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PREFACE.

IN the seven years which have elapsed since the first

edition of this Treatise was published, the study of

the properties and applications of alternating electric

currents has made enormous progress. At the outset

the aim of the author was to collect, and present in a

form suitable for students, a general statement of the

facts and principles of electromagnetic induction, and the

maniier in which these are applied in the design and

construction of the Induction Coil and Transformer.

At that time most of the practical information on the

subject was embedded in technical journals and original

papers. Confident that alternating electric currents

would play a very important part in the evolution of

the electrical industry, the author believed that service

would be rendered to engineering students by an

attempt, even if an imperfect one, to place a brief

systematic treatise on the subject of the Alternating

Current Transformer within reach. The result, so far,

has justified the belief. At the present time, however,
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much of the subject matter in the first edition has

become antiquated, and it became necessary to revise

the book thoroughly, to eliminate those parts which had

been seen to be imperfect or unnecessary, and to bring

the remainder of the information as far as possible into

line with recent views and experience.

The author has, accordingly, rewritten the greater

part of the chapters, and availed himself of various

criticisms, with the desire of removing mistakes and

remedying defects of treatment In the hope that this

will be found to render the book still useful to the

increasing numbers of those who are practically engaged

in alternating-current work, he has sought, as far as

possible, to avoid academic methods and keep in touch

with the necessities of the student who has to deal with

the subject not as a basis for mathematical gymnastics

but with the object of acquiring practically useful

knowledge.

It is, perhaps, in some ways, a positive disadvantage

that alternating-currents lend themselves so easily to

mathematical treatment and, by a few assumptions akin

to that of the perfectly frictionless machine, offer

an attractive field for mathematical ingenuity. Real

difficulties are thus often passed over, and an intimate

knowledge only gained of a perfectly hypothetical

transformer.

The ever-increasing progress of electrical knowledge,

and the constant necessity for recasting electrical

theories, renders it a most difficult matter to secure in

an electrical treatise of any length, uniformity of treat

ment ; whilst views must always differ as to the mode

in which any special subject should be approached.
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The author ventures to hope, however, that in its

revised form, the information here collected may be of

use to those who are in any way concerned with

alternating-current practice or investigations, and that

it may be effective as an introduction to treatises of a

more advanced character, which deal with the properties

of periodic currents and their utilization in various

technical applications.

J. A. F.

University College, London,

April, 1896.
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CHAPTER I.

HISTORICAL INTRODUCTION.

§1. Faraday's Discoveries.—The autumn days of the year

1831 are ever memorable in the annals of electrical discovery.

At that time Faraday, then in the prime of his intellectual

powers, began the continuous series of "Electrical Researches,"

which enriched physical science with discoveries of far-reaching

importance, and laid the firm foundations on which much of

the modern applications of electricity rests. Looking on the

whole of electrical phenomena with an eye eager to see physical

analogies, and confident that where these exist they may prove

suggestive for further research, he had already asked himself

if it were possible there was any effect in the case of electric

currents analogous to that known as electrostatic induction.

An insulated conductor possessing an electric charge when

introduced into a closed chamber having conducting walls calls

forth upon them an equal charge of an opposite sign. This

induced electrification is invariably present, no matter how far

off the walls of the enclosing chamber may be, and all sur

rounding conductors share in the duty of carrying a portion of

the induced charge. At a later date, when Faraday viewed

this phenomenon of electrostatic induction by the aid of the

education he had received in dealing with magnetic lines of

force, he was able to picture to himself lines of electrostatic

force proceeding in all directions from the surface of a charged

body. Wherever they terminated, whether on neighbouring con

ductors or on the walls of an enclosing chamber, they developed

on these " corresponding points " a charge equal and opposite

to that of the surface at the point from which they took their

rise. Just eleven years previously H. C. Oersted had made
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Copenhagen famous as the birthplace of the discovery that an

electric current passing through a metallic wire magnetises it

circularly and creates round it a magnetic field, the direction

of the lines of magnetic force being closed curves surrounding

the axis of the wire. Faraday placed these two phenomena

dde by side before his mental vision, and he asked himself

whether it was. possible that the magnetic field of force gene-

".ra"ted round a burient-carrying conductor could develop in an

adjacent, circuit 'em-'tudwed current just as the charged body

•Vrails forth: tm.inihu:ed-electrostatic charge on the neighbouring

conductors.

Some notions on this subject of electric current induction

had before 1881 occupied his mind at intervals, but these

early experiments did not lead to any satisfactory results.

In 1825, in the month of November, Faraday stretched

alongside of a wire connected with a galvanometer another

through which an electric current was flowing, but both then

and on December 2, 1825, and on April 22, 1828, he had to

record of his experiment that it gave "no result." A very

little step in experimental research often separates failure from

success. A reversal of operations, a change of some dimension,

an alteration of some proportion, is often all that is needed to

step from the region of failure into the field of discovery and

achievement. In this case it may have been the apparently

trivial one of starting the electric current in one wire before

completing the circuit of the galvanometer.

The one thing, it seemed, that this preliminary work did dis

prove was the notion that a continuous steady current in one

conductor could generate a continuous current in another

adjacent conductor relatively at rest to the first. It is possible

that some conception of the above nature had been dominant

in the mind of Faraday before these trials had convinced him

that the effect, if existing at all, was not detectable with his

apparatus. Three years later he returned to the attack, and

we cannot describe the experimental results of the autumn

months of 1831 better than they have been given in Faraday's

own words in the laboratory note-books of the Royal Insti

tution.* On the 29th day of August, 1881, he thus records

the epoch-making discovery by which he will be for ever

* See Dr. Bence Jones's " Life of Faraday," Vol. II., p. 2.



HISTORICAL INTRODUCTION. 3

known. He wrote:—"I have had an iron ring made (soft

iron), iron round and £in. thick, and ring 6in. in external

diameter. Wound many coils of copper round one-half of it,

the coila being separated by twine and calico ; there were three

lengths of wire, each about 24ft. long, and they could be con

nected as one length or used as separate lengths. By trials

with a trough, each was insulated from the other. Will call

this side of the ring A. On the other side, but separated by

an interval, was wound wire in two pieces, together amounting

to about 60ft. in length, the direction being as with former

coils. This side call B. Charged a battery of ten pairs of

plates 4in. square. Made the coil B side one coil, and con

nected its extremities by a copper wire passing to a distance

and just over a magnetic needle (8ft. from wire ring), then

connected the ends of one of the pieces on A side with battery;

immediately a sensible effect upon needle. It oscillated, and

settled at last in original position. On breaking connection of

A side with battery, again a disturbance of the needle." (See

Frontispiece.)

On September 24th he resumed his attack. He prepared an

iron cylinder and wound on it a helix of insulated wire. The

ends of the helix were connected with a galvanometer. The

iron was then placed between the poles of bar magnets. Every

time the magnet poles were brought in contact with the ends

of the iron cylinder the galvanometer needle indicated a

current, the effect being, as in former cases, not permanent,

but a mere momentary impulse or deflection.

But the full meaning of this hardly appeared clear, and on

October 1st he once more laid siege to the fortress. Preparing

a battery of 100 pairs of plates, each 4in. square, and charged

with a mixture of nitric and sulphuric acids, he arranged to

send the current from this through a wire of copper 208ft. long

wound round a block of wood. Bound the same block, and

wound parallel to the first, was a second wire, of equal length

to the first, but insulated from it. This second wire he joined

up to the terminals of his galvanometer, and then when the

battery connection was made or broken with the first wire he

noticed a small but sudden jerk of the needle, one way when

the current was made, the other way when it was broken.

The clue to the real phenomenon was now in his hand, and
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guided by it he stepped over a series of confirmatory experi

ments, and entered as a triumphant conqueror into the

stronghold wherein the whole truth lay hid.

Writing on November 29th to his friend, Mr. R. Phillips, he

says :—" Now, the pith of all this I must give you very briefly.

When the electric current is passed through one of two

parallel wires it causes at first a current in the same direction

through the other, but this induced current does not last a

moment, notwithstanding the inducing current (from the voltaic

battery) is continued. All seems unchanged except that the

principal current continues its course. But when the current

is stopped, then a return current occurs in the wire under

induction of about the same intensity and momentary duration,

but in the opposite direction to that first formed. Electricity

in currents, therefore, exerts an inductive action like ordinary

electricity, but subject to peculiar laws. The effects are a

current in the same direction when the induction is estab

lished, a reverse current when the induction ceases, and a

peculiar state in the interim."

The path for valuable discovery now lay open. Fully

familiar with the work of Ampere and Arago, Faraday knew

that a closed circuit conveying an electric current affects all

surrounding space with magnetic force, and that, in particular,

a small closed circular current can, as far as magnetic action

is concerned, be exactly replaced by a very thin disc of steel,

whose edge coincides with the line of the closed current,

and which is magnetised everywhere in a direction perpen

dicular to its surface. Such a normally magnetised disc is

called a magnetic shell. It follows that a helix of wire, which

may be regarded as a number of closely approximate circular

currents nearly in the same plane, should be magnetically

equivalent to a number of magnetic shells piled one above the

other, with similar polar faces turned the same way. But such

an arrangement of shells would form a cylindrical magnet, and

therefore a helix of wire or solenoid in which a current is flow

ing is for all external space the magnetic equivalent of a cylinder

of steel of the same dimensions magnetised uniformly in a

longitudinal direction. It remained, therefore, to test this

hypothesis. The fifth day of his experiments was 0ctober

17th, and on that day he thus notes in the laboratory book the
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results:—"A cylindrical bar magnet fin. in diameter and 8Jin.

in length had one end just inserted into the end of a helix of

wire 220ft. long. It was then quickly thrust in the whole

length, and the galvanometer needle moved ; then pulled out

again, and again the needle moved, but in the opposite direc

tion. This effect was repeated every time the magnet was

put in or out, and therefore a wave of electricity was so pro

duced from mere approximation of a magnet."

Exactly twenty years afterwards, in the 28th and 29th series

of his " Researches," Faraday illuminated, by the exactness and

clearness of his experimental method, the whole behaviour of

magnets towards closed conducting circuits. It is probable

that even at this time he had learned to think of a magnet as

carrying with it, as part of itself, a whole system of lines of

magnetic force, which emanate from it and surround it. The

system of lines of force moves with the magnet wherever it

goes. Regarding the production of a current in the helix by a

magnet thrust into it, Faraday pictured to himself the advanc

ing magnet as pushing its lines of magnetic force across the

coils of wire of the helix, and "cutting " or intersecting them in

its progress towards its final position in the coil. The conclusion

to which he was led by this reflection seemed to be that the

very essence of the effect was the movement across one another

of a line of force and a portion of a conducting circuit. If this

was so, then the result could be obtained by a more simple and

obvious method. The ninth day, 0ctober 28th, saw these ideas

put to further crucial test. Taking the great permanent horse

shoe magnet of the Royal Society, he placed a copper disc so

that it was free to revolve on an axis placed in the line of the

poles. Soft iron pole pieces were then adjusted to create a

powerful magnetic field, the lines of force of which passed

through the disc at right angles to its surface. The wires of

the galvanometer were made to press against the disc, one

near the axis, and the other near the edge. When the disc

remained stationary, no current whatever was manifested, but

on causing the disc to revolve on its axis a permanent and

steady current traversed the galvanometer. This experiment

was conclusive. The operation taking place during the revolu

tion of the disc could be viewed as consisting simply in the

continual movement of any radial section of the disc across a
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stream of lines of magnetic force flowing at right angles to its

surface. The continuous current resulted from the fact that

the motion of that radial section of the disc was always the

same relatively to the stream of force. 0n November 4th

Faraday reduced the conception to its utmost simplicity.

Taking in his hand the mere closed galvanometer wires, he

passed a portion of the loop between the poles of his large

permanent magnet in such a way that the direction of that

part of the loop between the poles was at right angles to the

direction of the magnetic force, and the direction of the move

ment was at right angles to the direction of the force and that

portion of the conductor. The galvanometer deflected, and

showed the presence of a momentary current at the instant

when the intersection took place.

§ 2. Faraday's Theories.—In ten days of splendid and con

clusive experiment in the autumn of 1831, Faraday had there

fore not only discovered the law of induction of currents, but

the facts of magneto-electricity as well ; and more, for he had

not merely accumulated a mass of experimental results, but

had reduced the whole valuable store of knowledge to one

fundamental principle of exquisite simplicity, namely, that the

passage of a line of magnetic force across a line of a conducting

circuit generates in that portion of the circuit an electromotive

force, or a force setting electricity, or tending to set electricity,

in motion.

The subsequent work of all experimentalists and mathema

ticians has been to work out the applications of this principle

in countless forms ; but no one has since added any essential

discovery of fact which is not implicitly contained in the series

of discoveries by which, in this short space, Faraday stepped

from happy conjectures into possession of facts, which have

proved more fertile in far-reaching practical consequences than

any of those which even his genius bestowed upon the world.

Faraday's theoretical views, however, on the phenomena under

went, in process of time, some modification. He apparently

distinguished at first between the induction of currents by

a current, which he called volta-electric induction, and the pro

duction of currents by a conductor moving in a magnetic field,

which he called magneto-electric induction. That which seemed
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to impress him most forcibly was, however, the fact that it

was only the beginning and ending of the inducing current

which had any effect upon the other circuit. He considered

that, since the mere cessation of the inducing current was

accompanied by a wave of induced current, that could only

be because the induced current circuit was, meantime, in a

peculiar condition, to which he gave the name of the electro-

tonic state, the annulment of which gave rise to a current in

the circuit. The same state he considered to be found in

a wire or circuit at rest in a magnetic field. The circuit was

in the electrotonic state whilst in the field, but withdrawing

the circuit or removing the magnetic field annulled the electro-

tonic state and gave rise to a current. To use his own words

at a later date (Ser. XXVIIL, § 8172, " Exp. Researches "),

" Mere motion would not generate a relation which had not

a foundation in the existence of some previous state ; " and

(Ser. XXIX., § 8269, ibid.) " Again and again the idea of an

electrotonic state has been forced upon my mind." The mere

motion of an external body, such as a copper wire, in a mag

netic field cannot, he considers, be the sole cause of the

current, unless there is a previous peculiar state as regards

the wire which, when motion is superadded, produces the

current. When, however, subsequent thought and diverse

experiment had clarified his ideas and adjusted facts in proper

relation, he came to see that that which he had denominated

the electrotonic state is really the amount of electromagnetic

momentum which the circuit possesses in virtue of its being in

a magnetic field. In modern language, it is the equivalent of

that which is now called the number of lines of magnetic force

passing through the circuit. Every line of magnetic force is

a closed loop or continuous line, and if we set out at any point

on a line of magnetic force and travel forwards along that line

we shall come back to that same point again. If this line of

force is originated by a permanent magnet or an electromagnet,

then part of our journey will be performed through the iron or

steel and part through the air or other diamagnetic surround

ing it. If, then, a closed conducting circuit is so situated that

the line of force considered passes through it or is linked with

it, the line of force and the closed circuit form, as it were, two

links of a chain, and cannot be separated except by pulling
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one through the other (Fig. 1). When they are so pulled

through one another the line of force " cuts " and is cut by

the circuit. The number of lines of force, therefore, which at

any instant are linked with a given circuit represent poten

tially the greatest amount of " cutting " possible. The exist

ence of lines of magnetic force linked with the circuit is an

essential antecedent to the appearance of a current of induction

in that circuit when removed from the magnetic field. At

a later stage of his investigations Faraday was able to modify

his earlier notions of the electrotonic state, and learnt to look

on the induced current appearing under these circumstances as

due not to a state of things in the circuit, but to a condition

of things outside the circuit, or, more precisely, to the relation

in which the circuit stands to the magnetic field of force

around it.

In the 28th and 29th series of his " Experimental Re

searches," Faraday exhausted all possible means of experi

ment in proving that this conception of the linking or un

linking of loops of force and loops of conducting circuits was

an unerring guide to the solution of all problems of electro

magnetic induction. The circuit being given, he was able to

show by a course of rigid demonstration that the process of

linking with it a loop of magnetic force was always accompanied

by the passage of a wave of current round the circuit in one

direction, and the unlinking was invariably associated with the

flow of an opposite pulsation of electricity. Moreover, and

most important of all, he built up a quantitative conception

around the term " a line of magnetic force," so that it came to

him to mean not merely a geometrical line or a direction, but

a definite physical magnitude, which represented the product of

a certain area of space, and a certain mean intensity of mag-
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netic force over that area.* Armed with this idea, he proceeded

to show that the quantity of electricity represented by each

current of induction is the numerical equivalent of the " number

of lines of force " which are linked or unlinked with the circuit

by any operation. He found that this hypothesis never failed

to enable him to render a satisfactory and a logical explanation

of all his results, and with this clue in hand he could find his

way about amidst the entanglements of experimental inquiry,

and return always from each fresh excursion after fact with

new confirmation of its consistency, and with fresh power to

predict the results of other experiments.

So strong became at last his conviction that these lines of force

could hardly have such powers if they were mere geometrical

conceptions, like lines of latitude and longitude, that he gives

expression to it by speaking of them as physical lines of force.

He intends to imply that he thinks " a line of force " must be

taken to be a definite action going on in a certain region of

space, and that, whatever may be its real nature, we must accord

to it a definite physical character in some sort or sense, as much

as we do an electric current of unit strength flowing along a

prescribed circuit. Faraday was not a professed mathematician,

and it was perhaps fortunate that his inability to employ the

mechanical aid of symbolic reasoning forced him to make clear

to himself each step by experimental demonstration. He was

thereby compelled to keep to the main track of discovery, and

prevented from deviating into the more abstract lines of thought.

The special abilities of Kelvin and Helmholtz, and subse

quently those of Clerk Maxwell, were, however, directed to the

complete elucidation of these conceptions of Faraday, and the

great treatise of Maxwell, as he himself has stated, was under

taken mainly with the hope of making these ideas the basis of a

mathematical method. The one cardinal principle which may

be said to be at the base of the mode of viewing electrical and

magnetic phenomena introduced by these investigators is the

denial of action at finite distances, and accounting for the

phenomena by the assumption of the existence of a medium

* Faraday's notion of "a line of force" was at first merely a geometrical

conception, representing a certain line of action, but bis ultimate applica

tions of the term showed that he had come to think of it as a surface

integral.
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which is the active agent in the transmission of energy from

one place to another, and which is itself capable of storing up

energy in a potential and kinetic form.

The mathematical methods and hypotheses of the French

sohool of physicists, represented chiefly by Ampere, Arago,

Poisson, and Coulomb, consisted in the assumption that material

particles in special states, called electric and magnetic, could

act on one another at finite distances without any intervening

mechanism according to certain laws of force varying with the

distance. Faraday may be said to have raised the standard of

revolt against this notion, and indeed he was able to quote in

his support the great authority of Newton in rejecting the idea

that matter could act on matter across intervening distance

without aid from any mechanism. He never considers bodies

as existing with nothing between them but their distance, and

acting on one another according to some function of that dis

tance. He conceives all space as a field of force, the lines of

force being in general curved, and those due to any body ex

tending from it on all sides, their direction being modified by

the presence of other bodies. A magnet, an electrified conductor,

or a wire conveying an electric current, are thus the focus and

source of a system of radiations of force lines or loops which

are to be thought of as part and parcel of it. This force

system is capable of deformation or change by the presence of

other bodies, but it moves with the magnet, electrified body, or

current-carrying wire. These force radiations penetrate sur

rounding bodies, and the apparent actions between bodies at a

distance are in reality actions due to immediate action of the

field of force of one body upon the other at the place where

it is. Then rises for solution the important problem : What

are these lines of force ? Faraday answered the question by

saying that they consist in some sort of operation or action

going on in a medium along certain lines or axes, and Maxwell

added to this the suggestion that the electromagnetic medium

must be identical with the medium postulated to account for

the phenomena of light.

The question which yet remains unanswered is : What is

the nature of the action or operation along certain lines in this

medium which causes a line of force to exist ? The future of

electric and magnetic investigation will, perhaps, conduct us
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atep by step to the solution of this supremely important

problem.

§ 3. Henry's Investigations.—At the same time that Fara

day was pursuing in England a career of triumphant discovery

in the field of electromagnetic science a young philosopher of

hardly less intellectual power, but more limited opportunities

for research, was following hard on the same path of investi

gation in America. The name of Joseph Henry is one which

we must link with that of our own great countryman as a co

worker, nay, even an anticipator in some things, in the region

of fundamental discovery in electromagnetism.

To Henry clearly belongs the credit of having improved

Sturgeon's electromagnet by substituting for the single layer

of copper wire wound on the iron horse-shoe a spool or bobbin

of insulated copper wire. By this means he made what he

then called intensity magnets, or electromagnets, suitable for

excitation by an intensity battery or battery of many cells.

Henry in this manner constructed in 1829 or 1830 a very large

electromagnet, capable of supporting a weight of 6001b. or

7001b. Before having any knowledge of Faraday's experi

ments, and guided apparently by the notion that as electric

currents can produce magnetism, so magnetism should be able

to generate electric currents, Henry experimented as follows :—

A piece of wire about 30ft. long and covered with an elastic

varnish was closely coiled round the middle of the soft iron

armature of this large electromagnet. The wire was wound

upon itself so as only to occupy about lin. in length of

the armature which was 7in. in all its length. The ends

of this wire were connected by long copper wires with a

distant galvanometer. The armature with its coil was laid

upon the poles of the electromagnet, and the galvanic plates

connected with the helix of the electromagnet immersed in the

trough of acid. At the moment of immersion the needle of

the galvanometer was seen to be deflected about SOdeg., but it

immediately returned to its normal position. 0n withdrawing

the battery plates from the acid it was noticed that the gal

vanometer needle made a sudden deflection in the opposite

direction of about 20deg. A similar effect was produced by

pulling off or putting on the armature whilst the magnet
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remained excited. Henry, in his account of this experiment,

says : —" From the foregoing facts it appears that a current of

electricity is produced for an instant in a helix of copper wire

surrounding a piece of soft iron whenever magnetism is induced

in the iron, and a current in the opposite direction when the

magnetism ceases ; also, that an instantaneous current in one

or other direction accompanies every change in the magnetic

intensity of the iron."

This very lucid statement of experiments, made probably in

August, 1831, shows that Henry was at least an independent

discoverer of the induction of electric currents. In April, 1832,

an account reached him of Faraday's discovery in the previous

year, and Henry then repeated his former experiments, and

was able by means of larger helices of wire wound on the

armature of his electromagnet to greatly increase the magni

tude of the induced current. Henry, therefore, not only dis

covered independently the facts of electromagnetic induction,

but correctly interpreted them as well. He early laid a firm

grasp upon the essential principles involved, and he came

almost within reach of anticipating that discovery which is,

and will remain, the crowning glory of his illustrious rival.

Between 1831 and 1840, or later, Henry continued to add

fresh knowledge to the original facts, and in a later chapter

a description will be given of his important investigations on

the self and mutual induction of conducting circuits.



CHAPTER II.

ELECTR0-MAGNETIC INDUCTI0N.

§ 1. Magnetic Force and Magnetic Fields.—Certain sub-

Btances, such as iron, nickel, cobalt, steel, and some of their

compounds, particularly a native oxide of iron, possess peculiar

physical properties, and either exist in, or can be put into, a

condition in which they are said to be magnetised. When in

this condition they exhibit physical qualities which are called

magnetic properties, the most obvious of which is the power

of producing attraction and repulsion upon other magnetic

substances. Some bodies, notably hardened steel, can acquire

marked permanent magnetic qualities. The neighbourhood

round these bodies when in this state, and within which they

exercise these actions, is called a magnetic field. If a small

magnetised steel needle is suspended freely at its centre of

gravity and held in a magnetic field it is found that it takes up

a certain direction under the influences of forces acting upon

it. If disturbed from this position it returns to it again.

It is found that there is a line in the needle round which it

can be revolved without changing the set of that line when

the needle is left free to obey the forces acting upon it. The

direction of this line in the needle is called its magnetic axis.

0ersted discovered that a magnetic field exists in the neigh

bourhood of a conductor conveying an electric current, and

that it imposes a certain directive influence upon a magnetic

needle held near to it. If a small steel magnetised needle is

placed in any region containing either conductors carrying

electric currents or substances in a permanent magnetic state

it is found that at every point of the field the magnetic axis of

this small exploring needle takes up a definite position if it is
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freely suspended so as to be removed from the influence of

gravity. The direction so assumed by its magnetic axis is

.called the direction of the magnetic force at that point. The

magnetic force has at every point in the magnetic field of

these active agents a certain direction. 0n examining the

behaviour towards one another of two magnetised steel needles

we find that their magnetic properties are exhibited chiefly at

the two extremities, and these are called the magnetic poles.

The two poles of a magnetic needle are not identical in quality.

If a uniformly magnetised steel needle is broken in the middle,

the ends where it is broken immediately become new magnetic

poles, whereas before rupture that portion of theneedle exhibited

no apparently active magnetic properties. If the two poles

which make their appearance at the broken ends are tested it

will be found that they attract one another. If these poles

are placed one centimetre apart and the force with which they

attract one another measured in absolute units, the square root

of the number which expresses this attraction is called the

numerical value of the strength of these poles. Hence, a unit

magnetic pole is a pole which at a unit of distance attracts

another unit pole of opposite kind with a unit of force. The

earth as a whole is a magnetic body, and if a small magnetic

needle is freely suspended at its centre of gravity, its magnetic

axis assumes a certain position at each point on the earth's

surface which is called the direction of the terrestrial magnetic

force at that point. The pole of the needle which points in

our latitude in any direction north of the true east and west

line is called the north pole or north-seeking pole of the

needle. If we take a very long thin magnetised needle,

called for shortness a magnetio filament, we can employ one

pole of it, say the north pole, for exploration in a field, whilst

the other pole is so far removed as not to be affected. If such

a pole, called for shortness a free north pole, is placed in any

magnetic field it is acted upon by the magnetic force and

urged to move in the direction of this force. If this free

north pole is a pole of unit strength, then the force dynami

cally measured in absolute units which acts upon it is called

the numerical measure of the magnetic force at that point.

The direction in which a free north pole tends to move

is called the positive direction of the magnetic force at that
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point. The magnetic force at any point in the magnetic

field of magnetic bodies, whether magnetised substances or

conductors conveying electric currents, is thus a quantity

which has direction as well as magnitude, and we have

defined above how both of these can be measured. By

means of a free north magnetic pole of unit strength we

may thus explore and define a magnetic field at every point.

A magnetic field in which the magnetic force is the same

in magnitude and direction at every point is called a uniform

magnetic field. The magnitude of the magnetic force at

any point is a measure of the strength of the magnetic field

at that point.

There are several simple and yet important cases in which

it is possible to calculate the strength of the magnetic field

or the magnetic force at certain assigned points in the

neighbourhood of conductors conveying electric currents.

The pre-determination of the field strength at points near

to magnets and conductors conveying electric currents is,

generally speaking, except in these simple cases, a very

difficult matter.

The Magnetic Force near to a very long Straight Wire

conveying an Electric Current.

If a current flows in a thin circular wire we may call a

very short length of this conductor, denoted by ds, an

element of the circuit or of the current. Ampere showed

by a classical series of experiments that the magnetic force

due to an element of a current at any point near it was

numerically equal to the product of the strength of the

current, the length of the element, and the sine of the

angle between the direction of the element of the circuit

and the line joining the centre of that element with the point,

and inversely as the square of this distance. Thus, if ds

(Fig. 2) represents the element P of a circuit in which is

flowing a current of strength I in absolute electromagnetic

measure, and if a is the angle which any line 0 P makes with

the direction of the element, and r is the length of the line

0P, then the magnetic force at the point 0 due to that

element of the current is numerically equal to

Ids sin a
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and this force is in a direction at right angles to the plane

containing the element of the circuit and the line joining it to

the given point. Starting with this fundamental law, we can

deduce expressions for the strength of the magnetic field due

to currents flowing in conductors of certain forms at certain

assigned points. Consider, for instance, a very long, practically

infinite straight wire in which a current is flowing, the return
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wire being at a very great distance. Take any point P in the

neighbourhood of this conductor (Fig. 3). It is required to

find the magnetic force at the point P. Draw P M perpen

dicular to the wire from P. Let N N' be any element of the

conductor. Then the magnetic force at P due to the element

<i s = N N' of the conductor is in a direction at right angles to

the plane of the paper, and if the length N P is called r and

M N ds N 

Fio. 3.

the angle P N M is called a, the magnetic force at P due to the

element N N' is equal numerically to

j d s sin a / jn

where I is the current flowing in the element. Let P M be

denoted by p. In order to find the magnetic force due to the

whole wire at P we have to integrate the above expression

throughout the whole length of the wire. To do this we
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transform it as follows :—Let the angle M P N = 6, then N P N'

is the increment of this angle, call it d 6. From the geometry

of the figure it is easily seen that sin a = cos 6, and that when

. . ,, ds r ds dd
d s is verv small ——, = - ,or —- = —.

rda p r* p

Hence substituting these values for sin a and d in equation

(1), we have as the expression for the value of the magnetic

force at P, due to the element N N' of the current, the formula

dF — l 00s ^ ^ ^

P

The magnetic force due to the whole infinitely long straight

current is obtained by integrating this expression between the

limits 6=0 and 6 = — and then doubling this value. Hence

the magnetic force of the whole wire at P is equal to

P h

cos 8 d6=— (2)

P

In other words, the magnetio force at any point due to the

current I flowing in an infinitely long straight conductor is

in magnitude inversely proportional to the perpendicular dis

tance of the point from the wire ; and, as regards direction, it

is everywhere perpendicular to the plane containing the wire,

and the perpendicular let fall on it from the given point. This

conclusion was experimentally verified by Biot and Savart by

vibrating a small magnetic needle at different distances from

a long straight current, and counting the square of the numbei

of oscillations in a given time made by the said small needle

in these different positions. If the current in the wire is

measured in amperes, then, since ten amperes equal one

unit current in absolute electromagnetic measure, and if A

is the current so measured in amperes, the magnetic force at

any point p centimetres from the wire is equal to

^ A = £ A

10 p bp'

Thus the magnetic force due to a current of one ampere

flowing in a long straight wire at a point one centimetre from

the wire is equal to one-fifth of a unit of magnetic force. This

is nearly equal to the value of the earth's horizontal magnetic

c
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force in England. It will be seen that the magnetic force due

to powerful currents in long straight cables may be sensible at

points very far removed from the cable. This magnetic force

is at every point perpendicular to the conductor, and hence the

direction of the force of such a straight conductor must be

everywhere a tangent to a circle drawn round the wire with

its plane perpendicular to the axis of the wire and its centre

in that axis. Hence a freely suspended magnetic needle tends

to stand perpendicular to a straight conductor when this last

is traversed by a current. If a magnetic pole of strength m is

placed at any point in the field of such a straight conductor

the magnetic force tends to drive the pole in a circle round the

wire with a force equal to dynamical units or dynes,

P

where p is the distance of the pole from the axis of the wire

and I is the absolute value of the current flowing in it. It

follows that the lines of magnetic force of such a linear current

are circles described round the wire with planes perpendicular

to it and centres in the axis of the wire. Oersted was aware

of this fact, and he expressly says,* "The electric conflict"

(that is, magnetic field) " performs circles round the wire."

We may next proceed to determine

The Magnetic Force at the Centre of a Circular Current.

If a thin wire is bent into a circle, and a current of strength

I is sent round it, the magnetic force, estimated at the centre

of the circle, due to each element of the length of the current,

is in a direction at right angles to the plane of the circle. Let

ds be an element of length and let r be the radius of the

circular wire, then the magnetic force due to ds at the centre

Ids
is equal to —5- . But, since the force due to each element is

r2

the same, the magnetic force due to the whole length of the

circular wire is equal to

(8)
r' r

If the current is measured in amperes and denoted by A,

then the magnetic force at the centre of the circular current is

<*>

* Annals of Philosophy, Oct., 1820 Vol. XVI., p. 274,
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This magnetic force at the centre of a circular current is in

a direction perpendicular to the plane of the circle. If the

circular current consists of a current of A amperes flowing

in a very thin wire wound n times round a circular groove of

mean radius r, then the magnetic force at the centre is

equal to

sv «5>

The expression for the magnetic force at a point in the plane

of the circle not in the centre is less simple (see Appendix,

Note A).

The Magnetic Force due to a Circular Current of n turns at a

point on its axis out of its own plane.

The third case of importance is to find the value of the

magnetic force due to a circular current at a point on a line
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drawn through its centre and perpendicular to its plane. Let

the circular current be X Y Z (Fig. 4), and let P be any

point on a line 0 P drawn through the centre 0 and perpen

dicular to the plane of X Y Z. The magnetic force at P,

due to an element ds of the circuit at X, acts along a line

perpendicular to X P, and is in the plane of X 0 P. If r

stands for 0 X, and x for 0 P, the magnetic force due to the

element ds at P resolved in the direction 0 P is equal to

r'/s sinXP0,

where I is the strength of the current in the element,

above is equal to

Irds

The

c 2
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and hence the magnetic force due to one whole turn of the

conductor is equal to

I 2rr*

(/•* +

If the circuit makes n turns, the magnetic force at P, due

to the current I flowing n times round the circular conductor

X Y Z estimated in the direction 0 P, is equal to

2™ I (6)

(r* + .tt)5

This, then, is the expression for the magnetic force, due to

a circular current of n turns at a point on its axis but outside

of its own plane. The calculation of the magnetic force due

to the circular currrent at points other than those on the axis

0 P, is a much more difficult matter. In the above formula I

is measured in the electromagnetic units. If the current is

measured in amperes and denoted by A, then (6) becomes

TnA ri (7)

The above expression may be put into another useful form.

Since ——
(,-2 +

is the differential with respect to x of

x

Jr2 + a;5'

which last, as can be seen from Fig. 4, is equal to cos X P 0,

we may write (7) in the form

^-n A 4- (00s 6), .... (8)

5 dx

where 6 stands for the angle X P 0.

The Magnetic Force due to a long closely-coiled Helical Current

at poinU on the axis near the centre.

Another useful case in which it is possible to calculate the

magnetic force due to a current is in the case of points in the in

terior of a very long closely-coiled helical current called a sole

noid. Such a case is practically realised by coiling insulated

wire round a tube. Let the length of the helix be I, and let

there be N turns of wire per unit of length. Then if a slice of
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this helix is considered of thickness d x, the number of turns of

wire in this slice is N d x. Let a current I flow through the

wire. Take a point on the axis of the helix somewhere near

the centre (see Fig. 5), and take any element of length of the

helix at a distance * from this point. Then by (8) the mag

netic force due to this element of length of the helix at the

point F is

2^ 1** 008 (g)

dx

where 0 is the angle 0 P X.

Let the slice of the helix be taken at successive distances

from the point P, baginning with x = 0 and ending with the

end of the helix. The sum of all the magnetic forces due to

each element of the helix to the left of the point P is then

equal to the integral of (9) taken between the limits 0 = 90deg.

or cos 0 = 0 and 0=0,, where 0, is the angle 0' P X', or the

angle subtended by half the mean diameter of the end of the

 

Fio. 5.

helix at the point P. Similarly, to obtain the whole force at P

due to the elements of the helix lying to the right of P we have

to integrate (9) from 0 = 0 to 0 = 02, where 08 is the angle sub

tended by half the aperture of the other end of the helix at P.

Adding these forces together we have as value of the whole

magnetic force of the whole helix at P the expression

F = 2tt NI (cos 0, + cos 0,).

If the helix is so long that the half diameter of the aperture of

the ends of the helix, as seen from the point P, is practically

zero, then 0, and 0S are both practically zero, and therefore

cos 0, + cos 02 = 2, nearly, or

F = 4ttNI (10)

The magnetic field at P is then equal to 4tt times the absolute

current-turns per unit of length. If the current is measured

2 2
in amperes, the force is equal to —ir N A, or to — ir times the

5 5
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ampere-turns per unit of length of the coil. Since - x is nearly

5

1-25, the approximate practical rule for the magnetic force

in the neighbourhood of the centre of a long helix of this kind

is that the magnetic force is numerically equal to 1J times

the ampere-turns per unit of length of the helix. The above

formula is only strictly true for points on the axis of the helix

and for helices very long compared with their diameters. It

is very nearly true for all points in the interior of a fairly long

helix. Thus, for instance, if the helix is twelve diameters

long, the magnetic force in the interior throughout one quarter

of its length on either side of the central point does not differ

by much more than one per cent, from the value it has at the

central point. Hence this fact presents us with an easy and

practical method of procuring a magnetic field of known

strength. On a long pasteboard or metal tube provided

with cheeks wind covered copper wire carefully and evenly

in any number of layers. Count the turns and layers of

wire, and measure the length between the cheeks ; this

gives us the turns per unit of length. Then pass a known

current through the wire, and calculate by formula (10) the

field at the centre. The coil should be at least twelve

diameters long. We may approximately apply (10) to calcu

late the magnetic force in the interior of such long bobbins

as are used in winding the field-magnets of dynamos. The

magnetic force in the interior of a long bobbin is strongest in

the centre of the bobbin, and falls off towards either end,

and it is slightly stronger at points nearer the wire than

on the central axis even at the centre. The complete

calculation of the field at any point in the interior or

exterior of a not very long helix is a rather difficult matter,

but the above formula (10) will be sufficient for most practical

purposes.

A final, practical, and useful case is that of the predetermina

tion of the magnetic force in the interior of a circular closed

solenoid or endless helical current. Let a wooden ring of

circular cross-section be wound over closely with insulated

wire so that the turns of the wire are contiguous and one

or more layers are put on. This is called a circular solenoid,

and we can calculate the magnetic force for points in the
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interior when the circular solenoid is traversed by a current.

Let R be the mean radius of the solenoid, and a that of the

mean circular section. If the wire is wound in one layer

on a wooden ring, then a will be the mean between the

half diameter of the section of the ring and the half diameter

measured over all after the wire is wound on it.

The magnetic force is not the same at all points over the

circular cross-section of the solenoid. To find out what it is

at any point we may proceed as follows :—A solenoid of any

size, meaning by that a spiral current with turns closely

adjacent, is electrically equivalent to a bundle of elementary

solenoids or spiral currents of exceedingly small cross-section.

Consider such a very small-sectioned solenoid, which may be

called a spiral filament. It may be obtained in practice by

winding insulated wire of small size on a very fine knitting

needle as a core, and then withdrawing the needle. The section

of this solenoid being very small, the magnetic force in its

interior is everywhere nearly the same over the cross-section,

and if the spiral is long the force in the centre in the interior

is equal to Air nl, where I is the absolute current flowing

in the wire, and n is the number of turns per unit of length.

Let this long elementary solenoid be bent round into a circle

so as to form a closed or endless solenoid, let x be the mean

radius of the circle which it forms and let n, be the number

of turns of wire of the spiral in an arc of the solenoid equal

to one unit angle in circular measure. Then, the number

of turns per unit of length of the spiral being n, we have

nx = nv and we may write the expression for the magnetic

force in the interior of the solenoid as

*EJhl (ii)

X

A little consideration will then show that the magnetic effect

of any circular solenoid must be the same as that of a bundle

of elementary solenoids, so wound and arranged as that the

number of turns of wire of each spiral per length of arc

subtending one unit angle in circular measure is the same.

The magnetic force in the interior of the circular solenoid

at any point in the cross-section is then equal to the product

of iirnl I, and the reciprocal of the perpendicular distance
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of this point from the axis of the circular solenoid. The

force over the cross-section is not uniform, but has a

particular value for every point, but the same value at all

points at an equal radial distance from the axis of the

circular solenoid or ring coil.

§ 2. Magnetomotive Force and Magnetic Induction.—We

have in the foregoing section defined magnetic force, and

shown how it can be determined in a few simple cases from

a fundamental principle. If any line is drawn in a magnetic

field of force, and we sub-divide this line into very small

elements of length, and estimate the magnitude of the mr g-

netic force at the centre of each element resolved in the

direction of this element, and then sum up all the products

obtained by multiplying the length of each element by the

strength of the magnetic force along its direction, we obtain

the line integral of magnetic force along that line. This is also

called the magnetomotive force along that line.

In mathematical language, if H is the magnetic force at any

point on the line, and 6 the angle this force makes with the

line and d s, an element of length of that line at that point, then

JrH cos 6ds is the line integral of magnetic force along that

line. From the definition of magnetic force, it is clear that

this line integral is the work done in carrying a free unit

magnetic pole along that line. This magnetomotive force

along a line is likewise called the difference of magnetic potential

between the two ends of the line. In those cases in which the

magnetic force has a uniform value and is in the direction of

the path chosen, it becomes a simple matter to calculate the

magnetomotive force along that line, for it is the simple

product of the numerical values of the magnitude of the

magnetic force and the length of the line.

Let us consider two simple cases. First, when the line integral

is taken along a closed line or loop in a magnetic field drawn

in air or other non-magnetic medium, but not linked with

or encircling a circuit conveying a current. In this case the

value of the line integral is zero, because no work is done in

carrying a free pole around a closed path in an air field.

Second, when the line integral is taken along a path which is
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a closed loop, and which surrounds or is linked with a circuit

conveying an electric current. Consider the simplest case.

Let a straight wire convey an electric current C, the return

being at a great distance. Describe a circular line round the

wire at a distance r from the axis of the wire. The length of

this line is 2ir r ; the magnetic force at a distance r from a

2C
straight wire is — units ; and the line integral along this

r

2C
line is 2* r x - = 4it C. Hence the line integral of the

magnetic force taken once round the circuit is in times the

total current through the line of force. This can be shown

to be generally true, and is the general relation between

magnetic force and current.*

If a looped line is taken through a helical current which

links itself round the line n times, then, if A amperes traverse

the conductor, the total quantity of current flowing through

the loop is n A (equal to the ampere-turns), or in absolute

G. 6. S. measurement is 7~ ; hence the line integral of the

magnetic force taken along any closed line threading n times

through the circuit of a current A is ^ n A, or \\ times the

ampere-turns of the current which are linked with the closed

iw
line. It is useful to remember that the value of -j^ is very

nearly 1-25.

We have here introduced the student to the notion of a

lins integral. Another similar mathematical idea which has

to be grasped is that of a surface integral. If, in any field of

magnetic force, we describe a surface of any form bounded by

a closed line, the magnetic force at all points of this surface

will have a certain value, call it H. Let the surface be

supposed to be divided in a number of very small elements

of surface each equal to d S. At the centre of each element

estimate the value of the magnetic force perpendicularly or

normally to that element, take the product of the value of

this normal value and that of the element of area. If 6 is

the angle between the direction of the force and that of the

* See Electrician, Vol. X., p. 7 : Mr. 0liver Heaviuide on " The Relation

between Magnetic Force and Electric Current."
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normal to the surface, then the product of the normal force,

or H cos 6 and dS is to be taken for all elements of the

surface. The sum of all such products is called the surface

integral of the force, and is expressed in mathematical language

by the integral / H cos 0 d S.

This is also called the flux of the force through the area, for

if we suppose that, instead of dealing with magnetic force, we

were considering the velocity of a moving fluid, the surface

integral of the velocity over any area would represent the

whole quantity of liquid which flows in one second through

the line bounding the area or the flux of the fluid.

Returning to the measurement of magnetomotive force, the

reader will notice that, as a consequence of the above general

theorem, in those cases in which we are dealing with the

magnetic force due to a spiral current or solenoid making a

number of turns round, or linkages with, the line of the

magnetomotive force, the measurements of this magneto

motive force is practically made in ampere-turns, or by the

products of the number of turns of the wire and the ampere

current conveyed by it.

0wing to the fact that the circumference of a circle is 2ir

times its radius in length we get a numeric ^ introduced

which makes the magnetomotive force, measured along a

line linked with a line of current making n turns round it,

numerically equal to times the ampere-turns, but it is not

difficult to remember or to use this simple factor.

