I 

andb r b R r and R +b 

Hence F R iT +fr 

is the amplitude of the arc AM, just as expresses the 

amplitude of the arc am, precisely as the celebrated JOHN BER- 
NOULLI is accustomed to use the term amplitude in his superb 

treatise De motureptorio 20.) Let therefore + ? be the arc 

in the circle whose radius equals i, which, because r is given 
by s, will also be a known function of s. Hence the rectangular 
co-ordinates x and y will be found in such a way that 

ds s d 
x = Jds sin b + f-~)and y - ds cos + 

whence the curve sought can be constructed by quadratures. 

5I. IHence the figure amB (FIG. 17), which the ribbon must 
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LEONHARD EULER S ELASTIC CURVES 113 

have in its natural state, can be determined, so that by the 
force P, acting in the direction AP, it can be unfolded into the 
straight line AMB. For letting AM = s, the moment of the 
force acting at the point M will equal Ps, and the radius of 

I 
curvature at M will be infinite by hypothesis, or R- = . Now 

the arc am in its natural state being equal to s, and the radius 
of curvature at m being taken as r, because this curve is convex 
to the axis AB, the quantity r must be made negative. Hence 

Ek2 
Ps = -, or rs = a2, which is the equation of the curve amB. 

I r ds s2 
52. Therefore, since -=-,then - ;or the amplitude 

r a2 ~~r 2a2 

of the arc am will vary as the square .of the arc itself. Hence 
the rectangular co-ordinates x and y for the curve amB will be 

S2 
In other words, in a circle whose radius is i, the arc -- will 

a2 
have to be cut off, the sine and cosine of which must be taken 
to determine the co-ordinates. Now from the fact that the 
radius of curvature constantly decreases the greater the arc am-- s 
is taken, it is manifest that the curve cannot become infinite, 
even if the arc s be infinite. Therefore the curve will belong 
to the class of spirals, in such a way that after an infinite number 
of windings it will roll up at a certain definite point as a center, 
which point seems very difficult to find from this construction. 
Analysis therefore must be considered to gain no slight advantage 
if anyone should discover a method by the aid of which at least 

an approximate value can be assigned for the integrals fds 
('ds 

sin -_ , and ds cos -, in the case where s is taken as infinite. 
2a2 ) a2 

This seems to be a not unworthy problem upon which mathe- 
maticians may exercise their powers 21). 
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53. Let 2a2 = b2, and since 
S2 S2 S6 sio s14 

sin 1~ 
-----V +- -- 

b2 b2 31 b6 +5! b'0 71 b4? 

S2 54 S8 S12 
and cos - - zb b 6! b + 

the co-ordinates x and y of the curve sought can be conveniently 
expressed by infinite series; for 

S3 S7 Sll S15 

3 b2 3l 7 b6 5! II bG 7! I 5 b14 

S5 S9 S13 
and y - s -.. + + 

21!5bM 4!9 bs 6! I3 b12 

from which rapidly converging series, unless the arc s be assumed 
to be very great, the approximate values of the co-ordinates x 
and y can be determined sufficiently closely. But what values x 
and y acquire if the arc s be taken as infinitely great, can in no 
way be determined from these series. 

54. Therefore, since putting s =- oo makes a very great 
difficulty, aid can be brought to the inconvenience by the following 

S2 bdv 
method. Let v, then s - b V/ v, and ds whence 

b rdv b rdv 
x = Icd--sin v, and -- cos v. And now I declare 

2J vV 2, vV 

that the values for x and y when s = oo will be discovered by 
the following integral formulas: 

b C I_ _ 

X r dv ( == --- + - 
2 e \V is "V 2 il+ v 

I 
+ . .. sin v, 

V3 7 + v 

and y dv - + 
2z t} +V v V 27T+V 

I_! 
- +____)+ Cos V 22) 

f 3 fr + v i 

if after integration v be taken as equal to ir, where ir denotes an 
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LEONHARD EULER S ELASTIC CURVES 115 

angle equal to two right angles. In this wvay, therefore, the 
placing of s oo is indeed avoided; but on the other hand, 
the infinite series 

I I I I 
- + 

%V A/ VrT+ V A/2'nr?- v V3 T+v 
is introduced into the calculation, and since the sum of this series 
is as yet unknown, the resolution of the knot is still subject to 
a great difficulty. 

THE CURVATURE OF AN ELASTIC RIBBON AT INDIVIDUAL 

POINTS UNDER THE ACTION OF ANY FORCES WHATSOEVER 

55. It will be convenient also to study the curvature produced 
in an elastic ribbon by several forces, or indeed by an infinite 
number of forces, by the same method already given for studying 
the curvature of any elastic ribbon whatsoever if it be acted 
upon by a single force at a given point. But since it is not yet 
established just what expression in these cases is going to be 
either a maximum or a minimum, I shall use merely the direct 
method, in order that from the solution itself it may perchance 
be possible to discover that property which is either a maximum 
or a minimum. Therefore let the elastic ribbon that is straight 
in its natural state be brought into the position AmM (FIG. i8), 
first by the finite forces P and Q acting in the directions CE 
and CF normal to each other, and then by the infinitely small 
forces applied to the single elements m,u of the ribbon, and 
acting in the directions mp and mq parallel to CE and CF; all 
this being stipulated, the character of the curve produced in 
the ribbon AmM is required. 

56. Let the straight line FCA produced be taken as an axis, 
and let AC = c, the abscissa AP x x, the ordinate PM y, 
the arc of the curve AM --= s, and the radius of curvature at M 
be R; let the absolute constant of the elasticity of the ribbon 
be Ek2; and the sum of the moments arising from all the acting 

moments with respect to the point M must be equal to R . 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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Now in the first place, from the finite force P acting in the 
direction CE there arises the moment P(c + x), acting in that 
direction in which the elastic forces are equilibrated. The moment 
Qy, arising from the other force Q, tends in the opposite direction, 
from which, due to the finite forces P and Q taken together, 
there arises the moment P(c + x) - Qy. Now let there be 
considered any intermediate element mp, and let its corresponding 
abscissa Ap -, and the ordinate pm =- ; let the force acting 
upon the element m,u in the direction mp be dp, and the force 
acting in the direction mq be dq; then the moment of these 
forces about M will be (x - C) dp - (y - -i) dq. 

57. Therefore to find the sum of all the moments, the point M, 
and consequently x and y, must be, for the time being, considered 
as constants, while only the co-ordinates g and X with the 
forces dp and dq are regarded as variable. Therefore the sum 
of the moments arising from the forces acting upon the arc Am 
will equal 

xp -f dp - yp + f -qdq, 
where p expresses the sum of all the forces acting upon the 
arc AM applied in the direction parallel to pm, and q expresses 
the sum of all the forces acting upon the arc AM applied in the 
direction parallel to Ap. But f Cdp = Cp - f pd~, 
and f'Jdq= --- q-f qd&q, 
whence the sum of the moments arising from the forces applied 
to the arc AM will be (x - Q)p + f pdg - (y-- -9)q fqd'r. 
Now let the point m move to M; then g = x, -q y, dg = dx, 
and dij = dy; whence the sum of all the moments taken throughout 
the whole length of the arc AM will equal J pdx - J qdy. 
Wherefore, for the curve sought, the following equation will 
be obtained: 

k _ p (c ? x) - Qy +f pdx J qdy. 

Here p expresses the sum of all the vertical forces, or those 
acting in the direction of the ordinates MP, and q expresses 
the sum of all the horizontal forces, or those acting in the 
direction of MQ parallel to AP, throughout the whole arc AM. 
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LEONHARD EULER S ELASTIC CURVES II7 

58. If the expressions fpdx and fqdy cannot be integrated, 

the equations found by differentiation will have to be freed from 
these integral expressions, whence the following equation will 
be had: 

-Ek2dR 
-'--R2 -=Pdx -Qdy + pdx -qdy. 

But if neither p nor q can be expressed in a finite number of 
terms, inasmuch as they already express the sums of an infinite 
number of forces infinitely small, then by a further differentiation, 
the finite values p and q will have to be eliminated, so that there 
remain only dp and dq, with the differentials of the second order 
d2p and d2q. 

Now there will arise, after the first differentiation, 
dR dy __dy Ek2d -d dp- (Q + q) d - dq. 

Let Y co, and, when the equation has been differentiated 
dx 

again, we get 
dR 

d dq 
~Ek2d ---R2dX =dL-d w -~~~ Ekd a d dp - dq - co d dq 

do do do 
This equation contains differentials of the fourth order. 

59. In place of the vertical and horizontal forces p and q, 
let two forces be applied to the ribbon-the one normal, MN = dv, 
and the other tangential, MT = dt [FIG. i8]. Hence 

dp = ddxdv + dy dt 
and dq = dx dt dydv 

ds ds ds 
and because dy wdx, and ds dx V I + w2, 

dv w dt dt Cl)dv 
then dp -v _ 

t 
- and dq 

d 

\I+ 2 A/ I + l2\ 2 AI+ ,2 VI+w2 VNI+w2' VI +c2 v+7 
When these values are substituted in the last equation of the 
preceding paragraph, the following equation will result: 

dR 
Ek2d R2dX -dt 2 Cl dv dv 

dv I + cW2 V I + /2 ddo 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ii8 W. A. OLDFATHER, C. A. ELLIS, AND D. M. BROWN 

This equation becomes integrable when multiplied by VI + c2. 

For the sake of brevity, let z dR 
R2dX s 

then 
dv- I + =-2) [d_ dZV + o2_ 

dco 
CoZ I- 

+ . 

V I + (,,2 2 R2_. 

=- Ek2 F1fd dR__ L do R2dX VI ? +wC,2 ?2R2] 

But'since R 
- + ) -dx, then dw = ( 

+ 2) -dx, and 
dw R 

by substituting the value of dw we shall have, because dx A/I + co2 
ds, 

Rdv R dRi 
A-t- ds = Ek2 [-"R' R d _dR ds L2R2 ds R2dSj 

Therefore by transposing, the following equation will arise 
Rdv I R d R 

t + A~ ---= Ek2 _.d. 

6o. Now in the first place, it is clear that if the elastic force 
Ek2 should vanish, the. ribbon would be transformed into a 
perfectly flexible filament; and hence all the curves which a 
perfectly flexible filament can form when acted upon by any 
forces whatsoever are included in these equations. Thus 
if a filament be merely drawn downwards by its own weight, 
then q = o, and p will express the weight of the string AM, 

and therefore, by the first equation of section 58, p d Q a 

constant, and P = o, which is the general equation for catenary 
curves of every kind. Now if a perfectly flexible filament be 
acted upon at various points by forces, the directions of which 
[FIG. I8] are normal to the curve itself, in such a way that, at 
the point M, the filament be drawn in the direction MN by a 

Rdv 
force dv, then, because t = o, it follows that = A, a constant. 

d,s 
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This is the general property of trough-shaped curves, and of 
all curves in which acting forces of this kind appear. 

ON THE CURVATURE PRODUCED IN AN ELASTIC RIBBON 

BY ITS OWN WEIGHT 

6i. I return now to elastic ribbons about which there is 
offered the following investigation, which is especially worthy of 
note, viz., the kind of a figure an elastic ribbon takes on when 
curved by its own weight. Let AmM [FIG. i8] be the curve 
which is sought, and because only vertical forces due to gravity 
are acting upon it, P = o, Q = o, q = o, and p will express 
the weight of the ribbon AM, wherefore, if F be the weight of 
a ribbon of length a, because the ribbon is assumed to be 

Fs 
uniform, p - ; whence the character of the curve will be 

a 
expressed by the following equation [from sec. 58] 

- Ek2dR Fs dx 

R2 a 
Cds ds 

Let the amplitude of the curve be u-R = u; then R = 
JR du' 

and dx = ds sin u; whence, assuming the element ds as a constant, 
the following equation will be found: 

Eak2 d2u 
s ds sinu- F o 

F ds 
which, as far as appears at first glance, cannot be reduced further. 

62. Now especially worthy of note is the curve which a fluid 
of considerable depth produces in an elastic ribbon (FIG. I9). 
Let AMB be the figure sought, and letting AP = x, PM- y 
and AM - s, the element Mm will be drawn in the normal 
direction MN by a force proportional to ds; whence dv = nds, 
and dt = o. Hence the vertical force dp = ndx, and the horizontal 
force dq = - ndy; whence p = nx, and q - y; and therefore 
the equation [of section 57] becomes 
Ek2 

= P (c + x) - Qy + 'inx + nz2 
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The co-ordinates x and y can be increased or diminished by 
constant quantities in such a way that the equation for the curve 
takes on the following form: 

x2 + y2 = A +B 
R 

Now if this equation be multiplied by xdx + ydy, and if we 
put dy = cdx, it becomes integrable, for 
fxdx + ydy J x? + y y - Cox ydx - xdy 

J R e} (I + C0)2), A 2VI+ ds 

Because of this, by changing the constant after integration, we 
shall have 

(X2 + y2)2 = A (x2 + y2) + B (ydx - xdy) + C 

Let V X2 + y2 
= 

z, and y 
= 

uz; whence x 
= 

z V i - u2; 
z2dU / Z2dU2 

therefore ydx - xdy =- , and ds = dz2 + 

Therefore by placing 
du Bz2dr 

__ dr, then z4_ AZ2 C = - _ 

v I _U2 VdZ2 + Z2 dr2 

and hence 
du dz (z4- Az2 -C) 

dr = V 
I 1 U 2 Z A/ B2 Z2- (z4 - AZ2 -C)2 

Therefore this curve, if A - o and C = o, will be algebraic, 
for we shall have the following equation 

du z2 dz 3Z2 dz 

VI -u2 VB2 - Z6 3Va6 z6 

which, being integrated, gives 
I . Z3 

arc sin u - arc sin -, 
3 a3 

or - 3U- 4U -3 - 
a8 ~~z ZS 

whence Z6 3a3 yz2 - 4a3 y3. 

Or, since z2 x2 + y2, (X2 + y2)3 - 3a3x2y a-y3, or 
X6 + 3X4y2 + 3X2y4 + y6 = 3a3x2y - a3y3. 
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ON THE OSCILLATING MOTIONS OF ELASTIC RIBBONS 

63. Now from all this the oscillating motion of elastic curves 
brought into motion in any manner whatsoever can be determined. 
The illustrious DANIEL BERNOULLI first began to investigate this 
assuredly most important topic, and some years ago sent me the 
problem of determining the oscillations of an elastic ribbon 
fastened at one end in a solid wall, the solution of which I have 
published in " Commentarii Petropolitani " Vol. VII, (I740). 
Since that time, not only has it been my good fortune to treat 
the problem in a more convenient fashion, but also, through 
consultation with the celebrated BERNOULLI, a number of other 
questions and considerations have been added, the elucidation 
of which, because of the relation of the subject matter, I shall 
here add. Now when the vibratory motion is sufficiently rapid, 
a musical tone is given by the vibrating ribbon, the pitch of 
which, and its relation to other tones, will be determined by 
these principles, with the aid of the theory of tones. And since 
the character of tones is very readily subject to experiment, by 
that fact the agreement of calculation with truth can be investigated, 
and the theory can be confirmed. In this fashion our knowledge 
of the nature of elastic bodies will be enlarged in no small 
measure. 

64. Now it must first be noted that here our study is directed 
only to very small oscillations; and the interval through which 
the ribbon passes in oscillating is, as it were, infinitely small. 
But the utility and the application is not at all diminished by this 
limitation; for not only would oscillations be deprived of isochro- 
nism if they should take place through large spaces, but more than 
that, the formation of distinct tones, and that is what we are 
here primarily considering, requires very small oscillations. 
I therefore consider here, in the first place, a uniform elastic 
ribbon, naturally straight, one end of which is firmly fixed at B 
(FIG. 20) in an immovable pavement, in such a way that the 
ribbon, when left to itself, has the upright position BA. Let 
the length of this ribbon be AB = a, and its absolute elasticity 
at each point be Ek2; its true weight we either neglect, or else 
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we cause it to be fixed in such a fashion that its position cannot 
be disturbed by gravity. 

ON THE OSCILLATIONS OF AN ELASTIC RIBBON FIXED 

AT ONE END IN A WALL 

65. Now this ribbon, acted on by any force whatsoever, 
performs very short vibrations passing through very small intervals 
Aa on either side of its natural position BA. Let BMa be any 
position, whatsoever which the ribbon occupies while oscillating. 
Since this is only an infinitely short distance from its natural 
position BPA, the straight lines MP and Aa will at the same 
time represent the paths which the points M and a traverse, 
or rather these straight lines, when compared to the true paths, 
will differ from them by an infinitely small amount. Now to 
determine the oscillatory motion, it is absolutely necessary to 
know the character of the curve BMa which the ribbon takes 
on during oscillation. Therefore let AP X x, PM = y, the 
arc aM = s, the radius of curvature at M be R, and the very 
small interval Aa -= b; also, from the conditions mentioned, 
the arc s will be approximately equal to the abscissa x, and 
accordingly dx can be taken for ds; for in comparison with dx, 
dy will be on the point of vanishing. And since, by assuming 
dx as constant, the general expression for the radius of curvature 

dss is, in the present case R =d2 for the curve BMa turns 
dxdyfothcuvBM tun 
its convex side to the axis BA; and because the ribbon has been 
firmly fixed in a wall at B, the straight line AM will be tangent 
to the curve at B. 

66. All this being stipulated, in order to determine not only 
the character of the curve BMa, but also its oscillatory motion, 
let f be the length of a simple isochronous pendulum; for not 
only the nature of the case, but also the calculations to be 
instituted will show that the very small oscillations are isochronous. 
The acceleration by which the point M of the ribbon is drawn 

toward P will be PM . Wherefore, if the mass of the whole 
f f 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LEONHARD EULER S ELASTIC CURVES 123 

ribbon be taken as M, which is expressed by the weight, the 

mass of the element Mm = ds - dx is Mdx 
.--; whence the moving 

a 

force drawing the element Mm in the direction MP is Mydx 
af 

and thus the forces by which the individual particles are actually 
brought into motion will be known, not only from the curve BMa, 
but also from the length f of the simple isochronous pendulum. 
But, since the ribbon is, as a matter of fact, incited to motion 
by the elastic force, when this is known, and the nature of the 
curve is known, the length of the simple isochronous pendulum 
will also be determined by them. 

67. Therefore, since the ribbon is moved exactly as if there 
had been applied to each element Mm of it, in the direction MP, 

forces equaling Myd, it follows that, if to the single elements Mm 
af 

of the ribbon, equal forces Mydx should be applied in the opposite 
af 

direction Mir, the ribbon in the position BMa would be in a 
state of equilibrium. Hence the ribbon while oscillating will 
undergo the same curvature which it would take on when at 
rest, if at the individual points M it should be acted upon by 

the forces Mydx in the direction Mr. 
af 

Therefore by the rule discovered above in section 56 [and 57]', 
let all these forces applied throughout the arc aM be collected, and 

there will appear the sum M ydx, which must be substituted 

in the place of p. Wherefore, since the remaining forces P, Q, 
and q which appeared there [sec. 56] are on the point of vanishing, 
the character of the curve will be expressed by the equation 

EEk2 M 
whence we shall secure - =- dx f ydx. 

R af ydx. 
dx2 Ek2_d2y _M r But since R =-, then = -- dx fyvdx. 
d2y dx2 a 
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Ek2_d-3y M 
Differentiating,- = - dx f ydx, 

dx2 af 

and by differentiating again, the following differential equation 

of the fourth order wIll appear: Ek2 d4y My wi d4y - 
~~af 

68. By this equation, therefore, the character of the curves 
BMa is expressed, and from that, if it be adapted to the case 
presented, the length f will be determined. That being known, 
the oscillatory motion itself will become known. But first the 
equation must be integrated, and since it belongs to the class of 
differential equations of the higher orders, the general integration 
of which I have shown in Vol. VII of the " Miscell. Berol.," 
the following integral equation will be found by substituting, 

Ek2af for the sake of brevity, c4 for 

x-X x x 
y = Aec + Be c + Csin .- + Dcos c, where e denotes a 

C C 

number the hyperbolic logarithm of which is i, and sin -, and 
C 

x x 
cos - are assumed to denote the sine and cosine of the arc -X in 

C c 

a circle, the radius of which is i. But then A, B, C and D are 
four arbitrary constants introduced by four integrations, which 
must be determined by adapting the calculus to the present case. 

69. Now the determination of the constants will be insitituted 
in the following fashion. First, when x - o, y -= b; hence the 
following equation will arise: b - A + B + D. Secondly, 

since c4d2y dx fydx, and f pdx = o for x - o, hence 

whnx ==o Q =-o u d2y 

dwt2 

d2y Ax. B -- C x D X 
- Cc + --C srn - - ----CO cos 

dx2 - C2 c2 e C2 C C2 c 

whence the second equation appears, namely A + B - D o. 
c4d3y r disappears, Thirdly, s'ince --=Iydx, then when x = o, - iapas 

dxA .1 dx3 
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c3d3y X x x 
and AeF - Be7- Ccos - + Dsin -, whence the third 

dxc3 c c 
equation A - B - C = o appears. Fourthly, if x = a, y - o, 

a a and Aec + Be-T+ Csin --+ Dcos- o 0. Fifthly, because AB 
c c 

is tangent to the curve at the point B, when x = a, dY_ o- 
dx 

4a 

whence the fifth equation Aec-_ Be J + Ccos - - Dsin a = O 
c c 

appears. From these five equations the four constants A, B, C, 
and D will be determined; and that on which the hinge of the 

matter turns, the value of c = ./EM2f will be found, from which 
M 

the length of the simple isochronous pendulum will be secured, 
whereby the durations of the oscillations will become known. 