When magnetomotive force acts on any body, whether

magnetic like iron or non-magnetic like wood or air, it

produces in it an effect called magnetic induction. The student

must think of magnetic induction as something which is

produced by magnetomotive force, just as electric current

is produced by electromotive force. Magnetic induction is a

quantity which is called a flux, and the magnetic induction

in magnetic bodies results from magnetomotive force or

difference of magnetic potential, just as the flow of water

results from difference of pressure or head of water, and the

flow of electricity in conductors from difference of electric

potential, and the flow of heat in thermal conductors from

difference of temperature.
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The quality in virtue of which magnetomotive force can

produce magnetic induction in a magnetic body is called its

magnetic inductivity, or magnetic permeability. A body having

large permeability is one in which a given magnetic force

produces a relatively large magnetic induction. Similarly,

we might say that the quality of bodies in virtue of which a

hydrostatic force or pressure produces a flow of fluid through

them is called their porosity, and a very porous body is one

in which a given hydrostatic pressure produces a relatively

great flow of liquid. Quite similarly we define electric and

thermal conductivity as those qualities of bodies in virtue of which

electromotive force and difference of temperature produces

in them electric current or flow of heat. Hence magnetic

permeability, electric conductivity, thermal conductivity,

porosity, and, we may add, specific inductive capacity, in

electrostatics are all analogous qualities of bodies numerically

capable of being measured which are of importance in that

they determine the amount of the flux produced by a unit of

force of the corresponding kind.

The magnetic induction, like magnetic force, has a definite

direction as well as magnitude at every point where it exists-

Both magnetic induction and force belong to that class of

quantities which in mathematics are called vector quantities,

and possess both magnitude and direction. In order to

define the direction and amount of magnetic induction we

fall back upon the fundamental discovery of Faraday. The

ground fact of all his investigations is that if a conducting

circuit is placed in a field of magnetic induction any change

in the magnitude or strength of the magnetic induction

will create an electromotive force in that circuit urging,

or tending to urge, an electric current round it, provided

that the nlane of this circuit has any but one particular

direction. We may, therefore, use a small conducting circuit

to explore a field of magnetic induction, just as we employed a

free magnetic pole to explore a field of magnetic force. Let a

small circular conducting circuit, formed, say, of one turn of

very thin wire, and enclosing one unit of area, be placed

in a field of magnetic induction. Let this small loop or

unit circuit be held in various positions, and let changes

be made in the induction by varying the magnetomotive
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force. It will be found that there is a particular position

or positions of the circuit in which no change in the strength

of the induction produces any electromotive force in this

small circuit. The direction of the induction at the centre

of the circuit is then parallel to the plane of the circuit.

The axis round which the circuit can be revolved without

affecting this inactive condition of the circuit is the direction

of the induction at that place. Hence we can map out at

all points of the field of induction the direction of tlie magnetic

induction. If the circuit is turned into any other position

such that a change in the induction does produce an electro

motive force acting in the circuit, we may find by trial

another position of the circuit at any point in the field in which

the total suppression of the induction, or its instantaneous

reversal in direction, produces the maximum electromotive

force in the circuit. The direction of the induction is then

normal to the plane of that exploring circuit. At every

point in the field of induction the induction has a certain

magnitude as well as direction. If we suppose any plane

surface placed normally to the direction of the induction in a

field of uniform induction, the product of the strength of the

induction and the area of the surface is called the total

induction through that area. If we take any surface placed

in any position, and suppose it divided up into small elements

of surface d S, and at the centre of each element of the surface

estimate the magnitude of the induction in a direction normal

to the surface at the centre of the element, and sum up all the

products obtained by multiplying the normal value of the

induction and the area of the element, the sum so obtained is

called the surface integral of induction. If we draw in a field

of induction a line such that the direction of its tangent

at any point is the direction of the induction at that point,

such a line is called a line of induction. Suppose a surface of

any kind, for simplicity a plane surface, placed in a field

of induction, and let it be divided up into small areas such

that over each of them the surface integral of induction is

equal to unity, and if through the centre of each of these

small areas we draw a line of induction, then we may make

the following statements:—The bounding line of the surface

is said to be perforated by induction, or to have a flux of
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induction taking place through it, or to have lines of induction

passing through it. Since the total surface integral of induc

tion through this surface is, by definition, equal numerically to

the number of lines of induction passing through the boundary

of the surface, we may also speak of the number of lines of

induction passing through the surface. Faraday used the

phrase number of lines of magnetic force instead of induction.

Hence the student should notice that the following expressions

all denote the same thing :

1. The surface integral of induction over a surface.

2. The total induction through the surface (Maxwell).

8. The flux of induction through the surface.

4. The number of lines of induction passing through the

surface.

5. The number of lines of force (Faraday) passing through

the surface.

If a circuit be placed normally in a field of uniform

induction, then the numerical product of the area of the

circuit and the strength of the induction gives us the total

induction through that surface, or total number of lines of

induction (force) passing through that circuit.

In the twenty-eighth series of his " Experimental Researches

on Electricity," Faraday examined afresh with elaborate care

the notion of lines of magnetic force which had guided him

at all stages of his electromagnetic discoveries. He there

gathers together his ideas on this subject, and by a series

of researches, inimitable for physical insight and exquisite

experimental skill, he has shown how the definition of a line

of force or induction can be raised from a merely qualitative

or directive one into a quantitative conception by which not

only the direction but the magnitude of the induction can

be denoted. Having placed clearly before his mind the idea

of the surface integral of induction or the total induction

through any surface or circuit as the important one to hold

in view, he proceeds in the latter part of his investigations

(§8,152 and §8,199 "Exp. Res.") to show experimentally

that when any closed circuit, such as a l6op of wire, is placed

in a field of magnetic induction, and if in any way the total

induction through that circuit is changed, there is a flow of

electricity round the circuit, and the total_tjuantity so set
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flowing is proportional to the conducting power of the circuit,

and to the change in the total magnetic induction passing

through it. Employing for this purpose a ballistic galvano

meter, or a galvanometer with a needle having a long periodic

time of vibration inserted in the circuit, he placed circuits

of various forms in fields of induction, and exhausted every

possible method of experimental proof that in every case

any change whioh altered the total induction through the

circuit was accompanied by the production of an electro

motive force in the circuit, and that the product of the total

quantity of electricity so set in motion, and the number repre

senting the resistance of the whole circuit, was in every case

proportional to the change in the total induction through

the circuit. This provides us with the means of defining

the strength or magnitude of induction and stating what

is meant by a unit of total induction.

A unit of magnetic induction is a flux or amount of iwlwtion

such that, when passing through or linked once with a circuit of

unit resistance, it gives rise, if suppressed, to a flow of a unit

quantity of electricity round tlutt circuit.

In other words, the above is the definition of what is

meant by one line of induction (or force), linked once with

a single turn of a circuit of unit resistance. We can then

define the meaning of the term density of magnetic induction

or induction density. It is the total induction through a unit

of area taken normally to the lines of induction at that place.

Instead of the term density of induction, it is usual to speak

simply of the induction at any point in a field of induction,

or the number of lines of induction (force) passing normally

through a unit of area.

We shall employ the letter B to stand for the induction at

any point in a field of magnetic induction. Hence in the

notation of the differential calculus d B will stand for any

small change in the induction. Let a circuit formed of one

single turn of wire whose resistance is R be placed in a

uniform field of induction of strength B, and let S be the

area of that circuit ; the total induction through the circuit

will be B S. Let the induction be changed by an amount

d B, then the total induction is changed by an amount

d (B S). According to Faraday's experiments the change
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will set a small quantity of electricity, which may be denoted

by d q, flowing round the circuit, and we have

rf(BS) = Rrf?.

If the whole of this change of induction takes place in a

very short interval of time, which may be denoted by dt,

then during that time the total flow of electricity is equiva

lent to an average current of strength 2', and we have

i d t = d q.

Hence also d (B S) = Bi'd«.

But B t is the instantaneous value of the induced electro

motive force in the circuit; let this be denoted by e, and

we have

d(BS) = edt.

S4? = e (12>

Therefore the magnitude of the induced electromotive force

in the circuit is at any instant expresssed by the time-rate

of change of the total induction passing through the circuit.

If we bear in mind clearly the meaning which Faraday

attached to the phrase " a line of force " or " the number of

lines of force " as expressing the total induction through any

area or conducting circuit, we can express in his language

the above fact in a statement which may be called Faraday's

Law of Induction ; it is as follows :—

If there be in any field of magnetic induction a circuit

which is traversed by induction, then any change either

of the size or position of the circuit or of the direction or

strength of the induction which changes the number of lines

of force (induction) passing through the circuit creates an

induced electromotive force in this circuit which is numeri

cally equal at any instant to the rate of change in the number

of lines of force (induction) so passing through it. The

above defines the magnitude of the electromotive force ; we

have next to define its direction in the circuit. To do this

we must make certain conventions. If a watch-faco is held

in front of the observer, then the positive direction through that

watch-face is away from the observer, and the positive direction

round that disc is in the direction in which the hands rotate.

The connection between positive direction round and positive
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direction through can be also fixed by thinking of the

direction of the thrust and twist of a corkscrew or other

right-handed screw. The negative direction of rotation is

therefore the counter-clockwise direction.

In regard to the direction of the induced electromotive

force, the following is the law :—The insertion of lines of

induction into a circuit in the positive direction, or the in

crease of positively-directed lines of induction, gives rise to

negatively-directed electromotive force. Let the reader bear

in mind the following rule : Imagine a magnetic north pole

and a magnetic south pole placed opposite to each other, as in

the case of a horse-shoe magnet or dynamo field-magnet.

The positive direction of the magnetic force in the interspace

is by convention from the north pole to the south pole. This

field of force creates magnetic induction in the air-space,

and the positive direction of the lines of induction is in the

same direction from the north pole to the south pole in the

air-space. Place a watch (non-magnetic) in this space with

its watch-face facing the north pole; the watch-face is

traversed by a certain flux of induction. Let the rim of this

face be thought of as a conducting circuit. Then demagne

tise the magnets or withdraw them so as to diminish the

induction perforating through the watch-face ; it will generate

an induced electromotive force in the rim which will tend to

set an induced current flowing round the rim in the direc

tion in which the hands of the watch usually rotate, or in

the positive direction. Hence as time increases induction

diminishes, and we get positively-directed electromotive force.

If, then, N represents the number of lines of induction passing

positively at any instant through the watch-face and -5—

the rate of decrease of induction at any instant, since this

creates positively-directed electromotive force, we must write

dN
- —— =«.

dt

The differential coefficient must, therefore, have the negative

sign.

The above rules accordingly settle the magnitude and the

direction of the induction and of the rate of change of induc

tion, and hence of the induced electromotive force.
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§3. The Magnetic Circuit. — Magnetic Resistance.—We

have in the foregoing section defined magnetic force, magneto

motive force, and magnetic induction, and explained how they

are measured. We have in the next place to examine the

conditions under which magnetic induction is produced by

magnetomotive force. The same magnetomotive force will

not always produce the same magnetic induction. What it

will produce depends upon the nature ot the magnetic circuit.

The path of a line of induction is always a closed loop—that

is, it is an endless line. In its path it passes either through a

magnet or is linked with an electric circuit, and the path of a

line of induction is called a magnetic circuit. This circuit

may pass wholly through air, or it may pass partly or wholly

through iron masses, or of masses partly of iron, air, brass,

wood, &c. There are three principal kinds of magnetic

circuits. First, those in which the path of a line of induction

lies wholly in iron or magnetic metals. Second, those in

which it travels wholly in air or in non-magnetic metals.

Third, those in which it passes partly through iron masses

and partly through air or non-magnetic materials. This

distinction is founded upon the fact that there is a very

great difference between circuits in which the lines of in

duction lie wholly in iron, wholly in air or non-magnetic

materials, or partly in magnetic and partly in non-magnetic

materials.

A given magnetomotive force produces an enormously

greater induction when the path of the lines of induction is

wholly in iron masses than it does when they are wholly in

air. This is analogous to the fact that a given electromotive

force produces a much greater current when the electric

circuit of given dimensions is composed wholly, say, of copper,

than it does when it is composed wholly, say, of carbon. The

number expressing the ratio between the numerical value of

the electromotive force and that of the total current produced

by it in any electric circuit is a measure of the value of the

electrical resistance of that circuit, and briefly we may say that

for unvarying or continuous currents the electrical resistance

of a circuit

The electromotive force acting in the circuit

The total current in circuit

E
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Similarly the term magnetic resistance is applied to that

quality of the magnetic circuit in virtue of which a given

magnetomotive force produces a certain definite total mag

netic induction, and the numerical measure of this magnetic

resistance of a circuit is obtained by taking the quotient of the

numbers representing the magnetomotive force and the total

induction, or the magnetic resistance of a circuit

—The magnetomotive force acting in the circuit

The total induction in circuit

There is, however, a great difference between electric and

magnetic circuits. In the case of electric circuits, though the

electric resistance is affected by temperature changes and

other physical alterations, yet, when all necessary corrections

are made, it is found practically that the electric resistance of

a circuit does not depend upon the current flowing through

it, whereas in the case of magnetic circuits formed wholly

or partly of magnetic metals the magnetic resistance of the

circuit does depend essentially upon the value of the induction.

It has not yet been found necessary to coin words analogous

to volt, ampere, and ohm, as names for the practical units

of magnetomotive force, magnetic induction, and magnetic

resistance.

All magnetic circuits which are wholly composed of non

magnetic substances, such as air, wood, brass, &c., have the

same magnetic resistance for the same dimensions, and the

specific magnetic resistance of these substances, or the magnetic

resistance per unit length and unit cross-section, is taken as

unity. As an instance of the great difference in magnetic

resistance between an air circuit and an iron circuit let us

consider the following simple case.

Let two rings be made, one of wood and the other of the

best soft iron. Let these rings have a circular cross-section of

radius a, and let the mean radius of the circular axis of the ring

be denoted by R, the value of B being large compared with that

of a. Let each of these rings be wound uniformly and closely

over with insulated wire, and let there be N turns on each

ring. We have then two circular solenoids, and if a current is

passed through each coil of which the strength is A amperes,

we have equal magnetomotive forces acting round the axis of
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each circular solenoid. This magnetomotive force along the

circular axis of the ring is equal to the product of the length

,2itR of the path of the line of induction and the strength of

the field along this line, and it is therefore approximately equal

ro , »j .

" x2itR = HNA.

10 2ttR 4

The sectional area of the magnetic circuit is w a2, since all the

lines of induction are confined to the inside of the circular

solenoid and from endless circular lines. The mean length of

the magnetic current is 2it R. The total magnetic resistance

is numerically obtained by multiplying the specific magnetic

resistance (which in the case of the wooden ring is equal to

unity) by the length and dividing by the section of the path.

Hence, the magnetic resistance is equal to 1 x -"^ = 2?, and

7r a - a1

this is the total magnetic resistance of the circuit. The total

induction is numerically equal to the quotient of the magneto

motive force, viz., jq^' A, by the magnetic resistance, viz.,

^-5 and is therefore equal to ^\^ , and the induction or

a* ' 1 10 . R

1 N A . •
induction density is equal to - •—— , since the section is irn2.

5 R

The above is very nearly true if a is very small compared

with R, but if this is not the case, we have to take account of

the fact that in this last instance the magnetic force has

different values at different points over the cross-section of the

solenoid (see Appendix, Note B).

As an actual example we may take the case of a wooden

ring in which a = 1-27015 centimetres, R= 12-8291 centi

metres, and N = 628. If a current of 1 ampere is sent

round this wire, the magnetomotive force on the axis is

jqXNA = 1£x 623 = 779, and the induction density along the

central axis is 1 - A = jf J523. =9-7 C.G.S. units nearly, or

r> R r> 12-829

about 10 lines of induction per square centimetre.

If, however, a soft iron ring of the same dimensions is

employed and wound over with the same number of turns and

the same current employed, it would have been found that the

d2
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induction density on the axis would have been about 10,000

C.G.S. units or lines of induction (force) per square centi

metre. The same magnetomotive force in both cases, viz.,

779, would in one case give rise only to an induction density of

10 C.G.S. units, and in the other case to an induction density

of many thousands of C.G.S. units. This is because soft iron

has a far less specific magnetic resistance than wood, and a

given magnetic force produces far more induction through it

than it does in wood.

 

Fio. 6.

Diagram showing the path of the Lines of Induction in a closed Iron

Ring when magnetised by a closed endless suleuoid or coil wound on it.

The dotted lines inside the ring represent the Lines of Induction. There

U no sensible field outside the ring.

There is, very roughly speaking, about the same numerical

difference between the minimum specific magnetic resistance

of soft wrought iron and that of air as there is between the

specific electrical resistance of copper and gas retort carbon.

If, instead of forming the core of the solenoid above

mentioned wholly of iron or wholly of wood, we make it partly

of iron and partly of wood, or employ an iron ring with a

cut or air-gap in it, and apply the same magnetomotive
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force, the result will be that the induction in different parts

of the core will be found to be different. There will be a

certain number of lines of induction which will be continuous

right round the core, and which are determined by the

resultant magnetic resistance of the path which is in part of

iron and in part of wood or air, and which resultant magnetic

resistance will be something intermediate between that of a

complete iron core and a complete wooden or air core. There

 

Fig. 7.

Diagram showing the paths of the Lines of Induction in and outside an

Iron Ring with an air-gap in it when magnetised by a solenoid wound on

it. The tines exterior to the ring are supposed to be delineated by iron

filings. The lines inside the ring are represented by the dotted lines.

will be, however, an additional induction in the iron, which will

be represented by an extra number of lines of induction which

pass through the iron but turn back and complete themselves

through the space outside. In Figs. 6, 7, and 8 are shown

three diagrams illustrating the form of the lines of induction

for three cases of complete and incomplete iron circuits.

Where the lines of induction enter and leave the iron parts of

the core they give rise to magnetic jwles in the iron, and
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this additionally complicates the case. These magnetic poles

produce a reverse magnetising force in the interior of the iron

which opposes the magnetic force due to the magnetising

solenoid. Such an imperfect iron circuit is often called an

open magnetic circuit, whilst the complete iron ring core would

be called a closed magnetic circuit. The wood, or air, or other

body of unit specific magnetic resistance is said to form a gap-

in the iron magnetic circuit.

 

Fig. 8.

Diagram showing the paths of the Lines of Induction in and near an

Iron Ring with wider air-gap in it, when magnetised by a solenoid wound

on it. The dotted lines show the paths of the lines of induction in the

iron core, and the exterior field is supposed to be delineated by iron

filings.

Speaking generally, the subject of closed magnetic circuits

is more easy to treat and deal with than that of open magnetic

circuits. The particular reason why magnetic problems are

more difficult to manage than the corresponding electrical

problems is because the magnetic resistance even of a closed

magnetic circuit is not a constant quantity. It is not only

affected by temperature, but is also determined, within very

wide limits, by the value of the magnetic induction itself, by
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the direction of the induction, in that it is not the same for

increasing as for diminishing induction when the magneto

motive force, and therefore the induction, is periodic ; and, in

fact, it is dependent upon the whole past magnetic history of

the iron. It is impossible, therefore, to draw up a table of

exact specific magnetic resistances of magnetic metals as we

can draw up a table of specific electrical resistances, and

reduce the calculation of the induction produced by a given

steady magnetomotive force to the same simplicity that

results from the application of Ohm's law to electric circuits.

The reciprocal of magnetic resistance is magnetic conductance.

Faraday used the phrase " conducting power for lines of

magnetic force" to express the reciprocal notion to that of

magnetic resistance. The reciprocal quality to specific magnetic

resistance is also called magnetic permeability. This is generally

denoted by the symbol p. Hence the magnetic permeability

is the magnetic conductance of a magnetic circuit of unit

length and unit cross-section. If p stands for specific magnetic

resistance and p for magnetic permeability, we can say that

1 = P (18)

P

Consider a closed magnetic circuit of uniform specific magnetic

conductance p and of length I and section 8, and let a uniform

magnetic force H act in this circuit, producing a uniform

induction B. Then by definition the magnetic resistance

R of the circuit is given by

_ H I _ Magnetomotive force

B s Total induction '

where H I is the magnetomotive force, and B * the total

induction ; but

R = fl and p = - ;

f n

therefore we have B = p H (14)

This equation (14) is not only a fundamental equation in

magnetism, just as Ohm's law is in electro-kinetics, but it

furnishes a definition of the method of measuring magnetic

permeability.
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Experiment shows, as stated, that the ratio B to H,

B
expressed by the equation u = p, is not of a determinate

H

character, and that the value of /*, so far from being constant,

is dependent on the whole previous magnetic history of the

iron, on the value of B, and on the nature of the magnetic

changes the iron is undergoing, viz., whether H is increasing

or diminishing. In fact, p for iron varies from a value not

far from unity for strongly magnetised iron up to a value of

2,000 or 2,500 at a maximum for closed magnetic circuits of

best soft iron, and down to a value of about 100 for very

feeble magnetising forces.

In a cycle of magnetic operations, during which a bar of

iron is exposed to increasing magnetising forces and then

afterwards to decreasing ones, beginning and ending with the

same force, the value of B is always greater on the descend

ing than on the ascending course, and hence the value of p

which is given by the ratio of B to H is also different. This

phenomenon, which is exemplified familiarly by the retention

of magnetism in a bar after withdrawal of the magnetising

force, has been named by Prof. Ewing hysteresis (from vo-repiu,

to lag behind).

The magnetic permeability above defined is a quantity

which is in magnetism the analogue of specific inductive

capacity in electrostatics, and of the conducting power of a

body for heat. It was spoken of by Faraday as the conduct

ing power of a magnetic medium for lines of force (''Exp. Re

searches," Ser. XXVI., § 2,797 and § 2,846). More recently

the reciprocal of /* has been called the magnetic reluctance.

The term magnetic resistance has, however, become so sanc

tified by use that we shall continue to employ it in spite of

certain objections which have been urged against it.

The magnetic resistance of a circuit, composed partly of

iron and partly of air, is greater in proportion as the length of

the air path is increased in proportion to that of the iron.

This fact is strikingly shown in experiments on the magnetic

induction produced in closed rings and short bars of soft iron.

Thus from some curves given by Prof. Ewing we find that in

a certain soft iron ring a magnetising force of 7 C.G.S. units

produced an induction of 11,000 C.G.S. units; whereas, in
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the case of an iron rod, of which the length was 50 times the

diameter, the same force produced an induction of only 4,000

units. In the first case the circuit was a complete iron circuit,

and the resistance small. In the second case the magnetic

.circuit was partly iron and partly air, and therefore the total

magnetic resistance was much greater.

The equation B = p H is the expression of the fundamental

relation between magnetic force and magnetic induction.

For all ordinary non-magnetic materials the value of p and

also of its reciprocal p is taken as unity. Hence, in these

cases the magnetic force and magnetic induction have the

same value and are in the same direction. In the case of

such diamagnetic bodies as bismuth and phosphorus, p is

very slightly less than unity and p very slightly greater, but

so little as to be unappreciable except to refined experiments.

In speaking of air circuits, or non-magnetic circuits generally,

we can speak of lines of force or lines of induction indifferently,

as the force and induction have everywhere the same numerical

value and same direction, but in dealing with magnetic

•circuits of permeability greater than unity, the magnetic

force and magnetic induction must be carefully distinguished,

because they have not the same magnitude and may not have

the same direction. In crystalline magnetic bodies the induc

tion might have a very different direction and value to the

force, and as wo have seen in the case of soft iron, the induc

tion may be, numerically, two or three thousand times greater

than the magnetic force.

• It should be borne in mind, therefore, that in the air-space

outside a magnet or a mass of iron under induction the mag

netic force and magnetic induction have the same direction

and same numerical value, but inside a magnet or mass of

iron under induction they must be distinguished. The mag

netic force outside the magnet may be called the magnetic

induction through the air, and generally in the non-magnetic

material surrounding the magnet the magnetic force and

magnetic induction are, for the purposes of measurement,

one and the same. In the interior of a mass of iron under

induction in a magnetic field, the magnetic force at each

point is one compounded of that due to the external or

original field and that due to the induced polarity acquired,
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and which acts to produce an opposing magnetic force. Hence

the effect of the induced poles on any element in the interior

of the iron is to tend to demagnetise it when the external

magnetising force is withdrawn. In the inside of a straight

uniformly magnetised bar the magnetic force due to the

influence of the poles themselves is from the end which points

to the north to the end which points to the south, both within

the magnet and in the space outside. The magnetic induction,

on the other hand, is from the north pole to the south pole

outside the magnet, and from the south pole to the north pole

inside the magnet. A line of induction followed round, moving

always in the positive direction, is found to be a closed loop or

endless line.

It is a fact of fundamental importance that a thin disc of

iron or steel, magnetised so that at all points the magnetic

axis of each small element of it is in a direction normal

to its surface, produces a magnetic field identical with

that produced by a wire conveying an electric current

coinciding in form with the edge of the disc. In short, the

magnetic field of a closed circuit conveying a current is

identical with that of a magnetic shell filling up the aperture

of the circuit. The magnetic field due to electric currents

circulating in conductors is, however, of such a nature that

each line of induction embraces or surrounds the axis of the

circuit once or more. The magnetic field due to permanent

or electromagnets is of such a nature that each line of

induction passes through the magnet, giving rise to magnetic

polarity at the places where it enters and leaves the iron or

steel. Every line of induction either surrounds an electric

current or passes through magnetised iron.

The intensity of magnetisation of any element of a magnet or

mass of iron under induction is a term requiring definition.

The couple required to hold a very small magnet when

placed with its axis of magnetisation perpendicularly across

the lines of force of a uniform magnetic field in air of unit

strength is a numerical measure of the moment of the magnet.

The moment of a magnet or of any element of a magnet

may be considered numerically to be made up of two factorsone its volume, and the other its intensity of magnetisa

tion, or, simply, its magnetisation ; and hence, for a uniformly
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magnetised small linear needle, we may define the intensity of

its magnetisation by saying that it is the magnetic moment

of unit volume of it. Intensity of magnetisation is, like

force and induction, a vector quantity.* In the case of a very

long thin wire of soft iron placed along the lines of force of a

uniform field the three quantities—the magnetic force, the

magnetic induction, and the magnetisation—are all in align

ment at any point.

It is important that the full meaning of the phrase " mag

netic force at any point " should clearly be grasped. If there

be any uniform magnetic field of strength H0, and in it is

placed a mass of iron in the shape of an elongated bar, the

configuration of this uniform field is disturbed and magnetic-

polarity is developed in the iron. At any point in the interior

of the iron there is a magnetising force, henceforth denoted by

the letter H, which is due partly to the original magnetic field

H„ and partly to the induced poles which create a force

opposing H0. This resultant magnetic force is spoken of as

the magnetising force in the iron, and it is the resultant of the

external magnetic forces and the internal magnetic forces due

to the polarity. If the form of this bar is so chosen that there

are no magnetic poles, as in the case of a ring lapped over

with an endless solenoid, then the magnetic force in the iron

is easily calculable, and it is that due to the external magnetic

force alone. If the bar is straight and very long the induced

magnetic poles may exert so little effect at the centre of the

bar that the induction there and the magnetic force also is

that due to the external field alone.

At each point in the iron the magnetic force H must be

thought of as producing magnetisation or magnetic displace

ment, just as in electrostatic phenomena electric force pro

duces in a dielectric electric displacement or electric strain, or

just as mechanical stress produces in an elastic body ordinary

strain or displacement at every point. This magnetisation is

not necessarily in the same direction as the force.

§ 4. Lines and Tubes of Magnetic Induction.^Faraday

and Maxwell have raised the conception of a line of magnetic

• A vector quantity is one which is only precisely fixed when we know its

direction as well as m2gnitude.
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induction from a simply directive notion to one which enables

it to be used to convey a quantitative knowledge of the mag

netic field—in other words, have enabled lines of induction to

bo used not only to show the direction of the induction, but

also its magnitude in certain units. By this means the mag

netic field can be mapped out into areas and volumes which

have a definite dynamical signification.

In the twenty-eighth series of his " Researches on Elec

tricity," Faraday lays stress on the fact stated above that

every line of force (induction) is an endless loop (§ 3,117,

"Exp. Res.") :—"Every line of force must therefore be con

sidered as a closed circuit passing in some part of its course

through a magnet, and having an equal amount of force in

every part of its course. There exist lines of force within the

magnet of the same nature as those without. What is more,

they are exactly equal in amount to those without. They

have a relation in direction to those without, and are, in fact,

continuations of them."

Let a magnetic field have drawn in it a number of closely

contiguous lines of induction. None of these lines can cut

each other, because the resultant magnetic induction at any

point can have only one definite direction.

In any region it is possible to describe a surface perpen

dicular to all the lines of induction. Such a surface is called

a level surface.

In the case of a straight infinite current, these level surfaces

will be planes radiating out from the axis of the wire, and

their traces on a plane perpendicular to the axis of the wire

will be a series of radial lines cutting all the circular loops of

induction normally. Let A (Fig. 9) represent such a level

surface, and let B be another, both cutting the same sheaf of

magnetic lines of induction.

0n the level surface A let any unit of area a be taken, and

let this area a be projected on to the adjacent level surface B

by lines of induction drawn through its boundary. We have

then a tubular surface, the ends of which are formed of

portions of level surfaces, and the rest of the tubular surface

may be conceived to be formed of lines of magnetic induction,

supposed to be very closely drawn through the bounding line.

Such a geometrical conception is called a tube of induction.
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The characteristic quality of a tube of induction is as follows.

If the areas of the sections made by the two level surfaces A

and B be called * and s', and if B be the mean magnetic

induction over s, and B' that over s', then B s = B' 2', or the

product of a normal cross-section of tube and mean magnetic

induction over that section is constant for all sections of the

tube.

If any level surface be drawn, and on this surface be

marked off contiguous small areas such that the magnitude of

the area is inversely as the mean value of the magnetic

induction over that little area, and if s and B are, as before,

the numerical values of any small area and the mean induc

tion over it, then the product B * may be made equal to unity

/or each of these portions of that level surface. From these

small areas let tubes of induction be supposed to take their

rise, the whole field will be cut up into contiguous tubes of

induction. Each of these tubes is called a unit tube of induc

tion. By their mode of description these tubes will have

small cross-section at pi aces where the field is strong and

widen out in section at places where it is weak, and by the

fundamental property of the tubes the value of the mean

magnetic induction at any place is inversely as the cross-

section of the tubes of induction force at that place.

From Faraday's point of view, a magnet of any form must

be mentally pictured as surrounded with and as having its

whole field filled up by a closely packed arrangement of such

unit tubes of induction, the tubes being intersected at right

angles by the equipotential or level surfaces, and each having

 

Fio. 9.
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at any point a normal cross-section which is inversely as the

magnetic induction at that point. This system of tubes must

be supposed to be rigidly attached to the magnet, and to move

with it wherever it goes. Furthermore, in accordance with

Faraday's conception, each tube is an endless tube, or, as it

were, a pipe returning into itself and passing in some part of

its course through a magnet or round an electric current. La

constructing what may seem to the student to be a highly

artificial conception, we are not postulating necessarily any

physical existence for these tubes. They should be regarded

simply as a device for plotting out the space round a magnet

according to a definite rule, and may, in the first place, be

regarded as no more than analogous to such subdivisions of

the earth's surface as we make by lines of latitude and longi

tude. Having thus divided up a magnetic field into unit

tubes of induction, it is simpler in thought to suppose a

single line of induction to run down the axis of each tube, and

then to mentally disregard the tubular system, and, instead

of speaking of a unit tube, to speak of each as a single line

of induction. If we imagine a system of induction tubes

starting from an equipotential surface and draw any irregular

curve on this surface, we shall find that this curve encloses

a certain number of tubes or lines of induction (Fig. 10).

Bearing in mind that the cross-section s of the tube where it

sprouts out from the equipotential surface is inversely as the

magnetic induction B at the centre of this cross-section, it is

at once evident that the greater the average induction over

the area denned so much the more numerous will be the

 

Fig. 10.



 

number of tubes or lines of induction which pass through it.

If the cross-section s of each tube should happen to be equal,

and there be n tubes passing altogether through an area equal

to S, bounded by the black line, then by the very definition of

a unit tube

B.v = l,

or n B s mm n \

but n * = S,

hence B S = n ;

and the number of tubes passing through any area S on such

an equipotential surface in a uniform field is numerically equal

to the product of the whole area and of the induction at any

point on that area.
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The characteristic quality of a tube of induction is that the

flux of induction along it is constant throughout its length.

That is to say, the product B s = induction x cross-section is

constant, and, since what is true of one tube is true of all, we

may say that in a space wholly made up of tubes of magnetic

induction the total magnetic induction or flux of induction is

the same across all sections of this mass of tubes.

The lines of induction of a permanent steel magnet are to

be thought of as closed loops which pass in their course partly

through the steel and partly through the air. The lines of

induction of a circuit conveying an electric current are closed
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loops entirely surrounding the axis of the wire. If this circuit

is a straight wire, with the return wire at a very great

distance, the lines of induction are concentric circles described

on a plane perpendicular to the axis of the wire, and having

their centre in that axis.

If a circuit is formed by coiling up into a circular coil a

length of insulated wire, the coil having n turns, then to a first

degree of approximation we may say that each line of induction

forms a closed curve embracing the circuit n times. Thus, if

the wire forms a coil of one turn (Fig. 11) each line of induc

tion (represented by the dotted line) is a closed loop em

bracing or linked with the circuit once. If we take a circuit

of two turns (Fig. 12), then nearly all loops of induction

belonging to one single turn embrace not only that turn but

the adjacent turn, and if the circuit could be supposed to be

opened out straight (Fig. 18), without destroying the loop of

induction, it would be found to be twisted twice round that

circuit. By similar reasoning, if a loop of induction embraces

or is linked with n turns of a conducting circuit, it is in fact

the same as linking each loop of induction n times with the

single circuit.

Let a conducting circuit have the form of a helix (Fig. 14),

then the lines of induction are closed loops, which embrace

 

Fig 12.
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some or all the turns of the spiral, and, if the helix have n

turns, then each loop of induction, according to its length and

position, in reality embraces that circuit 1, 2, 3 or n times.

If there be two circuits, in one or both of which currents are

flowing, then each circuit is surrounded by lines or loops of

induction, and of those belonging to one circuit some or all are
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linked in as well with the other circuit, so that a certain

number of all the loops of induction are common to the two

circuits, and are called the loops or lines of mutual induction.

It is exceedingly convenient to think of these lines or tubes

of induction as linked with various circuits. A line of induc

tion is always linked with an electric circuit or else passes
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through a magnet in some part of its course. If any closed

conducting circuit is placed in a field of magnetic induction, it

may be thought of as linked with a certain number of unit

lines or tubes of induction. If the circuit is moved or the

field is changed, the number of linkayes is altered or may be

altered. If at any instant N unit tubes or lines of induction

are linked with any circuit, and at a very short interval of time

B
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afterwards, say after an interval t, the number of linkages ia

N - N'

N', then N - N' is the change in the linkage, and —-— is the

rate of change of linkage, and this, by Faraday's law, is the

numerical value of the electromotive force set up in the circuit.

If during any period of time a circuit is exposed to magnetic

induction the rate of change of which varies, then from

instant to instant the impressed inductive electromotive force

varies and may be represented graphically as follows : Let the

straight line 0X (Fig. 15) be an axis on which lengths are

marked off to represent intervals of time, and let ordinatea

perpendicular to it represent the instantaneous value of the

flux of induction through, or lines of induction included by,

 

a circuit ; then, if the variation of induction is continuous, it

may be represented by a curve drawn between these axes.

This curve may be called a curve of induction. If at any

point P a tangent P T is drawn to this curve, the trigono

metrical tangent of the angle P T M represents the rate of

variation of P M with respect to 0 M, and if P M represents at

any instant the induction N, then the slope of the tangent at

P represents - ^, or the rate of change of N with respect to

time.

In the practical application of the above rule it must be

borne in mind that if N, or the number of lines or linkages, is

measured in units based on the centimetre, gramme, and second

system, then the electromotive force is given in the same units.
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Since one volt is 10s C.G.S. electromagnetic units, to get the

electromotive force in volts we must divide the time rate of

change of induction by 108. Thus, if the change of induction

be such that N C.G.S. lines are removed uniformly from the

circuit per minute, the electromotive force in volts set up will be

— . — volts.
60 10s

§ 5. Curves of Magnetisation.—0ne of the most important

practical problems in magnetism is to discover the manner

in which the induction B varies with the magnetising force

H in different cases. Since this variation is often very

complicated, it is best represented by a curve of which the

ordinates are taken as proportional to the induction and

the abscisafe as proportional to the magnetising force. Such

curves are called curves of magnetuation. We shall consider

a few special cases and describe the mode of practically

determining these curves. The principal instance is the

curve of magnetisation of a closed iron ring. Let an iron

ring be made of circular cross-section radius a and be circular

in form, the radius of the mean circular central axis being

R. Let a be very small compared with R. Let such a

ring be wound over uniformly with N turns of insulated

wire, and let a current of strength A amperes be sent

through this wire. The magnetic force creates an induc

tion in the iron, and the lines of induction are circles lying

wholly in the iron. Inside the circular solenoid the mag

netic force is nearly the same in value everywhere, and is

equal to — n A, where n is the number of turns of the wire

10 N
per unit length of the solenoid; or n = ~—— . Hence we

can calculate the magnetic force acting everywhere on the

iron. Let the ring be also wound over with a second

insulated coil of wire of N' turns, and let this secondary

coil be connected to a ballistic galvanometer or a galvano

meter suitable for measuring quantity of electricity. If the

current in the primary coil is altered in strength or reversed,

the magnetio force undergoes a change, and the induction

changes also. Since the lines of induction all pass through,

or are linked with, the turns of the secondary coil, this

e2
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change in induction will, by Faraday's law, create a flow

of electricity in the secondary circuit. If the current in

the primary coil is suddenly changed from one value A amperes

to another value A' amperes, a certain quantity of electricity

will flow through the secondary coil and galvanometer, and it

will cause the galvanometer needle to deflect through an angle

6. If k is the galvanometer constant (see Appendix, Note C),

then the whole quantity of electricity which flows through

the galvanometer is equal to Q, where Q = k sin - ( 1 + -

A. being the logarithmic decrement of the galvanometer.

If R' is the total resistance of the secondary coil on the

ring, together with that of galvanometer coils and connec

tions, then, as above shown, the total change in the induction

through the secondary circuit is equal numerically to R' Q.

If B is the mean induction density in the interior of the

circular solenoid, 8 the mean cross-sectional area of the

primary coil, and N' the number of turns on the secondary

coil, then it is clear that B S N' represents the total induction

passing through the secondary circuit, or the number of lines

of induction which are linked with the galvanometer circuit.

Hence if the induction is suppressed by stopping the current

the total change in induction is B S N', and this is equal to

R' Q. If the current, instead of being simply stopped, is

reversed, then the total change in induction is 2 B S N\

Therefore we have

In the above case the average magnetic force H is equal to

—.^^t *n which formula N is the number of primary turns,

A the primary current in amperes, and I the mean perimeter

of the primary solenoid, which last is equal to 2it R, where R

is the mean radius of the primary solenoid. Hence we find

that

 

or

B S N' = R' Q for stoppage of current ;

2 B S N' = R' Q for reversal of current.

By our fundamental equation

B=/* H.

SN

 

(15)
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SN
, 8tt N A p

10 x 2r K
R' Q; (16)

according as the primary current is stopped or reversed.

Taking the latter as the usual case, we find finally that

Hence p is determined in terms of nine quantities, all of

which can be easily and exactly measured. If all quantities

are measured in centimetres and seconds, then it must be

particularly noted that the galvanometer constant k is the

number by which the corrected sine of half the angle of throw

has to be multiplied in order to obtain the quantity of

electricity producing that throw, estimated in absolute C.O.S.

electromagnetic measure, which has flowed through the gal

vanometer. Generally speaking, it is most convenient to

find k by determining the throw produced by a discharge

through the galvanometer of a certain number of microcou-

lombs, obtained by charging a condenser of known capacity in

microfarads with a certain number of volts. Then it must be

remembered that a microcoulomb is 10r7 of an electromag

netic unit of quantity in C.G.S. measure.

By the help of the above formula we can deduce the values

of p for the iron ring corresponding to certain values of B or

H, and tabulate them. For instance, taking a perfectly new

iron ring, we can apply gradually increasing values of H,

increasing by small steps, and obtain the corresponding

values of B, and then draw curves representing the relation

of B and H and of B and p. Such curves have been given

by many observers : Rowland, Hopkinson, Ewing, Shelford

Bidwell, and others. For the sake of showing what are the

sort of values of B and p corresponding to certain values of H,

a table is given on the next page o.' results of an experiment

by Shelford Bidwell on a soft iron ring, and in Figs. 16 and

17, page 55, are given diagrams showing the forms of the

curves of induction and permeability for such a ring.

 

or

 

(17)
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Values of the Permeability and Induction coiresponding to

various Magnetising Forces for Closed Iron Magnetic Circuits.

H. B.

Magnetising Force. Induction. Permeability.

02 80 400

05 300 600

10 1,400 1,400

2 0 4,800 2,400

3 9 7,390 1,899

57 9,240 1,621

10 3 11,550 1,121

177 13,630 770

22-2 14,450 651

30 2 15,100 500

40 15,460 386

78 16,830

17,330

216

115 151

145 17,770 122

208 18,470 89

293 18,820 64

362 19,080 52-7

427 19,330

19,470

45

465 42

503 19,480 38-7

585 19,820 34

24,500 (Ewing) 45,300 1-9

It will be noticed that the value of the permeability rises

very rapidly to a maximum, but that with increasing magnet

ising force it finally diminishes again, and that in very strong

magnetic fields iron becames scarcely much more permeable

than air. Although there is apparently no limit to the

induction or number of lines of force which can be forced

through iron, yet it seems as if the excess of lines of force

generated in the iron, over and above that which would exist

if the iron were not there, is limited. Hence, if we consider

the strength of the original field as numerically defined by a

certain number, the number expressing the induction when a

closed circuit of iron is placed in that field is obtained by

using a certain multiplier, which becomes less and less as the

magnitude of the field increases.

On looking at these permeability curves it will be seen that

the permeability rises to a maximum for a certain value of the
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induction and then falls again. It has been shown by Lord

Rayleigh that for very small magnetic forces soft iron has an

12,000

10,000;

. 8.000

"6,000

-o
c

"4.000,

2,000

— i —

B

H

10
Magnetising Force.

Fio. 16.

Curve of Magnetisation for rising and falling magnetisation in a

Soft Iron Ring.

initial permeability of about 100. Its maximum permeability

is about 2,500, and for very great inductions it falls again to

something not much greater than unity. Hence the specific

3,000,

2,500

; 1.600

: 1.000

6001

B

0 5,000 10,000 15,000 20,000

Induction.

Fio. 17.

Permeability Curve for Soft Iron Ring (Rowland).

magnetic resistance curve is the inverse of the above curves,

and the specific magnetic resistance has a minimum value

which for a soft iron ring appears to correspond to an indue
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tion density of about 5,000 C.G.S. (lines per square centi

metre). At less or greater induction densities the specific

magnetic resistance is increased.

Experiments to determine /* can only be performed properly

on very long bars or rings of iron placed in uniform predeter

mined magnetic fields by lapping over the ring with insulated

wire or placing the bar in a helix, so that an electric current

traversing this wire generates a field having known values at

300

250

200

h 160
■

E
fc1oO
0.

60

0 1i.000 4,000 6,000

Induction.

Fio. 18.

Permeability Curve* for Nickel (Rowland).

each point in the interior of the coil. Such experiments have

been carried out extensively by various experimentalists, and

the results embodied in curves called permeability curves.*

The form of these permeability curves is considerably affected

* Accounts of experiments and investigation! on the form of the permea

bility and susceptibility curvef for iron and other paramagnetic metals

will be found in the following memoirs :— Weber, Electrodynamiichc Maat-

bcstimmuvgcn, Bd. III., §26 ; Von Quint u« Icilius, PoggendorjTs Annalen,

CXXl., 1864 ; Oberbeck, Pogg. Ann., CXXXV., 1868 ; Riecke, Pogg. Ann.,

CXLI., 1870 ; Stoletow, Pogg. Ann., Ergbd. V., 1870 ; Rowland, Phil.