70. From the second and third equation, the constants C and D 
will be expressed in terms of A and B thusly: C = A-B, 
and D = A + B. These values, substituted in the fourth and 
fifth equations, will give 

Aec + Be--cs + (A-B) sin + (A + B) cos-= o, and 
C C 

4 ~~~a 
Aec -Bei- + (A-B) cos--(A + B) sina 0, from 

C C 
which we secure 

a . 
a a aa -e7- + sin -cos e c + cos 7-+ sin - 

A c c c c 

B a a a a ec + sin + cos --- ec + cos -- sin - 
c c c c 

whence the following equation will be obtained: 
(e ~ = o,Corea a a 

+ ea e/ cos a cos -+ ze c + cos - =0. 
c c c 

-a 

I sn a 
a 

C 
nis gives e c = a 

Los _ 
c 
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a ~~~~~~a 
However, since ec is a positive quantity, then cos- will be nega- 

C 

a 
tive, and the angle - will be greater than a right angle. 

71. From the last equation it is seen that an infinite number 
a 

of angles - will satisfy it, due to which angles an infinite number 
C 

of diverse modes of oscillations of the same ribbon arise. For 
the curve can cut the axis AB at one or more points before it 
touches the axis at B; from this fact there is an infinite number 
of modes of oscillations equally possible. Since we are here 
primarily considering the case in which B is the first point when 
the ribbon crosses the axis AB, this case will be satisfied by a very 

a 
small angle 

a 
satisfying the discovered equation. Since this 

C~~~~~~ 
angle is greater than a right angle, let = 2 + 0, in which + 

C 2 

a 
is less than a right angle. Hence, because sin -= cos i, and 

a a 
cos - = - sin i, we shall obtain the double equation e c 

i Cos 
sin 0 

a a 

which gives either e c tan i i, or e = cot 
The second equation will give the smaller value for the angle i, 
and will be adapted to the case proposed. 

72. The following possible modes of oscillation will be found 

if the angle a is greater than two right angles and less than 
C 

three right angles. Let a 3 - 
I 

. Then sin a 
C 2 C 

a _ 

cos 0, and cos sin q, whence 
c 

I-* ? Cosb a -a 
eC- c - COS + or e -- tan -f or e c w coti#. 

sin 0 
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In a similar way, other modes of oscillation will be found by 
a 5rV a 7 17r 

letting - = - + I; - - - ; etc. 
c 2 c 2 

From all these, if the hyperbolic logarithms be taken, there 
will arise the following equations: 

I. --- + _ log cot i II. + + log tan iq 
2 2 

III. 3 -qb log cot IV. 3- - log tani 
2 2 

V. 5-+ + log cot VI.I5 + =logtani 
2 2 

2 2 

etc. 
Now the third of these equations agrees with the second, for 

let i = - j, then cot i = tan i 0, whence the third 

equation passes over into- = 0 =log tan i 0, which is the 
2 

second equation. In the same way the fourth equation agrees 
with the first; the fifth and the eighth agree; likewise the sixth 
agrees with the seventh, etc. WVherefore only the following 
different equations will appear: 

I. - + =logcotj0 II. - + = log tan Io 
2 2 

III. 5-+ - = log cot j 0 IV. 5-- + =log tan j 0 
2 2 

V.9-+ + = log cot I VI.9~-+ 0 = log tan I 

etc. 

73. Now the hyperbolic logarithm of any tangent or cotangent 
of an angle is found by taking the tabular [common] logarithm 
and subtracting ten from it 23), and multiplying the remainder 
by 2.302585092994. In order to shorten the labor, it will be 
convenient to use logarithms again. Let u be the hyperbolic 
logarithm of the tangent or cotangent of the angle i b which is 
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sought. From the tables let the [common] logarithm of the same 
tangent or cotangent be taken, and let this value, diminished by 
ten 23), be v. Therefore, since u=2.302585092994 v, we shall get, 
by taking common logarithms, log u log v + 0.3622156886. 

This logarithm being found, since u = + i, we have log 
2 

u = log (_ + O). To evaluate this, the angle k must be expressed 
2 

in radians, just as ir is expressed in the same fashion, where 

X= 3.1415926535, and hence - = 1.57079632679. Now the 
2 

angle b will be expressed in the same way if it be changed to 
seconds, and if from the logarithm of this number there be 
subtracted constantly 5.3144251332 24); for thus the logarithm 
of k will appear, from which, by going back to numbers, the 

a. 
value of b is secured. Now for every kind of oscillation, - will 

C 

constantly equal u --- + . 
2 

74. This advice having been given for instituting the calcula- 
tions by approximations, the value of the angle f will be secured 
without difficulty for any kind of oscillation. For by assigning 
any values you please to b and determining by calculation 

n + b, and log tan i or log cot i i, soon the approximate 
2 

value of b will be known. 
If now the limits of the angle k be removed as far as you 

please, then closer limits will be found immediately, and from 
these the true value of b. Thus for the first equation 
a = + 

= log cot i 
b, I have secured the following limits 

C 2 

for the angle b: 170 -26' and 170 -27'. From these, by the 
following calculation, the true value of b itself will be obtained. 

0 + 170 -26' -0" 170 -27' -0" 

in sec. - 62760" 62820" 

log = 4.7976829349 4.7980979321 

subtract - 5.3144251332 5.3I44251332 
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log = 9.48325780o7 - 10 9.4836727989 - I0 

= 0.3042690662 0.3045599545 

iT = 1.5707963268 15707963268 

irX + + | 1.8750653930 I.8753562813 

i = - 80 -43' -0" 80 -43' -30" 
v = log cot +- o0.8I44034109 o.81398I9342 
log v - 9.9I08395839 - 10 9.9I06147660 -I 

add 0.3622I56886 0.3622I56886 

log u 0.2730552725 0.2728304546 
a 

U = - i.875233I540 I.8742626675 
C 

difference + I6776I0 -10936138 
From these errors of the two limits is is concluded that 

= I70 -26' -7.98", and I ir + - = 1070 -26' -7.98". 
C 

But since 
0 ~ = 62767.98" 

log = 4.7977381I525 

subtract 5-33144251332 

log = 9.4833130193 - o 
therefore b - 0.3043077545 

add- =.5707963268 
2 

+ a # + -X a~ _ i.8751040813 
2 C 

This being found, then 
A 

= tan 1 = 0.1533390624 25). 
B2 

Therefore the ratio of the constants A and B is found. From 
which also the ratio of the remaining constants will be known 
in relation to them. 

75. There still remains the first equation b A + B + D. 
This equation, since D = A + B, becomes b = 2A + 2B, and 
therefore A + B = i b. 

A 
Since therefore = tan q, B (i + tan c)= b, and 
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B b b 
2 + 2 tani 2 (I+ tan i ) 

Whence from tan j i = 0.1533390624 the several constants of 
the equation will be determined in the following fashion: 

A tan 0j? 0.1533390624 

b 2 (I + tan i 0 2.3066781248 

B I I.0000000000 Bf = . 
.ooooo 

b 2 (I + tan i 2.3066781248 
C - i + tan i b --o.8466609376 
b 2 (I + taniq0 2.3066781248 
D I +tani _ 1.1533390624 

b 2 (I + tan j 0 2.3066781248 

These being found, the character of the curve aMB which 
the ribbon takes during oscillation will be expressed by the 
following equation: 

y A x B - C x D x - e c + e c + bsin - + - cos -- . 
b b b b C b C 

76. As to the velocity of the oscillations, it will become 
a 

known from the equation a 1.87510408l3. For the sake of 
C 

brevity, put n = I.87510408l3, SO that a = nc; and since 

M where -- expresses the specific gravity of the ribbon 

and Ek2 the absolute elasticity, by the method which I have 

used hitherto, a" = n4 Ek2 af and on that account f = 4 i M 
M ~~~~~n,' Ek2 a 

from which the length of a simple isochronous pendulum will 
vary directly as the fourth power of the length of the ribbon, 
directly as the specific gravity, and inversely as the absolute 
elasticity. Let g be the length of a simple pendulum oscillating 
in a single second in such a way that g = 3.16625 Rhenish feet. 
Since the durations of the oscillations *of the pendulums are 
proportional to the square roots of the lengths of the pendulums, 
the time of one oscillation made by our elastic ribbon will be 

-f seconds = gEk . - . Whence the number of oscilla- 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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tions produced in one second will be 
n2 / a a 

a2J Ek2M 

This number expresses the pitch of the tone which the ribbon 
produces. Therefore the sound produced by different elastic 
ribbons fastened at one end in a wall, will be proportional to 
the square root of the absolute elasticity, inversely proportional 
to the square root of the specific gravity, and inversely proportional 
to the square of the length. Wherefore if two elastic ribbons 
differ only in length, their tones are inversely proportional to 
the square of the lengths; in other words, a ribbon twice as long 
will give forth a tone two octaves lower. Now a tense chord 
twice as long gives forth a tone only one octave lower, if the 
tension remains the same. From this it is clear that the tones 
of elastic ribbons follow a very different ratio from that of the 
tones in tense chords 26). 

77. As to the character of the curve aMB continued beyond 
the ends a and B, it is clear, in the first place, that the curve 
beyond a advances in such a way that it is continually diverging 
from the axis BA. For taking x as a negative quantity, 

y Bec + Ae- Csin --- + Dcos--. 
c c 

Now here, all the limits are positive, because only the coefficient 
C previously had a negative value [sec. 75]; whence while x 
increases, y must also increase, because the number B is greater 

x x 
than A, and so the term Bec prevails. Now as soon as - has 

x 
reached even a moderate value, then the term Be increases in 
such a degree that the remaining terms, in comparison with it, 
disappear, as it were. For this reason, because the radius of 
curvature of the curve at B does not equal infinity, for 
E k2 M C 

-R = --f-f dx f y dx and hence the curve at B will not have 

a point of contraflexure, and will advance further on the same 
side of the axis AB, and by increasing the abscissa x beyond 

BA = a, the first term Ae c soon becomes so great that the 
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remaining terms can be regarded as zero in comparison with it. 

78. Therefore this is the first mode of oscillation among those 
innumerable ones to which the same ribbon may adapt itself. 
The second mode, represented in FIG. 2I, whereby the ribbon 
fixed at B crosses the axis AB at one point 0, will be deduced 

a 1 3 7T 
from the equation- ==- += log tan ior --3 -= 

C 2 2 

log cot 1 +. Here, by means of certain experiments, I have disco- 
vered that the angle is contained between the following limits: 
10 -2' -40" and 10 -3' -0". From this as above the true value 
of k itself will be secured. 
0 I?10-2 1-40 ft?0-3 1-0/ 
in sec. 3760" 3780" 
log 3.575I878450 3.5774917998 
subtract 5.3144251332 5.3144251332 
log k 8.26076271I8 - io 8.2630666666 -I 

= 0.018228994 0.0oI83259571 

3T 
32f 4.7123889804 4.7123889804 
2 

37T a 
- - 4.6941599860 4.6940630233 

2 C 

i = 31 -20f 3I -30"1 
log cot i = 2.0402552577 2.0379511745 

log v = .3096845055 0.3091937748 
add 0.3622156886 0.3622156886 
log u 0.671900I941 0.6714094634 
U = 4.6978613391 4.6925559924 

a 4A694I159986o 4.6940630233 
C 

error + 37013531 - 15070309 
From these errors the true value of the angle k is found to be 

10 -2' -54.213 ", and a 2680 -57' -5.787"". Since therefore 
C 

ek = 3774.213 
log 3.576826406i 
subtract 5.3144251332 
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log = 8.2624012729 10 

0 o 0.OI82979009 

IT 289o 3-.- - 4.7123889804 
2 

-s -- 4.6940910795 
2 C 

Therefore the tone of a ribbon oscillating in the first case will 
be to the tone of the same ribbon vibrating in this case as the 
square of I.8751040813 is to the square of 4.6940910795, or as 

i to 6.26689I, or, in least integers, as 4 iS to 25, or as I is to 6 _4. 
'5 

Whence the latter tone will be just about 2 octaves plus a fifth 
plus a half tone higher than the former 27). 

79. For the following cases of oscillations of the same ribbon, 
in which the ribbon cuts the axis AB at two or more points while 
oscillating, the angle k becomes much smaller; thus for the third 
case the following equation is secured 

57? + = log cot i _ a 
2 C 

? + 0t 
Therefore, since e = cot i i, because k is an extermely 
small angle, 

e2 e 2 (I + e + 2 +-6-+ 
z 62 

I - 2 2 k 
and cot i = # - 

Hence approximately, 

e2 _ ,or -=e 2X 

or more closely 

0 __ o5 28), whence a=5+ 5lT 
I + a e2 |C 2 2 + eZ2 

The latter term is extremely small. In a similar manner for the 
fourth case of oscillations, approximately 

- 77 
C 2 7 2-- 

c 2 
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Since these second terms are on the point of vanishing, the values 

of will be I, -, etc., which will differ less from the true 
C 2 2 

values the farther they proceed. 

CONCERNING THE OSCILLATIONS OF A FREE ELASTIC RIBBON 

8o. Let us now consider an elastic ribbon fixed at no point, 
but free or lying upon an extremely smooth plane or, neglecting 
gravity, existing in a vacant space. Now it is readily apparent 
that a ribbon of this kind can receive an oscillatory motion, while 
the ribbon acb (FIG. 22), curving itself, passes alternately on 
one side and the other side of the position of rest AB. Therefore 
the oscillatory motion may be defined in the same way in which 
it was defined in the preceding case, provided only that the 
calculations be adapted to this case in the necessary manner. 
Therefore let acb be the curved shape of the ribbon which it 
assumes while oscillating, and ACB the shape of the same ribbon 
in the state of equilibrium through which it passes in each 
oscillation. As before, let the length of the ribbon AB = a, 
the absolute elasticity be Ek2, and the weight or mass equal to M. 
Then let the abscissa AP = x, the ordinate PM = y, the arc 
aM = s, which will correspond with the abscissa x in such a way 
that ds = dx; from this the radius of curvature at M will be 

R 
d 

-. Further, let the first ordinate Aa = b. All this 
dy 

being stipulated, by instituting the same process of reasoning as 
before [sec. 66 and 67], we shall arrive at the same equation 

E k2 M Ek2d2y 
R=-yj cdx ydfxy dx2 

R af B k_af 

8i. Therefore, if we take 
E 

-k - = c4, where f, as before, 

expresses the length of a simple isochronous pendulum, we shall 
have, by integrating, the following equation for the curve: 

x wx x 
y Ae c + Be c + Csin-+ Dcos-. 

C c 

This will be adapted to the present case as follows 
First, when x = o, y = b, and hence b = A + B + D. Second. 
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c4d2 y ('d2y 
since - dx f ydx, then = O when x = o, whence 

arises A + B - D = o. Thirdly, since dY- f ydx, 

then d?2i=o when x = o, whence A - B- C o. 
dx3 

d3 y 
Fourthly, if x = a, f ydx, or df must vanish, because f ydx 

dxv3 
expresses the sum of all the forces drawing the ribbon in a 
direction normal to the axis AB, and if this sum were not equal 
to zero, the ribbon itself would undergo a local motion contrary 
to the conditions instituted; for this reason, therefore, 

-. -a a a 
Aec - Bec - Ccos - + Dsin O. 

C C 

Fifth, since the ribbon is free at the end B, it cannot have any 

curvature there, and therefore dY = o when x = a, whence 
dX2 

a -aaa 
Aec + Bec -- Csin --Dcos - = o. 

c c 

By taking these five conditions into the computations, not only 
will the four constants A, B, C, and D be determined, but also 

the value of the fraction a will be found; from which the length 
C 

of the simple isochronous pendulum f will become known. 

82. From the second and third of these equations, 
D = A + B, and C = A - B, and these values, substituted 
in the equations above, will give the following: 

a -aaa 
Aec - Bec- (A-B) cos - + (A+B) sin = 0, and 

C C 

Aec + Beic (A-B) sin - (A+B) cos -o. 
C C 

From these it is found that 
-a a a -a a a 

ec-cos-sin--- -e c -sln --+ Cos-, A c c c c 
B aa . a .a a a 

ec _ Cos + sln e - sn- cos-. 
C C C C 
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from which the following equation is secured: 
a1- a -- a a Iisin - 

2- e c Cos e Cos -- o, or e 
C C COS 

Whence the following equations will be found: 
a 7T 

I.~~ -- __ X 0 -log tan 
C 2 
a 

which gieves - = o for the natural position of the ribbon 29), 
C 

a _l 
c 2 

I- - = = log cot i 
C 2 IV. ~a 57 + = log cot iq 

C 2 
IV. a=7+ =log coti 

VI. - 9 k = log cot 

C 2 

etc. 

83. These equations again indicate innumerable modes of 
oscillations. In the second of these the ribbon will cut the 
axis AB only once; in the third, twice; in the fourth, three times, 
in the fifth, four times, and so on. From this it is understood 
that the second, fourth, sixth, etc. modes are not adaptable to the 
present case. For since in these the number of intersections 
is uneven, the position of the ribbon, while oscillating in the second 
mode, would be such as FIG. 23 represents, in which mode, 
however small the sum of the forces acting throughout the whole 
ribbon tends to become, nevertheless the ribbon would acquire 
from them a rotary motion around the center point C, because 
the forces applied to each half aC and bC would combine to 
produce the same rotary motion in the ribbon. For this reason, 
since the rotary motion must be absolutely excluded, the shape 
of the ribbon which is taken on during oscillation ought to be 
of such a character that not only the sum of the acting forces 
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applied to the whole ribbon equals zero, but also that the sum 
or their moments tends to vanish; and this is obtained if the 
curve at the center point c (FIG. 22) be given a diameter cC. 
This takes place if the curve cuts the axis AB in two, in four, 
or in general, an even number of points; from which the 3rd, 
5th, 7th, etc., equations only, will give us satisfactory solutions 3c). 

84. This limitation will be found to be contained in the very 
statement of the problem if we admit only curves of the kind 
that have the straight line Cc as a diameter, that is, in which 
the value of y would be the same if (a - x) should be written 
in place of x. Therefore let us substitue (a - x) in place of x 
in the general equation, whence 

a -x a x a x a x 
y =Ae c e c + Be c e c + Csin--cos----Ccos--sin- 

a x a x 
+ Dcos cos + Dsin-- sin 

c c c c 

Since this equation must agree with the equation 
x -x x 

y =Ae c + Be C + Csin-- + Dcos---, 
c c 

therefore 
a& a a a 

Ae c=B, C (I + cos =-) Dsin -, and C sin --- D (i - 

a 
Cos-). 

A - 
The last two equations are identical. Since therefore = e c 

when this value is compared with the expression in section 82, 
there will appear 

-a a a a a a a 
e cCoS---- Sin I - e c cos --- + e c sin --, or 

c c c c 

a a a a 
a I + Cos---- + sin i + sin--- cos--- -a 

c c c c 

a a a a 
i + cos -- -sin cos--- I sin- --- 

c c c c 
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a I -snsin 
85. Therefore ec = c 

Cos- 
C 

All this is contained in the equation previously found [sec. 82]. 
I + Si f- 

a c 

e = Cosa4 
C 

Merely one half of the cases shown above [end of sec. 82], in 
other words those which have uneven numbers, will state the 
present problem. Wherefore, since the first equation comprises 
the natural state of the ribbon, all the modes of oscillations will 
be comprised in the following equations: 

a _31T a w+ qy_log coti 
c X 

II. ~a 7,f+ 
f 

log coti 
C 2 

aII. 
+r+ - log cot 

C 2 

etc. 
Therefore the first of these equations will give us the first and 
principal mode of oscillation, for which the value of the angle 
will be found by approximation, in a way similar to that used 
before. Now the limits of the angle 9 are soon found to be 
IO _O' -40" and 10 -i' -o", from which, by the following calculation, 
the true value of # is secured. 

0 - I -o -40I IO-0ItO 
in sec. 3640"t 366o" 

log = 3.56IIOI3836 3.56348I0854 
subtract = 5-34425I332 5-3I4425I332 

log ck = 8.2466762504- IO 8.2490559522 10 
= O.OI76472I80 O.OI7744I807 

32 4.7I 23889804 47I23889804 
2 

iT a 
3 - + = 4.730036I984 4.730I33I6II 

2 C 

= 30 -20" 30'-30" 

V 2.0543424742 2.05I9626482 

This content downloaded from 140.180.249.190 on Fri, 26 Jun 2015 15:02:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LEONHARD EULER'S ELASTIC CURVES I39 

log = 0 .3I26728453 O.3I2I6945IO 
add = 0.3622I56886 0.3622I56886 
log u = o.6748885339 o.674385I396 

a 
U _ = 4.7302983543 4.7248i86037 

c 

error = + 63634I + 53145574 
63634I 

Difference 52509233 
From this it is seen that the true value of + is not contained 
between those limits, but is somewhat less than I -0'-40" 31). 