Mag., Ser. IV., 1873, p. 336, 1874, p. 254 ; Bouty, Compte» Rcndut, 1875 ;

Fromme, Pogg. Ann., Ergbd. VII., 1875 ; Warburg, Wicdemann't Annalen,

XIII., 1881 ; Bidwell, Proc. Roy. Soc. Lond., No. 245, 1886 ; Bidwcll, Proc.

Roy. Soc. Lond., Vol XLIII., 1888 ; Bidwell, Proc. Roy. Soc. Lond..

No. 242. 1886 ; Ewing, Tram. Roy. Soc. Lond., Bart. II., 1885 ; Hopkinsou,

Tiani. Key. Soc. Lond., Part II., 1885.
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by temperature, and for each magnetic metal there appears

to be a temperature at and beyond which it is not much

more permeable than air. The permeability of nickel and cobalt

varies very much with temperature. In Figs. 17 and 18 are

shown the permeability curves for iron and for nickel for two

very different temperatures. At about 750°C. iron, and at

about 400°C. nickel, possess a permeability not much

greater than air.* In cobalt, permeability appears to be

increased up to about 150°C. and then diminished.

In Fig. 19, page 58, is shown the form of the magnetisation

curve of a long soft iron rod. It will be seen that the curve

is divided roughly into three parts : first, a part in which

magnetic induction increases slowly with magnetising force ;

second, a part in which it increases very rapidly ; and third, a

part when it increases somewhat more slowly again. Generally

speaking, it is difficult to force up the induction in a soft iron

ring or long rod to a greater value than about 18,000 or

20,000 C.G.S. units, but there is no actual physical limit to

the amount of induction to be created in iron ; the sole limit

seems to be the difficulty of obtaining sufficient magnetising

force. If instead of operating on the best soft iron we had

selected a hard iron or a steel, it would have been found that

the magnetisation curves would not be quite of the same form,

but that for a given magnetising force there would be less

induction. As soon as the induction reaches the point where

the magnetisation curve becomes approximately flat the iron

is said to be magnetically saturated.

If instead of operating on an endless iron circuit or ring we

select an iron rod, say 200 diameters long, and wind it over

with a magnetising coil, we can, by means of the ballistic

galvanometer, determine for it in the above way a magnetisa

tion curve. For if we surround the centre of the rod with a

secondary coil, and connect this to the galvanometer, we can,

by making changes in the strength of the primary magnetising

current, alter the induction through the secondary circuit, and

so obtain throws of the galvanometer indicating certain

quantities of electricity discharged through it. If the primary

helix is very long compared with its diameter we can estimate

* See Proc. Phi/Aical Soc , London, Vol. IX., p. 187 : Mr. Tomlinsou oti

" The Teuipemture at which Nickel begins to Lose its Magnetic Qualities."
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the strength of its interior field, or the magnetising force, as

everywhere approximately equal to 4it/10 times the ampere-

turns per unit of length of the helix. Hence we know the

I6,000| 1 1 1 1 I 1 |

14,000 ~

I2i000

10,000

J 8,000
u
3

| 6,000

4,000

2,000

0 2 4 6 8 10 12 14 It

Magnetising Force of 8olenoid in C G 3 Units.

FlO. 19.

Curve of Magnetisation for rising and falling magnetism in an Iron Rod.

Length =200 diameters (Ewing).*

* This curve is taken from Prof. J. A. Kwing's Paper, " Experimental

Researches in Magnetism," Tram. Royal Soc., Part II., 1886, p. 535.

The treatise by Prof. Ewing on " Magnetic Induction in Iron and 0ther

Metals," in " The Electrician Series " of Standard Books, will furnish the

student with the most complete account of modern magnetic research,

and hence it has not been considered necessary to amplify very much this

section of the present work.

See alio Dr. J. Hopkinson, " Magnetisation of Iron," Trans. Royal Soc.,

Part II., 1885, p. 455.

A very complete summary of recent research in magnetism is to be found

in Prof. Chrystal'2 article, " Magnetism," in the Encyclopaxlia Britannica,

Ninth Edition.

See alto " 0n the Lifting Power of Electro-Magnets and Magnetisation

of Iron," Shelford Bidwell, Proc. Royal Soc , June 10, 1886.

0ther references to valuable Papers on the magnetisation of iron are—

Lord Rayleigh, " 0n the Energy of Magnetised Iron," Phil.. Mag.,

August, 1886, p. 175.

Lord Rayleigh, " 0n the Behaviour of Iron and Steel under the 0pera

tion of Feeble Magnetic Forces," Phil. Mag., March, 1887, p. 225.

Ewing and Low, " 0n the Magnetisation of Iron in Strong Fields "

Proc. Royal Soc., March 24, 1887, Vol. XLIf., p. 200.
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force, and the induction is ascertained when we know the

quantity of electricity discharged through the galvanometer

on a reversal of the primary current. If the secondary coil

makes N' turns round the iron, and if the whole resistance of

the secondary circuit, including galvanometer, is equal to R',

and if S is the cross-section of the rod, then 2 B S N' is the

total change in induction through the secondary circuit

obtained on reversing the primary current, and this is equal

to R' Q, where Q is the quantity of electricity discharged

through the galvanometer. After finding in this way a series

of values of B and the corresponding values of H, we have the

means of determining the values of p for varying values of

B. If, as in the above case, the iron rod is not endless, the

values of p so determined will be smaller than the correspond

ing values of p for an iron ring of the same iron, and will be

less as the iron rod is made shorter, because a larger propor

tion of the magnetic circuit is then formed of air and a less

portion of iron.

§ 6. Magnetic Hysteresis.—If an iron ring or rod is sub

jected to a cycle of magnetising force in which the force

beginning at zero rises up gradually to a maximum in one

direction, and is then reversed and made a maximum in the

other direction, and finally reduced again to zero, we find that

the following phenomena exhibit themselves. The induction

in the iron—and, therefore, its magnetisation—has a higher

value at all points during the descent of the force than during

its ascent. Hence, if a curve is plotted in which horizontal

abscissae represent magnetic force and vertical ordinates induc

tion or magnetisation, we obtain a curve of the kind shown in

Fig. 20, which is a loop or encloses an area. If at any point

in the cycle we stop and reverse the magnetism a small or

subsidiary loop (see Fig. 21) is formed on the principal curve.

This phenomena is called magnetic hysteresis, because the mag

netism or induction " lags behind " the magnetic force. If

the induction B and the magnetic force H are the variables

in terms of which the curve is plotted, the curve is called a

B H curve of hysteresis. We may next consider the physical

meaning of this curve. Consider as before a ring of iron of

cross-section S and mean perimeter I wound over with N
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turns of a magnetising coil. Let a current of A amperes be

sent through this coil, there are then N A ampere-turns acting

on it, and the magnetic force operating on the iron is ~ -j— .

At any instant let the difference of potential at the ends of the

magnetising coil be V volts, and let the coil have a resistance

of K ohms. If the induction in the iron has a value B, the

total number of lines of induction linked with the coil is

BSN.

 

A Ml

Fio. 20.

Complete Magnetisation Curve for Soft Iron Ring carried from strong

positive to strong negative magnelisation. The arrows show the direction

of the magnetising operation, and the shaded area the work done due to

hysteresis.

If we make a change in the potential and increase the volts

to V + 5 V, and at the same time increase the current from

A to A + SA, and the induction from B to B + SB, in the

small time S t the following relations between these increments

will exist : The time rate of change of the induction is in the
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limit equal to — , and the time rate of change of the whole

ii t

number of lines of induction linked with the circuit is

d B
S N -j—. Hence this last is numerically equal to the induced

electromotive force set up in the circuit by this change ; and by

considering the direction of this induction it will be seen that

this induced electromotive force is opposed in direction to the

 

Fia 2!.

Magnetisation Curve for Very Soft Iron Ring, showing loops due to

hysteresis on the descending branch, and enclosed area due to a complete

cycle (Ewing).

impressed electromotive force V producing the current. This

induced electromotive force reckoned in volts is equal to

Hence the current A in amperes must be equal at

any instant to the resultant electromotive force divided by

the resistance of the circuit ; or

v SN dB
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Therefore, multiplying all through by A and d t, we have

But the magnetising force H in the iron at that instant is

equal to — - A. Hence

* 10 I

VAdt = B.W\lt + fl7l-HdB. . . (18)

10' 4it

The first term of this equation represents the whole energy

in joules given to the ring coil and core in the small time dt ;

the second term represents the energy wasted in that time in

heating the copper magnetising coil ; and the third term must

therefore represent the whole energy, measured in joules,

absorbed or wasted in the iron core in that same element of

time. Accordingly it is easily seen that the integral

taken between any limits, must represent the whole energy

measured in ergs, dissipated by a unit of volume (viz., one

cubic centimetre) of the iron core in the time limits of the

integral. If the time limit is the interval of time occupied in

making one complete magnetic cycle, then the above integral

will represent the energy dissipated per unit of volume of the

iron in this cycle estimated in ergs. But if the diagram of

the magnetic cycle is drawn in terms of B and H, the integral

H d B taken over the whole limits of the cycle is the value

of the area enclosed by the induction curve. Finally, there

fore, we reach this rule. If a mass of iron is taken once

round a magnetic cycle, and an H B diagram is drawn,

showing the relation of induction to magnetising force during

the cycle, one centimetre or one unit of length along the hori

zontal being taken as equal to one C.G.S. unit of magnetic

force, and one centimetre or unit of length along the vertical

being taken for one C.G.S. unit (one line) of induction ;

then 1/47t of the area of this closed loop in square units is

equal to the energy wasted in such single magnetic cycle

measured in ergs. The physical meaning of these loops or

enclosed areas in magnetisation curves of complete magnetic

VA<i« = RAMt +
SN

10s
AdB.

 

(19)
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cycles was first pointed out by Prof. E. Warburg,* but also

independently by Ewing. In the first place, we may remark

that however slowly the magnetic cycle may be performed,

this waste of energy always takes place, and it is therefore

seen to be dependent essentially on the reversal or change of

magnetism and not upon the production of local electric

currents in the iron. This energy waste is called the hysteresis

loss in the iron, and it cannot be got rid of by any amount of

lamination or division of the iron. Careful measurements

have shown what is the value of this hysteresis loss in iron of

various kinds.

In a Paper entitled " Researches in Magnetism " (Phil.

Trans., Part II., 1885), Prof. Ewing has given the values of

the energy dissipated in ergs per cubic centimetre, experi

mentally determined for complete magnetic cycles performed

on various samples of iron, as follows :—

Energy dissipated in ergs per

Sample of iron operated cubiccentimetreduringacom-

upon. plete cycle of doubly-reversed

strong magnetisation.

Very soft annealed iron 9,300 ergs.

Less soft annealed iron 16,300 ,,

Hard drawn steel wire GO, 000 ,,

Annealed steel wire 70,500 ,,

Same steel, glass hard 76,000 ,,

Pianoforte steel wire, normal temper. . 110,000 ,,

Same, annealed 94,000 ,,

Same, glass hard 117,000 ,,

If we make one hundred complete cycles of magnetisation

per second, the power absorbed per cubic centimetre of metal

estimated in watts is as follows :—

Power wasted in watts

„ . per cubic centimetre for
bampie. 100 ( cv ) cycles per second.

Very soft annealed iron 0'093

Less soft annealed iron 1 63

Hard drawn steel wire 6 '00

Annealed steel wire 7 '05

Same steel, glass hard ,7 "60

Pianoforte steel wire, normal temper ... 1J. '600

Same, annealed 9 40

Same, glass hard U-700

* Wiedemann's Annalen, XIII., p. 141, 1881.
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From the above we can deduce that, roughly speaking, it

requires 18 foot-pounds of energy to make a double-reversal of

strong magnetisation in a cubic foot of soft iron. The energy

so expended can take no other form than that of heat diffused

throughout the mass.

A similar table of experimental results has been given by

Dr. J. Hopkinson (Trans. Roy. Soc., Part II., 1885, p. 468),

in which Paper the chemical analysis of the samples operated

upon is given. The highest value of specific hysteresial dissi

pation was found for Tungsten steel, oil hardened, in which

the value of the energy in ergs per cubic centimetre dissipated

in a complete magnetic reversal was 216,864.

Hysteresis is therefore a quality of iron in virtue of which

reversal of magnetisation is accompanied by dissipation of

energy. The energy so wasted is, of course, converted into

heat. This dissipation of energy into heat during magnetisa

tion is something quite apart from any production of heat by

eddy (or so-called Foucault) electric currents induced in the

mass, and would take place in iron so perfectly divided that no

eddy currents could exist.

0ne result of Prof. Ewing's researches has been to show

that if the iron is kept in a state of mechanical vibration

hysteresis is greatly diminished, and the value of the energy

dissipated in a complete cycle is much reduced. The removal

of strong residual magnetism from soft iron by slight tapping

or twisting has also been noticed and commented on by Prof.

Hughes.*

Hysteresis, therefore, is a source of dissipation of energy in

the armature of dynamos. For in this case we have a mass of

soft iron, viz., the armature core, which has its direction of

magnetisation reversed every revolution. Suppose the core

has a volume of 9,000 cubic centimetres, and that it makes 15

revolutions per second. Taking the specific hysteresis for this

sample of iron at 18,356 ergs, we find that the dissipation of

energy in ergs per second is equal to 9,000 x 15 x 13,856

= 180xl07 = 180 joules, or a loss of about a quarter of a

horse-power-hour.

* Prof. D. E. Hughes, "0n the Cause of Evident Magnetism in Iron,"

/Voc. Soc. Tel. Engineer; May 24, 1883, p. 3.
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Experiments were at one time made by Joule and others to

determine by direct observation the heating effect of magneti

sation upon iron, but in these early experiments it is probable

that the results were mostly impure, and qualified largely

by the production in the iron of heat by local or eddy electric

currents.*

Since about 10,000 ergs per cubio centimetre are dissipated

by a double reversal of strong magnetisation of soft iron, it is

not difficult to show that the consequent rise of temperature,

even if all the heat is retained in the iron, is 0-000284°C., or

that some 4,000 reversals would be required to raise the

temperature 1°C., even provided all the heat generated is

retained in the metal.

If the iron is subjected to very rapid reversals of induction,

and if it is in one solid mass, then, in addition to the

hysteresis waste of energy, eddy electric currents are set up

in the mass of the iron and create heat. In such cases

it must be noted that the source of waste of energy in the

iron is twofold : first, that due to true magnetic hysteresis,

and, second, that due to eddy currents. The last source

of waste can be prevented by sufficiently and properly sub

dividing the iron into very thin plates or wires, which are

rusted or painted so as to prevent the production to any

degree of eddy currents. The first source of waste cannot

be prevented by any such lamination. The question has

been very much debated and considered whether the true

hysteresis loss in iron depends upon the speed at which

the magnetic cycle is described—whether the dissipation of

energy at, say, 100 reversals per second is or is not more

than one hundred times that of one slowly performed cycle.

The matter seems now decided as follows :—It appears

evident from the researches of J. and B. Hopkinson,t that

if the induction density is moderate in amount (for example,

not more than 8,000 or 4,000 C.G.S. units) then, whether

the reversal of magnetism or cycle is made very slowly

• See Joule's " Scientific Papeifl," Vol. I., p. 123, " 0n the Calorific

Efteett of Magneto-Electricity," and " 0u the Mechanical Value of Heat.'

Also PhU. Mag., Series 3, Vol. XX III., p. 263.

+ The Electrician, September 9, 1892. See also Prnc. Roy. Soe., London,

April 20, 1893, Vol. LIU., p. 35Z

F
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or at the rate of a hundred complete cycles per second, the

area of the hysteresis curve remains practically unaltered. The

same fact has been noted by Messrs. Evershed and Vignoles,*

and also by Mr. Steinmetz. We may say, therefore, as the

result of the latest work, that the difference between slow

cycle and quick cycle hysteresis, once supposed to exist, is

found to be non-existent, and that, at any rate for such induc

tions as are used in transformers, we can apply the results

of the hysteresis losses obtained by slow cycle methods to

the cases of reversals at about a frequency of one hundred

or more.

From the researches of the Messrs. Hopkinson it is also

clear that, for higher induction densities, there is a difference

between the hysteresis loops for very slow cycles and for

rapid ones, and this difference is chiefly in that part of the

the curve preceding the maximum induction. As Prof. J. A.

Ewing has observed, after sudden changes of magnetising

force the induction does not at once attain its full value,

but there is a slight increase going on for some seconds.

Dr. Hopkinson has remarked that this small difference

between the curve as determined by very slow reversals

and that as determined by very rapid reversals is a true

time effect, the difference being greater between a frequency

of 5 per second and 72 per second than between 5 per

second and exceedingly slow cycles. There may be, there

fore, a true time lag of magnetism at the higher speeds,

but for all such frequencies as are employed in ordinary

transformer work, we may take it that the hysteresis loss

is constant per cycle and equal to that obtained by slow

reversals.

The reader should carefully note that, if the hysteresis

diagrams are taken for a solid iron ring and an equal sized

ring made of iron wire in a way afterwards to be described

with the wattmeter, when rapidly alternating currents are

employed, the area of the diagram will be greater for the

solid than for the divided ring. The area of the hysteresis

diagram, then, gives us the energy loss due both to eddy

currents set up in the iron and also that due to true hysteresis.

Hence, in such experiments as above described, the greatest

* The Electrician, September 16, 1892.
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care has to be taken to eliminate all eddy current loss before

we can draw any conclusions as to hysteresis proper. When

a solid mass of iron is magnetised the eddy currents set up in

the mass have to die away first before the iron attains its

maximum magnetisation, because at every point in the

interior of the iron the magnetic force due to the eddy current

is in opposition to the external impressed magnetising force.

Hence the effect of eddy currents is to delay the rise of

magnetism. Over and above this, however, for strong in

ductions there seems to be a slow increase of magnetisation

after the magnetising current has become constant. Prof.

Ewing says: "I repeatedly observed that when the mag

netising current was applied to long wires of soft iron there

was a distinct creeping up of the magnetometer deflection after

the current had attained a steady value."

This time lag appears to be most manifest in the softest

iron, and to be especially noticeable near the beginning of the

steep part of the magnetisation curve.

In an investigation on the magnetisation of iron under feeblo

magnetic forces, Lord Rayleigh has also drawn attention to the

fact that the settling down of iron when very soft or annealed

into a new magnetic state is far from instantaneous.* He

has shown that if the strength of the earth's horizontal

magnetic field is called h, for unannealed iron and steel

magnetising forces ranging from | h to ^m h call forth pro

portional magnetisation—in other words, the susceptibility is

constant over this range, and the value of the corresponding

permeability is from 90 to 100, this small proportional

magnetisation taking place independently of what may be the

actual magnetisation of the iron, provided it is not very near

the condition usually called saturation. The moment, how

ever, that the magnetising force is pushed beyond these limits

the phenomena of hysteresis and retentiveness make their

appearance.

The subject of hysteresis in iron is by no means yet entirely

explored. The chemical and physical states of the iron

exercise the greatest influence on its magnetic hysteresis, and

high specific electrical resistance seems in general to be an

* Lord Rayleigh, " On the Behaviour of Iron and Steel Under the

Operation of Feeble Magnetic Forces," Phil. Mag., March, 1887, p. 225.

F2
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index of large hysteretic power in iron ; and those elements,

like manganese, which, when added to iron, increase its specific

electrical resistance, have also an effect in increasing its

hysteresis waste.

0ne important point in connection with magnetic hysteresis

is the effect of rise of temperature of the iron upon the

hysteresis loss. Experiments made recently by W. Kunz,*

are instructive on this point. This experimentalist investi

gated in 1892 and in 1894 the effect of rise of temperature in

producing a diminution of magnetic hysteresis in iron, and

the following are the results obtained from a long series of

observations of this phenomenon :—

Four kinds of iron, two of steel, and one of nickel have been

the subject of investigation. Special difficulties occurred in

maintaining the wire samples at the high temperature for the

required length of time, and in the measurement of these

temperatures, and therefore the methods are more particularly

described.

To measure the temperature of the wire, thermo-electric

junctions were used, consisting of a platinum wire twisted

for about 1-5 cm. of length round a wire of platinum con

taining 10 per cent, of rhodium. Two such couples were

used, whose free ends were brought well insulated to a

mercury switch, by means of which each couple could be

connected to a Deprez-d'Arsonval galvanometer having about

200 ohms resistance. The temperature of the junctions at

switch and galvanometer was always the same—about 20°C.

The calibration of these couples up to 800°C. was done by

means of an accurate mercury thermometer, plunged with one

junction of the couple into oil, which was warmed up in

large beakers surrounded with asbestos and kept well stirred.

The galvanometer deflections corresponding to the tempera

tures from 40°C to 800°C were noted. From 800°C upwards,

the calibration was done by utilising the known fusing points

of certain substances melted by a gas furnace: the junction

was placed in the molten material, the flame lowered, and the

deflection noted when solidification began. Each couple was

thus separately calibrated—the outside junctions being kept

at a constant temperature by immersion in petroleum at 20°C.

* See Elektroteclmisclie Zeilschrift, 1894, No. 14., p. 194,
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The substances used and temperatures measured, or assumed

from Bornstein-Landolt's tables, were as follows :—

Substance Warmed or Melted.
Temperature or

Melting Point.

Galvanometer

Deflection.

Deg.

Oil 40 16 0

tJ 73 27-2

104 38-0

140 50 -fi

200 77 -e. ....

300 125 4

K Cl O, 359 155 6

Pb CI 498 244 4

IK 634 330 2

KC1 734 393-6

Na Cl 772 417-8

NajS04 861 474-2

To heat the wire under test a method already employed

by Ledeboer was adopted—namely, winding an insulated

platinum wire round the test wire, and heating it by passing

a current through the platinum wire. The iron wire was

contained in a porcelain cylinder having a suitable opening to

take the thermo-couple, and round this cylinder was wound

(non-inductively) the platinum wire. The insulation between

the couple and the platinum was tested before each observa

tion. This platinum coil was surrounded by layers of asbestos,

among which the wires of the thermo couple were led out.

The tube thus formed was placed inside a glass tube and

accurately centred by suitable packing. This tube was

placed again in another glass tube with asbestos distance

pieces. A current of hydrogen passing through the inner

tube protected the wires from oxidation. To protect the

magnetising coil against the high temperatures, a hollow tube

of pure copper was placed between, and a stream of water

kept passing through it, and this had to be insulated by

asbestos from the glass tubes to prevent their breaking.

0bservation showed that no heat passed through this jacket.

The two couples always agreed in their indications, thus

showing that the wire was evenly heated.

As indicated above, the test wire was a long straight piece ;

its magnetic condition was observed by magnetometer, by the

" single pole " method. The magnetising coil is placed
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vertically in the direction east and west from the magneto

meter, and the top end of the magnetised wire is on a level with

the instrument. The alteration in the position of the pole due

to differences in induction density affect the distance between

the magnetometer and wire so little as to be negligible. The

vertical component of the earth's field must be taken into

account. In magnetising, the cycle was always performed a

few times, until the curve became regular. Then a series of

observations at varying temperature of a certain cycle was

taken, generally with maximum B = 8,590 (about), until at

the high temperature (830° C. or so) the magnetism dis

appeared. Then another cycle after cooling. Suitable

arrangements were made for compensating for the effect

of the magnetising coil itself on the magnetometer, and for

demagnetising by reversals of a gradually diminishing current.

The strength of field in the middle of the solenoid is

calculated from the well-known formula,

where N = number of turns, C = the current in C.G.S. units,

and i = the length of the solenoid; and the induction was

calculated from the magnetometer deflection by means of the

known value of the horizontal component of the earth's field.

The following Tables are for a maximum induction density

of 3,590, and are the mean of four series :—

Material. Temp.
Hysteresis

Loss in Ergs.
Material. Temp.

I Hysteresis

Loss in Ergs.

German

annealed

charcoal

iron

1

/

Deg.

20

2! tO

470

650

728

836

20

2,350

1,600

1,204

710

550

316

2,107

Swedish

iron

Deg.

20

270

460

650

742

812

20 Indefinite

2,090

2,080

1,550

905

825

712

wrought /

iron

Soft

20

284

468

650

744

20

3,420

2,480

1,750

821

800

900

Puddled

iron

 

3,100

2,270

1,730

1,310

!»79

777

2,090
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These values show, when plotted as curves, that the equation

L = a. - b t (where L is the hysteresis loss and f the temperature,

and a and b constants) expresses fairly the law.

Material. Temp.
Hysteresis

Loss in Ergs.
Material. Temp.

Hysteresis

Loss in Ergs.

Deg. ~De^.

Hard patent!

steel ;|

20

309

526

660

790

11,540

11,580

6,040

2,200

1,180

5,230

20

309

468

560

640

744

9,660

9,860

4,950

1,985

1,614

1,048

4,670

: 20

Patent cast 1

steel

V 20

The above Tables are to be interpreted as follows : Taking

a wire of the material named, it was subjected to a magnetio

cycle of induction in which the maximum induction reached

was 8,590 C.G.S. The wire being taken at a particular

temperature, as given in the second column of the tables,

a hysteresis loss, diminishing with rise of temperature, was

found, the value of which per cycle is given in the third

column.

The two kinds of steel referred to in the last two tables

had, for ordinary temperatures, magnetic cycles in shape like

a rhombus, altering in shape at about 800°, even increasing

in area, and between this and 470° changing in form to that

of an ordinary iron curve, and decreasing greatly in area.

The character of the steel is lost after heating, as shown by

the final observations, and it becomes also quite soft. There

is, in these cases, no simple relation between hysteresis loss

and temperature.

The following tables relate to charcoal iron :—

B. Temp. Loss. B. Temp. Loss.

Deg. Deg.

7,200 |

20

270

468

570

068

744

8,900

6,690

4,660

3,340

2.270

2,168

14,400 ... |

20

270

470

570

21,020

14,840

9,900

7,550
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For higher temperatures than 570, B = 14,400 could not be

reached.

The results show that the above law also holds good,

generally speaking, for higher values of induction density.

The corresponding results for steel show that the character

istics described for the lower values of induction density hold

also for the higher. In all the above cases a new wire was

taken for each series of observations. It is shown, therefore,

that when an iron wire is subjected to repeated cycles of

temperature and magnetisation the hysteresis loss decreases

up to the fourth cycle of temperature, and then becomes

uniform ; the results of each temperature cycle being ex

pressible as a straight line, but of different inclination. The

steel wire has the first temperature cycle as already described,

and the remainder behave like the soft iron.

In the case of nickel subjected to a cycle of maximum

B = 3,590, it was found that the hysteresis fell with the

increase of temperature, at first rapidly, and afterwards

increasingly slowly : it fell from 11,420 ergs at 20° to 4,700

orgs at 288°.

0ne of the most important results is the fact that repeated

cycles of magnetism at a high temperature reduce the

hysteresis loss in iron very considerably, and it would appear

that this is also the result of one cycle at a very high

temperature.

The above results show that in soft iron a very marked

decrease in the hysteresis loss takes place as the temperature

of the iron is raised. Further reference to this matter will be

made in reference to the losses of energy in transformer

working.

§ 7. The Electromotive Force of Induction.—We have in

§ 2 enunciated Faraday's law of induction in terms of the

variation of a quantity called the flux of induction through

the circuit. It is possible to express the fundamental rule in

a more elementary manner, and in a way which adapts it to

explain every fact yet observed. It is as follows :—If any

element of a conducting circuit is so placed in a field of

magnetic induction that a movement of that element of the

conductor or change in the field of induction causes lines of
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induction to intersect it, it creates an electromotive force in

the element of which the direction is perpendicular to the

plane containing the lines of magnetic force and the direction

of motion of the centre of the element.

This operation is called " cutting lines of magnetic force."

We shall allude later to hypotheses which have been con

structed to suggest in some degree an explanation of the

nature of this effect.

The simplest possible case which can be considered is when

a short linear element, such as a straight wire, is made to

move in a uniform magnetic field, in a direction perpendicular

to the plane containing the field lines and the linear con

ductor, the direction of the length of this last being also

perpendicular to the direction of the field lines.

If A B (Fig. 22) is the element of length of the conductor

of length L, and if A D represent in magnitude and direction

one of the lines of induction of the uniform magnetic field, H,

in which it is placed, A B being at right angles to A D, and if

AC represent in magnitude and direction a displacement of

A B taking place uniformly in one second, so that A B moves

uniformly parallel to itself from position A B to position C G

in one second, we have then three lines, A B, AC, AD,

mutually at right angles, and representing respectively the

length L, the velocity V, and the magnetic induction H.

The result of the motion is to generate in A B an electro

motive force E, numerically equal to the product H L V in

consistent units. But since the sides of the parallelopipedon,

or solid rectangle, are taken to represent respectively H, L

and V, their product E represents the volume of the solid

and the magnitude of the electromotive force of induction.

6 

r iu. 212.



74 ELECTRO-MAGNETIC INDUCTION.

If the directions of A B, AC and A D are not orthogonal,

but inclined, the same still holds good.

For let the field lines AD (Fig. 28) be supposed to be

inclined at an angle 6 with the direction of the length of the

conductor A B, and let the direction of motion of A B parallel

to itself, represented by A C, be inclined at an angle <f, with

A B. The strength of field estimated perpendicular to A B is

H sin 6, and if A C represents the actual velocity of A B, or

displacement in one second, then A C sin <f,, or V sin <f,, is its

velocity in a direction perpendicular to its own length. The

magnitude of the induced electromotive force E in A B is then

numerically equal to L H sin 6 V sin </,, or to H L V sin 6 sin <f, ;

but this expression also represents the volume of a doubly

skew parallelopipedon or solid rhomboid ; hence, as before, if

vectors be drawn representing respectively the length and

c 

A HO

Fio. 23.

velocity of a conducting element, and also the field strength

in which it is placed, the volume of the solid rhomboid

described on these vectors as adjacent sides represents the

magnitude of the electromotive force induced in the element.

The magnitude of this induced electromotive force is not in

any way dependent upon the nature of the material of which

this conductor is made. Faraday experimentally proved this

(" Exp. Res.," § 198-201) by taking a double conductor com

posed of an iron and a copper wire twisted together and united

at one end. On passing this double conductor through a

magnetic field no induced current was detected in it by a

galvanometer. This proved that the electromotive forces set

up in each separate conductor were equal and opposite, and

hence, since the lengths, field, and velocities were the same,

no factor entered into the production of the effect, which

depended on the nature of the conductor. From further
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experiments with circuits partly metallic and partly electro

lytic fluids he inferred that in all bodies, whether what are

commonly called conductors or non-conductors, or elec

trolytic conductors, identically the same electromotive force

is brought into existence by moving the same lengths in

the same way in the same magnetic fields.

When a metallic disc is rotated in a uniform magnetic field

so that its axis of rotation is parallel to the direction of the

field, there is set up a difference of potential between the

centre and the edge. In this case we can tap off a current

by an external wire connected to the centre and the edge

of the disc.

We can now show that, starting with the elementary law

above stated, as to the magnitude of the induced E.M.F. in

an element of a conductor, we can deduce the other principle

of the relation of the induced E.M.F. to the rate of change

of the induction through the circuit.

Let ABCD (Fig. 24) be a conducting rectangle, of which

the plane is perpendicular to the induction lines of a uniform

magnetic field of strength H, the same being shown in plan

on the figure ; let the circuit be capable of revolving about an

axis 0 0 in its own plane, and let it be displaced through any

angle, 6, as shown in elevation and plan in Fig. 20. If the

frame is so displaced it is clear that the sides A C,B D "cut"

across lines of magnetic induction, but that the upper and

lower sides do not. During this displacement the vertical

sides alone will be the seat of electromotive forces. Imagine

this frame to revolve round the vertical axis with a uniform

angular velocity u, and at any instant t to have a position

such that its plane makes an angle 6 with the plane normal

to the lines of force. Let the length of the side A C be

L and that of A B be R: the actual velocity of the side

A C is - —, and the strength of the field, in a direction per-

2

pendicular to its length and its direction of motion at that

instant, is H sin 6. Hence the electromotive force of induction

in the side A C is L H sin 6, and an equal and oppo-

sitely directed electromotive force acts in the side B D at the

same instant. Hence the total electromotive force acting
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round the frame is equal to o, H R L sin 6. If the area

of A B C D is denoted by A we may write the above as

en II A sin 6. The angular velocity <o may be expressed as

the time rate of change of 9, or as %- ; hence the expression

a t

for the total electromotive force of induction round the frame

is H A sin e'l6.,or- d (H A cos 6).*

 

Fio. 24,

The expression A cos 6 denotes the apparent size of the

frame as looked at from a considerable distance along the

direction of the lines of induction, and the quantity H A cos 6

is the numerical value of the number of lines of magnetic

induction passing through or traversing the frame in its posi

tion when its plane is inclined at an angle 6 to the normal

position. We assume that these lines are spaced out according

* We here suppose the 1 ircuit to be fuiiued of a single loop of wire

having a practically negligible self-induction. The above statements would

require some modification for a circuit of many turns of wire.



ELECTRO-MAGNETIC INDUCTION. 77

to the rule proper for such distribution, viz., that the

number passing through a unit of area whose plane is taken

normal to the direction of these lines is numerically equal to

the magnetic induction over that area.

Writing N for this number of lines so piercing through the

frame at any instant, we have, as the expression for the total

electromotive force acting round the frame at any instant, the

quantity - — ; that is, the electromotive force of induction

dt

is numerically equal to the rate of change (decrease) of the

included lines of induction. It is customary to speak of

this induced electromotive force as generated either by the

" cutting of lines of force " by the various elements of the

conductor or by a change in the number of lines of force

piercing through the aperture of the circuit ; but they are

merely two different geometrical ways of viewing the same

phenomena. The actual results are capable of receiving a

physical explanation on the assumption that the act of inter

section of a line of force and a portion of a conducting circuit

is productive of an electromotive force. We see that the total

electromotive force is the resultant effect due to a summing-

up of all the forces acting on each element of the circuit,

each elemental E.M.F. being measured by the product of

the length of that element, the field strength around it, and

its normal velocity in that part of the field. The result is

concisely expressed by the number which expresses the time

rate of change of the whole number of the lines of induc

tion traversing the circuit. This same may be extended to

any circuit of any form moving in any way in any field.

If a circuit of any form which is traversed by an electric

current is placed in a magnetic field due to other neighbouring

currents or magnets, there is a flux of induction through that

circuit due partly to the current in the conductor and partly

to the external field of the other currents or magnets. If

there be M lines of induction due to the external field passing

through it, and N lines of induction due to its own current,

any variation of the external induction, of which the rate of

change at any instant is represented by ^, will produce an

d t

impressed electromotive force in such a direction that taking
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lines of induction out of the circuit induces an electromotive

force in the clockhandwise ( + ) direction, as seen from that

side of the circuit at which the lines enter. When a current

is flowing in any conductor, the relation between the direction

of the current and that of its own lines of induction is the

same as the relation between the thrust and the twist of a

corkscrew. Htnce, it is evident that, if we consider a circular

current (Fig. 25) with the current flowing in it clockhandwise

( + ), as seen from one side, its own lines of induction pass

 

+1I u-
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through the circuit in the positive direction, or away from

the eye.

Accordingly, a little reflection shows that, if the current in

the conducting circuit is made to increase, an opposing

electromotive force is created by the increasing induction of

the current on its own circuit. The current in the act of

increasing crowds its own circuit more full of lines of induc

tion, and creates an electromotive force of induction during

the period of this increase equal numerically at any instant to

its own rate of increase, and directed in opposition to the

impressed external electromotive force which is driving the

current.



CHAPTER III.

THE THEORY OF SIMPLE PERIODIC CURRENTS.

§ 1. Variable and Steady Flow.—In the following pages we

shall be chiefly concerned in considering the properties and

uses of currents of electricity which are periodic in character ;

that is, which are changing in strength from instant to instant

in a cyclic or periodic manner. An electric current or an

electromotive force may either be steady, in which state it

remains uniformly at the same value, or it may be variable, in

which case it is changing in value from instant to instant.

In this last case we can consider two separate conditions.

The current strength or electromotive force may be periodic

or non-periodic in value. A non-periodic variable ourrent or

electromotive force is one which changes in value from

instant to instant accordingly to any assigned law or mode,

but in which the same series of values are not regularly

repeated. A periodic current or electromotive force is one

which runs through a regular cycle of values, returning

after a certain period to the same value. It is accordingly

said to vary in a cyclic manner, because it changes through

a cycle of values. We may take illustrations of these three

states from the flow of fluids. A stream of fluid may exist

in a steady state ; in this case the motion of each particle

of the stream has settled down into a uniform condition

as regards velocity. If we imagine a small short tube open

at both ends, held anywhere in that flowing fluid, the same

volume of fluid would flow through that tube in every unit

of time. We may, however, find the fluid in such a condition

that the velocity of each particle of the fluid at any point

is changing, and the flow is then in a variable condition
 



80 SIMPLE PERIODIC CURRENTS.

If that change is of such a character that the motion ia

regular in its mode of change, then the now is said to be

periodic. Thus, in a non-tidal river the water flows in

general uniformly in one direction ; it is in a steady state.

At the time of a flood its speed at any point may be

' rapidly increasing, and in this case its flow is variable. In

the case of a tidal river the flow of water is regularly

reversed, a cycle of fluid motion is repeated at any point,

and the motion is said to be cyclic or periodic in character.

In considering the motion, either of actual fluids or of

electric currents, we can, then, distinguish three states—the

variable, the periodic, and the steady condition. In the first

case the strength or direction of the electric currents or of the

fluid velocity is changing at every instant ; in the latter cases

the flow has settled down into a permanent state. The

questions involved in dealing with the variable or periodic

states present rather more difficulties than do problems in

steady flow, for the reason that the notions of time and inertia

enter into these in a way in which they do not when that flow

has reached a steady condition. We shall proceed to examine

in an elementary manner some features of electrical flow when

variable or periodic. We must, however, prepare the way by

considering some purely geometrical properties of certain

curves, and also some modes of motion which have special

reference to the kind of electric current to be considered sub

sequently. When a mass of water is in motion, a particle of

water selected for examination has at any instant a certain

velocity in a certain direction. This may be represented

graphically by a straight line drawn foni that particle

representing its velocity in direction and magnitude.

Similarly, if electricity is flowing through the mass of a

conductor in any manner, it is possible at any point to draw a

vector or fine representing at that instant the direction and

magnitude of the current at the point from which the line is

drawn. Lines drawn within the mass of a fluid at any points

such that the flow at that instant is along or tangential to

these lines are called flme lines. In the first place, let us

make the supposition that the flow has reached a steady

condition. The flow lines are then fixed. When this is the

case each line of flow becomes the actual path of a fluid
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particle, and is called a stream line. A surface may be

supposed to be described in the mass of the fluid everywhere

perpendicular or orthogonal to the stream lines ; such a

surface is called an equipotential or level surface. We may

also suppose such a level surface drawn in the mass of a con

ductor through which a current is flowing. Let any area be

drawn on the equipotential surface, and let it be divided up

into units of area. If the quantity of fluid or of electricity

flowing through each unit of area is the same, and if, more

over, it is the same for each unit during each succeeding

instant of time, the current is said to be steady and to be

uniformly distributed. The quantity flowing per unit of time

through any area is the numerical measure of the mean

strength of current over that section of the conductor, and

the quantity flowing per unit of time through a unit of area

is the measure of the mean density of current over that unit

of area. If the distribution of current and strength is not

uniform, we can only express them at any time and place by

calling to aid the language of the differential calculus. If

d s be a small area described on an equipotential surface, and

if dq be the quantity of electricity which flows in a small

time d t through that area d s, and if i is the strength of the

current at the centre of that small area at any instant, then

in the limit

§ 2. Current and Electromotive Force Curves.—To fix our

ideas, let us now suppose the electric flow to take place through

a thin cylindrical conductor, such as a wire, in which, at

positions sufficiently remote from the ends, the stream lines

will be parallel to the axis of the wire and the equipotential

surfaces perpendicular to it. Consider any one section, and

let the flow across this section be variable both in strength

and direction—that is to say, let it vary in the quantity of

electricity which flows across that section in each succeed

ing instant, and let the flow be first one way and then the

other, changing in any manner, however irregular. We can

represent graphically the state of things as regards electric

flow at that section by means of a curve called a current curve.

o
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Take a horizontal line (Fig. 26) to represent the uniform flow

of time. At successive instants let ortlinates be drawn to this

line, representing the strength of current flowing past that

section, and let them be drawn above ( + ) or below ( - ),

according as the direction of the flow is to the right or to the

left. Thus, if time begins to reckon from 0, after the lapse

of a time 0 T the current is positive, and is represented by a
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line T I. After the lapse of a time 0 T' the current is

negative, and is represented in strength by a line T' I'.

This current curve is obviously a single-valued function—

that is to say, corresponding to a given instant of time the

current can only have one value. The curve can never cut

itself or double back.

We may here remind the student of the distinction between

single and multiple-valued functions. A single-valued func-

 

Fio. 27. Fio. 28.

Single v2lued function. Multiple-valued functions.

tion is one which, when represented graphically by a continuous

curve, presents only one value of the ordinate for each value

of the abscissa.

In Fig. 27 is represented graphically a single-valued function,

having only one value of the ordinate X Y corresponding to a

given value of abscissa 0 X. In Fig. 28 is represented a curve

such that there are five different values of the ordinate of the
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curve corresponding to one value of the abscissa 0 X. This

curve represents a multiple-valued function.

Amongst single -valued functions, or single ordinate curves,

there is one which is particularly important, because it

proves to be the constituent element of every single-valued

function. This curve is called a simple periodic curve, or simple

sine curve, or simple harmonic curve. This curve may be

described as follows :—Let a circle (say a coach wheel) roll

with uniform speed along a straight line, AB: a point P on

its circumference will mark out a curve called a cycloid,

represented in Fig. 29 by the thick line, A E P B. If the point

P be projected at every instant on the vertical diameter of the

circle, then the point M will mark out a curve (represented

by the dotted curve) as the circle rolls along which has been

c
 

sometimes called " the companion to the cycloid." It is also

called a harmonic curve, a sine curve, or a simple periodic

curve. Draw a line 0SN through the centre of the circle

and parallel to the base line A B. Let it cut the dotted curve

at the point 0. The mathematical student will see that if

the point 0 is taken as origin, and 0 C is called .r, and C M

called y, then also, if the radius C P of the circle is It, and the

angle MPC= PCN is called 6, it is clear that

j=It (180-6)

and y = ltsin0.

or, y = B sin (180- -*-).

If / is the circumference of the circle, then 1 = 2ttU, and, by

substitution,

y= ^.sin (21)

(i 2
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This last is the equation to the dotted curve OEMB, and it

is the equation to a simple periodic or sine curve. The

quantity (=AB is called the wave length, and R = S E is

called the amplitude of the harmonic curve. It will be seen

that this simple periodic curve is a smooth wavy curve which

has points of maxima above and below the axis 0 C.

§ 3. Simple and Compound Periodic Curves.—If on one

common axis we draw two simple periodic curves of any wave

lengths and any amplitudes, and having any relative position

with regard to each other, we may obtain another curve, called

a complex periodic curve, by adding together the ordinates of

the two simple curves.

 

Fio. 30.

As an example, in Fig. 80 are shown two simple sine curves,

represented by the firm lines, of which one has double the

wave-length and about two and a-quarter times the amplitude

of the other. If these curves are superimposed, and a new

curve, represented by the dotted line, formed by adding the

ordinates X yv X y.„ of a common abscissa, 0 X, into a third,

Xy3, then we obtain, by repeating this at all points, a new

curve, which is called a complex periodic curve, because it is

compounded of two simple sine curves. The dotted curve is

the complex sine curve, and the two firm-line curves are its

two components.

We may in this way add together any number of simple

periodic curves and obtain an exceedingly complicated complex

periodic curve, which is, however, always, like a simple

periodic curve, a single-valued function. It is clear, also,
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that just as we can compound simple periodic curves into

a complex one, so we can resolve a complex single-valued

function into a set of simple periodic components, suitably

situated with respect to one another.