None the less, however, it will be found from these errors. 
For let Io -O' -40" -n"; then 

20"t :52509233 n": 63634I, whence 

2423 d 
10,000 

= o -0' -39.7576" 
or _ 3639.7576" 
log 3.56IO7246I5 

subtract 5.3I4425I332 

log = 8.2466473283 IO 

1 O .OI76460428 
7T 

3--= 4.7I23889804 
2 

3--- + + = = 4.7300350232 [correct value 4.7300408] 
2 

86. Let this number be equal to m, so that 
Ek2af 4 m4Ek2af a4 I M 

C4- M--- and so that a4 =-M andf - 4 2* 
MM fm4Ek2 a 

Hence in the same way the number of oscillations produced 
by this ribbon in a single second will be 

m2 a 
- Ek2- 

where g = 3.i6625 Rhenish feet. Now if the same ribbon be 
made to produce a tone when it is either free, or has one end B 
fixed in a wall, the tones will be in the ratio of n2: m2, or as the 
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square of the numbers i.875Io408I3 and 4.7300350232 [correct 
value 4.7300408], or as i is to 6.363236. The ratio of these 
tones will be approximately I I: 70. Therefore the interval 
between these tones will be two octaves plus a fifth plus a half tone. 
If the free ribbon be taken twice the length of the fixed ribbon, 
the interval between the tones will be about a minor sixth. 

L-= 7- instead of 7?] 
5 45 44 

87. The value for the fraction a_being found, the equation 
C 

for the curve which the ribbon forms during oscillations, hitherto 
indeterminate, may now be determined; for 

a I -sin-.. a I a 

e ' = a C ,and Ae c -B; hence B ' A, 
Cos C Cos C-- 

A (cos -c- + sin a -- 

Cos C~ 

A (cos - sin a+ I) 
D=A+B- C a 

C05< 

Now 
2A (cos sin a+ I) 

b = A + B + D 2D= C 
Cos -- COa 

whence 
A- b COS, ,a,_ b (+ i + sin Ca Cos - 

2 (Cos y sin-c +I) 4sina 

B - b (I sin a_~) _b (-I +sin - - + cosa 
a ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . a 

2(CO8TS1fl4 _4) 4OSn4 
b (coi + sin b I I sin 

C +cos-?-) _ b(I-cos-C-) 2 (cos c - sin cI) 2 sin -c 

b bsin-? 
2 a,sin- c 

These being substituted, the following equation will arise: 

Y e' cosn + Ie- I sinn ) 
b 2(In in_a +COS *,-)) 
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(I - c a 
\) sin c + sin a Ox 

2 sin ac 

88. Now because the straight line Cc is the diameter of the 
curve, let there be taken, from the central point C, the abscissa 
CP = z, then x - la - z, whence 

x a -z I- z a 
e C 2c c i-sinT ~ C ec Co e C -e 2 e c J Ising, and e - e c cs 

COS c I -Sin 
a 

whence 
x -x z -z z -z 

Ae c + Be C (eY + e7 V'COSa- (I-sin ac) e c>+ ec 

b 2 (i -sina+ COS -) a(e2c+e 

a x ~ a x x a-x 
Further (i - cos----) sin -- sin - cos-+ sin - + sin 

sin ( a - --) + sin( +-). 
2c C C 2C C 

a z 
2 sin Cos 

2ZC C 

These values being substituted, the following equation will arise 
z 

z Z cos 

2y e c +e ' c + . 
b .a -_ a 

e2c +e2C cos- 
zc 

which is the most simple form whereby the character of the 
curve aMcb can be expressed. Now it is manifest that whether z 
be taken as positive or negative, the same value for y will appear. 

a -a 2 COS a 32) 
It is also true that e c + e 2c _ _ 2c 

V/Cos ~ 

We have found that the angle --= 27IO -O' -39 3/4" [correct 
C 

value is 27IO -0' -40.94"]. 

89. Setting z = o, y will express the value of the ordinate Cc. 
This gives 

I0 
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2Cc 2V/Cos a I Cc I - V/COS I- 
- ' +Aor---C= oC 

b 2 COS c Cos Aa 2 COS 

a a a 
- sec-- - sec -_ cos _. 
2 2C 2 2C C 

But Cos - sin I? -O' -39 3/4" [correct value Io -o' -40.94"] 
C 

and cos- = -sin 450-30'-19 7/8" [correct value 450-30'-20.47"]. 
2c 

Hence it is found that = -0.6078I5 [correct value-o.607841]. 
Aa 

Then if y = o, the points E and F at which the curve intersects 
the axis will be found; therefore 

Cos - - C 2 COS- 
e + e *; c (e2G + e2c)- 

Cos V cos- 
C 

2c C 
from which, by approximation 
CE AE 

_= 0.5sI685, and -A o.4483I5. 

Therefore, while the ribbon is performing these oscillations, 
these points E and F will remain motionless. Therefore the 
oscillatory motion of this kind, which otherwise, it would seem, 
could scarcely be produced in reality, can be easily produced. 
For if the ribbon should be fixed at the points E and F defined 
in this fashion, it would oscillate exactly as if it were free. 

go. If the second of the equations found above, viz. 

- 77+ + log cot i qb be treated in this same fashion, in 
C 2 
which case q will be approximately zero, then the second mode 
by which a free ribbon can perform vibrations will appear, 
that is, by cutting the axis AB at four points. Then the ribbon 
will oscillate precisely as if it had been fixed at these four points. 
Conversely, therefore, if the ribbon be fixed at these four points, 
or merely at any two of them, it will oscillate just as if it were 
free, and it will produce a much higher tone, inasmuch as it will 
be in about the same ratio to the preceding tone as 72: 32; 

that is, the interval will be of two octaves plus a fourth plus 
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the half of a semitone. The third mode of oscillation, in which 
__ =II1T + + log cot i k, will have six intersections of the 
C 2 
curve acb with the axis AB. The tone produced will be higher 

121 2 
by one octave plus a minor third, [- = 2 ,approximately] 

49 5 
and the ribbon will produce this tone if it be fixed at two of the 
six points. Hence it is clear how different tones can be produced 
by the same ribbon, according to the different ways in which 
it is fixed at two points; and if the two points at which it is fixed 
coincide with its intersections in the first, second, or third, etc. 
modes, the oscillations adapt themselves to some one of the 
following modes down to an infinite value. In the latter 
case the tone will be so high that it cannot be heard at all, or 
what amounts to the same thing, the ribbon will be absolutely 
unable to take on an oscillatory motion; or at all events, as in 
the case of a vibrating chord under which a bridge is so placed 
that its parts have no rational ratio to one another, an indistinct 
tone will be produced. 

ON OSCILLATIONS OF AN ELASTIC RIBBON FIXED AT BOTH ENDS 

9I. Now let the elastic ribbon be fixed at both ends A and B 
(FIG. 24), but in such a way that the tangents of the curve at these 
points are not fixed. To produce this case in experiment, let 
extremely sharp points Aa, and B,B be fixed to the extremities 
of the ribbon; these sharp points, when fastened to a wall, will 
render the extremities A and B of the ribbon immovable. 
In order to investigate the oscillatory motion of this elastic ribbon, 
let us take, as above, the absolute elasticity of the ribbon to be 
equal to Ek2, its length AB = a, its weight equal to M, and the 
length of the simple isochronous pendulum equal to f. Let AMB 
be a curvilinear figure which the ribbon takes on while performing 
oscillations, and let the abscissa AP == AM = x, the ordinate 
PM = y, and the radius of curvature at M be equal to R. 
Furthermore, let P be the force which the sharp point Aa 
supports in the direction Aa. Because the force by which the 
element Mm must be acted upon in the direction M,u in order 
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that the ribbon be kept in this position, is equal to Mydx the 
af' 

following equation, by the rules described above [sec. 57, 66, 67], 
Ek2 M C 

will result: -=P Px M dx f ydx. 
R afi 

But R dx,because the curve is concave to the axis; hence 
d2y 

Ek2d2y MUdx f ydx - Px. 
dX2 afJ 

Therefore, when x o, the radius of curvature R at A will be 
infinite, that is, d2y o. 

92. If this equation be differentiated twice, the same equation 
which we have found in the preceding case will appear, namely 

Ek2d4y - ydx4 
af 

But if f be put equal to c4, the integral equation will be 
M 

A. x ~~~~~x 
y-M=Ae C + Be c + Csin - + Dcos---. 

C C 

To determine this, let x = o, and since y = o at the same 
time, then A + B + D - o. Second, let x -- a, and since y 
again must be zero, 

'-l- -a a a 
Ae c + Be c + Csin-+ Dcos - = o. 

C C 

Third, since _2 must vanish when x - o, and when x ---- a, 
dX2 

we have A + B - D = o, and 
a a 

Aec + Be C Csin --- Dcos C o. 

Now the equations A + B -D =o, and A + B + D =- o, 
give D = o, and B - A, which values, when substituted 
in the remaining two equations, give 

n -a a a _a 
A (e c -e C) + Csin -=o, and A (e c -e c) Csin.- o. 

C C 
These equations cannot be satisfied unless A = o, since it is not 
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q ~a- a 
possible fore c = e c, except in the case when --= o. Then 

a~~~~~~~~~~ 
indeed Csin - 

_ o, and here, since C cannot be put equal to zero> 
c 

a 
because there would be no oscillatory motion, sin --will be equal 

C 

a a 
to zero. Therefore c r, or c - 27T, etc., whence again there 

C C 

arises an infinite number of modes of oscillation, according as 
the curve AMB cuts the axis either nowhere except at the end 
points A and B, or at one point, or at two points, or at several 

x 
points. This is deduced from the equation y = Csin -; and 

however many points of intersection there are, they will be at 
equal intervals from one another. 

93. Since, therefore, for the first and principal mode of 
a af a4 I M 

oscillation - i-, a4 C4 4 :--= 74Ek2 Ms whencef 2 - 

Wherefore as far the length of the ribbon is concerned, 
the tones again will be inversely proportional to the square of 
the length [sec. 76]. Now the tones of this ribbon, produced 
in this fashion, will be to the tones of the same ribbon, if it be 
fastened at one end B in a wall, as IT2 iS to the square of the 
number I.875104o813, that is, as 2.807041 is to I, or, in least 
integers, as i6o is to 57, an interval which is about one octave 
plus the third half tone. If the oscillations are related according 

a 
to the second mode, in which - 

== 21T, the tone will be higher 

a 
by 2 octaves, but if ---- s3r, the tones will be higher by 3 octaves 

a 
and a whole tone than in the case where -- x ir, and so on 33). 