§ 4 Fourier's Theorem.—One of the most attractive and

important of all mathematical discoveries is that of Jean

Baptiste Fourier, who in his " Theorie Analytique de la

Chaleur," published in 1882, gave a demonstration of the

above theorem, viz., that any periodic curve, however com

plex, provided it is a single-valued function, can be resolved

into a series of simple periodic curves, of suitable amplitudes

and wave-lengths, and be placed in a certain relative position

to each other. In mathematical language, any single-valued

periodic function can be expressed analytically as a sum of

a series of terms the first of which is an arbitrary constant,

and each of the following terms is the sine or cosine of an
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angle multiplied by a constant. Take such a case as that

of a zig-zag line, made up of lines inclined at an angle of

60deg., like the teeth of a saw (Fig. 31). We can, by Fourier's

theorem, express the equation to this periodic line in terms

of a series of sine or cosine terms. Thus the equation to

the zig-zag line in Fig. 31 is

« = 1 \ sin x - - sin 8 x + — sin 5 x - &c. \ .
J ttI 9 25 )

Hence, by adding together the ordinates of a number of sine

curves suitably chosen and placed, we can obtain a complex

periodic curve which imitates in form any given single valued

periodic curve, however complex it may be, provided only that

it is periodic, and that the curve does not cut itself.

This very remarkable theorem has applications in all

departments of physics. In acoustics it shows that any
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continuous sound may be resolved into a series of simple

harmonic sounds. In alternating current investigations it

demonstrates that any curve of current, however complex, can

be resolved into a series of simple periodic currents. If, then,

any single function is graphically represented—that is to

say, any such curve as in Fig. 30—we see that this curve

may be described by a point which moves horizontally with

a uniform velocity, whilst at the same time it executes in

a vertical direction a movement which is the sum of a

number of simple harmonic motions superimposed upon

one another. The combination of these two rectangular

motions causes the point to describe the curve considered.

In subsequent chapters we shall be examining effects

which are due to periodic or fluctuating electric currents.

Fourier's theorem gives us, when applied to these cases,

a simplification of immense value, in that it enables us to

see that, however complicated may bo the fluctuation of

current in a conductor, it can always be resolved into the

sum of a series of simultaneous currents varying in a simple

manner, and each of which can be graphically represented

by a simple harmonic curve. The general consideration of

periodic currents must, then, be preceded by an examina

tion of the elementary theory of electric currents of a

periodic character, in which the variation is of the most

simple kind.

Fourier's theorem applies also to many other physical

phenomena of great importance. In acoustics it shows,

for instance, that however complicated may be the motion

of an air particle in a mass of air through which sound

waves are being transmitted, it can be resolved into the

sum of a series of motions such as would be produced by

the action of tuning forks, each of which gives rise to a

motion in the air particles approximately of the nature of a

simple harmonic vibration. Helmholtz actually realised this

in his synthesis of vowel sounds.

Physically interpreted, Fourier's theorem means that any

variation of motion which can be represented by the changing

ordinate of a single-valued periodic curve can be expressed as

the sum of a series of simultaneous motions, each one of which

is called a simple harmonic, or simple periodic, or simple sine
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motion. It becomes important, then, to start by examining

the simplest form of periodic motion. Suppose a circular

disc (Fig. 82), having a pin at its centre, 0, to be pivoted so as

to revolve round an eccentric point, C. Let a T bar, moving

in guides and having a slot in the cross-piece, be so fixed that

the centre pin 0 is constrained to move in the slot. Further*
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more, let the point C round which the disc moves be fixed to

some support in the line of the bar A B produced. If the

eccentric is compelled to move round C, the extremity of the

bar A will move backwards and forwards with a motion called

a simple harmonic motion or a simple periodic motion.

A

Ai

Fio. 34.

For it is clear the point 0 (Fig. 88) is compelled to move in

a circle round G as a centre, and hence the distance of the

point A from C at any instant is the length of the bar A B

plus the length B C, which is the projection of 0 C on the line

A C. The point B, therefore, executes a simple vibration to

and fro along the line A C as 0 moves round, and the point A
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imitates the motion of B. If the angle 0 C D is called a* and

the radius 0 C is a, then the length B C is a sin x, and the

displacement of A at any instant from its mean or middle

position has the same value. The motion of A is called a

simple harmonic motion, and the above eccentric and T bar

is a mechanical device for compelling a point to describe a

simple harmonic motion (abbreviated into S.H.M.). If such

a harmonic motion be executed by point A (Fig. 34), whilst

at the same time a strip of paper, S S', is caused to move

uniformly in a direction perpendicularly to the line A B, a

tracing point fixed to A will describe on the paper a curve of
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which the ordinate A Y is proportional to the sine of the

abscissa XY, or the equation to the curve will be of the

form y = as\nx, a being some constant quantity. Hence a

simple periodic curve is also called a sine curve.

By combining together two similar pieces of mechanism it

is possible to construct a machine which can add together

graphically two simple harmonic motions in the same line,

but of which the phase angles x and the amplitudes a are

different. Machines for doing this have been devised by Lord

Kelvin, Mr. Stroh, and others. Apart from complications the

general principle is as follows.



SIMPLE PERIODIC CURRENTS. 80

Let a cord pass over four pulleys (Fig. 85), two of which,

F^2, are fixed in space, and two, M1 M2, can bo made to rise

and fall in vertical lines with a simple harmonic motion by

being attached to T bars and eccentrics. If the cord has one

end, B, fixed, and the other end, A, free, it is easy to see that,

if either the pulley M1 or M2 rises and falls along a vertical

line and the cord is just kept tight, the free end A will be

displaced by an amount equal to twice the displacement of

M1 or H2, and as M1 or M2 moves up and down with a S.H.M.,

the free end of A will also execute similar vibrations. If

M1 and M2 move together the displacement of A at any instant

is equal to the sum of the displacements of M1 and M2. By

providing the end A with a tracing point, and moving under

it uniformly a sheet of paper in a direction perpendicular to

the direction of motion of A, it will describe a curve of which

the equation will be of the form

y = a sin x + a sin x',

a and a' being the amplitudes and x x the phase angles of the

two motions of M1 and M2 respectively. This apparatus, or

one of similar principle, has been devised and employed by

Lord Kelvin in his researches on the tides. It will be evident

from the foregoing explanation that a machine can be con

structed capable of causing a tracing point to move to and fro

across a uniformly flowing sheet of paper, with a motion

compounded of any number of simple harmonio motions of

different amplitude and phase taking place in the same

straight line.

§ 5. Mathematical Sketch of Fourier's Theorem.—Without

going into a complete proof of Fourier's theorem, for which

we must refer the advanced student to mathematical text

books, we propose to indicate to the student how it is prac

tically employed in the analysis of any complex curve into a

series of simple harmonic constituents. At a later stage the

student will find that this analysis is of use in discussing

certain current and electromotive force curves obtained from

transformers.

We start with the assumption, for the propriety of which

we must refer the reader to more advanced treatises, that if y



90 SIMPLE PERIODIC CURRENTS.

is the magnitude of the ordinate of any complex periodio

single-valued curve, we can always express y as follows :—

y = A0 + B0 + Ai sin p t + Bi coap t + A2 sin 2p t

+ B2 cos 2 p t + A3 sin 3p t + B3 cos 8 p t + &c.

The problem is, given any complex periodic curve, to find the

A's and B's in the above equation for its ordinate at any point.

To do this we need a preliminary lemma in the integral

calculus. It is as follows :—

The integrals, Jainptsinqtd t,

and jcosptcosqtd t,

when integrated between the limits 0 and tt, are equal to

zero, if p and q are unequal integers; and equal to if p

and q are equal integers. For, since ^

2 sin p i sin q t = cos (?-?)«- cos (p + q) t,

and 2 cos/> tcos q t = cos (p - q) t + cos (p + q) t ;

,. . f . . sin (p-q)t sm(p + q)t
therefore, I sin p t sm q t d t = '0-7 *r- - r->

., f Bin (p - q) t sin (p + q) t
and JcoBj)«o«gtrft=-2(j>-g) + a(p + gj ■

Hence, if p and g are unequal integers, both these inte

grals between the limits t = 0 and t — tt are zero. II p = q

they both become equal to - . Again, if y is the ordinate of

<L

a periodic curve, and if I is the half-wave length, then the

1 f
integral -J yrfi represents the mean value of y during half

the period ; because it is obvious that, if the mean or average

value of y is called M, the area enclosed by the periodic

curve and the base line between the two limiting ordinates

is M /, and this area is also expressed by the integral j'y d I.

Hence the above equality results. From these two simple

lemmas it follows that we can easily determine the values of
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the constants in the harmonic expansion. Let us assume a

simple case as an example. Let

y = An + Ai sin x + A2 sin 2 x.

To determine A2, multiply all through by sin 2* and inte

grate between the limits x = 0 and x — ir,

j y sin 2 x d x = j A0 sin 2.r <lx+ j Al sin x sin 2 x dx

+ j A2 sin2 2 a; </ x.

All the integrals on the right-hand side of the equation

vanish except the last, which is equal to - .

2

Hence
2

A2 = - I y sin 2 x d x.

tt J o'

In other words, A., is equal to twice the mean value of the

product of y and sin 2 x throughout the half period. In
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the same way all the other constants may be found. The

process of analysing a complex function into its simple

harmonic constituents is then reduced to little more than

mere arithmetic.
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A single example will make this clear.* There is a certain

complex periodic curve, one period of which is represented in

Fig. 36. The problem is to find the simple harmonic or sine

curves of which it is composed. Call y the ordinate of the curve.

Divide the whole period into twenty-four equal parts. Let T

be the whole periodic time, and let p stand for Let t be

any fraction of the periodic time, so that p t is the angular

magnitude of the abscissa corresponding to any ordinate y.

Since we have divided the period into twenty -four equal parts

each of these corresponds to an angular interval of 15°.

Hence, pt is successively 15°, 30°, 45°, 60°, &c.

Measure from the curve the value of y corresponding to

each of these intervals, and tabulate thom as follows :—

y pt y Pt y pt

13-3660 0 11-7940 135 4-8030 270

14-0355 15 10-8660 150 5 9645 285

14 3300 30 9-7060 165 7-5000 :!00

14-3295 45 8-3660 180 9-3940 315

141340 60 6-9645 195 10 8660 330

13-8295 75 5-6700 210 12 2940 345

13-4610 90 4-6705 225 13 3660 380

13 0355 105 4-1330 240

12 5000 120 4-1705 255

Proceed then to make a second table as follows :—

I. II. in. IV. V. VI. vn.

t y pt sin;) t y x sinp t co2pt y x cosp t

0 13-3660 0 0 0 1 13-3660

1 14 0335 15 0-2588 3 6324 0-9659 13-5569

2 14-3300 30 0-5000 7-1650 0-8660 12 4098

3 14-3295 45 0 7071 10-1324 0-7071 103124

4 &c. &c.

Similarly in Column VIII. put the values of sin 2 p t ; in

Column IX. put the values of y x sin 2 p t ; and in Columns

X. and XI. put cos 2 p t and y x cos 2 p t. Then the value of

the constant term A0 + Bn is the mean or average value of all

the 24 numbers in Column II.

* The example above given is taken almost verbatim from a letter by

Prof. John Perry in The Electrician of February 5, 1892, Vol. XXVIII.,

p. 362.
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Ai is twice the average of all the 24 numbers in Column V.

B, is twice the average of all the 24 numbers in Column VII.

A2 is the same for Column IX., and B2 for Column XI.

Any number of columns may be calculated corresponding to

the multiple angles, 8 pt, 4 p 1, &c., for higher terms of the

Fourier series.

When we have all the sine and cosine terms it is easy to

express y in the form

y = A0 + B0 + /A7+B7 sin (p t + 6)

+ jXf + h~* sin (2 p t + ff) + &c.,

by grouping together the sine and cosine terms.

In the example calculated above it is found that the value

of y is approximately

y = 10 + 5 sin (p t + 30°) - sin (2 p t - 60°),

and this shows us that the given periodic curve is made up of

two sine curves of amplitudes, 5 and 1 respectively, which

differ in phase by 30J. The student will find it to be a useful

exercise to take two or three simple periodic curves and add

their ordinates into a complex periodic curve, and then by

the Fourier analysis to re-discover the simple harmonic

constituents again, and see if he can find the amplitudes

correctly.

§ 6. Simple Periodic Currents and Electromotive Forces.—

Returning, then, to electric currents, we may consider how a

complex periodic current is made up of simple periodic currents

superimposed. It is necessary to examine, in the first place,

how a simple periodic current or electromotive force may be

generated. Let A B C 1) (Fig. 37) be a rectangular frame or

conductor, able to revolve round a vertical axis, 0 0', in a

uniform magnetic field. The adjacent figure represents the

same in plan. If the frame revolve round the axis 0 0', the

total electromotive force acting round the circuit at any

instant is numerically equal to the time rate of change of

magnetic induction or number of lines of magnetic force

passing through the circuit. If H is the field strength in

C.G.S. units, I the length of the side A C, and /„• the length of

the side C D, and x the angle which at any instant the plane

of the frame makes with a plane drawn at right angles to the
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lines of the field, then the magnetic induction or number of

lines of force through the frame is the product of H, and the

apparent size of the frame, as seen along the direction of the

lines of force of the field, is equal to H I k cos x.

If the area of the frame is A square centimetres, the

magnetic induction through it is H A cos x. The effective

electromotive force acting to produce a current in the circuit

1 .
\ •»

1
'?

1

1

>
1

!
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Fio. 37.

is numerically equal to the time rate of change (decrease) of

the magnetic flux or induction, or to

d (H A cos.r) TT , . <lx
- —i ' = -HA sin x —

d t d t

This last equation is merely a symbolic statement of the

fact tlint, if such a frame of area A revolve round an axis

perpendicular to the lines of force in a uniform magnetic field,
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H, with an angular velocity — , then the integral electromotive

force acting round the frame at any instant corresponding to

an angular displacement x is H A sin x.

d t

If the angular velocity remains constant, the effective

electromotive force will be simply proportional at any instant

to the sine of the angular displacement of the frame from its

initial position. Such a frame produces by its uniform revo

lution a simple periodic variation of electromotive force in its

own circuit. If we suppose such a frame to have a closed

circuit, then this periodically varying electromotive force will

produce in the circuit an electric current which varies in

strength very nearly as the sine of the angle of the displace

ment of the frame from its zero position when no lines of

force penetrate through its area. Hence, graphically repre

sented, the current varies according to a simple harmonic

law, or is a simple sine current. We can then synthesise by

the snperposition of such simple harmonic electric currents

any form of variable current, however complicated. Let a

series of such sine inductors be joined up on one circuit

(Fig. 38), each capable of being regulated as to angular

velocity, and imagine these to revolve in magnetic fields of

equal strength. These sine inductors are originally set with

the plane of their frames at certain different but fixed angles

to the planes at right angles to the fields of force in which

they revolve, and they must be supposed to maintain these

relative positions during their revolution. Accordingly, the

effective electromotive force in the whole circuit, when they

are all joined up in series and set revolving at fixed speeds, is

represented by a function

and by Fourier's theorem any possible periodic variation of e

which, graphically described, is a single-valued function, can
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e = A sin x + A' sin x + A" sin x" + &o. ;
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be produced by suitable values of the speeds and phase angles

of these sine inductors.

The converse of the above proposition is also true. Let

there be any periodic current-generating machine producing

in a circuit an electromotive force, and therefore a current

varying periodically according to any law. This kind or form

of current could be exactly imitated by removing the given

machine and substituting a series of sine inductors coupled in

series and arranged so as to each produce a simple sine

varying E.M.F., the respective sine currents having different

phases and amplitudes, but being superimposed upon one

another. That is to say, however complicated may be the

nature of the periodic current which traverses a circuit,

provided the same electric motions are repeated at regular

intervals, we may build up this current by suitably super

imposing in the same circuit a number of simple periodic

currents of certain amplitude and wave-lengths and fixed

difference of phase.

The above remarks may be taken as an outline of the

analysis of any single-valued continuous function into a series

of simple harmonic functions. To simplify language, we shall

in future speak of a curve whose equation is of the form

y— A sin x as a simple periodic curve, and if such curve

graphically represents the continuous variation of the flow of

electricity past any section of a conductor, or the fluctuation

of electromotive force in any circuit, we shall speak of such as

a simple periodic current or a simple periodic E.M.F.

Any other mode of variation of these quantities which,

graphically represented, would be a single-valued curve

repeating the same form, will be spoken of as a complex

periodic curve, current, or E.M.F., and, by the foregoing

analysis, a complex periodic function can be analysed into a

sum of simple periodic functions.

§ 7. Description of a Simple Periodic Curve.—The follow

ing method affords a very easy means of drawing a simple

periodic curve. Take a cylinder or tube of pasteboard (see

Fig. 89) and cut it through obliquely with a sharp knife,

taking care to make the cut in one plane. The section of this

cylindrical tube by an oblique plane will be an ellipse, Slit
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the tube open along the line A B and unfold it. Lay it down

on another sheet of paper and draw a pencil line guided by

the curved edge A Y Y'. Draw a dotted line, X X', so that

its vertical distance below the highest point Y on the curve

is equal to its vertical distance above the points A and Y',
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or make 0 Y equal to A X. Then move this cardboard

template forward through a distance equal to its own width,

and draw another piece of curve, repeating the first, and

similarly placed (see Fig. 40).
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The resulting curve is a simple periodic or simple sine

curve.* The distance X X', equal to the circumference of

the tube or to the width of the template, is the wave length.

The distance 0 Y of the highest point above the mean line

* " Elements of Dynamics " (Clifford), p. 22.

B
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is the amplitude. If the bottom edge of the template is

divided into 360 parts or units, then the distance 0' M,

measured in such units of the foot of the perpendicular,

let fall from any point P on 0' M, is the phase of the point

P, measured in degrees.

It is, perhaps, more convenient to reckon the phase of the

point P by the magnitude of the line A N, or the distance

of the foot of the perpendicular, let fall from P on X X' from

the point A, where the curve crosses the mean line. The

phase of the maximum ordinate 0 Y is then 90deg.

§ 8. The Value of the Mean Ordinate of a Sine Curve.—

Let Fig. 41 represent the semi-wave of a simple periodic

curve ; we shall proceed to prove some geometric proper

ties of such a curve. Considering this curve as bounding

an area of which the other including line is the datum line

X X', we shall first find the value of the mean or average

ordinate. Let X X' be divided into equal and very small

intervals, such as N N', of which the length is d x, and let

X N be called x. Assume as a unit of length the radius of

the cylinder of which XX' is the semi-circumference. At

each of these small elements raise ordinates, such as P N, to

touch the curve. We require to find the mean value of all

these equi-spaced ordinates when they are infinitely close.

The arithmetic mean value of a number of things is the sum

of them divided by their number. If y denote the length of

one such ordinate P N, and 2 y the sum of all such ordinates

when ruled at n equal and exceedingly small intervals, each

of length dx, then the average value of these infinitely

numerous ordinates is

 r

Fio. 41.

2*
—,
»

or
dx'Sy

ndz

or
2ydx.

ndx
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(rat the sum of all such quantities as y d x, or P N . N N' is

the sum of all the areas of the little rectangular slips into

which these infinitely numerous ordinates divide the area

bounded by the curve and X X' , and n d x is the length X X' ;

hence we have

,. , area X Y X'
mean ordinate = = , -r ,r ..

length X X

The area X Y X' is obtained by integrating the equation to

the curve. Calling the maximum ordinate 0 Y, A, and the

distance X N, x, the unit being the radius of the cylinder of

which X X' is the semi-circumference, we have as the equa

tion to the curve

y = A sin x,

and therefore Jydx, or kjsinxdx,

between the limits 0 and ir, is the value of the area of the

curve. But

AJsin xdx= - A cos x,

and this, between the limits x = 0 and x = ir, is equal to 2 A.

On the same scale, the length

XX' = tt;

hence, the average value of the infinitely numerous and equi-

2 A
spaced ordinates is — , or the average ordinate of a simple

2
sine curve is equal to - times the maximum ordinate. The

value of

-= 0-6869.

Therefore, the average value of the equi-spaced ordinates of a

simple periodic curve, or the true mean ordinate, is 0-6869 of

the maximum ordinate ; and, if the current or electromotive

force varies according to a simple periodic law, the true mean

current or the true mean E.M.F. is 0-6869 of the maximum

current or E.M.F. during the phase.

We have here made use of one simple integration, and it is

generally easier to master the elements of the infinitesimal

calculus than to construct or follow proofs which aim at

h2
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avoiding its use. We shall, however, indicate how the value

of this mean ordinate may be found from first principles. If

we call the length of the base line X X' I, and divide it into n,

equal and very small parts of length 8 x, then n 8 x = I. Erect

at each interval an ordinate whose height is y, then the equa

tion to the curve is y = A sin j x, where x is, as before, the

distance X N. The mean value, M, of the ordinate is the sum

of all the values of the ordinates divided by their number, or

is equal to - (yj + y. + y3 + &c.).

n

• M = 1 A { sin 0 + sin % 8 x + sin % 2 8 x -!- . . .

n I I l

+ sin G«-is*>

The sum of the sine terms in the bracket is known by

trigonometry to be equal to

sin I —— - 5 x I sin - - S x

\ 2 I / — /

' It 8 X

™1 2

/. /w - 1 jt s \ ' Ji7r . ,

Heoc, m.a{-(t-T*)-1t'.'

n ) -._ ir 6 x

which may be otherwise written—

— 8 x

M-4-- k < sin

no.v ir . 7r o x
sin - T

(nir 8x _ir 8x\ • nir8x\

When n becomes infinite and 8 x becomes zero, n 8 x remains

etill equal to I ; hence the above expression in this case-

reduces to the following :—

M = ^.2. sin** =Ha,

7t 2 jt

for the value of r is 2 when h becomes zero.
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(UKIVEi.r.iT r)

Accordingly the mean value of the ordinates, when they are

2
infinite in number and equi-spaced, is - times the magnitude

of the maximum ordinate. "

§ 9. The Value of the Mean of the Square of the Ordinates

of a Simple Periodic Curve.—We require in the next place to

find the value of the mean of the square of the nrd'Yaies to

the same curve, assuming them to be equi-distant and infinite

in number. If yv yv &c., are the ordinates, and n the number,

'we require to find the value of

the value of any ordinate being, as above,

A. It
sin - x.

If X X' or I is divided into n intervals, each equal to 8 x, so

that n5x = l, we have to find the value of

AYsin2° + sin2r Sz + sin^ 28a: . . .

+ sin2 5 n-1 8 a;^ ;

tut, sinco Bin'0-|^l-cos20^,

the series in the bracket can be replaced by

- \ cos 0 + \ - \ cos - 2 8 x + g - - cos j 4 Sx+ &C

l l
+ 2"2C°S (2 n 8 x — _ 2 8 x |

I I )

-for n terms. Hence the mean value M is

M = - ^-^Ycos0+ cos- 2 8.7j + &c.^
n 2 2n\ I /

for n terms.

The cosine series forms a progression of terms which begins

with unity, since cos 0° = 1 , and passes down through zero

to - 1, and then up from - 1 through zero to unity again,

for eos02itSa:-?28x)-+l>

•when «8z = Z and Sx becomes infinitely small.
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Since the angles are in arithmetic progression, we can pick

out from this series pairs of cosine terms such that they are

equal in magnitude but opposite in sign, and, when taken

pair and pair, cancel each other out. The sum of the cosine

•.series i/irtheibrafcket is thus equal to zero, and, therefore,

: .\ '• M-A*; (22)

that is, the mean of the values of all the ordinates squared,

taken equi-distant and infinite in number, is half the square of

the maximum value.

We have, therefore, this result : If the current in a linear

conductor varies in strength and direction in a manner which

geometrically would be represented by the ordinate of a simple

2
sine curve, the true mean value of the current strength is -

or 0-637 of its maximum value, and the mean value of the

square of the current strength, taken at equal and very small-

intervals, is half the value of the square of the maximum

value.

2 1
Since _ = 0-637 and —= = 0-707, and since the difference

= 0-07, the true mean current is less than the square root of

the mean of the squares at each instant by an amount which

is very nearly 10 per cent, of the latter.

If we proceed by the ordinary rules of the integral calculus,

we can find the value of the mean of the squares of the ordi

nates of the sine curve as follows :—

Let y = A sin x

be the curve ; then

y2 = A2sin2a;

= ^ (1 - cos 2 a;).

The mean value of the square of the ordinate between the

limits 0 and it — that is, during the half-wave length—is
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Therefore, M = ^r(l-cos2n)<i

M =

 

* - 1 sin 2 x

0

At

2'

Hence we reach the same result as above. In order to avoid

repeating constantly the clumsy phrase the square root of the

mean of the squares of all the equi-spaced ordinates of a curve, we

may call this, in speaking, the mean-square value of the

ordinate, and express it by the symbol ^/mean*. Hence,

^/mean2 y stands for the above particular kind of mean of y.

In practice, in alternating-current work, we hardly ever

require to concern ourselves with the true mean of the

ordinates of a simple or complex periodic curve. Chiefly

we require to know or find the square root of the mean of

the squares of the ordinates of a periodic curve taken at

equi-distant positions throughout the period. Hence the

'J mean2 value of the ordinate of a simple periodic curve is

equal to the quotient of the maximum ordinate by the ^2,

for the mean of the squares of the equi-distant ordinate is

A2
equal to the value of —, as shown above, and hence the

^ -

J mean2 value is —j=. Since ^2 = 1-414 nearly, we see that

the maximum ordinate of a simple sine curve is J2 times

the -J mean2 ordinate. In the practical measurement of alter

nating currents, the value given by the instruments is nearly

always the J mean2 value of the instantaneous values

throughout the period.

§ 10. Derived Curves.—Let the curve in Fig. 42 represent

the complete period of a simple periodic curve of which the

equation is y = A sin ~ x. Let P be any point on the curve.

Then PN = y, 0 Y = A, XX' = i. At P draw a tangent P T to

the curve, and let it meet the datum line at T.
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We shall call the trigonometrical tangent of the angle P T N,

P N
the slope of the tangent at the point P, hence = the slope.

If two points, P P' (Fig. 43), are taken on the curve very

near together, and a secant, P' P T, is drawn through them,

 

Fio. 42.

this secant will become a tangent when the points P P' move

P' M
up into contact. The ratio of -p-^-j will then, in the limit,

Sa;
become the slope of the tangent. If now XN=k-j, and

 

Fir.. 43.

X N' - as+y, and PM = N N' is Sx, we have the equations

PN = Asin^ (x - *£\

and P' N' = A sin | ^ x + ~) ;

, P'M kr.Tr/ ,Sx\ .tt/ Sa:\~|
hence' p-M -n Lsm i V +t ) ~ sm i Kx ~ ?)}

The quantity in the bracket is identically the same as

n 7t • 7t 5 x
2 cos r x sin - — ;

I LA
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sind hence

PM

PM"

A — Sx a -
9 2 cos

8x1 2

,_ . ir Sx—,
sin

w I 2

L 7 IT J

I— - T

Att .
= — sin

S x-

l 2

ir 8.r

When 8 is made infinitely small, the quantity in the square

brackets is unity, and we have

slope—r Bin

If we plot a curve whose ordinates at any point are the slope

•of the primal curve at the corresponding points, the above

G4->>

 

Fig. 44.

-equation shows us three things—first, that it is a sine curve

or simple periodic curve of the same type as the curve from

which it is derived ; second, that its maximum value is

j times the maximum value of the original ; and third, that its

zero ordinate corresponds to the maximum one of the original,

and vice versa.

In Fig. 44 the firm line curve is a curve of sines

y — A sin j x ;

the dotted line is a curve of sines, whose ordinate QN at

any point represents the slope of the tangent at P on the

original curve. Accordingly, at Y, where the original curve is

at its maximum, and the slope of its tangent is zero, the
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derived curve cuts the datum line, or has its phase shifted

90deg. backwards relatively to the original curve. In the

language of the differential calculus, the firm line curve is

the plotting of the curve y = A sin j z, and the dotted curve is

the plotting of — as ordinates for the same abscissae.

dx

We may regard it from another point of new. Let the

simple sine curve be supposed to be generated or marked

out by a tracing point, P, which moves to and fro along a line

PNP' with a simple harmonic motion, whilst the point N

moves uniformly along a straight line X X'. (See Fig. 45.)

 

Draw as before the dotted curve whoso ordinate Q N at any

point represents the slope of the firm curve at the correspond

ing point P. Then the magnitude of N Q will represent the

rate at which the ordinate P N is increasing or decreasing.

For, in this case, distances such as XN, measured along

the mean line, are proportional to time, and hence N makes

a small movement forward in a small time d t ; there is a

corresponding decrease in the ordinate PN, which we may

denote by d y, and accordingly —? represents the rate of

decrease of P N. If the small forward movement of N causes

N to advance through a space dx, dx is proportional to d t,

as the motion is uniform, and accordingly is proportional

to ~~\ hence -— is at any instant graphically represented by

dt dt

the slope of the tangent at P—that is, by the ordinate QN.

The dotted curve represents, therefore, the rute of change of the
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ordinates of the firm curve at that same instant. We shall

call the dotted curve the derived curve.

If the ordinates of the original curve represent the instan

taneous values of a simple periodic current flowing in a con

ductor, then the ordinates of the curve called above the

derived curve will represent the rate of change of that current

at the corresponding instants. The derived curve is a similar

curve, but shifted backwards by one quarter of a wave length.

§ 11. Inductance and Inductive Circuits.—Before we can

proceed to discuss the laws of periodic current flow in circuits

of various kinds, we must call attention to some of the funda

mental properties of electric circuits. Every electric circuit if*

which a flow of electricity, whether continuous or periodic,

can take place possesses three primary qualities, viz., Resistance,.

Inductance, and Capacity. The resistance of the circuit is a

quality of it, in virtue of which a dissipation of energy takes

place when an electric current flows through it. This specific

quality is affected by change of temperature and by other

alterations of physical condition. In the case of pure metals-

it has been shown* that, if the metal could be reduced to the

absolute zero of temperature, its electrical resistance would

vanish.

It is generally assumed that, apart from the change due to-

temperature or other altered physical conditions, the electrical

resistance of a body is a constant quantity, which is independent

of the current flowing through it. It is evident from experience

that this is approximately, even if not accurately, the case. It

would require very careful and extensive experiments before

we should be entitled to say that the resistance of any circuit

of any metal, when all corrections have been made for change

of volume and temperature, is exactly the same when a thousand

amperes are flowing through it as when one-thousandth of an

ampere is flowing through it. Still less can we generalise and

lay it down as absolutely and universally true. Careful experi

ments made by Prof. Chrystal at the Cavendish Laboratory

(B.A. Beport, 1876) showed that the resistance of a metallic

circuit of one ohm is not different for currents of one ampere

and for infinitely small currents by as much as 10" 12 part.

* Dewar and Fleming, thil. Mag., Sept., 1P03.
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There is, therefore, a strong probability that the specific

electrical resistance of a body is a quality which is not

dependent upon the current flowing through it, but is only

affected by the temperature and physical condition of the

body. According to Joule's law the rate of dissipation of

•energy when a current flows through a conductor is propor

tional to the square of the strength of the current. The total

resistance of a circuit may, therefore, be numerically defined

by the rate at which energy is dissipated by it when unit

•current flows in that circuit. In the practical units a circuit

which, when traversed by one ampere of current, dissipates

energy at the rate of one joule per second, or has a dissipation

rate of one watt, is said to have a resistance of one ohm.

The energy required to heat one gramme of water one degree

centigrade in the neighbourhood of its maximum density is

4-2 joules. Since the rate at which energy is being dissipated

at any instant in a circuit is measured by the numerical value

of the product of the strength of the current flowing in it and

the fall in potential down that conductor, it follows that the

resistance of the circuit, or of any part of it, is also measured

by the ratio between the numerical values of the fall of

potential down the circuit or down that part of it and the

current strength in that circuit, provided that the inductance

of that circuit is negligible. The resistance of a circuit is,

therefore, the energy-dissipating quality of it, and the specific

resistance of any material is the resistance of one cubic unit of

it between opposed faces of the cube.

In addition to the quality of resistance every circuit possesses

also ituluctance. This quality of a circuit is one in virtue of

which a current of finite value cannot be instantaneously

produced even in a circuit of negligible resistance by a finite

electromotive force, and when produced cannot be instanta

neously destroyed. 0n account of the fact that all bodies

possess mass, and therefore inertia, a finite force cannot

generate a finite velocity in any material body in an in

finitely small time. We see this fact exemplified in every

falling body or starting train. A time element due to inertia

comes into play which causes the motion of the mass to

be acquired gradually, even under the action of a constant

finite forca. Experience shows that in all electric circuits



SIMPLE PERIODIC CURRENTS. 109'

there is a physical quality present which is related to current

and electromotive force, just as the mass of a material body is

related to velocity and dynamical force. In virtue of the mass

of a body time is required for a finite moving force to generate

a finite velocity, and in virtue of inductance of a circuit time

is required for a finite electromotive force to generate a finite

current. The inductance of the circuit bestows on it a quality

which may be called its electrical mass or electrical inertia. The

mass of a material body enables it in some way to become the

vehicle of energy when in motion, and this energy of motion

is called its kimtic energy. This kinetic energy is capable of

being removed from the moving body, and the moving body

can be brought to rest again only by taking away from it the

kinetic energy it possesses as a whole, and transferring that

energy to some other body or bodies, or to the molecules of

the body itself. In like manner the inductance of a cir

cuit may be said to cause it to be capable of being the

vehicle of electrical energy when traversed by an electric

current. A current cannot be instantaneously produced in

finite value by any electromotive force, and when produced

cannot be destroyed except by transforming that energy into

some other form. Hence we have a very complete dynamical

analogy between material bodies set in motion by what may

be called materio-motive force and the flow of electric currents

in circuits which possess inductance under the action of

electromotive force.

These qualities may be compared as follows :—

Motion in matter corresponds to Electric flow in circuits, .

Mass=m „ Inductance=L,

Velocity=j; „ Current strength=i,

Momentum= m v
/Electromagnetic momen-

\ tum=L t,

 

ii

ii

 

 

energy
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The force acting on a body which is being expended in

making change of momentum is numerically measured at any

instant by the rate of change of its momentum existing

at that instant. So also the electromotive force which is

being exerted to produce change of current strength or

-change of electro-magnetic momentum in a circuit is measured

at any instant by the rate of change of electro-magnetic

momentum.

There is an exact analogy between a heavy body being set

in motion against inertia and friction and between an electric

current being generated against inductance and resistance.

For in the first case one part of the impressed force is being

expended to overcome friction and the remainder to accelerate

the mass against inertia, and in the second case one part of

the impressed electromotive force is expended to overcome

resistance and the remainder to increase the current against

electrical inductance.

A circuit possessing inductance is called an inductive circuit,

and a circuit whose inductance is negligible is called. a non-

inductive circuit. A truly non-inductive circuit can no more

be realised in practice than a mass-less material body. The

- clear recognition that an electric circuit possessed a quality in

virtue of which kinetic energy is associated with it when a

current is flowing through it was first reached by Joseph

Henry. In 1882 Henry made the observation that if the poles

of a single galvanic cell are united by a short thick wire, then

on breaking the circuit there is little or no spark ; but if the

uniting wire is a very long one, and, better, if it is coiled into

:a spiral, then there is a considerable spark at the contact on

opening the circuit. In 1885 he expanded and continued

these observations,* and noticed that if the wire is coiled round

an iron core, and thus forms an electro-magnet, the spark

and shock at breaking circuit are still more marked. Henry

still further elaborated these observations in 1885.t Later

Btill Faraday attacked the same problem, and devoted to its

consideration the Ninth Series (§ 1048) of his " Electrical

Uesearches."

* Journal of Franklin TnstituU, March, 1835, Vol. XV., pp. 169-170.

t Phil. Mag., 1840 ; «ee alto Scientific Writings of Joseph Henry,

pp. 87-97.
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The chain of experiments which led to this inquiry was

apparently started by a question addressed to Faraday by a

Mr. Jenkin, one Friday evening, at the Royal Institution, as

to the reason why a shock was experienced when a circuit

containing an electromagnet was broken, the observer retaining

in his two hands the ends of the circuit, but no shock was felt

if the circuit contained neither magnet nor long coils of wire.

Faraday seems speedily to have arranged an organised attack

on the subject, and to have returned from his investigation

burdened with the spoils of victory in the shape of the

following facts :—

1. If a battery circuit is closed by a short thick wire, then,

although there may be a very strong current existing in this

wire, on breaking contact at any point little or no spark is

seen, and if the two ends of the circuit are grasped in the two

hands, and the interruption takes place between the hands,

then little or no shock is experienced.

2. If a very long wire is used instead, then, although the

absolute strength of the current may be less, yet the spark

and shock at interruption are more manifest.

8. If this length of insulated wire is coiled up into a helix

on a pasteboard tube, then, although the length of wire and

strength of current are the same, yet the spark and shock are

still more marked.

4. If the above helix has an iron core placed in it, both

these effects are yet more exalted.

5. If the same length of wire is doubled upon itself, being,

however, insulated, then the effects nearly vanish, and, whether

straight or coiled, this doubled wire with current going up one

side and down the other is no better in respect of spark and

shock on interruption than a very short wire.

The first observation which Faraday makes upon the above

results is that electricity would seem to circulate with some

thing like momentum or inertia in the wire, and that the

greater the length and strength of the current, so much the

more power is there to run on and jump over the obstacle

presented by the first thin layer of air which is introduced

between the contacts as they are separated, giving rise to a

spark. He saw, however, at once that, since the form of this

circuit is an important factor, the idea of inertia in the current
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itself was fallacious, or else the mere doubling the wire could!

not nullify all the effects. He did not at that time see that

the idea of momentum was exceedingly appropriate, but its

allocation in the electric current itself was wrong.

The observation, however, which led him to a consistent

theory was as follows. A bobbin was prepared, having wound

on it two insulated wires, 1 and 2. The ends of 2 being left

unconnected, the wire 1 was used to complete a circuit, and

gave a spark on interrupting a current traversing it. As we

have seen (Chap. I.), Faraday* had three years previously

established the fact that the commencement and cessation of

a current in one circuit would produce in another circuit, if

closed, an inverse or a direct induced electric wave or transi

tory current. Now, on closing the second cirouit through a

galvanometer or loose contact, and interrupting a steady

current flowing in the first circuit, he found that when circuit

2 was completed, so that an induced or secondary current

could be generated in it, little or no spark happened at the

place of interruption in 1 ; but, if circuit 2 was opened, then

the interruption of circuit 1 gave rise to a bright spark at the

contact. Faraday therefore inferred that when circuit 2 was

closed adjacent to circuit 1, the current in 1 exerted its

full inductive effect in generating secondary currents in 2 ;

but that, if circuit 2 was open, then, there being no adjacent

conductors, the current in 1 expended its inductive effect in

producing induced currents in its own circuit, and this self-

induction manifested itself by temporarily diminishing the

strength of the current at starting and assisting or increasing

it momentarily at the interruption. He was thus able, from

this point of view, to picture to himself the circuit of 1 as

occupied by a steady current, superimposed on which was

another current he called the inverse extra current, lasting but

a very short time at starting the steady current ; and a direct

extra current which flowed on and produced the effects of the

spark or shock at the interruption of the circuit. These extra

currents, or currents of self-induction, he found could be

removed from the circuit itself and exhibited in a neighbouring

oircuit when that adjacent circuit was closed, and so fitted to

be the seat of induced currents due to the mutual induction of

* Faraday's " Exp. Res. 1,09a
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the primary on this secondary circuit. Faraday then placed

this theory under test by requiring it to furnish an explanation

of the following experiment :—

M and X (Fig. 46) were two mercury cups* which formed

the terminals of three circuits—a battery circuit, B, a galvano

meter circuit, G, and a circuit consisting of an electromagnet

or helix. C. The needle of the galvanometer was blocked in

such a way that the tendency to deflect under the steady

current was prevented and the needle kept at zero ; but it

was free to deflect in the opposite direction under an oppositely

directed current. This being the case, the raising of the

battery wires out of the mercury cups was accompanied by a

violent " kick " or deflection of the needle in the free direction.

The action could clearly be explained by supposing that after

the electromotive force of the battery is removed from the

coil C, the current in it does not at once stop dead, but runs

on like a heavy body and makes a backwash of current

through the galvanometer in the direction from M to N. An

illustration of the electromagnetic inertia of a coil on inter

rupting the current may be shown in a more modern form,

thus : Let E (Fig. 47) be an electromagnet, and let L be an

incandescent lamp of which the resistance is very large com

pared with that of E. Let S be a few cells of a storage

battery supplying current, and let K be a key. On depressing

the key the current flows both in the magnet and in the lamp

6
 

Fig. 46.

* Faraday s " Exp. Res.," Vol. L, § 1,079.

I
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arranged as a shunt on the magnet. This current, however,

is, by assumption, not strong enough to illuminate the lamp.

On raising the key and stopping the steady current through

the lamp the electric inertia of the coil sends a momentary

powerful current through the lamp, which causes it to flash

up. Again, if a small shunt-wound dynamo be occupied in

supplying current to a few incandescent lamps, and the two

hands be employed to raise simultaneously the brushes from

the armature, the momentary rush of current from the field-

magnet due to this extra current will disagreeably impress the

phenomenon upon the mind of the observer if the experiment

 

s

Kio. 47.

is made with any but a very small dynamo. With a large

dynamo this experiment is very dangerous to perform.

Neither of these experiments is well fitted to illustrate

the extra current at the closing of the circuit or the effect

of electric inertia on starting the current in a helix. The

arrangement most suited to exhibit the whole effect is that of

the differential galvanometer as used by Edlund, or that

employing Wheatstone's bridge, due to Maxwell.

In Edlund's arrangement* a differential galvanometer is

employed, of which the two coils G, G2 are so placed and

* Ute l'oggeudortf's Annalen, 1849.
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wound that when equal and oppositely-directed currents are

sent through them the needle is unaffected. The coils are

then connected, as shown in Fig. 48, to a battery, B, an

electromagnet or helical coil, L, and a wire, R, of equal

resistance to L, but wound double. The galvanometer coils

are so connected to the circuits L and R that when the steady

current from the battery flows through the divided circuit

the needle remains at zero. 0n closing the circuit it is then

found that the needle makes a sudden deflection in a direction

indicating a brief current passing in coil G2, and on breaking

the circuit it makes another deflection, indicating a transitory

current passing through Qt, In other words, the balance is

 

Fio. 4a

destroyed at the instant of breaking and making, but restores

itself again when the currents become steady. This experi

ment, therefore, most clearly shows that the electromagnetic

helix L, although of exactly the same electrical resistance as the

coil R, differs from it in possessing a peculiar quality, which it

has in virtue of being in the form of a coil or helix, and to

which the name self-induction or inductance has been given.

We are able to define this term as follows :—The self-induction

or inductance of a circuit is, speaking generally, a quality of

it in virtue of which a finite and steady electromotive force

applied to it cannot at once generate in it the full current due

to its resistance, and when the electromotive force is with

drawn time is required for the current strength to fall to zero.

i 2
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It must, however, be noticed that not only does the inductance

of a circuit depend upon the geometrical form of the circuit, but

it depends upon the magnetic permeability of the region which

surrounds the circuit and on the magnetic permeability of the

conducting circuit itself. If, in the arrangement with the dif

ferential galvanometer, the steady balance is obtained by using

a copper wire helix wound on a cardboard tube and balanced

against a non-inductive but equal resistance, it is found that

the insertion of a soft iron core into the helix greatly increases

the "kick" on making contact, indicating the passage of a

greater quantity of electricity through the opposite galvano

meter coil, and therefore a greater delay in the time of

establishing the steady balance.

 

Kio. 49.

Maxwell's method of exhibiting the effect of inductance is a

preferable arrangement.

Four conductors are arranged in a rectangle joining the

points a, h, c, d, and the diagonals are completed by a galvano

meter and battery (Fig. 49). P, Q and R are non-inductive

resistances, and E is an electro-magnetic helix. If R and E

are equal in actual resistance and P ; Q =R : E, then the

permanent closing of the battery circuit does not finally affect

the galvanometer indication, and these circuits (battery and

galvanometer) are then said to be conjugate circuits.