In order to adapt this more readily to experiment, it must be 
noted that here extremely small oscillations must be taken, so 
that there is no essential elongation of the ribbon. Wherefore, 
since the tenacity of the ribbon, by which it resists even a slight 
extension, without which oscillations of this kind cannot be 
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produced, introduces an alteration here, those points ought to 
be fixed in such a way that such a minute extension is not 
impeded. This results if they rest on a perfectly smooth plane. 
Thus the elastic ribbon AB, equipped at A and B with the 
cusps Aa and BPl, if these cusps be placed upon a mirror, will 
give a sound which conforms to the calculations. 

ON OSCILLATIONS OF AN ELASTIC RIBBON FASTENED 

AT BOTH ENDS IN A WALL 

94. The preceding case having been cleared up, let the 
discussion of elastic ribbons come to a close with the oscillatory 
motion of an elastic ribbon fastened in a wall at both ends A and B 
(FIG. 25), in such a way that during oscillations, not only do the 
points A and B remain motionless, but also the straight line AB 
is constantly tangent to the curve AMB at the points A and B. 

Here we must again be careful that the bolts fastening A and B 
are not absolutely firm, but allow as much extension as is required 
for curvature. Whatsoever be the forces requisite to hold the 
band fixed at the points A and B, therefore, we shall arrive at 
the following differential equation of the 4th order: 

Ek2d4y = ydMx4 

Ek2af 
the integral of which is, as above, letting M- = 

M 
x x 

y Ae c + Be ' + Csin ---+ Dcos -. 
C C 

95. The constants A, B, C, and D must be so defined that, 
taking x --= o, not only y disappears, but also dy becomes zero, 
because at A the curve is tangent to the curve AB. Now the 
same thing must also take place if x = a, whence the following 
four equations will arise: 

I. A + B + D o. 
II. A -B + C o. 

a -a a a 
III. Ae C + Be c + Csin -- + Dcos-- o 

C C 
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a =.a. a a 
IV. Ae c Be c + Ccos -- - Dsin -- o. 

From the first and second of these equations, it follows that 
C = - A + B, and D = - A - B, which values, substituted 
in the other two equations, will give 

a -a a a 
Ae c + Be (A -B) sin ---- (A + B) cos c , and 

C C 
a -a a a 

Ae c + Be c -(A - B) cos + (A + B) sin-=o, 
C C 

The sum and difference of these give, respectively, 
a a a A sin 

Ae c + Bsin -- Acos--- = o, or - a 

cos - e c 
a a a A e-a _ cos - 

and Be c -Asin- Bcos - o, or -- c c 

whence 
a -a a ' Iisin9a 

z = (e c + e C) cos-, or e = c 
c Cos-a 

V 

This equation, since it agrees with the one found in section 82, 
will be satisfied by the following solutions, infinite in number: 

a 'if a 3 7T 
I. -=- = log cot i II.-- = +- =log cot Jo 

C 2 C 2 

a 5fr a 77T 
III. - = -- = log cot IV.- =-+ + log cot io 

etc. 

96. It is impossible to satisfy the first of these equations 
a a 

unless- = go9, and therefore -= o 29); whence the first mode 
C C 

of oscillation arises from the equationa-= 37+ + log cot i i, 

a 
and since this has been treated above [sec. 85], --- 4.7300350232 

[correct value 4.7300408]. Wherefore the elastic ribbon, both 
ends of which are held fast in a wall, will make its vibrations 
exactly as if it were absolutely free. Now this agreement concerns 
only the first mode of oscillation 34); for the second mode of 
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oscillation, in which -- _ - = log cot i i, and the ribbon 
C 2 

cuts the axis AB at one point during the oscillation, does not 
have its equivalent in a free ribbon. The third mode of a 
ribbon fastened at both ends will agree with the second mode 
of a free ribbon, and so on. 

97. The latter two kinds of oscillations [sec. 9I and 94] cannot, 
for the reason given, be investigated in any suitable fashion by 
experiment. The first kind, however, [sec. 65] is not only 
extremely well suited for experiment, but also it can be applied 
to the study of the absolute elasticity, which we have called Ek2, 
of any proposed ribbon. If the tone which a ribbon of this 
kind produces when fastened at one end in a wall be noted, 
and a similar tone be produced at the same time in a chord, the 
number of oscillations produced in a second will become known. 

ss,o / Ek a 
If this number be put equal to the expression 2 g X 

since n is known, and the quantities g, a, and M have been found 
by measurements, then the value of the expression Ek2 will 
become known, and so also the absolute elasticity. This latter 
value can be compared with that absolute elasticity which we 
have already shown how to find from the curvature. 35) [sec. 38] 

NOTES ON THE MONOGRAPH OF 

LEONHARD EULER 

Concerning Elastic Curves 
I744 

Additamentum I to the ad Methodus inveniendi lineas curvas maximi 
minimive proprietate gaudentes. 

(Original notes by H. LINSENBARTH in " Ostwald's Klassiker der exakten 
Wissenschaften " number I75. Translation and changes from the original 
German by DONALD M. BROWN.) 

For a pertinent understanding of the older, fundamental works on elastics, 
it is necessary to know the connections of the statements contained in them with 
the methods of the Mechanics of Solids and the Mechanics of Continua. 
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The following introductory remarks should make possible, even to those readers 
who have not thoroughly studied general mechanics, a critical judgment of the 
most important of the original works on this subject. 

a) Suppose the originally straight elastic wire (lamina) to be replaced by a 
chain of infinitely small, stiff body elements, which are connected with one another 
by spigot-joints, all of whose axes are and remain perpendicular to a fixed plane. 
At the joints C and C' of any element K, the forces - and r' are transmitted 
from the preceding and following elements respectively. In addition to these 
single forces, the moments -R and R' will be transmitted at C and C', if the joints 
offer resistance to rotation of the elements about the spigot-joint axes. Let 
the resultant of the external forces acting on K be dk, and its moment with respect 
to the point of rotation C of the element K be dM. The moments of reaction 
R and R can be referred to a suitable pole 0 in the plane. 

Putting 'OC = 'c OC d, c'-c dc,r'-r - drand IF-R-= dR, 
the principles of elementary statics give, for the equilibrium of the forces on 
the body element K, the conditions: 

dr + dk o, anddR ? dJr dM = o (Pole at C). 
Introducing the element of arc ds of the equilibrium curve (axis of the curved 
inextensible wire), which connects the joint-point C, the specific quantities 

dk n dM 
K= - and m =--, which are related to the constant length of the axis, may 

ds ds 
be used instead of the absolute quantities dk and dM. In addition, taking 

dc- -. dr - 
= a, then the static relation takes the for + = o, and 

ds 
dR - 

2) - + ar + m = o. 
ds 

These equations appear frequently in modern literature, since they are not 
present in this explicit form in the works of the older writers (JACOB BERNOULLI, 
EULER). EULER knew these equations in their corresponding form for chains 
whose links are of finite dimensions (compare the statements by ROUTH in his 
" Dynamik," German edition, vol. 2, page 71.) He merely failed to take the 
transitional step. Compare also EULER'S statement in section 57 (page i i6). 

Equations i) and 2) are advanced by CLEBSCH, " Elastizitat fester Korper," 
Leipzig i862, pp. 204-222, and were used to establish KIRCHHOFF's theory of 
wires. They are also found in THOMSON and TAIT " Natural Philosophy " 
Part 2, Ist ed., Oxford, I867; 2d ed., Cambridge, I895, pp. I52-I55; in LOVE 
" Theory of Elasticity," 2d ed. Cambridge, i906, pp. 370-372; and, in their 
direct relation to the theory of body chains with finite links, in the " Zeitschrift 
fur Math. und Phys." vol. 56, I908, pp. 68 ff. by K. HEUN. From a general 
point of view, they have been treated in great detail by E. and F. COSSERAT in 
"Th6orie des corps d6formables " Paris I909, pp. 6-65. 

b) Let the departure of the axis element dc in the direction of the x-axis of 
a fixed set of axes Oxy be defined by the angle e, and let the contingent angle 
of the elastic curve be denoted in magnitude and direction by do. By this 

stipulation, 
d 

is the specific rotation of the axis element dc. In addition to 

the direction of the tangent (a), let the direction of the normal to the curve, v, 
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be introduced. Then aq = av is the binormal (of unit length) on the plane curve, 

so that = = - -, where a,, is the radius of curvature of the elastic curve. 
ds al 

According to the hypothesis of DANIEL BERNOULLI, R = Psi, where P is a 
constant depending upon the dimensions of the cross section and the coefficient 
of elasticity. 

au au Au 
Further, let Kcx = a i = a-, m = a . 

The function u can be represented as the potential of the external force. From 
the static fundamental equations I) and 2), it now follows that 

dr dc dR dj - do du 
+ - +- ( +r i- + - = o dsds ds ds ds ds 

dr- _ dc, du 
or a U rZ+P + - =0?. ds ds ds 

Now putting r = ras + rpv, 

dr dr, - dr - + dv 
ds ds ds 

and rd_ rd a dv 
ai ds 

V d 
dv_ However, ds c a- 

- dr dra and it follows that =- d 'Mr + W. and ar = rp tj. 

dra+p d-W du 
From this it is seen that the equation -f + pw - + - = 0. ds ds ds 
is integrable, so that 

3) 
1- 

PCu2 + ra + u = ho. 
This equation shows a certain analogy with the principle of the living force in 
kinetics. 

c) For elastic bodies with no external forces acting, u can be taken as zero. In 
this case, equation 3) takes the simplified form 

3) P&u2 + ra - ho 
The virtual work of bending is R89. From this the equation 

d dR dSe 
-ds (R80) - ds 86 + R - is formed, or with the use of equation 2), 

d 
-(RSG) = -rv8G + RSw 

Denoting the end points of the elastic curve by A and B, the integration along 
the axis of the wire gives 

R8] = J (RBc - r.80) ds. 
_ _A J 
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Setting the virtual distortion equal to zero at the boundaries A and B gives 

F tR8- rv8G) ds = o, or, since rv80 = dra, 

JB -(l2 - ra) ds = 0. 

By equation 3'), however, -ra = -f-Pw2 - ho. Hence it follows that 
rB { B 

4) 8 f PC2 ds-h? J ds = o. 

B 
According to EULER'S conception, the integral J pw ds is therefore a 

rB 
maximum-minimum with the isoperimetric condition fds = I (constant). 

From equation I) follows r = ro. Therefore ra = r cosO + r,, sine, and 

rv = -rx sinG + rY cosB. 

Usually the axes Ox, Oy are so selected that r-o 
d) In equation 3) the quantity -7ffPu2 = e, can be considered as an energy. 

The sum u + ra = u' can be considered as a modified potential energy. Setting 
e - u' = f, and defining f as the static LAGRANGIAN Function (in analogy to the 
kinetics of solid bodies), the static analogue to the LAGRANGIAN kinetic equations 

d df df 
has the form d- dw -dO =o ,and in the present case is identical with 

the equation d + rv + m = o. 

Thereby the analogy of KIRCHHOFF is presented. Further discussions on 
this analogy are found in LOVE" Elasticity " 2d ed., p. 382, and W. HESs, " Math. 
Ann." Vol. 25, I885. 

e) EULER gives the method of treating the isoperimetric problem in chapter 5 
of " Methodus inveniendi," the German treatment of which, by P. STAcKEL, 
is contained in Number 46 of " Ostwald's Klassiker der exakten Wissenschaften." 

(K. HEUN). 

Note I, page 78. 

DANIEL BERNOULLI pointed out the potential force to EULER in a letter dated 
October 2o, 1742 (letter 26 in Vol. 2 of Fuss " Correspondance mathemat. et 
physique," Petersburg, I843). He says at the close of this letter: " Since no 
one is so completely the master of the isoperimetric method (i.e., the calculus 
of variations, which EULER founded as a special branch of analysis) as you are, 
you will very easily solve the following problem in which it is required that 

ds 
F R2 shall be a minimum." DANIEL BERNOuLLI knew of EULEs'S " Method of 

finding Curves," together with the supplement on elastic curves, before its 
appearance; for he spoke about these with great interest in his letters to EULER 
in 1743. See section 63 and note 30. 
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Note 2, page 78. 
For the special formulas employed here, compare Chapters II. and V. of EULER'S 

"Methodus inveniendi lineas curvas etc." (Vol. 46 of " Ostwald's Klassiker 
der exakten Wissenschaften," edited by P. STACKEL.) 

Note 3, page 8I. 
For this transformation of the co-ordinates, let the following facts be noticed: 

The new axes are again at right angles; the new x-axis forms an angle k with 

V dY PP -v 
the old x-axis defined by tan + = -. Putting P = dX' this gives p = Vp' 

and therefore I + p2 = (P2 + y2) (I + P2) 
(P+ yp)2 

Substituting this value in EULER'S last equation, namely 

2 'Va V I + p2 + pp i. y 
2-Va-V-i+p2 !2~JL... = Px - =yy + 8, gives the result 

( + p2) - 

2 'V a - + p2 + p v/ p2 
+ y ...............X f2 

+y zVavY'~?pVj~ +7 _ 
xV02 + 2 

(I + P2) 

Let P,1 = V P2 + y2 

Introducing lower case letters instead of capital letters gives 

2 V a VE I?+ p2 + Pip = P1x (I + p2) . 

Again, writing P for P1 this last equation reduces to the equation given in the 
text. 

Note 4, page 82. 

P I 2 

Put n =y, x = x1 + M - ay 

The quantities a, P, y, used here are, of course, different from those given at 
the beginning of this section. This gives 

n2x2 - ma2 = y (a + Pxt + yX12), and therefore 
dxl (a + PX1 + yX12) 

Va4 (a + 
fiX1 + yX12)2 

Omitting the subscript on x gives the next to the last equation in section 4 of 
the text. 

Note 5, page 89. 
Here EULER is thinking of NEWTON'S famous enumeration of curves of the 

third order. In the following discussion, AP (Fig. 6) is always the direction 
of the positive x-axis, and AB the direction of the positive y-axis. AB is also 
the direction of the external force. In section 5 the direction of the external 
force is parallel to the negative y-axis. 

Note 6, page 9I. 
The shape of the curve in the neighborhood of C can be also derived as 

u = a -, so that u2 = a2 represents a parabola. The curve, near C, 
C C 
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is approximately a parabola. If x is made very small in the original equa- 

a (a2 
- 

c2) dx a 2 - 
c2 tion, then dy =,and therefore y =x, that 

c AV 2a2 - c A,/ 2 a2 -C2 

is, the curve has the form of a straight line in the neighborhood of A. This 
also follows from the fact that A is a point of flexion of the curve; for we have 

d2y a4 

dX2 = 2X V(c2 - X2)3 (2a2 - C2 + x2)3, which vanishes for x=o. 

The curve has flexion points for no other values of x. 

Note 7, page 92. 

The elastic curve has been treated in a few places, although not in detail, in 
"Methodus inveniendi lineas curvas " by EULER. (Vol. 46 of " Ostwald's Klas- 
siker der exakten Wissenschaften," pp. IIO, III, 127, 131.) In chapter 5, par. 46, 
EULER demonstrates the important property, that of all the curves of the same 
length which all pass through the same two points, the elastic curve is that one 
which, when rotated about an axis, generates the solid of greatest volume. He 

a2 
also mentions there the relation R =-: the radius of curvature is inversely 

2X 
proportional to the abscissa. 

Note 8, page 92. 

x c2 a2 C du 
If - = u, and 2 -a2 k2, then s - V za2- c2 V(I-u2) (ik2u2) 

that is, according to the definition of LEGENDRE, s is an elliptic function 
of the first order. By the same substitution, y is transformed into 

V2/ i-k2u2 du a2 du 
Y - a\/ 2a2 -C2 

1/ I1 2 
a 

2 A/ 2- a C2 _ c (I-U2 ) (i - k2U2) 

The first member is an elliptic integral of the second order, and the second 
member is another such integral of the first order. Therefore the integration 
for s and y cannot be put into a condensed form. 

Note 9, page 93. 
The notation of the limits of the definite integral has been added for brevity, 

although they are not found in EULER'S work, the notation being first adopted 
by FOURIER in I822, in the " Traite analytique de la chaleur." 

Note IO, page 94. 
a x yA/ 2 

y - arc sin - gives x - c sin . In modern terminology, the 
2 c ~~~~~~a 

curve represented by this equation is called a sinusoidal curve. By the term 
trochoid is now meant a curtate or prolate cycloid; the sine curve can be 
considered as a special case of a curtate cycloid. 

Note Ii, page 95. 
With the aid of the Legendrian relation KE' + K'E - KK' = ir, the EULER 

relation 4bf = ir a2 is easily derived. (For the necessary formulas on the 
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elliptical integrals for this, compare for example, E. PASCAL "1 Repertorium 
der h6heren Mathematik," German ed. by A. ScHEPP, p. I56.) We have 

(a a2dX 

f OV (a- X2) (a2 + x2) 

Putting x = a coSqb gives 
a C do a 

= KJ I -S2Sj?2 = K. Further, 
b a xdx fDa dxVa/ +x J0 a a2dx 

J -a 2- 
-)(a 2 + x2') V a- x 8 - a-x2) (a2+x') 

Again, putting x = a coso, then 

a a 
b = a J dg I Bsin2, /-K = _ - (2E- K). 

As the formulas show, the complete integrals K and E belong, in this case, to 
the modulus k2 = j, and therefore i - k2 = I also. Putting i - k2 for k2 
in E and K transforms them into E' and K'. Here, therefore, K = K', and 
E = E'. The above LEGENDRIAN relation gives as a result the equation: 
KE' + K'E-KK'=2KE-K2=K(2E-K) = fir. Butbf = Ia'K (zE-K), 
and therefore 4bf = 7ra2. Another proof is found in TODHUNTER, " A History 
of the Theory of Elasticity," Cambridge, i886, Vol. I, p. 36. 

Note 12, page 96. 
In this calculation, the author has made an error. EULER puts b 

a a 
i.ir8o3206 instead of b = 1.830 --(this has been corrected in 

\/ 2 X I~~~.I803206 -%/ 2 ( 

the text). 

It then follows that b = o.59896, that is, approximately o.6. From this follows 
a 

the formula f =-56 .i In EULER'S text is given the incorrect value 
6 2 

b 
_- = 0.834612. a 

Note r3, page 97. 
W. HESS treats the problem of elastic curves as an analogue to the oscillation 

of a pendulum, and gives a series of figures on the possible forms. (Mathem. 
Annalen 25, I885). 

The direction of the force in EULER'S curves of the fifth class, that is, the per- 
pendicular from A on AP, (Fig. 8), forms, in EULER's work, the angle 
900 + 400 41' = I300 41' with the curve. Hess gives 129.30. He took this 
angle from LEGENDRE'S Table of Elliptic Integrals; it consists of finding the 
value of the modulus k2 for which 2E - K vanishes. H. LINSENBARTH, editor 
of Volume 175 of " Ostwald's Klassiker der exakten Wissenschaften," says, 
in Note 25, p. 117 of that work, " As the editor has convinced himself, this gives 
also in this manner the value 1300 41', and in addition the verification of the 
calculation from EULER'S equation for v shows that EULER calculated correctly, 
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since otherwise the value 0.826I would obtain for v, instead of EuLm's value 
o.8259." 

Note 34, page 99. 
Here the well known relation loge n = logl0 n. loge io has been employed. 

loge IO = 2.302585. At the end of the section, L QOM is set equal to 20900o 

To derive this, let L QOM = p. Therefore tanp = 

dy 1c2 - $2 I-2cos82 
_ . ..--.. Setting x=c cos8 gives tanq>- 2snC cosO . 

xdx 'c2 
22i cs 

Therefore tanq = cot (I800 - 20) = tan (26 - 900). Hence p = 29- 900. 

Note ii5, page ioo. 

If c is interchanged with g, the curve remains unchanged. Therefore the 
shape of the curve near G must be similar to the shape near C, except that the 
curvature at C is greater than at G. The perpendicular from G to Dd is therefore 
also a diameter of the curve, as is the perpendicular from C to Dd. 

Note i6, page I02. 

Equation I is the equation at the end of section 5, if x is replaced by t, h by c, 
and if mEk2 = -Pf. This relation is derived at the end of section I O. If the 
origin is translated from A to C, then I goes into II. The normal equation (III) 
of the elastic curve does not change, since in it only dy, and not y is moved when 
the x-axis is displaced parallel to itself. The origin will then be a suitable point 
of the straight line AB (Fig. 6). In this figure, the external force acts in the 
direction AB, as is the case in II at the point C. The change of sign before 
the dx in II is accounted for by the fact that in figure 3, section 5, the force acts 
in the direction of the negative y-axis, while in figure 6 it acts in the direction 
of the positive y-axis. (See note 5.) Therefore, since II and III are referred 
to the same co-ordinate axes, these equations can be brought into agreement. 