When, however, the battery key is first put down the

galvanometer receives an impulse in one direction ; when the
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key is kept down the galvanometer soon returns to zero, or to

its original position. On raising the key the needle receives

an impulse in the opposite direction. Examination of these

impulses shows that if the current enters the quadrangle at d,

on closing the key the potential rises at b faster than it does at

a, and that on raising the key the potential Jies down at b

faster than at a; but that, if the "balance" is properly ob

tained, the points a and b reach finally the same potential

when the key is kept closed.

An electromagnetic helix with or without a core of soft

iron, behaves itself, therefore, towards an external electro

motive force to which it is submitted as if it had an internal

counter-electromotive force which gradually disappears—allow

ing the full current due to its resistance to be established in

it more or less slowly, and behaves also, at the removal of

this external electromotive force, as if a direct internal electro

motive force suddenly made its appearance within it, this

also gradually dying away.

The reader will see, therefore, that every electric circuit can

not only dissipate electric energy in virtue of its resistance,

but can conserve energy in virtue of its inductance. The

resistance is measured by the rate of dissipation of energy

which takes place when unit current (one ampere) flows

through the circuit, and this rate of dissipation varies as the

square of the current strength. The inductance is measured

by the electromagnetic momentum associated with the circuit

when unit current flows in it. Since, dynamically considered,

the rate of change of momentum is a numerical measure of

the force producing it, we must define electromagnetic

momentum as that quantity the rate of variation of which

numerically measures the electromotive force. We have

already seen that if lines of magnetic induction (or force) per

forate through and are linked with a circuit, then any

variation of the number of these lines of induction or linkages

gives rise to an induced electromotive force in the circuit

equal in numerical magnitude to the rate of change of the

included lines of induction. When an electric circuit is re

moved from all other circuits and magnets and is traversed by

a current, the turns of this circuit are linked with and include

the lines of magnetic induction created by itself. Hence we
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are able to connect the quantity we have called the electro

magnetic momentum with the number of lines of magnetic

induction which are linked with the circuit and which are

created by the current flowing in that circuit. If a unit cur

rent is flowing in any circuit, there are a certain number of

lines of magnetic induction at any instant linked with or

perforating that circuit, and the number of these linkages

defines the inductance of that circuit.

§ 12. Electromagnetic Momentum.—The justification for the

use of the term electromagnetic momentum is as follows :—

When a heavy body is in motion it possesses at any instant

momentum, in virtue of its inertia. Numerically the momentum

of a heavy particle is obtained by taking the product of its

mass and its velocity, each measured in appropriate units.

The time rate of change of a body's momentum in any direc

tion is, by the second law of motion, the measure of the force

acting upon it in that direction, or, in the notation of the

calculus,

cl(»< r) = f

dt J'

We have seen that the induced electromotive force in a

circuit depends on the time rate of change of the magnetic

induction through it, and hence the magnetic induction at

any instant through a circuit bears the same relation to the

induced electromotive force in it that a body's momentum does

to the mechanical force acting on it. Maxwell has accordingly

employed the term electromagnetic momentum to represent the

flux of magnetic induction or the number of lines of magnetic

induction passing through a circuit, because it is upon the

rate of change of this quantity that the induced electromotive

force depends. Faraday very early recognised that induction

effects depend on a change of some quantity. He makes frequent

mention of the electrotonic state, and he spoke of a conductor

in a magnetic field, when traversed by lines of induction, as

in the electrotonic state, and he considered that when the

electrotonic state was either assumed or disappeared its com

mencement or end was marked by the production of the

induced electromotive force. Maxwell identified Faraday's

electrotonic state with the total induction passing through
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the circuit or linked with it. Consider, then, the operations

which go on when a conducting circuit—say a simple

loop of wire—is subjected to a steady electromotive force.

The instant that force is applied, a current begins to flow in

the circuit ; the instant that current begins, lines or rings of

induction spread out from the circuit ; and the loop at any

instant encloses a certain number of lines of induction which

are increasing at that instant at a certain rate. A counter or

opposing electromotive force exists in that circuit numerically

equal to the time rate of increase of this induction. In circuits

which do not enclose or surround iron or other magnetic metal,

or which are immersed wholly in a medium of constant perme

ability, the magnetic induction at any point in the neighbour

hood of the circuit is numerically proportional to the strength

of the current at that instant flowing in the circuit. This is the

fact which lies at the root of the operation of most galvano

meters, viz., that the field at any point in the neighbourhood

of the coil is simply proportional to the strength of the cur

rent flowing in the coil. If, then, i represent the strength of

the current at any instant in the circuit, and L be a certain

constant quantity such that L i represents the induction

through the coil or circuit due to the current i in it, then L i

is the measure of the electromagnetic momentum of that

circuit. This quantity L is a coefficient which, in this case,

is dependent only upon the geometrical form of the circuit,

and, under the assumption that there is no magnetic material

in or near the circuit through which the lines of induction

can pass, it is a constant quantity.

This quantity L is called the constant coefficient of self-

induction of the circuit, or, more shortly, the inductance of the

circuit.

The inductance, or the coefficient of self-induction, is thus

defined :—In the case of circuits conveying electric currents

which are wholly made of non-magnetic material and wholly

immersed in a medium of constant magnetic permeability,

the total magnetic induction through the circuit per unit of

current flowing in that circuit when removed from the neigh

bourhood of all other magnets and circuits is the numerical

measure of the inductance or of the coefficient of self-induction.

Otherwise, the ratio of the numerical values of the electro
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magnetic momentum of such circuit and the current flowing

in it when totally removed from all other currents and magnets

is the numerical value of the inductance of that circuit.

§ 13. Electromagnetic Energy.—Let us confine our atten

tion first to one circuit of constant inductance or self-induction

in which a current is being generated by a constant electro

motive force applied to it. Each increment of strength of the

current creates an electromotive force opposing the impressed

or external electromotive force. Hence this external electro

motive force has to do work against an opposing force of its

own creating all the time the current is rising in strength.

When a mechanical force overcomes a resistance through a

certain distance, mechanical work is being done, and, accord

ingly, we may ask—What is the electromotive force doing all

the while it is increasing a current against an opposing electro

motive force ? The answer is, it is doing electrical work.

The result of causing a current having a strength i at any

instant to flow for a small time, d t, against an opposing

E.M.F. at any instant equal to e, is that a quantity of work,

represented by eidt, is done in- the time d t. If e is th*

instantaneous value of the opposing electromotive force of

self-induction, it is measured at any instant by the rate of

change of electromagnetic momentum L t, or by L —.

d 1

Hence the work done in raising the current from a strength

i to a strength i+di against the counter-electromotive force of

self-induction is L — idt=hi d i, and if this is integrated

</ 1

between limits zero and I, we get the whole quantity of work

so done against self-induction alone in bringing up a current

from zero to its full value, I, in the conductor, but

Exactly in the same way it may be shown that the work

done in bestowing a velocity V upon a mass M is measured by

the quantity h M V2.

The total work done against the electromotive force of self-

induction in creating a current I in a conductor of constant
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inductance L is, then, numerically equal to half the square of

the final current strength, multiplied by the value of the con

stant inductance or coefficient of self-induction.

The equivalent of this work is found in the magnetic field

formed round the conductor, and hence the formation of a

magnetic field represents so much energy, measurable in foot

pounds per cubic inch, or in any other similar units, such as

ergs or kilogrammetres, per cubic centimetre of field.

Next let us consider the case of two circuits. Let the con

stant coefficient of self-induction of the first be L, and let it

be traversed at any instant by a current t. Let the inductance

of the other be N, and let it be traversed by a current i'. Let

the coefficient of mutual induction be M.

The definition of this last quantity is as follows :—If both

circuits be traversed by unit currents, and if there be no other

field than that due to these currents, the number of lines of

induction which traverse both circuits, or are linked with both

circuits, is called the constant coefficient of mutual induction.

It will be a quantity constant for a given form and position of

the two circuits on the assumption that the lines of induction

flow in a medium of constant magnetic permeability. Hence,

if we consider the work done, d E, in raising the currents

t and t' by small increments, d i and d /', in a small time, d t,

we find it consists of four parts—a part, L i d i, representing

work done by the current t against its own counter-electro

motive force, and a similar part, Ni' di', for the other circuit,

then a portion, Midi', representing the work done by the

current i in its own circuit against the induced electromotive

force, due to the increment of the current i' in the other, and

lastly, a similar part, M t' </ i, for the second circuit. Hence,

we have

d E=L t d i+M i d i'+M V d i+N i' d i'.

Integrating this between the limits zero and I for one circuit,

and zero and I' for the other, we find the whole energy repre

sented by the two currents I and 1' flowing in the circuits

to be

E =JLP+MII'+*Nr*. . . . (24)

The electro-kinetic energy is said to be a quadratic function

of the currents and the inductances.
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§14. The Unit of Inductance.—The Henry.—The practical

unit of inductance is called one henry. The henry is the

unit of inductance which is in consistent relation with the

ohm, the volt, the ampere, the watt, and the joule. A cir

cuit has an inductance of one henry when there are 10*

C.G.S. lines of magnetic induction linked with the circuit,

or when there are lO^linkages of current and magnetic lines

of induction, under the condition that one ampere of current

traverses the circuit, and that no other lines of induction than

those due to itself perforate or are linked with the circuit.

If the circuit is a coiled circuit of wire, and the wire makes

n turns round a total number N lines of magnetic force or

induction, then there are n N linkages of circuit and induction.

Suppose that we have a circular solenoid formed by winding

thin, closely placed, covered wire on a wooden ring of circular

cross section. Let the mean cross section of the circular

solenoid be S, and let the induction density in the interior of

the solenoid be B, when one ampere is sent through the wire

windings. Then there are B S lines of induction in all round

the interior of the solenoid. Let there be N turns of wire in

all on the ring, then there are N S B linkages of current and

magnetic lines of force. The inductance of this solenoid, or,

its self-induction measured in henrys, is

(25)10* v '

If we consider the above circular solenoid or very long

straight solenoid to be wound on a wooden or non-magnetic

core, the value of the induction B in the interior is numerically

the same as that of the magnetic force in the interior, viz.,

4?r A N
— units, where A is the ampere current in the coil,

10 L 1

N the number of windings, and L the mean length of the

coil. Hence the self-induction of such a coil in henrys is

i0~^? 01 *S ProPor'*ona^ ^° square of the total

number of windings N.

An enormous number of wire windings are, therefore,

necessary to obtain any sensible fraction of a henry of in

ductance in a circuit in which the path of the lines of

magnetic force is wholly in air, or in some body of unit

magnetic permeability.
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In the case of such air or non-ferric magnetic circuits the

inductance is a constant quantity which depends only on the

geometrical form of the circuit.

The moment, however, that we introduce an iron core we

alter the state of affairs. The inductance is then no longer

the same for all values of the induction, because the induction

varies with the magnetising force, but not proportionately to

it. Hence, we cannot speak generally of the inductance of

such an electric circuit when linked with an iron, or partly

iron, magnetic circuit, except to define its value corresponding

to one particular value of the current. We can, however,

always refer to the instantaneous value of the inductance when

we have occasion to mention a particular value which it has

when varying from instant to instant. For very low or very

high degrees of magnetisation, however, the inductance of

such a circuit will be constant, but very different.

The following table taken from figures obtained by Mr. A.

E. Kennelly and Prof. Ayrton* will furnish the reader with an

idea of the approximate magnitude of the inductances of

various well-known instruments, measured in henrys and

fractions of a henry :—

Cardew voltmeter about 1 microhenry.

0rdinary telegraph sounder 25—50 millihenrys.

Astatic mirror galvanometer, about1 o i
5,000 ohms.. . ) 2 hem7a-

Mirror speaking galvanometer, 2,250 1 , , ,
ohmf ... . ........) 3-6 henrys.

Single coils of Morse receiver 93 millihenrys.

Induction coil (giving 2in. spark) \ R1 ,
secondary circuit / 01 * ' ftenrys-

Shunt dynamo (100 volts, 35 amps.)! _ ,
armature..... L.J 5 hei"7s-

Field magnets of the above dynamo) ,, . ,
in aeries } 13* henry..

0rdinary electric bell, 2 5 ohms re-) .„ m*.
sistince . / 12 millihenrys.

§ 15. Current Growth in Inductive Circuits.—We see,

therefore, that when electric energy is spent on a conductor

in the production of a current, in addition to the energy

taken up in the performance of any chemical or external

* See The Electrician, Vol. XXVI., p. 290, also pp. 267 and 305.
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mechanical work, part of it is dissipated as beat by ao irre

versible process, and part is associated with the circuit in a

recoverable form, and is taken up in the establishment of the

energy of the magnetic field, which then exists round the

conductor. This last portion of the energy, however, dissipates

itself as soon as the impressed electromotive force is with

drawn.

A mechanical operation analogous to that of starting a

current in a wire may be found in the process of starting

from rest, or increasing the speed of, a heavy fly-wheel which

runs in bearings with friction. On applying a twisting force

or torque to the axle of the wheel we get up its speed. To

maintain the speed, force has to be continually applied to

the wheel, and the work so done against friction is frittered

away irreversibly into heat in the bearings. The friction is

analogous to the electrical resistance ; it may be called the

frictional resistance.

When the speed of the wheel is constant there is, however,

associated with the wheel a certain quantity of energy in a

kinetic form measured by i I iu2, where I is the moment of

inertia, and w the angular velocity of the wheel. As soon as

the maintaining force is withdrawn this accumulated energy

<lissipates itself in heat by friction, or is utilised in some other

way. During the time that the speed of the wheel is being

increased, force must be applied to it for two purposes : firstly,

to increase its angular momentum, and, secondly, to overcome

the friction at the bearings. Suppose that, instead of revolv

ing on bearings with friction, the fly-wheel revolves in a

more or less viscous fluid, and that the bearings arc truly

frictionless ; in such case the frictional resistance to motion

would be fluid resistance, and would for low speeds be

approximately proportional to the angular velocity. If I is the

moment of inertia and o» the angular velocity of the wheel at

any instant, then it is shown in treatises on dynamics that

the product of the moment of inertia and the rate of change of

the angular velocity at the instant, or 1^, is the numerical

il t

measure of the torque or twisting force acting on the wheel

to increase its angular velocity, friction being neglected. If

we call the constant frictional coefficient B, so that Bu is at
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any instant the measure of the force necessary to maintain the

motion against friction, the total torsional or twisting force

acting on the wheel to maintain its angular velocity against the

force of friction, and to increase it against the force of inertia,

is F = Bw+ llw.

a t

A precisely similar equation may be found connecting the

electromotive force, electric current, electrical resistance, and

inductance in the case of current starting in a wire. The above

equation gives us a value for the instantaneous angular velo

city, or enables us to find the angular velocity after any time

when F, B, and I are given. When a current of strength t is

flowing steadily in a linear conductor, such as the wire under

consideration, the energy associated with it in the form of a

magnetic field is measured by the quantity \ L t2, where L is

the quantity called the inductance of the circuit. Since this

quantity L bears to electromagnetic energy a relation similar

to that which the moment of inertia of a wheel does to the

energy of its rotation, it might be called the coefficient of

electromagnetic inertia ; but, as this would be a cumbersome

name, it has been called the inductance, or, frequently, the

self-induction of the circuit. The numerical product of the

moment of inertia and the angular velocity of the wheel is

called the angular momentum, and, analogously, the product

of the inductance of a circuit and the current flowing at

that instant through it is called the electromagnetic

momentum.

The rate at which the angular momentum of a wheel is

increasing or diminishing at any instant is a measure of the

rotational force, or the couple acting on it at that instant. So

also the rate of change of the electromagnetic momentum of

a circuit is the measure of the electromotive force acting on

it as far as mere change of current strength is concerned, and

omitting, for the present, that part of the electromotive force

required to overcome the true resistance. We have, then, the

following parallel between a fly-wheel, with moment of

inertia I, revolving frictionlessly, and having an angular

velocity w at any instant, and an electric circuit of inductance

L, having a current of strength i flowing in it at any

instant :—
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Angular kinetic energy of the wheel, or energy of rotation = 4 la*

Electromagnetic energy of the circuit = $ Li1

la

L*

di

1l i

Angular momentum of wheel

Electromagnetic momentum of circuit

Rate of change of angular momentum of wheel = couple\

or torsional force causing rotation /

Bate of change of electromagnetic momentum= electro- \

motive force employed in changing current strength /
= L

dt

The symbol ( = ) must in the above be understood as equivalent to the

phrase is measured by."

In the electric circuit, over and above the electromotive

force which is required to change the electromagnetic

momentum, there is an amount required to overcome the

frictional resistance of the wire, and which is defined and

measured by Ohm's law E = R£. Hence, at any instant, if E

is the impressed electromotive force acting on the circuit, we

may divide E into two parts, one part equal to Rt by Ohm's

law, which is sometimes called the effective electromotive

force, and which is that part of the impressed electromotive

force which is operating to overcome the true resistance of

the circuit, and another part equal to L—, which is the

a t

part operating to change the strength of the current at that

instant, producing a small change, d i, in the current strength

i in a time d t. Hence, in mathematical language, we have

E = Rt+L—.

dt

(26)

This is the fundamental equation for varying or periodic

currents, when the periodicity is not so rapid as to affect the

uniform distribution of the current over the cross section of

the wire, and when the electrostatic capacity of the circuit

di .
The part L— is often called the counter-

dt

may be neglected.

electromotive force of self-induction, and the above equation

might be read in words—

Total \

Impressed

Electro- - = 1

motive

Force. ,

/'Electromotive Force"!

employed in over

coming resistance, or

the Effective Electro

motive Force.

+

Electromotive Force

employed in chang

ing strength of cur

rent, or the Inductive

[ElectromotiveForce.
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We might arrive at this fundamental equation otherwise

thus :—The total rate of expenditure of energy in the circuit is

at any instant measured by the product of the current at that

instant existing in the wire and the difference of potential

between its ends. The energy expended in the circuit is at

any instant being partly dissipated at a rate equal to Ri2, R

being the ohmic resistance and i the current, and partly

being stored up in the field at a rate equal to the rate of change

of the quantity JLt*. Hence we have :—

which is our fundamental equation.

At this stage we must particularly caution the student to

note one thing. The quantity L, which is called the induct

ance of the circuit, is a constant and definite numerical

quantity for any given form of circuit only as long as this

circuit consists of non-magnetic material and is immersed in

a non-magnetic medium. If, however, the circuit embraces

or is embraced by iron, as in the case of an electromagnet, or

is immersed in a medium which is not diamagnetic but

magnetic like iron, then it is no longer a constant quantity,

but the inductance varies from instant to instant with the

strength of the current flowing in the circuit. In this

chapter we suppose ourselves dealing only with circuits of

constant inductance, and in which the value of L is fixed by

the form of the circuit alone.

§ 16. Equation for Establishment of a Steady Current.—We

return to our discussion of equation (26) (§15). When a cur

rent is flowing in a conductor, we may picture it as surrounded

by its lines of magnetic induction properly mapped out.

That is, so that the number of the lines of induction passing

perpendicularly through a small unit of area taken at any

 

Rate of dissi- \ f Rate of absorption

pation of energy !-+-! or storage of energy

as heat J [in the magnetic field,

or E=Ri + L^-, . (26)
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point in the field is equal to the numerical value of the mean

strength of the magnetic field over the area. If the circuit has

the form of a loop (Fig. 50) lying on a horizontal plane, with

the current circulating round it in the opposite direction to

that in which rotate the hands of a watch, then the lines of

induction must be considered as springing out from the upper

surface, and turning outwards and over the conductor, so as

to re-enter the loop from the under surface. The closed

circuit is, therefore, linked with a certain number of lines of

induction, which, if the circuit is composed of non-magnetic

material, are proportional in number to the strength of the

current at that instant. Any increase in strength of the

 

Fig. 50.

current causes more lines of induction to grow out from the

circuit, and packs the loop fuller of lines of induction. By

Faraday's law, any increase of the number of lines of induction

traversing or linked with a circuit creates an induced electro

motive force numerically equal to the rate of increase of that

number at that instant. Hence, if 100 million lines of in

duction—C.G.S. measure—are put or inserted at a uniform

rate in one second into a circuit, it will create an induced

E.M.F. of one volt in it. If lines of induction are thrust

into a circuit, the direction of the current induced is counter

clockwise, as seen from that side of the circuit at which they

are thrust in (see Fig. 50).
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Applying this to the case before us, it is easily seen that

any increase of current strength in the circuit in Fig. 51

crowds the space with more lines of force, and therefore

creates in it an electromotive force of self-induction opposed to

the impressed electromotive force which is acting to increase

the current; and, so long as the current is increasing, this

counter E.M.F. is at each instant proportional to the rate of

growth of the current strength.

We can cast our equation (26)—

E = Ri+L^
dt

into another form, thus : —

E— . = hdi

li 1 RrfV

E

where ™ is the maximum value which the current can attain.

 

Flo. 51. —Lines of force being crowded into a circuit, inducing a counter

clockwise E.M.F., as seen from the side at which they are put in.

Let us call this value I. The quantity ^, or the ratio of the

inductance to the resistance of the circuit, is called the time-

com ant of the circuit ; let this quantity be denoted by T. We

then have I — i = T~,

at

which, in words, is a statement that if a steady E.M.F. is

made to act on any circuit whose time-constant is T, the

amount by which at any instant the current falls short of its

full value is equal to its rate of growth at that instant, multi

plied by the time-constant.

K
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§ 17. Logarithmic Curves.—A curve such that the rate of

growth or shrinkage of the ordinate or slope of the curve is

proportional to the ordinate itself is called a logarithmic

curve.

Let a curve (Fig. 52) be described by the extremity P of an

ordinate, P M, which moves uniformly along 0 X, parallel to

itself, and let P M shrink in height at a rate proportional to its

height at any instant. The differential equation to such a

curve is then
y = - A • ,
J dt

and since t>~Bx (where c = the base of Napierian logarithms

= 2-71828) is a function which fulfils this condition of having

 

Kio. 52.

a differential coefficient proportional to itself, we can write the

solution of the above

- i

y = e A + a constant,

for it is at once seen that by differentiating the equation

y=e * + a constant,

we obtain

and therefore

dy

dt"

y = - A

e *

A

dy

dt

Returning to our equation for the current, we can write, as

an equivalent for the equation

l-i

dt
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the equation I - i = - T—SL *),

dt d(I-i)

Integrating this we have as a solution

~ L = 1°S P - 0 + a constant.

The constant has to be determined by the condition that,

when t = 0, 2' = 0, which gives constant = - log I. Hence the

complete solution is

-£-log(I-«)-logl,

or I — t=I 6 t.

This last equation expresses the fact that the amount by

which the current falls short of its full value, I, at any time, t,

after applying the E.M.F., is a fraction of its full value equal

to e~ f. When t = 0, or at the instant of closing circuit, I - i = I,

or the current i = 0 ; when t = T, I - i = I , or the deficit from

e

full current is equal to - - x the maximum current. Hence

2-718

we may define the time-constant of a circuit as the time reckoned

from the instant of closing the circuit in which the current

e - 1
rises up to a value equal to . . of its full value, or to

e

about 0-632 of its maximum value. Approximately we may

define the time-constant as the time from closing the circuit

in which the current rises up to two-thirds of its maximum

value

XV

The rise of current strength in a wire of inductance L and

resistance R, when a steady external electromotive force, E, is

applied to the circuit, can be represented by a current curve, as

shown in Fig. 53. Let 0X be a time line on which we mark

off time as lengths reckoned from 0 ; let lines drawn vertically

to this represent the current strength at any instant in a ciicuit

of time constant T, inductance L, and resistance R ; and let

k3
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E

0 Y = I represent the maximum current which is finally

found in the circuit. On applying the electromotive force E

to the circuit, the current strength grows up in the wire as

graphically represented by the curve, the law of growth being

that the rate of growth at any instant, multiplied by the time-

constant, is equal to the difference between the actual current

at that instant and the maximum current strength finally

attained, or, symbolically,

i-t=Tli,

d t

the solution of the above differential equation being

I-

or i=l(1-e~^ (27)

 

This last equation gives us the value of the current strength

at any time t seconds after closing the circuit, in terms of the

time-constant, and the maximum current, I, which is finally

attained.

The maximum current, I, would be produced at once in the

circuit if its inductance were zero, so that we may finally for

mulate the law of growth of current in a circuit of constant

inductance L, resistance R, and no sensible capacity, by saying

that the current strength at any instant, added to the rate ofgrowth

ofthe current strength at that instant multiplied hij the time-constant,

is equal to the current which woidd exist in the circuit if its in

ductance were zero.
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S; 18. Instantaneous Value of a Simple Periodic Current.—

The application of these principles to the case of simple periodic

currents will lead to another important equation. Let there

be a circuit which has an inductance L and resistance It,

and let a simple periodic electromotive force act upon it ; let

the maximum value of this E.M.F. be E, and let p stand

for 2tt», where n is the frequency of the oscillation, or -

n

is the duration of one single complete period, p is a quantity

of the nature of an angular velocity, and may be called the

pulsation. Then, if t is the time which has elapsed from the

commencement of the wave of E.M.F. and e is the actual

value of the E.M.F. at that instant,

e = E sin p t.

In this case the impressed electromotivo force varies from

instant to instant, passing from zero to a maximum E, then

to zero again, and then to a negative maximum - E. Accord

ingly, our fundamental equation for the current strength at

any instant is expressed thus :

d(hi) +Ri=e=E sin pt. . . . (28)

dt

For, the total rate of expenditure of work on the circuit at

any instant when the current has a value t is ei, and this must

be equal to the rate at which electrical work is being dissi

pated as heat, or to UP by Joule's law, and to the rate at

which work is being stored up in the magnetic field, which is

Hence '] (J L ?) +R ?=« i,

d t

or, L^i+ Ri= Esin/»« (29)

In order to solve this differential equation, and obtain the

value of the current i in the circuit at any instant under the

periodic electromotive force, we may adopt a well-known

algebraic device, and substitute for the value of sin pt its

equivalent in exponential terms. It is shown in treatises on

trigonometry that kg

sin 6 = ,

2k '
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where k= v' — 1, and e is now the number 2-71828, which ia

the base of the Napierian logarithms.

je , -he-

Also that cos d=-—±1 ;

2

hence cos 6+!c sin 6=ek6.

These are called the exponential values of the sine and

cosine.

Taking the equation (29),

L— + Ri = E sin/)*,

il t

we divide both sides by L, and, writing T as before for the

time-constant ^, we get

di , i E
— + -— =— sin v t.

«tV T RT 1

Multiply both sides by e T (e being here the exponential

base, not impressed E.M.F.), and we have

J • 1 • ' 17 '

..el + — e'= — el sin «!.
</f T RT e

The left-hand side of this equation is the complete differential

of ieT, and may be written — ( idJ; and on substituting

the exponential value for sin pt and putting k for V — 1, we

have

<(<A-— B—{.(4+"0 —.<*-»') I . (30)

rft\ / 2*RTl J v '

The right-hand side of this last equation is the differential

with respect to t of

E ) eK I 1 eK I '

I. T T

and this last becomes by simplification

2/tRC ( l+fc^T" 1-*2>T j"
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Hence, equating both sides of equation (30), when integrated

we have

E
t=

2R4 I I+A7T l-fc/>'

Substituting back into sine and cosine terms, and recol

lecting that

elp = cosp t+ /i sin pt,

and e'1"'= cosp t — k sin pt,

we get finally

sinpt—^Tcos^i
t=R\

l+jr"P

This equation gives us a value t for the current at any

instant, and at a time t reckoned from the instant when the

impressed electromotive force is zero. The value of i is

accordingly called the instantaneous value of the periodio

current, and the instantaneous value runs through a certain

cycle of magnitudes, ranging from zero at one particular

instant to a maximum value I at another instant.

We can, however, put the above equation in a more intel

ligible form. Replace T by — , and let 6 be an angle whose

tangent is equal to ^£ ;

R

hence tan 9=^=?T.

R

It follows by an easy transformation that

R , . „ hr

cos 6— — and sin 0 = . . -

We have, then, for the value of the current i, the equation

. E [sin p t—p T cos p t\ .
t = R 1 l+f2T2 ) '

or, by substitution,

E f \

i- .- .— sine t cos 6— sin 6 cos p t\,

••<-7I.Wsin(pt-^ (81)
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This is called the particular solution of the equation

L t=E sin p t = e,

dt

and it shows us three things :—First, that the phase of the

current i is retarded behind that of the impressed electro

motive force by an angle 6—such that tan 8=p T = Il?;

a

second, that the maximum value of the current is obtained by

dividing the maximum value of the electromotive force by a

quantity equal to VW+p'U ; and, third, that the current

curve is a simple periodic curve. The quantity v/E2+p'L2

is called the impedance of the circuit.

The mathematical student will, however, remember that

the complete solution of the equation

L —+B. £=E sinpt

d t

involves a constant of integration, and this is obtained by

adding to the particular solution above obtained the com

plementary function which is obtained by taking the solution

of equation (29) when E sin p t = 0.

Now, since the solution of

L^+Rt = 0is

d t

t = Ct 1

where C is a constant of integration and e in this last equation

is the base of the Napierian logarithms, we have, then, the

complete solution of the differential equation

L — +R£ = E sin /it

d t

given by the equation

i-- - sinO,f-0)+Cr^. . (32)

The complementary function dies out rapidly as time in

creases at a rate depending on the value of ^. Physically,

the meaning of this is that the current does not settle down

into its regular periodic state until a shorter or longer time

after the closing of the circuit depending on the value of the

time-constant — .

R



SIMPLE PERIODIC CURRENTS. 107

We shall return again to discuss the complete solution of

the above equation (29), and show how to determine the value

of the constant C in equation (32).

We have seen from the explanations on previous pages

that the mean-square value of a simple periodic quantity is

equal to its maximum value divided by J2. Hence, if we write

Im for the impedance, we can put the equation, giving the

instantaneous value of the current produced by a simple

periodic impressed electromotive force of maximum value

E, operating on a circuit of resistance R, inductance L,

with a pulsation p, in the form

i = -— sin0>t— 6) ;

Im

or, if we denote the maximum value of the current during the

E

phase by.the letter I, and since 1 = we have

t = 1 sin (p t - 9).

Hence, we may write this in words as follows :—

the maximum value} f the maximum value of the

' the current V = -'

strength J [ impedance

of the current \ = impressed electromotive fbrct

and the mean-square \ f the maximum value

value of the = J. ,^ •

current strength J [

We see, then, that, in the case of simple periodic electro

motive force, the quantity called the impedance appears to

be related to the impressed E.M.F., just as does the resist

ance to the steady E.M.P. in the case of continuous currents,

and the above may be called the equivalent of Ohm's law for

simple periodic currents. Compare as below

For steady"!

or

continuous |

currents

current \ felectromotive force

strength ) ~ { r^isTanVe (0hm's law)"

For simple] mean-square\

periodic or ' value of th

alternate f current

currents J strength

( mean-square value of

-! the electromotive force

[ impedance
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Impedance is a quantity which is measured, like resistance,

in ohms, and has for that reason been sometimes, but

erroneously, called the virtual resistance.

§ 19. Geometrical Illustrations.—The current equation,

expressing the current strength in terms of the impressed

electromotive force, the resistance, inductance, and phase

angles, which holds good when a circuit of constant induct

ance and no sensible capacity is subjected to moderately

great pulsations of electromotive force has been in the

previous pages arrived at algebraically from first principles.

It is, however, possible to elucidate its meaning by geometri

cal methods. Let a circular disc (Fig. 54) be pivoted at

the centre 0, and at any point P on the circumference let

a plummet line be attached. In front of the circle is a fixed

horizontal line XX'. Let the disc move round counter

clockwise at a uniform rate, the time of one revolution

being T. As the disc goes round, the length of plummet

line P M above X X' fluctuates. Since P M = 0 P sin P 0 M,

it follows that, if the magnitude of PM be taken at small

equal intervals of time during one revolution, and such

heights be plotted off as off-sets at equal distances above

and below a datum line, the extremities of these ordinates

will lie on a simple periodic or sine curve. In other words,

x

 

0

Fio. 54.
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PM grows and shrinks in height in accordance with a

simple periodic law. We can, therefore, represent any

quantity which fluctuates in magnitude according to a

simple sine law of growth by representing it as the pro

jection of a point on the circumference of a circle revolv

ing uniformly, taken on a horizontal or vertical fixed line

drawn through the centre. Hence, if OP represents the

maximum value of an electromotive force fluctuating periodi

cally, P M will represent its various magnitudes during the

complete period. The magnitude of P M at any instant

is known when we know 0 P, which is called the amplitude,

or maximum value, and POM the phase angle of the motion.

A diagram, in which the projection on any other line of a

radial line revolving round one extremity is made to represent

a simple periodic function, is called a clock-diagram. In clock-

diagrams radial lines are taken to represent in magnitude the

maximum values of the quantities which are to be represented

as periodically varying. Any line through the centre may

be taken as the line on which projections are taken, and the

projections in this line give us the instantaneous values of the

periodic quantity whose maximum value is represented by the

radius. If different radii are drawn from one centre, repre

senting currents or electromotive forces, then the angular

interval between these radii represent the phase difference of

these quantities.

§ 20. Graphic Representation of Periodic Currents.—On

such a diagram let a radius be drawn to any scale repre

senting by its vertical projection the periodic fluctuation

of an impressed electromotive force, varying according to a

simple sine law, and acting on a circuit of given inductance

and resistance with a fixed periodicity; the problem is to

draw on the same diagram another radius, of which the

vertical projection shall represent the actual current strength

in the circuit at the corresponding instant. The impressed

electromotive force at any instant balances, or is equal to,

the sum of two others, viz., the effective electromotive force

driving the current, which is equal to the product of the

ohmic resistance of the circuit and the current at that

instant in it ; and the inductive or counter-electromotive
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force, which is equal to the rate of variation of the flux of

force or number of lines of force traversing the circuit. The

phases, or times of maximum, of these two components are

not identical. They diner by 90°, since the effective electro

motive force has the same phase as the actual current, and

the inductive electromotive force, depending on the rate of

variation of the current, comes to a maximum at the instant

when the current is zero, or is changing sign.

By the proposicion in § 10, these two periodic quantities

can therefore be represented by sine curves, one of which

is shifted backward relatively to the other, so that the crest

of the wave of one coincides with the zero point of the

other. We shall first proceed to show that the sum of two
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simple periodic motions of the same periodic time, but

different phases and amplitudes, will, when added together,

produce a simple periodic motion of the same periodic time.

Let a parallelogram of cardboard, 0 A B C (Fig. 55), be

cut out and pivoted by a pin at the angle 0, so as to turn

freely clockhand-wise. Let a vertical line, 0 Y, be drawn

through 0, and in any position let the sides 0 A, 0 C, A B

be projected on to 0 Y. The projection of lines equal and

equally inclined are equal ; hence, since A B is equal and

parallel to 0 C, the projection of A B—viz., a b—is equal to

that of 0C—viz., 0c. But 0 b = 0 a + ab always for any

position of the card; hence 0 6 = 0a + 0c. The projection

of the diagonal is therefore equal to the sum of the projec
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tions of the adjacent sides. As the card moves uniformly

round the magnitudes of the projections fluctuate at each

instant, according to a simple periodic law. Hence the

sum of the simple periodic motions of which 0 A, 0 C are

the amplitudes, and which have a fixed difference of phase

represented by the angle A 0 C, is the simple periodic motion

represented by 0 B in amplitude and relative phase. If, then,

a point be subjected to two simultaneous simple periodic

motions of given amplitudes, and of which the phases differ

by 90°, the actual motion will be represented, as to ampli

tude and phase, by the diagonal of the parallelogram of

which these two form the adjacent sides. Returning in

thought to electric motion, consider the motion of a particle
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of electricity (if we may be allowed the expression) in the

wire subjected to two simultaneous simple periodic motions

of unequal amplitude and fixed difference of phase equal

to 90°. The displacement at any instant due to the two

together is equal to the sum of each separately. If the

individual motions are represented by the vertical projec

tions of two lines, 0 A, 0 13, fixed like hands of a toy clock

at right angles (Fig. 56), the resultant motion is that indi

cated by the projection of the diagonal 0 C on the same vertical.

We have seen (in § 10) that, if the variation of a quantity is

represented by a simple sine curve, the variation of its rate of

change ia represented by a sine curve of different amplitude
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shifted backward by 90° of phase, or by a quarter of a wave

length. It follows from this proposition that if we add

together at every instant the motions or the ordinates repre

senting them on a diagram of two simple periodic motions,

one of which is the curve representing the rate of change of

the ordinate of the other, we shall get a new sine curve, of

which the maximum value falls between that of the other

two, and of which the amplitude is different, but wave length

or periodic time the same. In Fig. 57 the thick line sine

curve represents one wave of a simple periodic motion. The

fine continuous line is a sine curve of equal wave length, of

which the ordinate PM at any point represents or is pro

portional to the rate of change of the ordinate Q M of the

 

thick curve at the same instant. Adding together the

ordinates of the thick and thin curves, we get a new dotted

line sine curve, of which the ordinate R M is equal to Q M

+ rate of change of Q M. If we substitute for the sine curve

diagram a clockhand diagram (Fig. 56), then the projection of

0 B—viz., 0 b—corresponds to the ordinate Q M of the thick

curve ; that of 0 A—viz., 0 a—corresponds to P M, the ordinate

of the thin curve ; and that of 0 C, the diagonal of the

rectangle 0A, 0B, corresponds to R M, and is the resultant

of the motion 0 B, and the rate of change of that motion, viz.,

0 A. If, then, 0 B represents the amplitude or maximum

value of the actual periodic current in a circuit, a line, 0 A,

drawn at right angles to 0 B, will represent to a suitable scale

the rate of change of that current.



SIMPLE PERIODIC CURRENTS. 143

We are, then, led to this converse proposition, that we

can resolve any simple periodic curve into a pair of component

periodic curves of equal periodic time, but of which the maxi

mum value happens for one before and for one after that of

the original.

§ 21. Impressed and Effective Electromotive Forces.—If at

any instant a current of which the instantaneous value is i

is flowing in an inductive circuit of which the true resistance

is B, the quantity Ri represents the voltage necessary to

make this current flow, and this part of the impressed electro

motive force is called the effective electromotive force in the

circuit. If the circuit is an inductive circuit, there will be

another electromotive force equal in magnitude to L" —, which

dt

acts either with or against the total applied or impressed

electromotive force. This is called the inductive electromotive

force. The electromotive force which is at any instant

applied to the circuit is called the impressed electromotive force.

The effective electromotive force is always the resultant of

the impressed and inductive electromotive forces. Hence, if

these last two electromotive forces are represented in a clock

diagram in magnitude and relative phase by the two sides

of a parallelogram, the effective electromotive force will be

represented in magnitude and phase by the diagonal of that

parallelogram. A further condition is that, since the inductive

electromotive force depends upon the rate of change of the

current, it is always at right angles as regards phase with

the effective electromotive force. This last is always in

step or in synchronism as regards phase with the current.

Hence, if we require to draw a clock diagram of electromotive

forces for an inductive circuit in which a simple periodic

impressed electromotive force is acting, we see that the proper

construction is as follows:—Take any line, 0P (Fig. 58), to

represent the magnitude of the maximum value of the

impressed electromotive force ; on 0 P describe a semi-circle,

0 M P ; let 0 P be supposed to revolve round the point 0 in

the contrary direction to the hands of a watch, and let the

projection of 0P, at any instant on any line 0Y drawn

through 0, be taken. Then 0P represents the maximum
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value, E, of the impressed electromotive force, and 0 q, or the

projection of 0 P, represents the magnitude of the instan

taneous value of the impressed electromotive force at an

instant when 0 P has completed such part of one revolution

as is represented by the angle P0X.

Let us suppose 0 P to start from the position 0 X, and

let time be reckoned from that instant of starting. Then,

if T be the time of one complete revolution, and if t be

the time in which 0 P passes through the angle P0X,

y
 

Fio. 58.

the angle P 0 X is the same fraction of four right angles of

2jt that t is of T. Hence the angle P0X is, in magni-

tude, equal to For shortness, 2it/T is wTitten p. There

fore p is a quantity of the nature of an angular velocity.

Hence, if the magnitude of 0 q, which is the projection of 0 P,

is denoted by e, and if 0P is denoted by E, we see that

e = E sin;>f,
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or the instantaneous value of the impressed electromotive

force runs through a cycle of values represented by the

ordinates of a sine curve.

Next, on 0 P describe a semi-circle, 0 M P, on that side of

0 P which is towards the direction in which 0 P is rotating.

Take a point M on this circumference, such that 0 M is to

M P in the ratio of hp to R, where L is the inductance and R

the resistance of the circuit. Through 0 draw 0 K parallel

to MP. Produce MO to N, and make ON equal to OM.

Draw N E parallel to 0 P and join 0 K. Then, on the same

scale on which 0 P represents E, the maximum magnitude of

the impressed electromotive force, 0 K will represent the

maximum magnitude of RI or the effective electromotive

force, and 0 N will represent L;> I or the maximum magni

tude of the inductive electromotive force. By the geometry

of the figure we see that, if the angle P 0 K is called 6, the

projection Oft of OK on OY is equal to OK sin (pt— 6),

and also the projection On of ON on 0 Y is equal to

ONcos(pt-0). Hence O» = — (0 ft). Moreover, 0 K is

d t

the resultant of 0 P and 0 N, and 0 N is at right angles to

0 K ; therefore 0 N and 0 K fulfil all the conditions requisite

for being the representation of the maximum values of the

inductive and effective electromotive forces. For OK is

obviously the resultant of 0 P and ON. 0 N is in such

a direction that its projection or instantaneous value is

numerically determined by the rate of ohange of the projection

or instantaneous value of 0 K ; and we know, by fundamental

principles, that the electromotive force of self-induction is

determined by the rate of change of the current in this

circuit ; that is, by the rate of change of the effective electro

motive force. By considering the relative positions of OP,

0 K, and 0 N, it will be seen that they are in the right

directions to represent these three quantities. For, if the

system of lines be supposed to revolve round 0, then, when

the projection of 0 K is above 0 X—that is, when the current

in the circuit is increasing—the projection of 0 N is negative

and is decreasing. This means that the electromotive force

of self-induction is in such a direction as to oppose the

current. Also, when the effective electromotive force or

L
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current is in the same direction, but decreasing, then the

inductive electromotive force is positive, or in the same

direction as the current, and is increasing. Accordingly, if

the magnitude of 0 K is 14 1, where R is the resistance of the

circuit and I is the maximum value of the current, and R I is

therefore the maximum value of the effective electromotive

force in the circuit, we see that the magnitude of 0 N must

be L p I, and that of 0 P must be v R- + p'L2 I, and this last,

we know, is the value of the impressed electromotive force E.

Accordingly, on whatever scale 0 P represents the impressed

electromotive force E, then OK represents the effective electro

motive force RI, and ON represents the inductive electro

motive force L p I. If we take one Rth part of 0 K, we have

the value of the current in the circuit. The angle of lag 6 by

o 

A R 8

Fig. 59.

which the current is behind the impressed electromotive force

in phase is an angle, such that—

a Resistance of circuit. R
cos d = .—.——_ =====

Impedance of circuit. V'R2+p2L2

The diagram shows us, therefore, not only how to represent

the current and impressed electromotive force in an inductive

circuit properly as regards phase and magnitude, but tells us

practically how the angle of lag should be measured.

The relation of the impedance and resistance of an inductive

circuit may be represented geometrically as follows : Draw a

right-angled triangle, ABC (Fig. 59), and take the base A B

to represent the resistance of the circuit, and the hypotenuse,

AC, to represent the impedance. Then the side BC will

represent the magnitude of the quantity p L. This has been

called the reactance of the circuit, and since the angle 0 A B is
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R
an angle which has a cosine equal to 2j^' we see

this angle, which we may call 6, is the angle of lag of current

behind electromotive force, and, moreover, that

pL_ reactance of circuit

— K resistance of circuit'

§ 22. The Mean Value of the Power of a Periodic Current.

Having now seen how the fluctuation of current strength is

related to that of the impressed E.M.F. in an inductive circuit

nnder the conditions of a simple sine law of variation, we pass

to the consideration of the measurement of the power taken

up in or supplied to circuits traversed hy periodic currents.

Let the thin line curve in Fig. 60 represent the curve of

impressed electromotive force in an inductive circuit, and the
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thick line the corresponding curve of current. Then at any

instant the rate at which energy is being expended on the

circuit is equal to the product of the ordinates P M, Q M,

which at any point M on the time line represent the electro

motive force and current respectively. The mean rate of

expenditure of energy, or the mean power being taken up in the

circuit, is then the mean of all such products taken at equal

and very near intervals of time during one complete period.

This is not by any means identical with the product of the

mean current and mean electromotive force. To arrive at an

expression for this mean power, we must pave the way by a

preliminary proposition on the mean product of two simple

periodic quantities. An elegant geometrical method of

l2
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obtaining this has been given by Mr. Blakesley. We shall,

however, give here an algebraical proof of this proposition. Let

there be two radii OP, OQ (Fig. 61), which revolve in equal

periodic times round a common centre 0, separated by a fixed

angle, P 0 Q. At equal small intervals of time corresponding

to equal angular motions let the projections Op, 0 q of these

lines be taken on a vertical line through 0. It is required

to find the mean value of the product Op, Oq during one

complete period.

Denote by X the length of 0 P, and by Y the length of 0 Q,

and let the angle P 0 Q be fi, and P 0 p be a. ^ is the angle

of phase difference, and X and Y are the maximum values of

the periodic quantities 0 p, 0 q, which are the vertical projec

tions of 0 P, 0 Q.
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Let 0^ be denoted by p, and 0 q by q

Then p = X cos a,

and g = Y cos (a+/3) ;

and therefore pg =XY cos a cos (a+fi).

Let the pair of radii 0 P, 0 Q be supposed to turn round

one complete revolution, proceeding by n small steps, each

step increasing the angle a by a very small amount, 8, u and n

bt-ing a very large number. At each stage let the value of p q

be measured as above, then the mean value of the product p q

1s one nth. part of the sum of all the n values so taken. Call

this mean value of the product M. Then,

_XY (cos fi+cos 8a cos (8a+ f3) + cos2 SaCOS (23a+ ft))

n I .... +cos«-l 8 a cos (w- 1 Sa+/?)J

By trigonometry we have

cos (n^l 8 a) cos (h— 1 S a+ (3) = \ cos (2n-l 8 a+f2)+ J cos /?,

since cos A+ 13 + cos A— B = 2 cos A cos B.
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Accordingly every term, except the first in the cosine series

for M, splits up into the sum of two others, one of which is

always J cos f3. Rearranging the terms, we get for the value

of M as follows :—

M=^£i n 008 P+ h(°0B P+cos (2 8a+/?)+ cos (4 S a+/3)

. . . . +cob (2 n - 1 Sa+f3)

The cosine series in the inner bracket consists of a series of

cosines of angles in arithmetic piogression taken all round the

circle. Hence, since the cosine of any angle is numerically

equal to that of the cosine of its supplement, but of opposite

sign, these cosine terms will cancel each other out pair and

pair, when n becomes very great and 8 a very small, and n S a

equal to 2jt. For when

n 8 <j = lir, 2 n-1 S a+f3 = iw+fi, and cos (4tt+/3) = cos /3.

The first and last terms of the series are in this case identical,

and for every term there will exist one of equal magnitude

and opposite sign. The sum of the series of cosine terms in

the inner bracket is accordingly zero.

The value of M reduces then to that of the first term,

viz. :—

M cos (3.

The mean value of the product of two simple harmonic or

periodic functions of equal period but different amplitude and

phase is equal to half the product of their maximum values,

and the cosine of their difference of phase.

Returning to the consideration of the electrical problem,

it is now clear that for simple periodic or sine variation the

mean value of the product of the current at any instant and

the simultaneous value of the impressed electromotive force in

an inductive circuit is obtained by multiplying together half

the product of their maximum values, and the cosine of the

angle of lag. If i be the current at any instant, and e the

impressed E.M.P., I and E being their maximum values,

then the mean value of e i during a complete period is

<°s (33)

)]
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and this is a measure of the mean rate of expenditure of

energy on that circuit, or the mean power taken up. It is

obvious, then, that if the lag is 90°, this mean product is

zero, and that no work is done at all.

When 6 has intermediate values between 0° and 90°, the

real rate of dissipation or transformation of energy in the

E I
circuit will be intermediate between — and zero. In order

2

to understand how this can be, and how it is that a circuit may

be traversed by a current and yet take up no power, we must

examine a little more closely the nature of the phenomena.

§ 23. Power Curves. —Let the periodic curve in Fig. 62

represent a sinusoidal variation of electromotive force acting

on a circuit which we shall for the moment assume has no

h.iilfl

] N

Q n a o et n c
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•

>

F.o. 62.—Electromotive Force Curve.

sensible inductance. Let the curve in Fig. 63 represent

the corresponding current. The length of each ordinate of the

second curve is equal in magnitude to that of the corresponding

i i 1
1 1 1

/: i ! ! i ! ! >v1000.0

j 1.

i

t, - ci m n h n "a - ti \

Fig. 63.—Current Curve.

ordinate of the first curve divided by the value of the resist

ance of the circuit. Let the lengths of corresponding ordinates

of these two curves be multiplied together, and the product
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Bet off as the ordinates of a new curve represented by the

dotted hue in Fig. 64. This dotted curve is, then, the curve

of power or activity, and represents the variation of the pro

duct of the current and the electromotive force taken at

every instant.

In multiplying together the ordinates of the first and second

curves, we must pay attention to the algebraic sign of each

ordinate. Ordinates of each curve drawn above the horizontal

 

datum line of the curve must be reckoned plus, and ordinates

drawn below must be reckoned minus, and in taking the product

the algebraic law of signs must be regarded. It will be seen

that the dotted line curve consists of a wavy line of two loops

lying wholly above the mean datum line. If the area of the

two hummocks enclosed by the dotted curve and the horizontal

line is indicated or integrated, say, by an Amsler's planimeter,
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the area represented by the shaded part so obtained is

a measure of the total work done in one complete period of

the current oscillation, and, since this area lies wholly above

the datum line, it must be reckoned as positive, or as work done

by the electromotive force ; in other words, it represents the

total energy transformed from electrical energy into heat in

one complete period.

Next let us suppose that the same periodic electromotive

force acts upon a circuit having inductance as well as resist

ance, and that therefore, as already shown, the current is

retarded in phase behind the electromotive force. Let the

thin curve in Fig. 65 represent the periodic impressed electro-
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motive force, and the thick curve the current retarded by 45°

in phase behind the other. Proceed as before to obtain

the power curve by multiplying the heights of corresponding

ordinates, the multiplication of the ordinates being shown

below the figure. We find that the power curve representing

the variation of the activity is a wavy curve, consisting of

four sections, two large hummocks above the datum line,

which are positive areas, and two small ones below, which are
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negative areas. The algebraic sum taken with regard to sign

of all these four areas, represented by the shaded parts, is a

measure of the total work done in one complete period by the

electromotive force. Going one step more, we may imagine

that the current lag is 90°, and in Fig. 66 we have drawn

the power curve in this case, obeying the same instructions.

We see that the power curve consists of four loops, two

positive and two negative, and that the area of these hum

mocks are equal. Hence, the total area or indicated value

in this last case is zero, and the work done in one complete

cycle is zero ; hence, the rate of doing work, or the power, is

zero. Returning to Fig. 64, the first case, it is easy to see

 

Fro. 6b. Lag 90°.
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that the rate of doing work, or the power, is measured by the

mean ordinate of the shaded work areas considered as indicator

diagrams. Since the dotted curves are perfectly symmetrical,

if we draw a line Y Y' at half the height of the maximum

ordinate of the dotted curve, it will cut the two hummocks

into two parts, and the area of the upper part, or mountain

above the line Y Y', would just fill up the valley between the

bottom parts of the hummocks. Since the rate of doing work

is equal to the work done in one complete cycle divided by the
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time of duration of that cycle, it obviously follows that this mean

ordinate X Y measures the power or rate of doing work and is

E I
equal in magnitude to — ; hence this product is a measure of

2

the rate at which the electromotive force does work. Refer

ring to the second case, we see that the mean ordinate X Y is

no longer equal to half the maximum ordinate of the positive

or upper loop, but is equal to half the difference between the

magnitudes of maximum ordinates of the positive and nega

tive loops of the power curve, and is therefore less than

E I
From the proof given previously we have seen that it

2

E I
is equal to-— (cosine of lag).

A

In the third case considered, of a lag of 93 degrees, it is

easy to see why the resultant rate of doing work is zero.

In the first quarter of a stroke the electromotive force propels

the current, and this last is in the direction of the E.M.F.,

but in the second quarter of a stroke the current is negative or

opposite to the electromotive force ; in other words, the current

is moving against the force and does work against the E.M.F.,

and the same push and re-push is repeated in the second

half of the period. Hence, on the whole, though there is

an impressed electromotive force and a current flowing, no

resultant work is done and no energy dissipated.

§ 24. The Experimental Measurement of Periodic Currents

and Electromotive Forces.—At this stage it will be an advan

tage to direct attention to the practical means of measuring the

Vmean square value of periodic currents and electromotive

forces, and also the mean value of the power given to an

inductive circuit of any kind. There are, amongst others, two

instruments especially useful for measuring periodic currents.

One of these, the Cardew voltmeter, depends upon the prin

ciple that when a wire traversed by a current, either steady

and unidirectional or steadily periodic, is placed in an enclosure

the walls of which are approximately at a constant tempera

ture, the wire will itself, after a short time, attain a constant

temperature. This constant temperature is reached when

there is a state of equilibrium between the rate at which heat
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is radiated by the wire and the rate at which the walls of the

enclosure radiate heat back to it.

The wire has a definite length corresponding to each tem

perature, and means are provided for measuring this elongation

with great accuracy. The total amount of heat generated in

the wire per second is dependent upon the rate of generation

at each instant. The instantaneous rate of heat development

is, by Joule's law, equal in mechanical units to the product of

the resistance of the wire and the square of the value of the

instantaneous current flowing in it.

If the wire is traversed by a simple periodic current, and

we construct from the current curve diagram another curve

whose ordinates are equal to the square of the correspond

ing current ordinates, we have a curve every ordinate of

which is proportional to the instantaneous rate of generation

of heat in a wire traversed by the periodic current. Since the

horizontal line measures time, it is obvious that the whole

area of the outer curve, or heat curve, represents the total

work done per semi-period by the current in producing heat,

and that the same total work would be done by a steady current

which had a value equal to the square root of the mean of the

squares of all the ordinates of the periodic current curve.

This square root of the mean of the squares of all the ordi

nates of a simple periodic curve has, however, been shown in

§ 9 to be numerically equal to the value of the maximum

ordinate of the periodic curve divided by V 2. It follows that

the total heat generated per second in the wire is a numerical

measure of the Vmean square value of the current or of half

the square of the maximum value of a simple periodic current.

A fine wire stretched out in the manner of a Cardew voltmeter

wire has a very small inductance, and, when acted upon by a

simple periodic electromotive force, the current produced in it

is very nearly proportional to this impressed electromotive force.

It follows, then, that, when a Cardew voltmeter is subjected

to a simple periodic electromotive force, the needle takes a defi

nite position, corresponding to a definite expansion of the wire,

which is that which it would take if the wire were subjected

to a steady electromotive force equal to —— of the maximum

value of the periodic electromotive force.
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The Cardew voltmeter is not adapted to measure any but

very small currents. The instrument generally employed to

measure periodic currents of moderate and large magnitude

is some modification of Weber's electro-dynamometer. In the

best-known practical form of Siemens there are two coils of

wires in series, one fixed and the other movable, and so placed

that the currents in the movable coil circuit are traversed at

right angles by the lines of force due to those in the fixed

coil. When a simple periodic current traverses the coils in

series, a force is brought into existence due to the electro-

dynamic action, which is proportional to the instantaneous

value of the square of the current strength. From instant to

instant, however, the current strength varies. If the time of

free vibration of the movable coil is very large compared with

that of a complete period of the electrical vibrations, and il

the movable coil is brought back by a restoring force due to a

spring or bifilar suspension or gravity, &c., into a fixed normal

position, then, during one complete electrical period, we may

consider that the movable portion receives a number of small

impulses which are in magnitude represented by the square of

the ordinates of the current wave. Hence, the total impulse

on the movable coil is equal to the magnitude of the inte

grated area of a sine curve whose ordinates are respectively the

squares of those of the current curve, and the mean force on

the movable coil will obviously be proportional to the mean

ordinate of this force curve. If the movable coil is so heavy

that its time of free vibration is very long compared with the

time in which the periodic forces on it run through a complete

cycle, it will experience a displacement exactly that due to the

mean of the forces acting upon it—that is, to the square root

of the mean of the squares of these instantaneous currents—

or to where I is the maximum value of the current during

the period. The periodic force on the movable coil is equiva

lent to a steady force when this periodic force runs through

all its values in a time very short compared with the time

of free vibration of the coil. Hence, if a simple periodic

current has a maximum value I, when it is sent through an

electro-dynamometer it will cause a deflection equal to that

which would be caused by a steady current equal to —- .
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Let us suppose a coil of constant inductance L and resist

ance R to be traversed by a simple periodic current of fre

quency n (where 2irn = p). Let an electro-dynamometer be

inserted in series with it, and let a Cardew voltmeter be

connected to the extremities of the inductive circuit.

We have before seen that if E and I are the maximum

values during the period of the impressed E.M.F. and current

in an inductive circuit, then the power taken up in that

E I
circuit is equal to cos 6, where 6 = angle of lag of current

behind the E.M.F. But the reading of the Cardew volt

meter when connected to the ends of an inductive circuit i»

E
very nearly proportional to ——, and the dynamometer reading

in that circuit is proportional to —j= ; therefore, the product of

v 2

E I
these readings is proportional to —- , and takes no account of

A

the difference of phase. The product of the ^mean square

values of the current and of the electromotive force in

an inductive circuit is generally called the apparent power

or apparent watts given to that circuit, but it is not a measure

of the true power given to the circuit. For this reason we

can derive no information from the use, in this manner, of

these instruments. The observed readings, and hence their

product, does not take into account the difference of phase

between the current and impressed E.M.F. in the inductive

circuit. A very small error, in practice negligible, is also

introduced by disregarding the inductance of the wire of the

Cardew instrument. 0n this account, strictly speaking,

currents in the wire cannot be taken as accurately propor

tional to potential differences at the extremities, but this is in

ordinary usage a negligible error.

§ 25. Method of Measuring the True Value of the Power

given to an Inductive Circuit. Theory of the Wattmeter.—

If a current traversing an inductive circuit under a periodic

impressed electromotive force is made to pass through another

circuit which acts electro-dynamically upon a movable circuit

conveying another current proportional in strength to, and
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agreeing in phase with, the periodic variation of potential

difference at the terminals of the inductive circuit, such an

arrangement will, if it can be realised, afford a means for

obtaining a true numerical measure of the power taken up in

the inductive circuit.

An electro dynamometer having its fixed coil composed of

thick wire and its movable coil of fine wire, each circuit

being independent, is most usually called a wattmeter. The

examination of the circumstances under which the wattmeter

can and cannot be used to measure the power expended in a

circuit subject to simple periodic electromotive force, leads to

some interesting considerations.

If the thick and thin wire coils of a wattmeter are traversed

by two independent steady unidirectional currents, the force

on the movable coil is at any instant proportional to the pro

duct of the strength of these two currents. If each of these

currents are simple periodic currents the force varies with the

product of the instantaneous values, and the compound curve

formed by taking as ordinates the products of the correspond

ing values of these separate current strengths at each instant

is itself a simple periodic curve, provided that the two com

ponent currents have constant amplitudes, equal period, and

fixed difference of phase. Let a wattmeter be supposed to be

joined up to an inductive circuit (Fig. 67) ; let R and L be

the resistance and inductance of this inductive circuit between

the points Q Q' ; let the thick wire coil Th of the wattmeter

be joined in series with this inductive resistance, and let the

R L 

Fig. 67.
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fine wire coil /of the wattmeter of resistance S and inductance

N be joined to the points P P' ; let the thick wire coil be

of negligible resistance and inductance in comparison with

the circuit Q Q'. If a simple periodic electromotive force

operates on the double circuit between the points P and P', we

shall have a current flowing in R and S. It is required to

calculate at any instant the currents in R and S respectively.

Consider simply a divided circuit (Fig. 68) in which R and S

are the branches. Let x be the current at any instant in R, and

y that in S, and let i be the strength of the current in that

part of the circuit just before it divides ; in other words, i is

the main current, which is divided into z in the inductive

resistance and y in the fine wire coil of the wattmeter. Let e

be the potential difference between the points P P' at the same

instant, and let X, Y, I, and E be the maximum values
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Fio. 68.

of all these quantities respectively. We assume that i is a

simple periodic function of I, and we then write i = I sin p t,

where p = 2it n, n being the frequency. Applying the funda

mental equation of §15 (p. 126) to each circuit, we see that

(It

also N^+ Sy-«.

dt

Accordingly, L^+R*=N^+ B«;

at <lt

but, by the principle of continuity,

i = x + xj

always, since there can be no accumulation of electricity at

P or P' ;

hence x = i—y,
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and, hence, L rf('",~y) + R (i- y) = N ly + S y,

at at

or Lii+Bi-(L + N)4?+(B + B)y.

at at

But ? = Isinpt.

and ^= Ip cos pt,

a t

(L + N)l^ + (R + S)y = ILpoospt + IRsinpf,

or ^+B±|y-^4ooapt+T^Binp*.

tit L + N L + N L + N

This differential equation is of the type

where Q is a function of f. The solution of this will be found

in " Boole's Differential Equations," p. 88, and it is

y = <rr'^jQ <! p < a" t + const) ,

e being here the base of Nap. logs, and not impressed E.M.F.

In the case before us P =

L + lN

and Q= TB * sin p t + f1 p - cos p t.

L + N L + N

The integrals of eVi sin ptdt and e vt cos pt dt are required-

They are as follows :—

J v- + ;,2

and fe^cosytdt = fr'(Pcos^(tfsin^f);

J rj+^J

hence it follows that

/"«p<Qdt= fe* -^-smPtdt+ (er<±LLcosptdt

J J L + N J L + N

RI P (P sm pt-p cos p t) hpl eFt(P cospt+psinpt)

= L + N6 W+j? L + N P+^
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Therefore we have by substitution

J (B + S)2 + (L + N)yj + [(E + S)L,,-R(L + N)P]cos7>tj(31)

or

I J[R2 + jp2L2 + BS + LN^]sin/.« \

" (R + S)2 + (L + N)>2( +[SLp-RNy]co8P«J"

Since the original equations are symmetrical in x and y,

R and S, L and N, the value for x is given by changing R to

S and L to N in the equation for y.

This equation for y gives us the strength of the current in

the fine wire coil, and it shows us that the phase of the

currents x and y in the branch circuits differs from that of the

main current i by an amount which depends on L, N, R and S.

In order to exhibit this in a simple form we may direct atten

tion to a simple trigonometrical transformation.

Y
n

r

q

 
p /

\ S

e\

X O

Fio. 69.

Trigonometrical Lemma.—The function A sin 0 + B cos 6,

where A and B are constants, may otherwise be written

JA* + W sin (6 + <f>),

where tan = — .

A

Draw any rectangle (Fig. 69) 0 P, 0 Q, and draw a pair of

rectangular axes, 0X, 0Y, through 0. Project the pointsQ, B, P

on 0 Y. Then, by geometry, if P 0 X = 6 and P 0 R = <f>,

0r = 0p + 0q,

= OP8in0+0Qcos0,

=0E sinB0X = 0R sin(0 + £);
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hence 0 P sin 0 + 0 Q cos 0 = 0 R sin (6 + <f>)

= V0P+ 0 Q*sin (0 + <#>).

But tan*-°J;

hence A sin 6 + B cos 0 = JJJ^B1 sin ( 0 + <£) , . (85)

where tan =

A

Returning then to the equation for y, the coefficients of

sin p 1 and cos p t in the equation are respectively R (R + S)

+ L (L + N) jo2, which represents the A, and (R + S) lip — R

(L + N) p, which represents the B, in the above. Squaring

each of these expressions, and adding the results, we obtain

as a result

{(R + S)2 + (L + N)2 P'} (R2 +p* L2) ;

hence we finally arrive by substitution at the equation for y

yg +p u gin( e) . G)

V(R+S)2+p2 (L + N)2

where tan g=B =(R + B)Lp-B(L + N)p

A R(R + S) + L(L + N)p2' V '

tan0= (SL-RN)p . . . (88)

11 (R + S) + L(L + N)p2 V '

In this form the equation for y shows us that the phase of y

is ahead of that of i, or that the main current lags behind the

current in the branch S, provided that S L is greater than R N ;

and, since the expression for the current x is perfectly sym

metrical, we can write it down at once, and it is

IVS2 + ^2N'

* - 7IrTB7+7(lWs sin (p 1 + ff) • m

where tan 0 = (RN-SL)p 4Q)

S(B+ B) + N(L + N)p*' v '

and it is obvious that, if S L is greater than R N, tan 0 is

positive, and tan ff is negative. If SL = RN, then there is

no lag, and the branch currents x and y agreein phase with

the main current i.

The general result is, therefore, this—When an impressed

electromotive force acts on a circuit which branches into two,
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having each self but no mutual induction, there is a difference

of phase between the currents in the main line and branches ;

that is, they do not come to their maximum values at the

same instant. The main current lags behind the impressed

electromotive force in phase, and the two branch currents

respectively lag behind and are pressed ahead of the phase of

the main current.

The question then arises, under what circumstances does

the branch current which is in advance in phase of the main

current get so much ahead that it comes into consonance with

the phase of the impressed electromotive force ?

To settle this question we shall have to discuss briefly the

question of the compound impedance of branch circuits.

§ 26. Impedance of Branched Circuits.—Lord Rayleigh has

treated the problem of the impedance of branched circuits

under the assumption that any number of circuits are

connected in parallel, posessing each self-induction, but

having no mutual induction.*

The problem is : Given the resistance and inductance of each

branch, to find the compound resistance and inductance, or

equivalent resistance and inductance, of the system for simple

periodic currents of given frequency.

Let B and L be the resistance and inductance of any branch,

and p the pulsation = 2irw. Let R' and L' be the compound

or equivalent resistance and inductance of the system of

parallel conductors.

The solution of the problem given, for which we refer the

reader to the original paper, is

R' = ,„ A„„ , and L' B

where

and

A = vf JR \

\R2+/LV

B-S( L V

\R*+/>2LV

If we take, as usual, tan & = and write (Im) for impedance,

.Ll

* See Lord Rayleigh " 0n Forced Harmonic 0scillations of Various

Periods " (Phil. May., May, 1886, p. 379).

m2
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where (Im)2 = K2+;i2L2, we can write the above relations

R
A = 2

B =

(Im)2

L

(Imf

Let R'2+^2L'2 be written (IM)2. This is the compound or

equivalent impedance of the system of parallel conductors. It

is obvious that

where A = -T^-Tand B = 2 ''
(hay i (Im)'

hence (lUf

\ (lm)V \ (Im')r

Consider the case of a pair of conductors in parallel (Fig. 70),

having resistances R and S and inductances L and N, but no-

mutual inductance.

Let jB?+p*D~ (ImJ,

and jW+jFW* = (Im2) ,

and J&"+p* L'i = (IM);

then (IM)2 = _ 1 ■ u — :
( i{ 4- ^ Y+f L + N Vp2

or H- # (Im,)(Im2)

^(lm,)-+ (Im2)'+2 (R S+p* LN)'

The lag « of the main current just before branching, con

sidered with respect to the impressed electromotive force, will

be given by the equation
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generally, and in the case considered will be

p L , p N

tan £ -
R

2 + <

tan e =

hence after reduction

(S2+j^Ns) ph+ (R2+/i2L2)pN

(82 +p2 N2) R+ (R2+ L2) S '

This is the equation which determines the lay of phase of the

current i behind the impressed electromotive force in the main

branch before dividing into the branch currents x and y in R

and S respectively.

 

Compare this equation with that which determines the

angle by which the phase of the branch current y in S is

aliead of the main current i. It is, as we have seen,

(SL-R N)p

tan0 = R(R+S)+L(L+iN)jo2.

In the expressions for tan e and tan 6 put N = 0, and they both

become equal to

SLp

RtR + Sj + yVL2"

This shows that, when N = 0, the current y in the branch S

is as much ahead of the main current i as i is behind the im

pressed electromotive force, and hence that y agrees in phase

with the impressed E.M.F. acting on the double circuit;

in other words, the current in the branch S is entirely

unaffected by being joined in parallel with an inductive

-circuit R ; but if N is not quite zero, then the current in

branch S is affected, as regards its lag, by the fact of being
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joined in parallel with an inductive circuit. The nature of

this affection will be dependent on whether SL—RN is

L N
positive or negative—that is, whether — or — is the greater—

R S

that is, whether the time constant of the R circuit or the

n L . N
S circuit is greater. If— is greater than then the current

R b

y in S is ahead of the main current t, but lags behind the hu

ll N
pressed electromotive force. If is less than —, then the

R b

current y in S lags behind the main current i in phase, and,

afortiori, behind the impressed electromotive force.

§ 27. Wattmeter Measurement of Periodic Power.—

Returning to the wattmeter problem, let one of these

divided circuits, viz., the one of resistance R, be a circuit

in which it is desired to measure the electrical p-jwer. In the

ordinary way of using the wattmeter, the fine-wire coil, which

we will assume has a resistance S, is placed in parallel with

the inductive circuit, the thick-wire coil united in series with

the inductive circuit. The main current i is thus divided

between the inductive circuit R and the wattmeter fine-wire

circuit S. The electro-dynamic action in the wattmeter is

then one between a current in S, which we have called y, and

one in the thick-wire circuit, which is the same as that in the

inductive circuit R, which we have called x.

We have above arrived at expressions for the values of x

and y. The question then arises how far the indications given

by the instrument, and which are due to the electro-dynamic

action of the currents x and y, and proportional to their nume

rical product, are proportional to the real power taken up in

the circuit R.

The current x is the same as the current in R ; hence the

error, if any, will result from the current y in S differing in

phase or in proportionality from the potential difference

between the ends of the circuit R.

In the ordinary mode of calibrating the wattmeter the

instrument would be applied to measure a power in a non-

inductive circuit traversed by a known current, and having

a known potential difference at its ends.
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From this the real watts taken up in the circuit are known,

and, since the force required to bring back the movable coil

to its initial position is proportional to the product of the

numerical values of the currents in the fixed and movable

coils, we have at once the desired constant of the instrument.

If a wattmeter so calibrated is applied to measure power

in an inductive circuit, there are two causes of error which

may or may not neutralise each other, and which may

cause the measured watts as determined by the instrument to

be greater than, equal to, or less than, the real watts or power

taken up in the circuit.

The first of these causes of error is due to the fact that the

fine-wire circuit of the wattmeter always has a sensible induc

tance—that is, N is not zero. It may be made very small

by arranging the chief part of the wire resistance of the fine-

wire circuit as a non-inductive resistance in series with the

small inductive resistance which forms the movable coil. It

follows that, if E be the maximum potential difference during

the period between those points to which the fine-wire circuit

is attached, the mean-square ( v/inean2) value of the current in

1 E

the fine-wire circuit is equal to —= -—when subjected

to a simple periodic E.M.F. of angular velocity p. This

quantity is not proportional merely to E, but depends also

on the value of p. One effect of the impedance of the fine-

wire circuit is to make the mean-square current in it under

periodic E.M.F. less than it would be if produced by a steady

E.M.F. equal to the mean-square value of the periodic E.M.F.

But, in addition, the impedance causes a lag in phase of tho

current in the fine-wire circuit behind the phase of the poten

tial difference between its ends. This is the second cause of

error, and the effect of this lag is dependent upon the nature,

whether inductive or non-inductive, of the circuit R.

To dissect its action, first let us suppose the circuit R is

non-inductive—that is, let L be zero. The current x in it

will, therefore, coincide in phase with that of the potential

difference at the points of junction. The current in S, viz.,

y, will, however, lag in phase behind that of the potential

difference at the junction. The effect of this lag in S will be

to increase the phase difference between x and y, and to
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diminish the cosine of this angle of phase difference. Hence.

X Y
the effect is to diminish the product — cos S, which measures

the true mean product of x and y, X and Y being their

maximum values and 8 their difference of phase. Since by

assumption X agrees in phase with E, any reduction of

the above product reduces the instrumental reading, and

makes it less than the true-power reading. If, however,

we have to deal with a circuit possessing inductance, and

in which, therefore, there is a current x, of which the phase

lags behind that of the potential difference of the junc

tions, then the lag in the current y in the circuit S, so far

from increasing the difference of phase of x and y, may operate

to bring them nearer into accordance, and to increase the

instrumental reading, and more than make up for the decrease

due to the first-named cause of error.

§ 28. Correcting Factor of a Wattmeter.—The action of

these two causes of error may bo illustrated and explained best

by the graphic method by a construction which at the same

time shows us how to obtain geometrically the value of

the compound resistance and impedance of a branched circuit.

Describe a circle with centre 0 (Fig. 71), and take any line

OA to represent the maximum value of the potential dif

ference between the two points M M' of the divided circuit, of

which R is the resistance of the inductive circuit consisting

of the thick wire of the wattmeter in series with the circuit in

which the power is being measured, and S that of the fine wire

of the wattmeter. Then, as before, the vertical projection of

0 A as it revolves represents the periodic variation of this

potential difference. On 0 A describe a semi-circle, and set off

on 0 A, as a base, two right-angled triangles OCA, 0 B A,

of which the sides OB, B A, and 0 C, C A are in the ratio

respectively of the resistance to the reactance of these

circuits. Otherwise the angle A 0 B is one whose tangent

is p times the time-constant of the S circuit, and A 0 C is one

whose tangent is p times the time-constant of the R circuit.

Take one Sth portion of OB, and set off OY equal to it,

then, as in § 21 (p. 144), 0 Y represents the maximum value

Y of the current in the S circuit.
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Similarly, set off 0 X equal to one Rth part of 0 C, and

0 X represents the maximum current X in R. On 0 X, 0 Y

describe a parallelogram 0 Y I X, and draw the diagonal 0 I,

and produce it to 0 D. Then 0 1 represents the maximum

value of the main current I just before division. Join A D ;

AD and OD will represent the product of the current I and

the equivalent reactance and resistance of the two circuits

R and S in parallel respectively.

To prove this last proposition, we must refer again to the

paper by Lord Kayleigh on " Forced Harmonic Oscillations

of Various Periods " {Phil. Mag., 1886).

 

c

Fig. 71.

If R' represents the equivalent resistance of a number of

resistances joined in parallel between two points, and L' repre

sents the equivalent inductance of the system, then it is shown

in Lord Rayleigh's paper that

A B

B = A, +fW and L' = Is + p2 B5'

where A = 2 i

and B =

L

' RJ + f U



170 SIMPLE PERIODIC CURRENTS.

R and L being the resistance and inductance of any branch,

and the mutual inductance being zero.

Apply this theorem to the case under consideration, viz, the

two inductive resistances (R, L) (S, N) in parallel, and we have

R S

A =

B<

•R2+p2L2 S2+/N2

L N

Effecting the multiplicacion we have

R(S2 + ^N2) + S(R'2 + ^L2)

A~ (R'+^L') '

L(S2+p2N2) + N (R' + ^'L2)

B~ (S2+j>2N2)(R2+7>2L') '

R(S2+p2N2) + S(R2 + ;>2 L2)

and R' =

L' =

A'+^B2 (R + S)2+;)2(L + N)2

B L (S2 + j? N2) + N (R2 +f L2)

Kl+fW- (R + S)2 + P2(L + N)2

Turning back to Fig. 71, we see from the geometry of

the figure that, if the angle BOD is as before called d ,

B0D =D AB.

We have then -2J2. = 0 B - A B tan 6.

cos 0

But since A B =p N Y and 0 B = S Y by construction,

therefore 0 D = S Y cos 6-p N Y sin 0.

In § 25 we have found the value of tan 6 to be

♦ (SL-RN)y
Ian P-R(R + S)+L(L + N)/'

hence, eliminating the sin and cos terms, and substituting for

Y the value obtained from equation (86), page 162, we get

RS(R + S)+p2(SL2 + RN2)T

OD- (R+S)2+(L +N)V

where I is the maximum value of the main current, and Y that

of the current in the S circuit.

0n comparing this value for 0 D with the value above

calculated for R' we see that 0 D = R' I.
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So that, on the same scale on which 0 B and 0 C represent

S Y and B X, 0 D represents B' I. Similarly, it may be shown

that A D =p L' I. For the angle C 0 D = & = angle C A D, and

A^=AC-OC tan 6\

cos 6'

or AD=pLX cos 0'-RX sin 3';

and, since tan 9= (R g - S%

' S(B + S) + x\(L + N)^'

a similar substitution, with help of equation (39), page 162,

enables us to see that

p L (S'+/ W) +P N (B2 +f U) T

AD~ (B+S)2 + (L + N)'V

and this is equal to the value found by analysis for p L' I.

This diagram shows us, then, what is the effect of the

inductance of the wattmeter fine-wire circuit, and what must

be the correction applied to the readings to get the real power

expended in the inductive circuit.

The actual reading of the wattmeter is proportional to the

true mean value of the product of x the current in the induc

tive circuit B and y the current in the fine-wire circuit S ;

and this, as previously shown, is equal to half the product of

their maximum values, and the cosine of the difference of

phase.

From Fig. 71 this mean value is therefore

0X-° Y cosine B0O.

2

This, however, is not the measure of the power expended in

the B circuit. The true watts are proportional to the mean

product of x and a current equal to one Sth part of e, having

a phase difference equal to the angle C 0 A, viz., that of the

angle of lag of the current in B and the potential difference

0 A of its ends. Hence the real power or watts are proportional

to J? . 0 X . cosine C 0 A,

S

since E is the maximum of e, viz., the instantaneous potential

difference between the extremities of the branch circuits.

Now O Y is taken as one S"1 part of the effective electro

motive force in the S circuit ; and on the same scale on which
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•0 A represents the impressed E.M.F. 0 B represents the effec

tive E.M.F. in that circuit. Hence, in taking the reading of the

wattmeter, which is proportional to the quantity

0X.0 Y

2

- cosine B 0 C,

as the watts, we are making an error ; the quantity really

required is the value of

0 X cosine A 0 G,

2 fa

which is numerically equal to the real power. We see that

two errors come in—one due to the maximum current in

the fine-wire circuit being 0 Y or — ? instead of 5 or

S b b

and the other due to the phase difference being taken as the

angle C0B instead of C 0 A.

To correct the instrumental reading or observed watts to

true value or real watts, we have to multiply the observed

readings by two factors.

I' ust, the ratio of or is ,

0B b

which is the correction due to the self-induction of the fine-

wire circuit or to the potential part of the wattmeter having

a sensible inductance. The second is the ratio of the cosines

of the angles C 0 A and C 0 B, or

cos C 0 A cos C 0 A

cos C 0 B cos (C 0 A - B 0 A)

But from the diagram

R

cosine C 0 A =—:— ->

v'UHfL'

and cosine B 0 A = — ^

•k.

R—

R b ph p N

JW+fU v'S'+^X* JW+fl? j&+i>*ti*



SIMPLE PERIODIC CURRENTS. 173

Combining these two corrections into a single product, we

get as the full correcting factor :—

If we put Ts = g-, where Ts is the time-constant of the S,

S

or fine-wire circuit, and Tft= _ , where TK is the time-constant

A

of the B circuit, we have

and the real watts or power taken up in the circuit R is

obtained by multiplying the observed watts by F. F becomes

unity for two cases when L and N are both zero, and also

when TS = T„.

Hence, the ordinary wattmeter, applied as usual to measure

the electrical 'power in a circuit traversed by a simple periodic

current, gives absolutely correct readings only in two cases.

First, when the fine-wire circuit and the circuit being measured

have no inductance ; second, when the fine -wire circuit and the

circuit being measured have equal time-constants.

But if TB is greater than T8, then F is a proper fraction.

The wattmeter reads too high, and the real watts are less than

the observed. H TB is less than Ts, then the observed readings

are too low. If Ta = Ts, then the observed readings are correct.

Hence the wattmeter may read too high, too low, or correct.

Generally speaking, it reads too high, since the time-constant

of the measured circuit will most often be in excess of that of

the fine-wire circuit.

§ 29. Mutual Induction of Two Circuits of Constant In

ductance.—As an illustration of the above principles, it is

useful to consider the case of the mutual induction of two

circuits in one of which a simple periodic electromotive force

operates. We suppose two circuits to be so placed relatively to

each other that when a change of current occurs in one, which,

is called the Primary (Pr.), a change of magnetic induction.

or

 

N

 

(41)
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takes place through the other, called the Secondary (Sec.).

We have, then, to regard the primary and secondary as linked

together by loops of induction, and the closed lines ot

induction, together with the two circuits, must be considered

as forming three links of a chain. We shall suppose the self

and mutual inductance to be known and to be constant, as

also the resistance of each circuit. The primary inductance

and resistance will be denoted by L and R, and those of

the secondary by N and S, and the mutual inductance by M.

The primary circuit is to be subjected to a simple periodic

electromotive force of which the maximum value is E, and

the result is to generate in the primary circuit a primary

current, which, as we have seen, is also a simple periodic

quantity, and is to be denoted by its maximum value, It.

The change of induction through the secondary follows the

.change of current, and gives rise to an impressed electromotive

force in the secondary circuit, which, being represented by the

rate of change of the simple periodic induction, is also a

simple periodic quantity, and gives rise to a simple periodic

.current in the secondary, to be denoted by its maximum

value I,.

The general description of the phenomena produced in such

a system of primary and secondary circuits connected by an

air magnetic circuit is a follows :—

1. The application of a simple periodic impressed electro

motive force, E, produces a simple periodic current, I,, moving

under an effective electromotive force, RI„ and brings into

existence a counter electromotive force of self-induction,

which causes the primary current Ii to lag behind E by an

angle called the primary lag 6V If n is the frequency of the

vibrations and %rn =p, as before ; then, as we have before seen,

tan 61 = ^^, and this counter electromotive force of self-

R

induction is a periodic quantity of which the maximum

is Lpli, and of which the phase is 90" behind that of the

effective electromotive force or current, or is in quadrature

with it.

2. The field round the primary, and therefore the induction

through the secondary, is in consonance with the primary

current Ix ; but, since it is also a simple periodic quantity, its
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time-rate of change, and therefore the impressed electromotive

force in the secondary, is in quadrature with the primary

current. Since the induction through the secondary, due to

a current Ii in the primary, is M I„ by the definition of M the

maximum value of the rate of change of this induction for a

pulsation p is M p I,.

It is useful to note that in all dealings with simple periodic

•quantities, if X is the maximum value of a simple periodic

quantity which runs through its cycle n times in a second, the

maximum value of its time-rate of change is denoted by p X,

where p = 2w n.

If, then, as usual, simple periodio quantities are denoted by

the letter signifying their maximum values, prefixing p to any

one gives us the value of the maximum of its first differential

coefficient with regard to time, or p is here equivalent in

notation to — .

dt

3. This secondary impressed electromotive force gives rise

to a secondary current, I2, moving under an effective secondary

electromotive force, S I2, and creating a counter electromotive

force of self-induction in the secondary, represented by N p I,.

The secondary current lags behind the secondary impressed

electromotive force by an angle 6, such that

tan

4. This secondary current, 1^, reacts, in its turn, on the

primary, and it creates what is called a back electromotive

force, or reacting inductive electromotive force, on the primary

circuit. The phase of this must be in consonance with that of

the electromotive force of self-induction in the secondary, and

it is represented by the quantity M l*p. This is obviously

in quadrature with the phase of the secondary current or

secondary effective electromotive force.

6. There is, then, a phase difference between the primary and

secondary currents, and also between the primary impressed

electromotive force and the primary current.

The general problem is, then : Given the value of the induc

tances L, M, N, and the resistances R, S, and that of the im

pressed electromotive force E and the frequency n, find from

these seven quantities other four, viz., the primary current I„
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the secondary L,, and the difference of phase between E, Ijr

and 1,.

We shall attack the problem geometrically, as this method"

exhibits far better than the algebraic method the relation

between the various quantities involved. The method adopted

is to construct an electromotive force diagram, in which all

lines represent on any scale volts ; and moreover, as each of

the quantities considered is a periodic quantity, the lines all

represent the maximum value of each quantity, and the value

at any instant can be obtained by taking the projections of all

lines on any straight line through the centre of the diagram

suitably placed.

Let 0 (Fig. 72) be taken as a centre ; draw any line 0 Q',

and on it set off any length, 0 T, which we assume as the

magnitude of the maximum of the primary current. All other

lines will be in proper proportion to this. Produce 0 T to 0 Q

so that 0 Q = E Ii. 0 Q is then the effective electromotive force

in the primary circuit. From Q draw Q P at right angles to

0 Q, and set off Q P equal to hp times 0 T or to hp I, ; Q P

represents the electromotive force of self-induction in the

primary circuit. Join 0 P.

From 0 draw 0 C at right angles to 0 Q, and set off 0 C

equal to Mp times 0 T. O C is then equal to Mp Iu and 0 C

represents the impressed electromotive force in the secondary

circuit. On 0 C describe a semi-circle, and set off 0 B, making

an angle GOB with 0 C such that tan C OB =^, or tan

S

C 0 B = the ratio of the inductive to the ohmic resistance for

the secondary circuit. Join B G. On the same scale on which

0 C represents the impressed electromotive force in the secon

dary circuit, viz., Mplu OB will then represent the effective

electromotive force in the secondary, or will represent S I0, and

hence, if 0 D is taken equal to one Sth part of 0 B, OD will

represent Is, or the secondary current. Next draw a line 0 K

perpendicular to 0 B, and therefore parallel to B C, and on it

set off a length, 0 K, equal to M p times 0 D or to Mp I,. OK

represents then the back inductive electromotive force of the

secondary on the primary.

The impressed electromotive force which has to be applied

to the primary to produce in it the primary current 0 T and
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to induce in the secondary the secondary current 0 D has

therefore to be equal and opposite to the resultant of three

 

electromotive forces, or to equilibrate three electromotive

forces, viz., the effective electromotive force of the primary

N
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0 Q, the electromotive force of self-induction in the primary

P Q, and the back electromotive force in the primary due to

the inductive effect of the secondary on the primary, viz., 0 K.

The resultant of 0 Q and Q P is 0 P. If, then, we draw

P P' from P, and make it equal and parallel to 0 K, and join

0 P, 0 P' will be the resultant of 0 Q, Q P, and 0K; and

hence 0 P' will represent E, or the impressed electromotive

force required to be applied to the primary to maintain the

currents Ii and I2.

It is to be understood that in this diagram a unit of length

stands for a volt, or unit of electromotive force ; and hence,

on that assumption, E represents in volts the impressed

E.M.F.—that is, the maximum of the simple periodic E.M.F.

required to maintain the currents It Ii, of which 0T, 0D

represent the maximum values. The relative phases are

indicated by the positions of these lines. To obtain the actual

values of the E.M.F. and currents at any instant we have only

to take the projections of 0 P', 0 T, and 0 D on any line

drawn through 0 suitably placed, and the magnitudes of these

projections will give the required quantities. We must then

suppose the whole diagram to be enlarged or diminished

without distortion until the length of 0 P' is numerically equal

to the maximum value in volts of the impressed E.M.F. E,

and then 0 T and 0 D, will represent the currents i, and I2 in

magnitude. We may consider the two right-angled triangles

0 Q P, 0 B C as pivoted together at 0, and revolving round 0 ;

the fluctuations of the projections of 0P', 0T, 0 D on any

line will give us the cyclic values of E, lu and Li. We can

next obtain some useful relations between these quantities

from the geometry of the figure. In the triangle 0BC,

0C2= 0B'+ BC2.

Hence I,* W jf- = S2 Is2 + N' i? L2 ;

or Ii- J&W*'.
h Mro7~ '

0J, primary current impedance of secondary

secondary current = Mp

~Slp might by analogy be called the mutual reactance.