Note 17, page IO4. 

In this calculation EULER has made an error (corrected in the text). He used 
only the first four terms of the series expansion given in the text, and obtained 
the following value for f: 

37g5 
f= - 3 C4 which is less than g. From a glance at the figure, it is evident 

30C 
that f is greater than g. EULE seems to have overlooked this fact. The value 
for k is the same in both cases. The detailed calculation given in the text is 
not given in the original. 

Note i8, page io6. 

Here EULER refers to the formulas given in his " Methodus inveniendi lineas 
curvas," Chapter IV, sec. 7, II, p. 132. 

Note I9, page Io8. 

This relationship can be proved in detail as follows: Let any straight line CP, 
(Fig. 3) whose equation is Ax + By + C1 = o, be the axis. Then the moment 
of the force P at the point M (corresponing to the developments in sec. 5) equals 
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P.CP. Let the point M have, for the time being, the co-ordinates t and -q, giving 
the equation of MP as A (y -'q) - B (x- ) = o. If the point C be given 
the co-ordinates x = k, y = 1, then Ak + Bl + C1 = o, and the length of 

A (Il-q)-B (k-) the perpendicular from C to MP, i.e., CP, is given by A21-+9 B2 
The moment P.CP is, if t and -q be again replaced by x and y, 
P (Al - Bk) BP AP 

+ B2 + V 2 2 x - V 2 + y, corresponding to a + 
,V/A2 + B2 A2 + B2 A2 +B2 

fx - yy in the text. 

Note 20, page I12. 
The monograph of JOHN BERNOULLI " De Motu Reptorio " is found in the 

Acta Erudit., Aug. 1705 (Works I, p. 408.) 

Note 2I, page 11 3 . 

EULER himself further exercised his powers on both of these definite integrals, 
for he says in Vol. 4 of the " Institutiones Calculi Integralis " (Petersburg, 1794) 
on p. 339: "I recently found by a happy chance, with the aid of a quite unique 

Ct decose ar a dlsinso F 
method, that (see also sec. 54) J also A 2 

The curve analyzed here is the one whose natural equation is rs = a2 

This has been called the Klothide by CESARo. Particulars on this, and figures, 
which appear also in the above mentioned work by EULER, are found in LORIA 
" Spezielle algebraische und transzendente Kurven der Ebene," German ed. 
by F. SCHIYTTe, Leipzig, 1902, P. 458. 

Note 22, page 114. 

Namely, consider the interval from zero to infinity to be divided up into the 
following parts: i. from o to ir, 2. from i to 21T, 3. from 21r to 3'r, etc. Then 

b " dv sin v {82X dv sin V r3 dv sin v 

X=2----J +jv + f v V +. . 
Putting v = vL + i in the second integral, v = V2 + 2ir in the third integral, 
etc., gives 

b [ r dv sin v 1 dv1sinv r dv2sin V 

2 L IJo N\/ v J VV,1 +s lr v V2 + 2XT 
Since the relation between the variables is immaterial in the definite integral, 
v can be put equal to v = vL = V2 = V3 = ... Similarly the value for y may 
be obtained. 

Note 23, page 127. 

The Latin text reads "...; indeque auferendo logarithmum sinus totius,...," 
or " and subtracting from it the logarithm of the entire sine," instead of " and 
subtracting ten from it " as given in the text. The original is apparently a misprint 
of some nature. The reading in the text conforms to the method of procedure 
as given in sec. 31. 
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N"ote 24, page 128. 

Let p transformed into seconds give the number ,B. Then, in radians, 

'k5'=P Th6 2- Therefore log log log-This last logarithm is 
x8o.6o2 ITf 

5.3i44... This explains the appearance of this number in sections 73, 74, and 85. 

In order to get loge coti e EULER used the known formula loge cotj # = 
I 

M 
log,5 cot,ck. To carry out the multiplication on the right side, he again used 

common logarithms. Log10 M= 0.362215... From this the appearance of this 

number in the second part of the tabular calculations is understood. At the 
end of the calculations, EULER used the reguli falsi, as also in sec. 85. 

Note 25, page 129. 
A 

The formula - = tangp, which has not as yet been derived, is easily found 

in the following manner: Adding the first two formulas of sec. 70, which contain 
only A and B, gives 

a 
- ~~~a a 

2Ae C 2 Bsin - + 2Acos.5 = o, or, since sin - = cos p, and 
c c c 

a 
a 

cos - -- sin p, and e c = cot-hV, 
c 

A A 
cos ' = B (cotgp - sin') = - cot- (I - 2sin21') 

B ~~B 
or cos > = 

A 
cot7g9p cosqp. Therefore B = tan-h,. 

Note 26, page 131. 
Here EULER refers to the difference between the oscillations of bodies which 

are elastic due to stretching-a taut chord, corda elastica, and those which are 
elastic due to stiffness-an elastic ribbon, lamina elastica. 

Note 27, page 133. 
If the lower tone is C, then the higher tone is slightly lower than G sharp. 

If C has the frequency N, then G sharp has the frequency 245 N (that is, 6 AO6 
instead of 6 4 as according to EULER'S calculations). See the note on section 79. 

Note 28, page 133. 
5ir 5-rr 5ir 

Approximately e 2 (I + p) = . Therefore e 2 + ck e 2 = 

5Sr 

By the first approximation in the text, however, c e 2 = 2. 

2 2 Therefore = e 2 + 2, i. e., =5 
x + ie2 
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Letting v = 2 t/gEk h , then to the various modes of vibration a2 

correspond the tones having the frequencies 
5 2 7 2 

I.8I52 V, 4.69 V, 92 ( -) V, ..... All these tones 

have been sought out experimentally by CHLADNI, (" Akustik," Leipzig 1802, 

PP. 94-103). They are, Ls he also found for the following cases, in the best 
agreement with EuLmE's results.(See note 30.) 

Note 29, page 136. 
a 

The case - = o, which appears frequently in the following sections, is 
c 

derived as follows: Since a is not zero, then c = xo . That is, since c4 = 

Ek2 af, 
M ' fmust equal 00 . The corresponding isochronous pendulum is infi- 

nitely long, and the time for one oscillation is infinite. An infinitely long time 
is needed to produce an oscillation in the ribbon, i.e., it remains at rest. 

Note 30, page 137. 
Only the case of the oscillation with one knot point, represented in Fig. 23, 

is excluded in free elastic ribbons, not the others. DANIEL BERNOULLI expressed 
his astonishment at EULER'S error in a letter of Sept. 4, 1743. (Letter 30 in 
the " Correspondance math. et physique," by Fuss). " These oscillations arise 
freely, and I have determined various conditions, and have performed a great 
many beautiful experiments on the- position of the knot, points and the pitch 
of the tone, which agree beautifully with the theory. I hesitated whether I should 
not strike out from the supplement the few words which you say about the matter." 
In the " Acta Acad. Petrop. " 1779, Part I, P. 103, EULER again takes up the 
investigation of oscillating ribbons from other points of view, and admits of 
oscillations with an uneven number of knot points without more ado. There 
he also treats six classes of oscillations, with consideration of the ends of the ribbon 
-whether free, fixed on supports, or set in a wall-while here he treats only 
four classes. LoRD RAYLEIGH, in Chapter VIII of the " Theorie des Schalles " 
(German ed. by Fr. NEEsEN, Braunschweig I879), gives a comprehensive presenta- 
tion of the transversal oscillations of elastic ribbons. In that very place, for 
instance, he considers the free oscillations with three knot points. See also 
STIEHLKE, " Poggendorf's Anrnalen " vol. 27, and A. SEEBECK, " Abhandl. d. 
Kgl. Slichs. Gesellschaft der Wissensch." I852. 

Note 31, page 139. 

The deviation in the left table is incorrect. It should read - 2621559, namely 
4.73003... - 4.73029... The angle S, then, does lie between IO-O'-40" and 

IO-I'-O". Letting c = IO-O'-40" + n, the rule of false values gives ,,= 

53 7 +25-59 . This gives n = 0.9402, and hence 10 = b-o'-40.9402". 

This value appears, for example, in RAYLEIGH'S " Theorie des Schalles," vol. I, 

p. 298 ff. Then -- = 4.7300408 for the correct value. Since the mistake has 
C 
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no influence until the fifth decimal place, the further numerical values are correct 
to that place. In this and the following section, the correct values are inserted. 

Note 32, page 141. 

a a 2 COS- 
2c 2c 2 C 

EuLERhad, incorrectly, e + e = + -. Since 
A/ a 

cos-- 

a a 
2700-'-40.94", then cos - = cOs 1350-0'-20*47` is necessarily negative. c 2 C 

Therefore the right side of the formula has a positive value, as must be true 

a a 
a _ (I -sin-) + cos--- 

e 2c +e 2- = ec v/e VL=(c c 
t/ a a 

COS ---t I sin_!. 

This value has already been used to calculate 

(A e c + Be-c ). Introducing half angles, 

2 a a a 
4 2 Cos (2C) -2 Cos 2 C sin 2 C 

e 2c + e-: cos a / a a . a a 
/ -__sn + COS2--. - 2sm ---- cos 

C / 2 C 2 C 2 C 2C 

az a a a 
2 cOS (cos --- sin ) 2 cos 

2 C 2 C 2 C 2 C 
- - ______. For the second 

a a 

root in the denominator, sin------ - cos- is used, since this value is positive. 
2C 2 C 

The formulas of sec. 89 are changed from EULER'S text to the correct values 
derived here. The last formula is correct in the text, and hence the numerical 

Cc 
values are correct. A- is negative, since in Fig. 22 these ordinates have opposite 

directions. 

Note 33, page I45. 

It should be noticed about the tone intervals under consideration that: 
i6o 

i) the first interval,-is, in the C-major scale, the interval from the base note 

C to F sharp of the next higher octave (2.78 instead of 2.8I); 2) the second 
interval, 4:I, is that of the base tone C to the C two octaves higher; 3) the third 
interval, 9:i, reaches from C as the base note to the note D which lies three octaves 
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higher. In connection with the practical working out of these oscillations, which 
]EULER considered difficult, see CHLADNI, " Akustik," p. 99. 

Note 34, page I47. 
This agreement takes place for all modes of vibration. EULER's differing 

statement comes from the fact that he rejects, for free ribbons, the oscillations 
for an uneven number of knots. See note 30. 

Note 35, page I48. 
These experiments, which are very important for technique, have been performed 

in a most fruitful fashion. However, the formulas given here do not lead to 
useful results, since they do not take into consideration the cross section of the 
elastic ribbon. See, for example, KuPFmER, " Recherches exp6rimentales sur 
1'6lasticitd des m6taux." St. P6tersbourg, i86o. 
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