To obtain the value of Ii in terms of E and the inductances

and resistances, we project the lines 0P' and OP on the
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vertical line OK, and express the fact that 0 P' or E is in all

cases the resultant of 0 K and 0 P. Let the angle P' 0 Q' be

called </>. <f> is the angle by which the primary current lags

behind the total impressed electromotive force. Then C0B

is 02, and T 0 K = C 0 B = 0a, since Q 0 C and K 0 B are both

right angles.

Hence we have by resolution on 0 K

E cos (<£+ 02) - Mp L+ VW+p' L1 1, cos {6,+ 02) ;

T r MP

but, since L = L —— --,

' v S-+irV

we have by substitution

E cos (<f> + 0a) = < -r^=J==. + */R2 + P* L- cos (6>, + 6,) V I„

and therefore a relation established between E and Ii which is

known when </> is known.

Since tan 6^ =^J> and tan 02 =^-^,

it follows by an easy transformation that

„ ns RS-^LN

COS(0,+02) =

hence E =
ViS2+j5-N- cos (</> + 02) '

To find the value of <£, suppose that whilst E and Ii remain

the same, the secondary circuit is suppressed. We should

then only have an impressed electromotive force, E, creating

a current, I„ and from the diagram and from what has been

before explained it is obvious that the effective and self-induc

tive electromotive forces in the circuit would then be repre

sented by 0 Q' and Q' P'. If we denote these by the symbols

R'L. and L'pli we may properly call R' and L' the equivalent

resistance and inductance ; that is to say, these quantities are

the resistance and inductance which the primary circuit should

have in order that, when there is no secondary circuit,

the primary impressed electromotive force may generate in

it the same current which it does when the secondary circuit

is present and the primary has its natural resistance R and

inductance L. We see, then, that the effect of bringing up

the secondary and allowing it to be acted upon and react

N 2
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upon the primary is to increase the effective resistance and"

diminish the effective inductance of the primary ; in other

words, the equivalent resistance of the primary circuit is

greater and the equivalent inductance is less by reason o£

the presence of the secondary circuit.

We have then to find the value of cos (<f> + ft2).

Cos (<f> + ft,) = cos <f> cos 6t - sin <f> sin ft, ;

but cos i> = sin <f> = — £ -—,

v'B',+p'L" VK'+p'h'-

and cos ft, = — ^ sin ft, = ——— — ;

hence cos (</) + 92) =—=^== -J- —

Substituting this in the equation connecting E and Iu we-

arrive at

E = I (My+RS-p'LN) \/B.'-l+pth-i

1 R'S-L'Np2

Returning to Fig. 72, we see from it that P' Q' is parallel'

to P Q, and hence, if we draw P'V parallel to Q' Q, we have

P' Q' =PQ-PV

= PQ-PP' cosP'PV

= PQ-PP' sin ft,,

or L'pl&p =1,-11^1,1^:

or, since

!22 S2+p2N2'

. T, T NM2p2 ..-.
we have L'=L- —— (42)

Also, again, 0 Q represents R I, and 0 Q' on the same

scale R' Ii, and

0Q' = 0Q + QQ'

= 0Q + P' V

= 0 Q + P P' sin P' P V

= 0Q + PP'cos ft,;

hence R' I, - R I, + Mp I, J*i2 ;

and. therefore. B,-B+„M*^^. (43\
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These formula (42) and (48) give us the effective inductance

and resistance of the primary circuit as affected by the secon

dary. They were first given by Clerk Maxwell in a paper in

the Philosophical Transactions of the Royal Society in 1865,

entitled " A Dynamical Theory of the Electromagnetic Field"

{Phil. Trans., 1865, p. 475).*

If we form from (42) and (48) the function R' S— L' N^>, we

find it to be MY+RS-/LN; and hence, by substitution

in the expression already given connecting E and I1} we arrive

finally at the result

E = I, JW*+fL'\

E
or I1 =

jR'-' + fL"1.

Following the usual nomenclature, we may call the expres

sion JW'+p* L'2 the equivalent impedance of the primary

circuit, and we have as the final result for the induction coil

of constant inductance

t, . , impressed electromotive force
Primary current - rE— ,

strength ~ equivalent impedance of primary

circuit

Secondary current - primary current

strength impedance of secondary circuit'

The angle of lag of primary current behind impressed

7) L'E.M.F. = where tan if>=J—., and the angle of lag of the

R

secondary current behind the primary is seen to be 90°+ 6, and

N v
tan 6l = —t-; hence we have the values and relative phases of

b

the currents and the impressed electromotive force.

In the above equations we are to understand current strengths

and electromotive forces to be the maximum values during

the period. If and i2 be the actual values at any time t,

reckoning time from the instant of the zero value of the

electromotive force, then, from the principles previously

* See also Lord Rayleigh on " Forced Harmonic 0scillations of Variom

Periods," Phil. Mag., May, 1886, p. 375.
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explained in this chapter, it is obvious that

h-Ii sin {pt-<f),

Or ti = ———^=== sin (pt-ch);

M P I
and I2=—

Or MP - E B&n(pt-d>-8,-9CP).

The student will find the above expressions for the primary

and secondary currents can be deduced by analytical processes

from the simultaneous equations.

LfK +M^A + Ri1=Esinpf, . . (44)

nHL+Mt± + 8it = 0 (45)

dt dt

which equations can be established for two circuits by analo

gous methods to that by which in •$ 18 a current equation

was arrived at for one circuit, subject to a simple periodic

electromotive force.* It is easily seen that if n is very

great, or the alternations extremely rapid, then

il N

\ M"

If the primary and secondary circuits consist of two equal

circuits, so interwound that for these circuits L = M = N, then

for very rapid alternations we see that the secondary current

l„ is equal in magnitude, and exactly opposite in phase, to

the primary current It, and the magnetic fields due to these

currents respectively are also equal and opposite in direction

at every instant.

§30. The Flow of Simple Periodic Currents into a Con

denser.—The electrical capacity of a conductor of any kind is

measured by the quantity of electricity required to charge it

to unit potential. Two conducting surfaces so arranged as

to have constant capacity are generally called a condenser.

The most simple and familiar form of this appliance is the

Leyden jar, in which two surfaces of tin foil are separated by a.

* See Mascart aud Joubert's " Electricity," Vol. L, p. 521.
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sheet of glass. Condensers for practical purposes are generally

formed of sheets of tinfoil, separated by some dielectric, such

as paraffined paper, mica, gutta-percha, tissue, or ebonite. If

a quantity of electricity, Q, measured in microcoulombs, is

given to one of the plates or sets of plates of a condenser,

and if the other set are kept at zero potential, the charged

plates will be raised to a certain potential, say V volts, above

that of the earth. The capacity of the condenser C in

microfarads is then such that by definition

CV = Q.

If the potential difference of the condenser terminals at any

instant is v, and if it is changing, and if q is the charge or

quantity of electricity in the condenser at that same instant,

then

C v = q,

r,dv dq
or G — = —f ;

dt dt

but " ? is the time rate at which the charge is changing or

at

is the value of the current i at that instant flowing into or

out of the condenser. Hence

dt

and 0 — = i.

dt

Suppose the condenser is being charged through a circuit

whose resistance is R, then i is the current which is flowing

through this resistance at the instant considered ; and the fall

of potential down the resistance is R t volts. If a constant

potential, V, is being applied to the outer extremity of the

resistance, so that the total difference of potential between

one plate of the condenser and the outer end of the resistance

attached to the other plate is V volts, we have at any instant

the equation

t; + Ri = V,

or p + CR4-" = V,

d t

or OB-+V-V (40)

dt



184 SIMPLE PERIODIC CURRENTS.

This ia the differential equation for the potential v of the

condenser at any instant, t, when being charged through a

resistance, R, by a constant potential, V. The equation

(46) is easily integrated as follows:—Multiply all through

by cKC , where e is the base of the Napierian logarithms, viz.,

2-71828. Then we have, as a result, the equation

' ; 1 ' V *

dt RC RC

or

Both sides of this last equation can then be integrated. Hence,

integrating with respect to time, we obtain the equation

i i

v ejtc =YeR0 + a constant,

or v=V+ Ce*°.

The constant C is determined by the condition that when

the time t is zero then v is also zero. Hence C= - V, and,

therefore, .

.r=v(lf (47)

The student should compare equations (46) and (47) for the

value of the instantaneous potential of a condenser charged

by a constant voltage with the equations (26), page 127,

and (27), page 132, for the instantaneous value of a current

in an inductive circuit acted on by a constant pressure, and it

will be seen that they are similarly constructed. The quantity

CR is called the time-constant of the condenser just as —

R

is called the time-constant of the inductive coil. The greater

the condenser time-constant the larger will be the time taken

by the condenser potential to arrive at a given fraction of the

steady impressed voltage applied to charge it. Practically,

the condenser is fully charged in a time equal to eight

or ten times its true constant. The reader must note that

if the capacity C of the condenser is measured in microfarads,

then the resistance R must be measured in megohms to

obtain the correct measure of the time-constant C R in seconds.



SIMPLE PERIODIC CURRENTS. 185

Suppose, for example, that a condenser of one microfarad

is being charged through a resistance of one megohm by an

impressed voltage of 100 volts. It is required to find the

potential difference at the terminals of the condenser at the

end of the 1st, 2nd, 8rd, 4th, ?ith second. Let i\, v2, v2, vn be

these potential differences.

Then r1== 100 (1 - e~l) = 63 volts nearly,

where e = 2-71828,

and rt = 100 (1 - c-2) = 80 volts nearly,

Since e~10 is an exceedingly small number, in ten seconds the

condenser potential is practically equal to 100 volts. We see,

therefore, that in charging condensers through resistances

sufficient time must always be allowed for the charge, depend

ing on the value of the quantity C R, and the charge is not

practically complete unless contact with the source of im

pressed voltage endures at least for a time equal to 5 C B, or,

better still, 10 CR.

Supposing, in the next place, that the impressed voltage

acting on the condenser is periodic in character or alternating,

and that the condenser, instead of being charged through a

resistance, has its terminals shunted by a resistance. Let

the capacity of the condenser be, as before, C microfarads, and

let the resistance of the shunting conductor be A ohms ; that

is, let K be the shunt conductance. Let the impressed

voltage be periodic, and let its frequency be n, and write p

for 2- », as usual. Then, as above, the current flowing into

the condenser at the instant when its terminal potential

difference is v is C —. Also the current flowing through the

<( t

shunt is K v. We have, therefore, as the equation for the

total current flowing into the shunted condenser, the

expression

where i is the total current flowing into condenser and

through the shunt at the instant when the terminal potential

difference of the condenser is v. Let time be measured from

or ». = 100(1 -«-").

 

(48)
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the instant when the total current denoted by i is zero, then,,

if £ is a simple periodic current, it may be expressed in terms

of its maximum value by the equation

£ = I sin ji t.

Hence C — + K v = I sin p t (49)

d t

On comparing these equations, (48) and (49), for the

instantaneous value of the condenser potential difference

when a periodic current is flowing through it with the

equations (29), page 133, and (31), page 135, it will be seen

that they are structurally the same, and we can at once

write down the solution of equation (49) by imitating the

solution of (29), writing C instead of L, K instead of R, r

instead of i, and I instead of E. Hence the solution of

C — K v = I sin ;> t

dt '

is v =— ; sin (;, t — 6) + a constant, . (50)

where 6 is an angle such that tan 6 =

The quantity v'K" + C1!p' has not yet received an acknow

ledged name, but it is analogous to the impedance in the

case of the current flow in inductive circuits. It has been

suggested that this quantity should be called the admittance of

the condenser.

From equation (50) we see that the terminal voltage of the

condenser lags behind the charging current in phase ; or

otherwise that the current is in advance of the potential

difference. If the shunt wire is removed this is equivalent

to making K equal to zero, and under these circumstances we

have

v=~ sin (p t 90),

Lp

or v = ^— cos p t (51)

Cp

This shows that in the case of a condenser having a di

electric with no true conducting power, the charging current

is exactly 90deg. in advance in phase of the terminal potential

difference of the condenser.
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It is clear, therefore, that as regards producing lag or lead

of current capacity acts in the opposite direction to inductance,

and may be considered to be equivalent to a netjative inductance.

It is also evident that if a shunted condenser is placed in

series with an inductive circuit a proper relation may be formed

between the inductance, resistance, capacity, and conductance,

such that the combination of inductive resistance and shunted

condenser acts to an impressed simple periodic electromotive

force just as if it were totally non-inductive. This annulment

of inductance has important applications in practice in tele

graphy, and it is therefore desirable to define these conditions

carefully.

•$ 31. A Shunted Condenser in Series with an Inductive

Resistance.—Let a condenser of capacity C have its terminals

closed by a circuit whose conductance is K, and hence its

resistance K-1. Let this shunted condenser be placed in

series with an inductive resistance whose inductance is L and

resistance R. At any instant let vt be the potential difference

of the terminals of the condenser and », those of the inductive

resistance when a periodic current having at this same instant

a value i is flowing through the system. Let v be the value

of the over-all potential difference. Then suppose that v is a

simple periodic potential difference, or that

Then the current i will differ in phase from v, and may be

represented by the expression

Capital letters represent maximum values as usual. We can

then form the fundamental equation for the shunted condenser

in series with an inductive circuit as follows :—We have for

the shunted condenser terminal potential t\ the equation

»=V sin t.

i = I sin Ij) t - <£).

a t

(52)

and for the inductive resistance the equation

l''''+r;=^

dt

(53)

 

(51)
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since the over-all potential v is the sum of the separate

potential steps vi and v2. Eliminate vi and t>a from these

equations, and we get

CL^ + (CR + KL)^ + (KR + l)i=c4"+ K», . (55)

dt dt dt

also, since v = V sin p t,

we have C^= Cp V cos pt,

d t

and K«= KV sinpt.

Hence we have

Cj-J+K»= JK*+(?p>V Bin (pt-6). . (56)

This last follows at once from the lemma on page 161.

Then, since i = I sin {pt-<f>),

we obtain ^ = Ip cos (p t - <£),

and —i = - 1 sin (pt-<f>),

a f

and by substitution of these last values in equation (55), we

arrive at the equation

(KR + l-ClV)Ism (jBt-<£) + (CRjp + KLj»)Icos (pt-<f>)

= jW+&p* V sin (p t - 6) . . (57)

or (CR +KL)-+(KR + 1-CV).

d t

= v/IF+T?/?V sin (p t-6). . . (58)

Since it is shown on page 161 that any function of the form

A sin 6 + 13 cos 6 can always be expressed in the form

B
J^ + W sin (6 + a), where tana=-^-,

it follows at once that the maximum value of the current I is

given by the equation

P = vvjp+cv)

(KR + 1-CL//)t(CK^ + KL;))'' ' ' v '

and it is not difficult to show that this last equation (59) may

be written in the form

T2 yi
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Let It1 stand for =- ^

and L' for ^

K2 + C2jt>2

If the condenser and shunt are removed it is clear that the

maximum value of the current I will be given by

P- V2 ■

R2+/>2L2

Hence the effect of adding the shunted condenser is as if.

the resistance of the inductive circuit were increased by an

amount equal to — -—-, and the inductance of the
Ki + C'p-

inductive circuit diminished by an amount equal to

C

Q
Hence, if the quantity ——-—- is equal to L. which is

K2 + C2 p2

the inductance of the circuit, then the total effective induct

ance of the circuit will vanish, and the inductive resistance

and shunted condenser together will act as if there were

no resultant inductance at all. This condition is fulfilled

when we have

C = K2L + C2/>2L,

which equation gives us the required magnitude of the capacity

to annul the inductance. Uniting - instead of K, so that r is-

r

the resistance of the shunt, we have

L
(60)

C(l-CL^)

as the final equation, which tells us what must be the

resistance of the shunt to be put across the terminals of a

condenser of capacity C in order that the combination may

just annul the inductance of a resistance in series with it

whose resistance is R and inductance L. If L is measured in

henries, C must be in farads, and R and r be given in ohms.

It will be seen that the annulment is only exact for one

particular frequency, and that change of frequency means

a change in the value of r requisite to neutralise the induct
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ance. In telegraphic work it is usual to employ a shunted

condenser to annul more or less completely the self-induction

of relay magnets.

§ 32. Representation ofPeriodic Currents by Polar Diagrams.

Two methods of graphically representing simple periodio

currents or electromotive forces, viz., clock diagrams and wave

diagrams, have been hitherto used. Each of these methods

has some peculiar advantages of its own. There is, however,

a third method which has sometimes especial utility, and this

is by a polar diagram.

Let a straight line 0 P (Fig. 78) revolve round one of its

extremities 0, and let the angle of inclination 6 which the

 

A O

Fio. 73.

revolving line makes with another fixed straight line 0 A

passing through this centre of revolution be called the angle

of displacement of the revolving line. Let any point P be

taken on the revolving line, and let the distance of this point

from the centre be denoted by r. The length r is called the

radius vector. Let r increase or diminish as 0 P revolves,

but so that the length 0 P = r varies according to any law

connecting it with the angle of displacement A 0 P. The

extremity P of the line 0 P will then trace out a curve called

a polar diagram.

Suppose that 0 P runs through a cycle of values beginning

with a zero value when 6 = 0, and, after reaching a maximum
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value, becoming zero again after the line 0 P has completed

one half revolution, or when 6 = x, the polar diagram will be a

closed curve passing through the origin. Since the radius

O P runs through a cycle of values from zero to a maximum,

and returns to zero again during a revolution of the radius

through two right angles, or an angle tt, the radius r may

suitably represent the value of any periodic quantity which

completes a cycle of values in the time represented by one

complete half revolution of the radius vector. Suppose, then,

that 0 P varies as sin 6, where 6 is the displacement phase

angle—that is, let

It is then clear that in this case the polar curve is a circle.

For if we draw the line O B through 0 perpendicular to 0 A,

and draw P B at right angles to 0 P, since AOP= fl and

OP= r, and since by supposition r=R sin 6, it follows that

the angle P B 0 is always equal to 6, and that, therefore, the

length 0 B is a constant length equal to R. In other words,

the locm of the point P is a circle passing through 0, P, and B.

Hence the circle is the curve which represents in a polar

diagram a simple periodic quantity, and if the length 0 P is

taken to represent the magnitude of a simple periodic current

or electromotive force at any instant corresponding to a phase

angle A 0 P, the circle passing through 0 will be the polar

curve representing this simple periodic current or electro

motive force. . . . . ,

If the current or electromotive force is periodic, but not

simply periodic, then the polar curve representing it will be a

unicursal curve passing through the origin 0, but will not be

a circle. The polar diagram of an alternating current or

electromotive force enables us very easily to determine the

square root of the mean-square value of the periodic quantity

represented by it. It is more difficult to do this with the

ordinary wave-curve diagram.

Suppose, for example, that in Fig. 74 we have a wave

diagram drawn representing a half wave of an alternating

electromotive force which is not a simple sine curve. The

ordinates represented by the dotted lines are proportional

to the instantaneous values of the periodic quantity taken

every 20deg. If we wish to find the Vmean2 value of the

r=R sin 6.
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ordinates of this curve there is no other way of doing this

than by drawing a number of numerous equidistant vertical

ordinates, measuring their lengths, squaring these magnitudes,

and taking the square root of the mean of these squares. This

is a troublesome arithmetical process, and in proportion as the

wave curve is more irregular or complex, so much the more

numerous must be the ordinates to obtain a correct result for

the mean-square value. It is, however, a much easier process

if the periodic quantity is represented by a polar curve. Let

Fig. 75 represent the same periodic function as in Fig. 74,

drawn in a polar form. The dotted radii are proportional to

the instantaneous values of the periodic quantity, and are

placed at angular intervals of lOdeg. Let any radius 0 P (set

Figs. 75 and 76) be denoted by r, and let the corresponding

phase angle P 0 A be denoted by the letter 6. If we consider

the radius to move forward by a small angle d 6 and to increase

in length by a small amount dr, then it is obvious that the

small increment of area d A swept out by the radius r is equal

to i r2 d 6. To obtain the whole area, and included by the polar

curve 0 P Q R, we have to integrate this quantity £ r2 d 6 from

0 to ir, or to obtain the integral

 

0 50 60 70 S-o sb1JoaO I20'301ioii0 ioi'Q

Fro. 74.

A = $(Tr*dO.
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On the base line drawn through the polar centre 0 let a

semicircle ACB (see Fig. 75) be described equal in area to

the area included by the polar curve OPQ. Let OA = R

be the radius of this semicircle. Then

=f-A-»£--*

The expression on the right hand side of this last equation

is obviously the square root of the mean of the squares of the

instantaneous values of the periodic quantity r. Hence, we

can obtain at once the «/mean2 value of a periodic quantity

current or electromotive force as follows. On any straight

 

Fio. 75.

line describe a semicircle and draw radii of this semicircle at

angular intervals equal to tbose phase intervals for which the

instantaneous values of the current or electromotive force are

observed. Set off on these radii lengths equal to the respec

tive values of these instantaneous quantities and join the

extremities of all these lines so set off by a curve. This curve

is the polar diagram, and it is a closed curve. Take the area

included by the polar diagram with an Amsler's or other plani-

meter, and from a table of areas of circles find the circle whose

area is double that of the polar curve. Then the radius of

this circle is the square root of the mean of the squares of the

periodic quantity. If, for instance, we have a periodic current

o
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curve plotted down in polar form, this operation will give

us the dynamometer value of the current, or the value which

would be read on a dynamometer.

The polar curve, therefore, lends itself very easily to the

determination of the mean-square value of a periodic current

or electromotive force, of which the instantaneous values are

known throughout a semi-period, whether those values are

taken at equidistant intervals of time or not. The reader

will, therefore, note that if we plot down a periodic quantity

ia rectangular co-ordinates (Fig. 74) or wave form, and find

the rectangle A P P' B of equivalent area to the half wave,

the altitude A P of this rectangle gives us the true mean

ordinate of the periodic curve ; but if we plot down the

periodic quantity to a polar diagram (Fig. 75) and find the

 

Fig. 76.

semicircle A C B of equivalent area, the radius 0 A of this

semicircle gives us the square root of the mean-square value of

the periodic quantity represented by the radii of the polar curve.

§33. Initial Conditions on starting Current Flow in a Cir

cuit having Resistance and Inductance.—It has been shown

in the foregoing sections that if an impressed electromotive

force of simple periodic kind acts upon a circuit having in

ductance, the resulting current is a simple periodic current,

but lags behind the impressed electromotive force in phase.

These, however, are the conditions when the resulting current

has become steady. At the instant of closing the circuit there

are peculiar conditions of augmentation of the current which

are called initial conditions, and which have very important
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consequences in practice. It will be advisable, therefore, to

.examine a little more closely how these are produced, and

what results may be expected at the instant of starting or

stopping the current in such a circuit. To do this we will,

in the first place, examine more carefully the solution of the

fundamental equations for current creation in an inductive

circuit. It has been shown that the differential equation for

current at any instant in the circuit of constant inductance

L and resistance R under an impressed simple periodic electro

motive force v = V sin p t is

L?L* + Rt-t>-Vsinj>t. . . . (61)

at

To solve this equation completely, we differentiate it twice,

and eliminate thereby the term V sin p t, thus obtaining the

equation

dP dP * \ dt J'

or L^' + R'^-i+/)2L^+yRt = 0. . (02)

dP dt2 dt

A differential equation of this type is called a linear differ

ential equation of the third order. It is shown in treatises

on differential equations that its solution depends on the

solution of a cubic equation called the auxiliary equation.

The auxiliary equation in this case is

hm3 + 'Rmi+pi'Lm+p-'R= 0. . , . (68)

This cubic equation can be split up into two factors and

be written

(m?+p*) (L m + R) = 0,

and hence the roots of the cubic equation (68) are

III = + v' - 1 p

R

For a linear equation of the type of (62), the roots of the

auxiliary cubic being a and ± J - 1 (i, the solution is known

to be of the form

i = Acot +Bsm/3« + B'cosj3t.

The solution of the differential equation (62) is, then, given by

-»t
t = A e w + B sm p t + B' cosy? t. . . (64)

02
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liy the Trigonometrical Lemma on page 161 we can write,

instead of the second and third terms on the right hand side

of (64), the single term JW+W2 sin (pt - <f,), where «/B2 + B'*

is obviously the maximum value of the current—call it I—

when the initial state is over, and <f, is the angle by which-

the current, when steady, lags behind the electromotive force

in phase. Hence (64) may be written,

_R

t = ArL' + Isin (pt -<£). . „ . (65)

To find the constant quantity A, we note that at the instant

when the circuit is closed the current has necessarily a value

zero. Let this closing of the current happen at a time t'

reckoned from the instant when the electromotive force is

zero. Then at the instant of closing the circuit we have

0 = Ae L + 1 sin (p S-<f,),

K ,

or A= -Isin(pt' - <f,)e+L* .

Hence, substituting this value of A in equation (65), we obtain

t = Isin (pt-<£) + Isin(p«'-<£)«!~L(,~0, . . (66)

and this is the complete solution of the differential equation

(61) for the current in the circuit.

We note that the expression for the current at any instant

in the inductive circuit is made up of two terms ; the first

term, I sin (p <£), is a simple sine function, and represents by

itself a simple periodic current having a maximum value I.

-5.«-i)
The second term, I sin (p , is an exponential

function having a maximum value I sin (pt' - <£), when t'=tr

and this term represents, therefore, a logarithmic curve begin

ning with the value I sin (pt'-<£) and dying away gradually

to zero.

Hence the resulting current curve consists of these two

curves superimposed upon one another, a periodic curve and

a logarithmic or diminishing curve.

In Fig. 77 are shown two such curves ; curve 1 being the

sine curve, curve 2 the logarithmic curve, and the resultant

curve 3, represented by the dotted line, which is obtained by

adding together the ordinates of the sine curve and the

logarithmic curve. It will be seen that the effect of the
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superposition is to make the resultant curve lopsided with

respect to the curve axis for a certain period, but beyond that

time it is sensibly symmetrically situated with respect to the

time axis. Hence, during this initial period, the maximum

"values of the current in opposite directions are not the same.

At the instant when t = t' the value of the current is zero.

It is obvious that, when pt' = 90 + <f,, sin (pt' -<£) = 1, and

that then the logarithmic curve begins with its greatest value ;

but that, when pt' then the logarithmic curve has no

existence at all. When pt' = 90 + <f,—that is if the circuit

is closed at an instant t =—+ $ reckoning from the instant

P

when the impressed electromotive force is zero—the disturbance

of the uniformity of the periodic curve of current is the

 

Fig. 77.

greatest possible. At the same time the maximum value of

the current in the negative direction can never be greater

than 2 1 where I is the maximum value of the steadily periodic

current. For the maximum value of the logarithmic curve at

the instant of closing the circuit is - 1, and at that instant

t'=0 ; hence the value at which the periodic component of the

current must begin will be + 1. At the time when the periodic

part has reached a maximum of - 1, which happens after half

a period, the ordinate of the logarithmic curve will have fallen

to something less than I by an amount depending on the rate

of decrease, which in turn depends upon the value of =- or the

L

reciprocal of the time-constant of the circuit.
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Consider the case when the circuit is closed at a time r*

reckoned from the zero of electromotive force such that

f, = 90 + <ft then?Jt'_^ = 90-

P

T
If T is the complete periodic time, then at a time - after

the instant of closing the value of the periodio part in tha

expression for the current is

I sin {/,(«' +|)

= I sin (ja i - <f, + jt)

= -I

since pt' -6 = 90.

T •
The value for the exponential part at this instant t'+ — 13

_ K T

- I sin (p «'-<£) e Ei

and hence the total value of that current at that instant is

- 1 { 1 + sin (p t' - <f,) e ~ r?}

since 2>t' — 6= 90.

The greatest value which the time constant ^ can have is

infinity. Hence, when ^- = 0, or approximately zero, e L s = 1,

and the quantity in the bracket in the last equation may

approach to 2 but can never exceed it. This shows us that,

with an inductive circuit of very large time- constant, the value

of the current after half a period from the instant of closing

the circuit may be something a little less than twice the value

of its periodic steady maximum, provided that the circuit is

closed at the instant when the electromotive force has a value

e such that

« = E sin (90 + <£),

or e = E cos 6,

where tan 6 = ~?.
a

This amounts to saying that the circuit must be closed at

the instant of zero electromotive force.
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Hence we see that during the initial period there may be a

greatly increased mean-square value of the current, and thus

the production of a current-rush on closing the circuit.

When therefore a circuit of constant inductance is switched

on to a source of steadily periodic electromotive force at the

instant when the electromotive force has a value corresponding

to the maximum value of the current, when the variable state

is over, we find that, before the current settles down into its

steady swing, lagging behind the electromotive force in phase,

there is a period of disturbance during which the current has

greater maximum values in one direction than in the other,

and the current virtually consists of a rapidly evanescent

unidirectional current superposed upon the normal periodic

current which ultimately survives. If however the circuit is

closed at the instant when the electromotive force is passing

through a value which corresponds to that at which the

current has its zero value, when the variable period is passed,

then there is no period of disturbance, but the current begins

at once in its normal manner lagging behind the electromotive

force and having constant maximum values + 1 and - 1 alter

nately. This phenomenon of current rushes into inductive

circuits such as transformers will be treated at length in a

later chapter, and the attention of the reader is merely at this

point directed to the general nature of the effects taking place

in a circuit of constant inductance when suddenly switched on

to a source of simple periodic electromotive force.

§ 34. Initial Conditions in Circuits having Capacity,

Inductance and Resistance.—It is somewhat more difficult to

discuss completely the conditions which arise at the instant of

connecting to a source of periodic electromotive force a circuit

having not only inductance and resistance but also capacity.

Generally speaking, they may be described as consisting of a

variable period and a succeeding steady period. 'WIe shall in

outline indicate how these conditions respectively arise. Sup

pose, in the first place, that a condenser of capacity C is con

nected through an inductive resistance of inductance L and

resistance R to a source of periodic electromotive force of which

the value at any instant is represented by

v' — V sin p 1.
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Let i be the instantaneous value of the current flowing into

the circuit, and let v be the value at the same instant of the

potential difference between the terminals of the condenser,

and i>, the fall of potential down the inductive resistance.

Then we have the following fundamental equation connecting

the current and potential :—

For the resistance L + R t = r„ (67)

a t

for the condenser C —'. = i (68)

a t

and for the total fall of potential

v' = v + vl (69)

Hence, from (67) and (68),

L — + R / + -[t dt = v- = V sinjat,

dt cj

and eliminating i by the help of (68), we get

LC^ +RC —+ » = V'sinpt. . . . (70)

dt* dt

This is the differential equation defining the value of the

condenser terminal potential in terms of the constants and

the time. To solve (70) we must eliminate V'sin^f. This

is done by differentiating (70) twice and eliminating V sin^t

between the original equation (70) and the twice differentiated

equation. As a result we reach the equation

LC'i-!i + CR *± + (l + CLi>*)li! + CR/>,i?+pts=0. (71)

d V d tt d t: d t

The solution of this linear differential equation of the fourth

order depends on the solution of the biquadratic

LCmHCR wt2 + ( I + C Lj>2) m* + CRp> m +pi = 0,

and this last splits up into two factors

(W +j?) (CLm' + CR m + 1) = 0.

Hence the roots of this biquadratic are,

m - ± J - 1 ;>
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It ia shown in treatises on differential equations that the

solution of equation (71) is then

v=A sinpf + B cos^i t + A' sin qt + B' e~^coaqt, . (72)

•where A, B, A', B' are constants and

The solution for v may obviously be written

v = ^A2 + B2sin (p t-<f>)+ VH*+We ~ £ ' sin (q t - <f>'). (78)

This equation for the value of the condenser potential v

shows us that the variation of v is made up of two parts.

First a simple periodic part VA2 + B2 sin (pt-<f>), which may

be written V sin (p t - <f>), and which indicates a simple periodic

variation of v differing in phase from the impressed electro

motive force v' by an angle <f>. The other term of the solution

indicates a superposed periodic variation, gradually decreasing

in amplitude as time increases, and dying out as the exponent

— t increases with time. If, for the sake of brevity, we write

2L

C for v7 + B'2, we can put the solution for v in the form

» = V sin (pt-<f>) + C e a' sin (q t-<f>'). . (74)

Two constants have therefore to be determined, viz., C and <f>,

in order that we may completely solve the problem.

Since the quantity of electricity in the condenser at any

instant is numerically equal to the product of the capacity

and potential, if we multiply (74) all through by C, the con

denser capacity, we have an expression for the charge x in the

condenser at any instant. Since this charge is null at the

instant of closing the circuit, if the circuit is closed at the

instant t', reckoning time from the instant when the impressed

electromotive force is zero, we have

- 11 1-

0 = V sin (pi - <f>) + C e 2'' gm (qt'-<f>')

as an equation to determine the constant C

11

Therefore C- - Vsin (P* . . . . (75)

sin (q t' - <f> )
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No sufficient advantage is to be obtained by working out

the rather complicated algebraical expressions in terms of

C, L, R, and p, for the constant <f>, but we can indicate gene

rally what the equations teach. They show us that if such a

condenser in series with an inductive circuit is switched on to

a source of periodic impressed electromotive force, before the

oscillations of the condenser potential settle down into a

regular state, there is a variable period in which a second

set of oscillations of gradually diminishing amplitude are

superimposed on the steady set, and the second set of oscil

lations have a quite different frequency and initial amplitude to

the steady set which ultimately survive. In the initial period

the superposition of the two sets of oscillations may increase

the instantaneous value of the condenser terminal potential

difference to a value greater, and perhaps much greater, than

it would have if there were no such additional oscillations. If

the circuit is closed at an instant t' such that pt' = viz., at

an interval after the impressed electromotive force has passed

its zero value equal to the final permanent difference of phase

of condenser and impressed electromotive force, then, since

this value makes the constant C zero, we see that there are

no superposed vibrations at all. 0n the other hand, if i' is so

chosen that pt' = 90° + <f>, then the disturbing effect is greatest.

It is clear, therefore, that, in switching on a condenser to an

alternating current circuit through an inductive resistance,

initial effects of abnormal rise of condenser voltage may result.

We shall see later on that these are practically very important

matters in dealing with alternating current systems of supply,

and that caution must always be used in switching on a con

denser to such a circuit.

§35. Complex Periodic Functions.—Before leaving the

subject of periodic currents and electromotive forces it ia

desirable to explain some properties of the trigonometrical

expressions or series by which such functions can be

represented as the sum of a series of simple periodic con

stituents or terms. It has already been explained that the

value of an ordinate y of any single valued function can be

expressed by Fourier's method as follows :

j^Yo + Yi sin (pt + ^ + Y,, sin (2 p t + fa) + , &c.; (76)
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fir, taking advantage of the trigonometrical equality

A sin 6 + B cos 6 = </ A5 + B2 sin (0 + <f,), where 0 tan # = ^,

we can write the above expression for y

y = Y0 + y, sin p t + 2, cos^ « + y0 sin 2 p « + 2, cos 2 t + Ac. (77)

The coefficients Y2, &c, in the series in (7G) are the

amplitudes of the simple sine curves or harmomc constitutents

whose added ordinates together build up the function y.

If the periodic quantity represented is a wave curve

symmetrical with respect to the axis of time, and repeating

the same form continually, then the constant term Y0 is

absent.

We can therefore express the instantaneous value e of any

periodic electromotive force by the expression

i= Ej sin p t + Fj cos p t + E2 sin 2 p t + F2 cos 2 p t + ,&c (78)

and the instantaneous value i of any periodic current by the

series

i = Ij sin p t + Jj cos p t + I2 sin 2 p t + J, cos 2 p t + , &c. (79)

In the series (78) the amptitude of the first harmonic is

VEi2 + ty and that of the second v'ET+F./, and so on.

We have already seen that if we take the mean or average

value of sin2 9 over one half-period, or from 0 to ir, the value

of the mean is i ; but that the mean value of such a product

as sin 6 cos 6 or sin 6 sin 2 6 over half a period is zero.

Accordingly, if we square the series in (78) or (79) we find

that the values for e2 and for i2 partly involve terms like

sin2 pt, sin2 2 p t, &c., and partly terms like sin^t sin2^t.

Hence, if we integrate the value of e2 d t or Pdt over half a

period and divide the result by tt, or take the definite integrals

square values of e and i, we find by the above theorem that

 

finding the mean-
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and, similarly, by multiplying (78) and (79) and taking the

mean value of the products from p t = 0 to p t = ir, we obtain

iPc-irft = 5il1 + !il1 +^+ !i^2+,&c. (82)

it] o 2 2 2 2

The ordinary alternate current ammeter or dynamometer

measures the Vmean2 value of the current *', or the quantity

j* i2 d t ; and the ordinary alternating voltmeter, such as

an electrostatic voltmeter, measures the Vmean2 value of the

electromotive force e, or the quantity f*V2 d t, whatever be

"V o

the force of the curves of e and i. A wattmeter in proper form

reads the true mean product of e, i or - j* eidt when currents

respectively proportional to e and t traverse its two coils. For

shortness, let us write e' for kJ- (* t? d t, and i' for the similar
v W o

function of i2, and (e' £') for -J' eidt; then

2 c' = E,2 + Ff + , &c.,

2 i' = I12 + Jj'+, etc.,

2(c't') = E1I1 + F1J1 + , &c.

We see therefore that twice the V mean2 value of e or i is

equal to the sum of the squares of the coefficients of the sine

and cosine terms, or to the sum of the squares of the

amplitude of the harmonic constituents. Also that the tn-ice

mean product of two periodic functions taken over a half

period at similar instants is equal to the sum of the products

of the coefficients of similar sine or cosine terms taken in

pairs from each expansion. Suppose that e and t represent

the instantaneous values of the impressed electromotive force

and current of any circuit, we may ask whether the product

of the Vmean2 value of e and the v'mean2 value of i is equal

to, greater, or less than the mean of the product of e and i,

or is V1 r* dtx\/- r*dt or - ["ddt.

*J o *7 o < *7 o
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We see that the square of the expression for 2 (e' i') is made

up of terms like E^Ij2, and F^J^, and also of terms like

The product of the expressions for e' and i' consists

obviously of terms like E^Ij2, Fj2J,2, and also of terms like

F,2^2 and B^J,2.

Hence, the question whether the product of e' and i' or

e'xf is or is not greater than (e' •£') will depend upon the

relative collected magnitude of terms like F,2Ij2 + E^ Jj2 in the

one series, and of terms like 2 E^FjJj. If Fj : E^: : Jill*,

or if J^ = ^, then Ej2 J,2 + F12I2 = 2 E, F^J,, and if the same

Ei Ii

proportion holds good for the coefficients of the terms in

sin 2/» t, &c., then we see that e x i' = (e i'), or the product of

the ^/inean'2 values e and t is equal to the mean product of e

and i. If the above proportionality does not hold good, then,

since generally a! + b2 is greater than 2 a b, it is not difficult

to see that e' x i is greater than («' i) or the product of

ttJ o Try o

is greater than the mean value- fe i d t.

-J o

Hence it follows that, in this last case, the product of the

amperes and volts as read on alternating current instruments

is greater than the true value of the power as read on a watt-

1 /*T
meter. The mean value - / eidt is called generally the

itJ 0

true tvatts or power given to the circuit, and the product

irJ 0

e2dix \ - f* i'2dt is called the apparent watts or
ttJ o

power given to the circuit. The apparent watts are equal

under some conditions to the true watts. This is the

case when the circuit is non-inductive, and when the

different harmonic constituents of the current and electro

motive force are in step or in synchronism with each other-

Under these conditions the angle of lag of the electromotive

force harmonics is equal to the lag of the current harmonics

of the same degree, and this is expressed by relations of the
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form Fi : E, : ; J, : Il holding good. Under other conditions, the

apparent watts are greater than the true watts. The ratio of

the true power or watts taken up in any circuit to the apparent

power or watts is called the power factor of the circuit, and the

power factor (P.P.) is therefore given for any alternating current

circuit by the ratio of the wattmeter reading to the product of

the ammeter reading and voltmeter reading for that circuit.



i

CHAPTER IV.

MUTUAL AND SELF INDUCTION.

§1. Researches of Prof. Joseph Henry.—We have already,

in the first chapter, made a brief allusion to the share taken by

Joseph Henry in the fundamental discovery of the induction of

 

a

Fio. 78.

electric currents. A full account of his labours in this field is

to be found in the collected " Scientific Writings of Joseph

Henry," republished by the Smithsonian Institution. It

will be of advantage to consider at this stage some of his chief

investigations.

The principal pieces of apparatus used by Henry in his

experiments on the induction of electric currents consisted of

* See also the Philosophical Magazine, Vol. XVI., 3rd Ser., 1840, and

Transactions of the American Philosophical Society, Vol. VI., 1838, pp.

303-337.
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a number of flat coils of copper strip or band, which were

designated by the names Coil No. 1, Coil No, 2, &c., also

several long bobbins of wire, and these, to distinguish them

from the ribands, were called Helix No. 1, Helix No. 2, &c.

His description of these coils and helices is as follows : Coil

No. 1 was formed of thirteen pounds of copper strip one inch

and a-half wide and ninety-three feet long ; it was well

covered with two coatings of silk, and was generally used in

the form represented in Fig. 78, which is that of a flat spiral

sixteen inches in diameter. It was, however, sometimes

formed into a ring of larger diameter, as is shown in Fig. 79.

Coil No. 2 was also formed of copper strip of the same width

and thickness- as coil No. 1. It was, however, only sixty feet

long. Its form is shown at b in Fig. 78. The opening at the

centre was sufficient to admit helix No. 1. Coils No. 8, 4, 5,

6, were all about sixty feet long, and of copper strip of the

same thickness, but of half the width of coil No. 1.

Helix No. 1 consisted of sixteen hundred and sixty yards of

copper wire ^th of an inch in diameter ; No. 2 of nine

hundred and ninety yards, and No. 8 of three hundred and

fifty yards of the same wire. These helices were wound on

bobbins of such size as to fit into each other, thus forming

one long helix of three thousand yards, or, by using them

separately and in different combinations, seven helices of

different lengths. The wire was covered with cotton thread

a

 

 

Fio. 79.
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saturated with bees' wax, and between each stratum of spires

a coating of silk was interposed.

Helix No. 4, shown at a, Fig. 79, was formed of five hundred

and forty- six yards of wire ^th of an inch in diameter, the

several spires of which were insulated by a coating of cement.

Helix No. 6 consisted of fifteen hundred yards of silvered

copper wire, x^th of an inch in diameter, covered with cotton,

and of the form of helix No. 4.

In addition, a long spool of copper wire covered with cotton,

TVth of an inch in diameter and five miles long, was provided.

It was wound on a small axis of iron, and formed a solid

cylinder of wire eighteen inches long and thirteen in diameter.

For determining the direction of the induced currents Henry

employed a magnetising spiral, which consisted of about thirty

spires of copper wire in the form of a cylinder, and so small as

just to admit a sewing needle into the axis.

Also a small iron horseshoe is frequently referred to, which

was formed of a piece of soft iron about three inches long and

fths of an inch thick ; eaoh leg was surrounded with about

five feet of copper bell wire. This length was so small that

only a current of considerable strength could develop sensible

magnetism in the iron. This horseshoe was used for indicat

ing the existence of such a current. The battery which was

used was a simple copper-zinc cylinder battery, having about

If square feet of zinc surface. In some experiments a series of

cells was used, but most experiments were performed with one

or two cells of the above kind. For interrupting the circuit of

the conductor Henry employed the simple device of scraping

one end of the conductor along a rasp held in contact with

the battery terminal.

Provided with this apparatus, Henry entered on a pre

liminary series of experiments on the induction of electric

currents, and in 1888 published an account of his investiga

tions on the phenomenon which had been previously named

by Faraday electro-dynamic induction. The fact which seems

to have chiefly attracted the attention of the numerous investi

gators who rapidly entered the region of research opened out

by Faraday's discovery of the mutual induction of electric

circuits and the production of electric currents in conducting

circuits by the variation of the magnetic induction linked with

p
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them, and by Henry's discovery of the self-induction of electric

circuits, seems to have been the possibility of obtaining from

a single cell of a galvanic battery effects such as spark and

shock. These effects connected what was then known as voltaic

electricity with the then more familiar effects of electrification by

friction.* Henry took up the train of investigation at this point,

and proceeded to employ the above described helices and coils in

an investigation of the facts of the self- and mutual-induction

of electric circuits. His mode of operating was to close the

battery circuit by dipping the ends of a coil or helix into two

mercury cups connected with the terminal plates, and then to

break the circuit by lifting out one end from its mercury cup,

the hands being at the same time in contact with the battery

terminal and the end of the conductor which is being raised.

In this way the extra current, or electro-magnetic discharge of

the coil, passed through the operator's body.

When the electromotive force was small, as in the case of a

thermopile or a large single cell, and the circuit taken was the

flat riband coil No. 1, ninety-three feet long, it was found to

give brilliant snaps at the surface of the mercury when contact

was broken, but the shocks were very feeble, and could only

be felt in the fingers or through the tongue. The induced

current in a short coil, which thus produced deflagration but

not shocks, he called, for distinction, one of quantity.

When the length of the coil was increased, the battery

being the same, the deflagrating power decreased, while the

intensity of the shock continually increased. With five-

riband coils in series, making an aggregate length of three

hundred feet, and a small battery the deflagration was less

than with coil No. 1, but the shocks were more intense.

There appeared to be, however, a limit to this increase of

intensity of the shock, and this took place when the increased

resistance or diminished conduction of the lengthened coil

began to counteract the influence of the increasing length of

the current. The following experiment illustrated this fact.

A coil of copper wire TVth of an inch in diameter was

increased in length by successive additions of about thirty-

* For a more extended description of the historical order of discoveries

in connection with the induction coil the reader is referred to the First

Chapter in the Second Volume of this treatise.
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two feet at a time. After the first two lengths, or sixty-four

feet, the brilliancy of the spark began to decline, but the

shocks continually increased in intensity until a length of

five hundred and seventy feet was obtained, when the shocks

also began to decline. This was, then, the proper length to

produce the maximum effect with a single battery and a wire

of the above diameter. With a battery of sixty cells (Cruick-

shank's trough), having plates four inches square, scarcely

any shock could be obtained when the coil formed a part of

the circuit. If the length of the coil was increased, then the

inductive effect became very apparent.

When the current from ten cells of the above-mentioned

trough was passed through the large spool of copper wire, the

induced shock was too severe to be taken through the body.

Again, when a small battery of twenty-five cells having plates

one inch square, which alone would give but a very feeble

shock, was used with helix No. 1, an intense shock was

received from the induction when the contact was broken.

Also a slight shock in this arrangement was given when the

contact was formed, but it was very feeble in comparison with

the other. The spark, however, with the long wire and

compound battery was not as brilliant as with the single

battery and short riband coil.

When the shock was produced from a long wire, as in the

last experiments, the size of the plates of the battery might

be very much reduced without a corresponding reduction in

the intensity of the shock. A small battery was made,

formed of six pieces of copper bell wire one inch and a- half

long and an equal number of pieces of zinc of the same

size. When the current from this was passed through a coil

consisting of five miles of wire, the shock was given at once

to twenty-six persons joining hands.

With the same coil, and the single battery used in the

former experiments, no shock, or at most a very feeble one,

could be obtained.

The induced current in these last experiments he called

one of considerable intensity and small quantity.

§ 2. Mutual Induction.—Henry then passed on to consider

the mutual induction of two circuits. Coil No. 1 (see c,

r 2
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Fig. 80) was arranged to receive the current from a small

battery of a single cell, and coil No. 2, b, was placed over it

with a plate of glass between to secure perfect insulation.

As often as the current in No. 1 circuit was interrupted, a

powerful secondary current was induced in No. 2. When the

ends of the secondary were joined to a magnetising spiral, the

enclosed needle became strongly magnetic. Also when the

ends of the second coil were attached to a small water

decomposing apparatus, a stream of gas was given off at

each pole ; and when the secondary current was passed

through the wires of the iron horse-shoe, magnetism was

developed. The shock, however, from the secondary coil

was very feeble, and scarcely felt above the fingers. This

secondary current had, therefore, the properties of one of

moderate intensity but considerable quantity (to use the

 

o

c

Fig. 80.

terms then employed) when developed by the current in one

flat riband coil acting on another flat riband coil.

Coil No. 1, remaining as before a longer coil, formed by

uniting Nos. 3, 4, and 5, was substituted for No. 2. With this

arrangement as a secondary circuit the magnetising power of

the current and the brilliancy of the spark at breaking

contact was less than before, but the shocks were more

powerful—in other words, the intensity of the secondary

induced current was increased, whilst its quantity was

decreased;

A compound helix, formed by uniting Nos. 1 and 2 helices,

and therefore containing two thousand six hundred and fifty

yards of wire, was next placed on coil No. 1. The weight of

this helix happened to be precisely the same as that of coil
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No. 2, and hence the different effects of the same quantity of

metal (as secondary circuit) in the two forms of a long and

short conductor could be compared. With this arrangement

the magnetising effects with the apparatus above-mentioned

disappeared. The sparks were much smaller and the decom

position less than with the short coil, but the shock was

almost too intense to be received with impunity except

through the fingers of one hand. The secondary current

in this case was one of small quantity but of great intensity.

The following experiment is important in establishing the

fact of a limit to the increase of the intensity of the shock as

well as to the power of decomposition with a wire of given

diameter.

Helix No. 5, consisting of a wire Ti7th of an inch in

diameter, was placed on coil No. 2, and its length increased to

about seven hundred yards. With this extent of wire neither

decomposition nor magnetism could be obtained, but shocks

were given of a peculiarly pungent nature. The wire of the

helix was further increased to about fifteen hundred yards ; the

shock was now found to be scarcely perceptible in the fingers.

As a counterpart to the last experiment, coil No. 1 was

formed into a ring of sufficient internal diameter to admit the

great spool of wire, and, with the whole length of this (five

miles), the shock was found so intense as to be felt at the

shoulder when passed only through the forefinger and thumb.

Sparks and decomposition were also produced, and needles

rendered magnetic. The wire of this spool was TVth of an inch

in diameter ; and Henry noted therefore from this experiment

that, by increasing the diameter of the wire, its length might

also be increased with increased effect of shock.

The previous experiments were repeated, using a battery of

sixty cells (Cruickshank's trough). When the current from

this was passed through the riband coil No. 1, no indication, or

a very feeble one, was given of a secondary current in any of

the coils or helices arranged as in the preceding experiments;

but when the long helix No. 1 was placed as a primary, instead

of coil No. 1, a powerful inductive action was produced on each

of the circuits used as before.

First, helices Nos. 2 and 8 were united into one coil and placed

within helix No. 1, which still conducted the battery current.
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With this disposition a secondary current was produced, which

gave intense shocks but feeble decomposition and no magnetism

in the soft iron horse-shoe. It was therefore one of intensity,

and was produced by a battery current also of intensity.

Instead of the helix used in the last experiment for receiving

the induction (secondary), one of the coils, No. 3 (copper riband),

was now placed on helix No. 1, the battery remaining as

before. With this arrangement the induced current gave no

shocks, but it magnetised the small horse-shoe, and when the

ends of the coil were rubbed together produced bright sparks.

It had, therefore, the properties of a current of quantity, and

it was produced by the induction of a current from a battery

of intensity.*

This experiment was considered of so much importance that

it was varied and repeated many times, but always with the

same result; and it therefore established the fact that an inten

sity current could induce une of quantity ; and by the preceding

experiments the converse has also been shown, that a quantity

current could induce one of intensity.

§ 3. Induction at a Distance.—In the experiments on mutual

induction detailed above, the primary circuit was separated

from the secondary only by a pane of glass, but the action was

so energetic that an obvious experiment was to investigate the

effect of distance on the mutual induction. For this purpose

coil No. 1 was formed into a ring of about two feet in diameter

(see Fig. 79), and helix No. 4 placed as shown. When the helix

was at the distance of about sixteen inches from the middle of

the plane of the ring, shocks could be perceived through the

tongue, and these rapidly increased in intensity as the helix

was lowered, and when it reached the plane of the ring they

were quite severe. The effect, however, was still greater when

the helix was moved from the centre to the inner circumference,

" This last experiment is very interesting, as showing that in 1838 Prof.

Henry had already realised that which used to be called the reverse use of

the induction coil. He had employed a current flowing in a fine wire of

many turns and moving under a high electromotive force, to induce a cur

rent of greater strength in a secondary circuit, consisting of a lesser number

of turns of copper riband, and moving under a less electromotive force. In

other words, he had constructed what we should now call a step-dotcn

transformer. Note Henry's explicit statement in the following paragraph.
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as at c, but when it was placed without the ring, in contact

with the outer circumference at b, the shocks were very slight,

and when placed within, but with its axis at right angles to

that of the ring, not the least effect could be observed. Coil

No. 1 remaining as before (the primary) helix No. 1, which was

nine inches in diameter, was substituted for the small helix in

the last experiment, and with this the effect at a distance was

much increased. When coil No. 2 was added to coil No. 1, and

the currents from two small batteries sent through, these

shocks were distinctly perceptible through the tongue when the

distance of the planes of the coil and the three helices united

as one was increased to thirty-six inches. The action at a dis

tance was still further increased by coiling the long wire of the

large spool into the form of a ring of four feet in diameter, and

placing parallel to this another ring formed of the four ribands

of coils Nos. 1, 2, 8, 4. When a current from a single cell

having thirty-five feet of zinc surface, was passed through the

riband conductor, shocks through the tongue were felt when

the rings were separated to a distance of four feet. In another

experiment, to illustrate induction across a distance, Henry

{Phil. Mag., Vol. XVIII., 1841, 3rd Series, p. 592) joined all

his coils, so as to form a single conductor of about 400 feet in

length, and this was rolled into a ring of five and a-half feet

in diameter and suspended vertically against a door. 0n the

other side of the door, and opposite to the coil, was placed a

helix formed of upwards of a mile of copper wire one sixteenth

of an inch in thickness and wound in a hoop of four feet in

diameter. With this arrangement, and with a battery of one

hundred and forty-seven square feet of zinc surface divided into

eight elements, shocks were perceptible on the tongue when the

two conductors were separated by a distance of seven feet, and

at a distance of between three and four feet the shocks were

quite severe.

In the fifty years which have elapsed since Henry performed

the classical experiments described above, the progress of know

ledge has placed in our hands an appliance vastly more delicate

than physiological shock for detecting induction at a distance,

viz., the articulating telephone receiver. Aided by this, it has

recently been found possible to find indications of the mutual

induction between conductors separated by miles instead of feet.
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Along the Gray's Inn-road, London, the English Post-office

service placed a line of iron pipes buried underground canning

many telegraph wires. The United Telephone Company placed

a line of open wires along the same route over the housetops,

situated 80ft. from the underground wires. Considerable dis

turbances were experienced on the telephone circuit, and even

Morse signals were read, which were said to be caused by the

Continuous and parallel telegraph circuits. A very careful series

of experiments,* extending over some period, proved unmis

takably that this was so, and that the well-known pattering

disturbances due to induction are experienced at a much

greater distance than was anticipated.

Experiments conducted on the Newcastle Town Moor

extended the area of the disturbance to a distance of 8,000ft.,

while effects were detected on parallel lines of telegraph

between Durham and Darlington at a distance of 10J miles.

But the greatest distance experimented upon was between the

east and west coast of the Border, when two lines of wire

40 miles apart were affected the one by the other, sounds

produced at Newcastle on the Jedburgh line being distinctly

heard at Gretna on a parallel line, though no wires connected

the two places.

Distinct conversation has been held by telephone through

the air without any wire through a distance of one quarter of

a mile, and this distance can probably be much exceeded.

Effects are not confined to the air, for submarine cables

half a mile apart in the sea disturb each other. It may well

be doubted whether the inductive effects above described as

taking place over very large distances above mentioned are

not complicated by current leakage, but it has been abundantly

established that inductive effects can be produced and detected

between circuits separated by great distances.

Practical application of current induction across large air

spaces has been made in the methods of carrying on tele

graphic communication with railway trains when in motion.

There are two methods by which this has been accomplished.

(1) The magneto-induction method, which was devised by

* Mr. W. H. Preece on "Induction between AVires and Wires" (The

Electrician, Vol. XVII., 1886, p. 410 ; British Association Report, Birming

ham, 1886).
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Mr. L. J. Phelps and was tried about the year 1885 on a line

about 15 miles long between Haarlem River and New

Rochelle Junction, in the United States. In the other

system (2) the principle involved is that of electrostatic

induction, and, after having been suggested in a more or less

imperfect form by Mr. W. Wiley Smith in 1881 (U.S.

Patent No. 247,127), has been worked out in great detail by

Messrs. Edison and Gilliland.

In the magneto-induction system a telegraphic car attached

to the train carries a great circuit of wire wound on a frame

extending the whole length of the car, and so placed that one

side of the windings is as near the track as possible and one

side as high above as the height of the car will permit.

Between the rails is laid down a fixed insulator conductor,

and the fluctuations of a current in this last induce currents

in the lower side of the large coil carried on the car. The

secondary current so induced is detected by a telephone and

by suitable interruptions. A Morse code of audible signals

can be transmitted from the fixed conductor to the moving

train. The signals are thus made to jump over the air space,

and continuous communications can be kept up between a

station or stations in connection with the fixed conductor and

a person in the moving telegraph car.

Mr. Phelps used a conductor of No. 12 (A.G.) insulated

wire, which was placed in a kind of small wooden trough

mounted on blocks attached to the sleepers. The car con

taining the telegraphing instruments carried beneath its floors,

about 7in. above the rail level, a 2tn. iron pipe, in which

was a rubbei- tube holding about 00 convolutions of No. 14

(A.G.) copper wire, so connected as to form a continuous

circuit about a mile and a-half long, and presenting something

like three-quarters of a mile of wire parallel to the primary

line wire mounted between the metals. The instrument,

consisted of a delicate polarised relay as a receiving instru

ment, which acted as a sounder, and a " buzzer," or rapid

current-breaker, for transmitting signals by means of the

Morse key, which were received at the station in a telephone.

This arrangement was so far a practical success that

Mr. Phelps was encouraged to proceed ; but meantime it was

.discovered that the patent above referred to had already been
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issued, while Edison and Gilliland bad also been working on

similar lines. In Wiley Smith's specification no mention is

made of a " buzzer," which turns out to be an important

feature in the invention ; but the practical success of the

experiments made is due to a combination of the devices of

Phelps, Edison, and Gilliland. The latest system is an

improvement on that of Phelps, briefly described above, in

that it dispenses with the insulated line wire laid between the

metals, and uses ordinary telegraph wire strung on what

are known as short poles alongside the permanent way.

The line wire is, in fact, stretched on poles about 16ft. high

and at an average distance of 8ft. from the rails. On the

Lehigh Valley Railroad, U.S., from Perth Junction to Easton,

interesting experiments of this kind were made in 1887. As

a rule the roof of the car, usually sheathed with metal, is

available for securing the necessary electrical condition, but,

where a metal covering is absent, all that is necessary is to

attach a wire or rod to the roof and another to some portion

of the metallic or rolling part of the coach in order to obtain

" earth." The instruments are inserted in this circuit, and

comprise a 12-cell chromic acid battery (the cells being 2in.

wide by 4in. deep), which is closed on an induction coil having

a primary of about 8 ohms and a secondary of about 500

ohms, and provided with an ordinary vibrating make-and-

break. The messages are sent by means of a Morse key

placed in the secondary circuit, this key being of the double-

pointed kind with extra contact. The receiving telephone has

a resistance of about 1,000 ohms ; but Mr. Phelps states that,

even when wound so as to have a resistance of 10,000 ohms,

the sound is quite clear, so high is the electromotive force of

the induction on the roof. The car-roofs are frequently of

metal—usually painted tin plates, sheet zinc, or galvanised

iron, and these answer admirably as inductive receivers ; but

where the roofs are of wood, covered with painted canvas, an

iron or brass rod or tube, Jin. in diameter, is carried along

under the eaves throughout the length of the train. The

metallic roof or the rod is connected by a wire to the secondary

of an induction coil, while the primary of the coil is connected

to the front contact of the double-pointed key, and through

that with the battery. Opposite the core of the coil is the
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" buzzer," which transmits a series of impulses to the line

whenever the key is worked. The extra contact, which is

placed on the upper surface of the front contact of the key,

closes the secondary circuit, and allows the charges to be sent

into the roof, while, when the key is on the back contact, the

secondary and primary coils are cut out, and the charge from

the roof then passes direct to the key and through the telephone

to earth, which, as a rule, is made by connecting wires from

the coil and the telephone to one of the axle-boxes. The coil

and the key, with suitable connections, are mounted on a

board which is large enough to contain a telegraph form

besides, and the telephone is attached by flexible connections,

and is, when in use, strapped to the operator's head. The

battery is put up in a case with a handle, so that the whole

apparatus can be carried from one end of a train to the other.

The arrangements at the terminal and other stations on the

line, so far as induction telegraphy is concerned, are practically

identical with those in the railway coach ; but, in addition,

they have a duplex Morse equipment, by which ordinary

messages can be sent by the dot-and-dash system.

Of late years interesting experiments have been made under

the direction of Mr. W. H. Preece in carrying on telegraphic

communication across considerable distances by means of

induction between parallel circuits.

§ 4. Induced Currents of Higher Orders.—In 1888 Henry

made a further remarkable discovery, viz., that secondary

currents, though only of momentary duration, could in their

turn induce other induced currents in neighbouring conductors ;

and these he called tertiary and currents of higher orders.

A primary current was passed through coil No. 1, while

coil No. 2 was placed over it to receive the secondary current,

and the ends of this last coil joined to a third coil, No. 8.

By this disposition the secondary current passed through No. 8,

and sinej this was at a distance (see Fig. 81), and beyond the

influence of the primary, its separate induction could be

rendered manifest by the effects on helix No. 1, arranged

as a secondary circuit to this third coil. When the handles

a b of the last helix d were grasped a powerful shock was

received, proving the induction of a tertiary current in the last
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coil. By a similar more extended arrangement of inducing

coils (shown in Fig. 82) shocks were received from currents

of a fourth and fifth order; and with a more powerful

primary current and additional coils a still greater number

of successive inductions might be obtained. Henry thus

established by decisive experiments that, in a properly placed

series of connected coils, a primary current could give birth

to secondary currents, and these last to tertiary currents, and

 

Fig. 81.

so on, a whole family of induced currents arising from the

starting or stopping of the primary current.

It was found that with a small battery a shock could be

given from the current of the third order to 25 persons

joining hands ; also shocks perceptible in the arms were

obtained from a current of the fifth order.

 

Fig. 82.

When the long helix is placed over a secondary current

generated in a short coil, and which is one of quantity, a

tertiary current of intensity was obtained capable of producing

shocks. When the intensity current of the last experiment

was passed through a second helix, and another flat riband

coil placed over this (see Fig. 82a), a quantity current was

again produced. Therefore, in the case of these currents of

higher orders also a quantity current could be induced from

one of intensity, and the converse.
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The arrangement in Fig. 82 shows these different results

produced at once. The induction from coil No. 8 to helix

No. 1 produces an intensity current, and from helix No. 2 to

coil No. 4 a quantity current.

The next stage in Henry's inquiry had reference to the

direction of these induced currents. Knowing that a current

on starting in a conductor induces an inverse or oppositely-

directed induced current in a neighbouring secondary circuit,

and a direct or like directed induced current on stopping, it

was clear that each tertiary current must consist, in its

simplest form, of two oppositely directed currents succeeding

each other instantaneously ; for at the "make" or "break"

of the primary the secondary circuit is traversed by a brief

secondary current in " opposite " or " like " direction. We

shall speak of these as the inverse and direct secondary currents

produced on closing or opening the primary circuit.

 

Fig. £2a.

Each of these secondary currents rises to a maximum and

then sinks to zero again. If there is a tertiary circuit present,

then during the rise of the secondary current to its maximum

it is developing an inverse tertiary and during its decrease to

zero a direct tertiary current. Since, as we shall see, the

duration of the secondary current is a very small fraction of a

second, these two component tertiary currents must succeed

each other at an excessively short interval of time. Physio

logically their separate effect is, so to speak, united, and

they make themselves felt as one shock. Henry adopted

the method of employing a magnetising spiral containing a

sewing needle as a means of analysing tho nature of these

induced currents of higher order. By inserting such a

spiral in the circuit of the successive conductors and noting

the direction of the magnetisation of the steel needle he

arrived at the conclusion that there exists an alternation in
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the direction of the currents of the several orders, and

that the directions of the several induced currents could

be expressed by saying that at the " make " of the primary

we get an inverse secondary, a direct tertiary, and inverse

quarternary current, and so on ; or, symbolically :—

Primary current started stopped

Secondary ,, inverse — direct -

Tertiary ,, direct + inverse +

Quarternary ,, inverse — direct — v

<ic. dc.

The use of a magnetising spiral as a means of determining

the direction of an induced current is, however, liable to

lead to serious errors in drawing conclusions as to direction

of currents, and the above experiment cannot be regarded

as an exhaustive examination of the whole phenomena of

induced currents of higher orders. Before entering into a

more detailed discussion of the exact nature of the effects

which here present themselves, it will be of assistance to

gather together the principal observations on the induction

of transient electric currents.

§ 5. Inductive Effects Produced by Transient Electric Cur

rents.—It was an obvious inference, from all the foregoing

facts, that Leyden jar discharges, or the transient currents

formed by discharging charged condensers, should in like

manner be able to give rise to a family of induced currents in

suitably-placed circuits. Henry thus opened up a new field of

research, which was diligently cultivated by Marianini, Abria,

Matteucci, Reiss, Verdet, and many other physicists. Henry's

first experiment was as follows : A hollow glass cylinder (see

Fig. 83) of about six inches in diameter was prepared with a

narrow riband of tinfoil about thirty feet long pasted spirally

around the outside, and a riband of the same length pasted on

the inside, so that the corresponding spires of the two were

directly opposite each other. The ends of the inner spiral

passed out of the cylinder through a glass tube to prevent

direct communication between the two circuits. When the

ends of the inner riband were joined by the magnetising spiral

containing a sewing needle and a discharge from a half-gallon

jar sent through the outer riband, the needle was strongly
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magnetised in such a manner as to indicate an induced current

through the inner riband in the same direction as that of the

current of the jar. If, instead of using the magnetising spiral,

the ends of the inner riband were brought near together, a

small spark was detected at the instant of sending a jar dis

charge through the outer conductor. Experiments were next

made in reference to the production of induced currents of

different orders by electric discharges. For this purpose a

series of glass cylinders with tinfoil spirals pasted on them was

prepared and joined up so that the inner spiral of one cylinder

was in connection with the outer spiral of another. When a

discharge was passed through the outer riband of the first

cylinder it produced an induced secondary discharge circulating

in the inner spiral of the first and the outer spiral of the second

cylinder. This in turn generated a tertiary current, and so

 

Fig. 83.

forth. Each of these discharges was a brief wave of current,

and by the use of the magnetising spiral in each circuit an

attempt was made to determine the direction of the discharge.

Here, however, an anomaly presented itself. By the use of

this magnetising spiral it appeared that the induced discharges

were all in the same directum. Leyden jar discharges were

then passed through the first member of the series of coils and

helices used in the experiments on galvanic currents, and here

the directions of the induced discharges in the several con

ductors were found to alternate. After various experiments

Henry considered that he had found the solution of this

anomaly in the different distances of the inducing and induc

tive circuits. As an experiment illustrating this he gives the

following :—Two narrow strips of tinfoil about twelve feet long
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were stretched parallel to each other, and separated by thin

plates of mica to the distance of about -.^th of an inch. When

a discharge from a half-gallon jar was passed through one of

these an induced current in the same direction was obtained

from the other. When the ribands were separated to a distance

of about J-th of an inch, no induced current, as evidenced by

the absence of effect in the magnetising spiral, could be

obtained. When the circuits were still further separated the

induced current reappeared, but in the opposite direction to the

primary discharge. The distance at which the induced dis

charge changes direction appears, according to Henry, to be

dependent on a number of circumstances, such as the capacity

and charge of the jar and the length and thickness of the

wires.

With a battery of eight half-gallon jars and parallel wires

of about ten feet long the change in direction did not take

place until the wires were separated by twelve or fifteen inches.

The currents of all the higher orders were found to change

sign with a change in the distance between the inducing and

inductive circuit.

0ne interesting experiment was made by Henry to illustrate

the inductive effect of jar discharges across considerable dis

tances. In this case a primary circuit was formed consisting

of an insulated wire eighty feet long. Around this, and

separated from it by a distance of about twelve feet, was

another circuit consisting of a wire one hundred and twenty

feet long. When the discharge from thirty large Leyden jars

was sent through the primary wire an induced discharge was

obtained in the other sufficiently strong to magnetise to

saturation a small needle placed in a magnetising spiral

interpolated in the secondary circuit. We may, however,

remark here, once for all, that all these experiments directed

to determine the direction of induced discharges in which the

magnetising power of the discharge is made use of for this

purpose are difficult to interpret, and too much reliance must

not be placed on the conclusions thus drawn. Leaving out of

account for the moment all consideration of what are called

electric oscillations, to which we shall allude subsequently, we

may say that, if two discharges are passed through a magnetis

ing spiral, the discharges being oppositely directed and of equal
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quantity but different durations, the resulting direction of

magnetisation will be dependent upon several conflicting

elements. Speaking generally, the intensity of magnetisation

is determined by the relative magnitude of the maximum

current strength during the discharge, and of two discharges

having equal quantity the one lasting the shortest time would

rise to the highest current strength during the period of the

discharge, and exercise the greatest magnetising force. Even

then it would not be safe to draw too pronounced a con

clusion from the direction of magnetisation as to the relative

magnitudes of the maxima of two alternate discharge currents

rapidly succeeding each other, for, as Abria pointed out long

ago,* the demagnetisation of a steel needle requires a less

magnetising force than that necessary to magnetise it in the

first instance, and hence the final results are complicated by

the relative order of imposition as well as the relative maximum

magnitude of the magnetising discharge currents. One fact

which has to be borne in mind in attempting to interpret

these results of Henry is that the magnetising current whose

direction we are seeking to determine acts by induction also

on the mass of the needle or iron in the testing magnetising

coil, and generates in its mass induced currents circulating

round its surface. Under the head of Magnetic Screening

in a later section we shall examine the circumstances under

which Buch currents induced in a metallic mass shield to a

greater or less extent conducting circuits lying beyond them

from inductive effects. Meanwhile we may say that the

effect of a very sudden discharge in one direction in the

magnetising coil is to induce eddy currents in the surface

of the needle which shield the inner and deeper portions of

the steel from the magnetising action, and the resulting

magnetisation is chiefly superficial. If, however, the dis

charge is prolonged or dragged out whilst retaining the same

electric quantity, the shielding action will not be so pronounced,

and the magnetisation will penetrate deeper down into the

mass of the steel. Accordingly two equal discharges, i.e.,

discharges of equal quantity, may produce a greater or less

magnetic moment in the steel, according as the duration

of the same is greater or less, a very sudden discharge

* Abria, Ann. de Ckem. et dc Phys., [3] Vol. I., p. 429, 1844.

Q
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having much less magnetic-moment-producing power than

the same quantity more dragged out. We may in general

also say that the magnetising power of a discharge current is

determined by the value of the maximum current strength

during the discharge, and hence of two equal quantity dis

charges, the one which lasts the shorter time, and which has,

therefore, the greatest maximum value, will, if the discharges

are approximately equal in duration, produce the greatest

magnetising effect.

The tertiary currents, produced by ordinary galvanic currents,

and the secondary currents, produced by Leyden jar discharges,

consist, as we have seen, in their simplest form of a double

discharge or flow, one part inverse, or oppositely directed to its

inducing parent current, and the succeeding part direct, or

similarly directed, the two component currents of the total

discharge having equal quantity but different durations. In

general the first portion, or the inverse current, is that which

has the greatest maximum value and the shortest duration, the

second half, or the direct current, being more dragged out in

time; and, for a reason to be stated further on, the approxima

tion of the induced and inducing circuits exaggerates this

difference, or increases the maximum value of the inverse

current at the expense of its duration. The explanation which

may be offered, however, of the phenomena of the magnetisa

tion of steel by tertiary currents, or by the secondary currents

due to Leyden jar discharges, is as follows :—When the induced

and inducing circuits are not very near to each other, and when

the inducing current reaches its maximum not very suddenly,

the two induced currents are not very different in duration, but

the first or inverse current has, of the two, a rather greater

maximum and less duration. It follows that a magnetisa

tion is produced in the needle, which, on the whole, is in the

direction produced by the inverse current, and the inference

from the direction of magnetisation is that the induced and

inducing currents are in the opposite direction. If, however,

the inducing current reaches its maximum value very suddenly,

us it does if the circuits are very close, then the first half, or

the inversed induced current, is so brief in its duration that the

magnetisation of the needle due to it is very superficial. On

the other hand, the magnetisation due to the rather more pro-
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longed direct current is more diffused through the needle, and

the resultant magnetisation found on testing the needle is that

apparently due to the direct current, and the inference from

the resulting magnetism of the needle would be that the

induced and inducing currents are in the same direction. By

some such explanation as the above we may reconcile these

-experimental results of Henry with kuown facts, but it is

evident, since the resulting magnetisation of the needle is an

effect determined by the relative maximum values of the two

portions of the total induced current, and by their duration, as

well as by their order of superposition, that considerable caution

is necessary in attempting to interpret the results of experi

ments made with a magnetising helix. Henry was followed

in the same field of investigation by Abria, Marianini,

Eeiss, and Matteucci. Matteucci endeavoured to determine

the direction of the induced discharges by employing a pro

cess founded upon the experiment of the pierced card, in

which the hole made by the spark on a piece of paper or a card

is always nearer to the negative electrode. By means of this

process, combined with the employment of the galvanometer,

Matteucci considered that the inductive discharges are deter

mined by the following law :—If the inducing and induced

circuit are both closed, the induced discharge is in the opposite

direction to the inducing discharge. If, however, the induced

circuit is interrupted at any point so that there is a spark, the

induced discharge is in the same direction as the inducing.

Abandoning these methods above described, M. Verdet* em

ployed another, which depends upon the polarisation of elec

trodes in dilute sulphuric acid.

From more recent knowledge we may state the facts with

regard to the action of alternate currents upon a dilute sul

phuric acid voltameter as followst :—

If a current of electricity consisting of alternate short fluxes

of currentof opposite sign is passed through a voltameter having

platinum electrodes, and if these electrodes are large, there is no

visible decomposition, but if the electrodes are reduced in size

below a certain limit visible decomposition begins. For every

* Verdet, An*, de Chcm. et dc Phys., [3] Vol. XXIX., p. 501, 1850.

+ See a Paper by MM. Maneuvrier and J. Chappui2, abstracted in The

Electrician, June 29, 1888, Vol. XXI., p. 237.

Q2
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current there is a certain size of electrode, above which gas is nnfc

visibly evolved, and for every given size of electrode there is a

current below which gas is not apparently liberated. When

the conditions are suitable for the liberation of gas, the gases

collected at both electrodes have the same composition. If the

quantities of electricity passing in each alternate and oppositely-

directed flux are equal, then the electrodes are not sensibly

polarised. If, however, the quantities are not equal, then there

is, on the whole, a greater flow of current in one direction than

in the other, and the electrodes exhibit the state known as

polarisation, and yield a reverse current when connected with

the galvanometer. Verdet, in his experiments, made use of

flat spirals, the wires of which were insulated from each other

with great care by silk and a layer of gum-lac varnish. The

primary spiral was made of copper wire £chs of an inch in dia

meter and 92 feet in length, forming 24 spirals. The secondary

circuit consisted of three spirals of wireJg-thof an inch in dia

meter and 157 feet in length, making 95 turns. The inducing

discharge was supplied from a Leyden jar battery of nine large

jars. The induced discharge was sent through a voltameter

having small platinum electrodes, and which could be connected

with a delicate galvanometer for detecting polarisation of the

electrodes immediately after the discharge. Verdet's experi

ments led him to recognise that when the induced circuit is

continuous, and not interrupted anywhere except by the

insertion of tho voltameter, no traces of polarisation are

obtained except by very powerful discharges. This indicates

that the induced discharge consists of a double current of two

oppositely-directed and equal quantities of electricity. In the

case of very powerful discharges there was a slight galvano-

metric deflection, indicating a preponderating secondary dis

charge in the tame direction as the primary. If the induced

or secondary circuit is interrupted at one point, so that the

discharge has to pass as a spark at that place, then very per

ceptible polarisation of the electrodes presents itself, and the

direction of this is such as to indicate a predominant induced

current passing in the same direction as the primary.

To sum up. It follows from all the numerous researches on

induced discharges that this is a very complex phenomenon,

and is influenced by a large number of conditional circum
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stances, and also by the very mode employed for determining

it. It may be, however, taken as proved that an induced dis

charge, produced either as a secondary discharge by a transi

tory primary, such as the discharge from a Leyden jar, or a

tertiary current produced by induction by a secondary current

of very brief duration, is, in its simplest form, a wave of electric

current, consisting of two short fluxes or currents in opposite

directions, and succeeding each other immediately. This

Poggendorff * holds to be shown by the action of such tertiary

or higher order currents on a galvanometer. If these currents

are led through a galvanometer of which the arrangement is

such that the magnetic axis of the needle is accurately at right

angles to the direction of the magnetic axis of the coil, then

no deflection of the needle is observed, or at most a very slight

one. If, however, the needle makes an angle with the plane

of the coils, then these induction currents cause a deviation of

the needle. This effect (die doppelsinnige Ablenkung) arises

from the fact that the magnetism of the needle is not rigid,

and that the alternate twisting couples to which the needle is

subjected are not equal, by reason of the fact that one of the

halves of the complete induced current—say the direct half—

increases the magnetic moment of the needle, and hence

increases slightly the deflecting couple in the direction tending

to increase the deviation of the needle ; the other half—say

the inverse part of the induced current—tends to reduce the

moment of the needle, and hence to subject it to a smaller

reverse couple. Hence it follows that, if discharges of equal

quantity and opposite sign succeed each other through a

galvanometer when the needle is accurately in the plane of the

coils, little or no deviation is observed ; but if the coils are

turned so that the needle makes an angle with them, then

these alternate currents will affect the needle and increase the

angle of deflection.

This behaviour towards a galvanometer, and the action on a

voltameter of liberating mixed gases of equal composition at

each pole, prove that each induced current of the third and

higher orders consists of two oppositely-directed discharges,

produced by the operation of two successive electromotive

impulses of opposite sign and very brief duration acting upon

* Poggendorff, Pcgg. Ann., Bd. XLV., 1838, p. 353.
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the circuit. The quantities of these discharges are equal ; but,

the durations are different, and hence the maximum value of

the current strength during the opposite discharges may be

very different.

This may be illustrated graphically thus :—

Let the curve a P b Q c (Fig. 84) be a current curve represent

ing two waves of current of opposite sign succeeding each

other. Let the horizontal line a c be a time line, and vertical

ordinates represent instantaneous current strengths. Then the

shaded areas will represent the quantity in each discharge.

Let these shaded areas be equal, then the diagram represents

two discharges of equal quantity succeeding each other in

opposite directions, but having different maximum current

P 

Q

Fio. 84.

strengths I and I'. The duration of the first discharge is

represented by a b, and that of the second by b c. This diagram

represents the conditions in the simplest case of tertiary

current. If the instantaneous value of the current at any

time is called i, then the whole quantity of the discharge will

be represented by the shaded area and by the integral Jidt

between proper limits.

We may classify the effects of induced discharges or currents

in the following way :—

(1) Those effects dependent upon Jidt, or upon the whole

quantity of the discharge. These are the galvanometric and

the electro-chemical effects. If a discharge is passed through
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galvanometer, the duration of which is very small compared

•with the time of free oscillation of the needle, the galvanometer

needle experiences a "throw" such that the sine of half the

angle of deflection is proportional to the whole quantity of the

discharge. Also in a voltameter, by Faraday's law, the whole

quantity of the electrolyte broken up is proportional to the

quantity of electricity which has passed through it.

(2) Those effects dependent uponJ i-dt, or upon the average

of the square of the strength of the current at every instant

during the discharge. These are the heating and the electro-

dynamic effects. By Joule's law, at every instant the rate of

dissipation of energy is proportional to the square of the current

strength, and hence the whole heat generated by the discharge

is proportional to the integral above. Similarly, if the dis

charge passes through a circuit, part of which is movable and

can react upon a fixed part, so that attraction or repulsion may

take place between them, the force is dependent at any instant

on the square of the current strength, and hence the whole

effect or average force upon the same integral.

(8) We have, lastly, effects dependent chiefly upon the

maximum ordinate I, or upon the rate of change of the cur

rent—that is, upon the steepness of the slope of the current

curve. These are the physiological, telephonic, luminous, and

magnetic effects.

The physiological effect of a discharge in giving a shock

appears to depend in great part upon the suddenness with

which the maximum current strength is reached. 0f two dis

charges which reached equal maxima, that which arrived at it

in the shortest time would be the most effective in producing

shocks. The value of the maximum current strength is also

important. Two induced currents of equal quantity but different

durations cause a greater shock in proportion to their lesser

duration. The telephone in this respect resembles the animal

body. It is affected more by the rate of change of the current

strength than by the absolute current strength at any instant.

The magnetic effect depends, as has been shown by Lord

Rayleigh,* upon the maximum current strength during the

* See Phil. Mag., Ser. 4, Vol. XXXVIII., 1869, p. 8: The Hon. J. W

Strutt (Lord Rayleigh), "0n sorne Electromagnetic Phenomena," Also

Phil. Mwj., Ser. 4, Vol. XXXIX., 1870, p. 431.
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discharge, or upon the initial current strength, in those cases

in which the current dies gradually away. In the two Papers

referred to below it is shown by direct experiment that, since

the time required for the permanent magnetisation of steel is

small compared with the duration of induced currents generally,

the amount of acquired magnetism depends essentially on the

initial or maximum current strength during a transitory

current, without regard to the time for which it lasts. It is,

then, not difficult to understand that the effort to settle by

experiment with a magnetising coil the direction of induced

discharges may lead to very conflicting results, and, in any

case, it is hardly competent to do more than indicate the

direction in which the maximum current flow takes place

during the discharge.

The spark effects are also included in this category. The

air or other dielectric is broken down when the difference of

potentials between the two discharging points reaches a

certain magnitude, and in the case of a varying electric

pressure the question whether a spark will pass or not is

evidently determined by the maximum magnitude of that

quantity.*

It is evident from the above considerations that the complete

analysis of the effects and phenomena of induced currents of

the higher orders, and of those of secondary currents due to

discharges from condensers, requires a knowledge of the form

of the current curve in each case. We proceed to consider the

problem of the theory of induced currents in some of its simpler

aspects.

§ 6. Elementary Theory of the Mutual Induction of Two

Circuits.—Aiming rather at the elucidation of principles than

very copious treatment, we shall consider in the next place the

problem of the mutual induction of two circuits in its simplest

form. Let there be two bobbins of wire in suitable positions

for producing mutual induction and without iron cores. Let

the constant inductance of the first or primary coil be denoted

by L and its resistance R, and the similar quantities for the

* See Bertin, "Notes on Electrodynamic Induction," Ann. de Chimie,

4th Ser., Vol. XXIf., April, 1871, p. 486.
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second or secondary coil be N and S, and let M be the co

efficient of mutual induction.*

Let there be a source of constant electromotive force, E,

which can be applied or withdrawn from the primary circuit.

We shall denote by x the strength of the current in the

primary at any time t after closing the primary circuit by

applying the battery to it. Also we shall denote by y the

current in the secondary circuit at any time reckoned from

the same zero.

If, then, at any instant the currents are x and y, the follow

ing state of things exists in the circuits.

The electromotive force E is the impressed force on the

primary circuit.

That part of the impressed electromotive force producing

the current x is Tlx. That part employed in overcoming the

dx
counter-electromotive force of self-induction is L — , and the

d t

counter-electromotive force of mutual induction due to the

current y at that instant in the secondary circuit is-M^.

d f

Hence the relation which at any instant holds good between

these quantities is

L^+Mi?+Rx=E.

dt dt

The above equation is an expression of tho fact that the

external impressed electromotive force at any instant is equal

to the internal electromotive forces and the effective electro

motive force driving the current.

Similarly, for the secondary circuit we have an induced

electromotive force due to the induction of the primary on

dx
the secondary equal to M — and a counter-electromotive force

d t

of self-induction N —^.

d t

Hence N ^+M^+Sy= 0,

at dt

since there is no external impressed electromotive force. The

complete solution of the problem of finding the currents *

* Continental writers often call L and N the potentials of the bobbins

on themselves, and M the potential of one bobbin on the other.
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and y at any instant is obtained by the solution of these-

simultaneous differential equations—

dt dt

Nl?+M4?+Sy=0.

at at

As our object is to illustrate principles rather than mathe

matical methods, we shall simplify the problem by supposing

that the two circuits are similar in every respect. This makes

R = S and L = N, and the equations become

hTt+M,Tt+Bx = E> • . • • ^

Ld£+MTt+E^° <84>

Bearing in mind that the inductance L is, in ordinary

parlance, the "number of lines of force" which are linked

with the primary circuit when unit current flows in its own

circuit, and that M signifies the number of lines of force which

are common to both, or linked in with both circuits, when

unit current flows in each, we see that M can never be greater

than L, but that under all circumstances we must have

M < or = L,

also M <or = N ;

hence M2<or=LN,

or LN — M2 always a positive quantity, and the maximum

value which the co-efticient of mutual inductance M can have

is Jh N, or the square root of the product of the self-induc

tances of the separate circuits.

In order to separate the differentials in (83) and (84) we

differentiate each equation with respect to t, and obtain—
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Multiply (85) by L, (86) by - M, and (88) by R, and then

adding the three equations together we obtain—

d-x 2LR dx R2 - ER ,g7)

and a similar elimination gives us

^+^+JLy=0. . . . (88)

We have now separated the differentials in x and y, and the

solution of these equations depends, as is well known,* upon

the solution of an auxiliary quadratic equation—

2i 2BL ^ R- n

the solution of which is—

R R
m =, — , or

L + M L-M

Hence the general solution of (88) and (84) is—

--«L -^«_ E
i=A« 1tH+b<i-« + s, . . . (89)

and V = \'c~^' +B'e'^, (90)

where A, B, A', B' are constants of integration to be determined

from the circumstances of the flow. To do this, however, a

preliminary discussion is necessary. Let us suppose that the

primary current is fully established, and has a steady value I,

and hence that MI lines of induction penetrate through the

secondary circuit. This quantity is then the electromagnetic

momentum of the secondary circuit, because when the current

in the primary is steady there is no current in the secondary

circuit.

Let us now suppose that the primary circuit is broken, and

that the circumstances of the " break " are such that all these

MI lines of induction are removed at a uniform rate in a

small time S t from the secondary circuit.

During this time 8 1 an electromotive force will operate upon

the secondary circuit equal in magnitude to - -j^, or to the rate

of decrease of the included lines of force. We have seen in

* Sec Boole's " Diflereutial Equations," p. 192, 2nd Edition.
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Chap. III. that when an electromotive force E acts on a circuit

of inductance L and resistance B that the current i at any time

after the commencement of the application of the electro

motive force is given by the equation

E R,

In the case considered the inductance and resistance of

the secondary circuit are L and K, and the impressed electro-

MI
motive force applied during a time S t is Hence, at the

end of the interval of time 8t, the value of the secondary

current is given by the equation

This gives us the value of the inverse induced current at

the instant of breaking the primary. Expand the above

expression by the exponential theorem, and it becomes

t—M MB St

I=L~L»l-2+l7i-2-8"

At the. in3tant when the removal of lines of force or the ces

sation of the induction through the secondary takes place the

impressed electromotive force ceases and the secondary current

begins to die away. If we suppose the "break" of the primary

to be very sudden, S t becomes practically zero, and we have

t = LI;

that is to say, the secondary current starts with a value equal

M
to jr- of that of the steady primary.

Li

The state of things in the secondary circuit immediately

after the break of the primary is, then, this : The electromotive

impulse due to stoppage of the primary has generated a current

of initial value ^ I in the secondary, but there is no impressed

electromotive force in the secondary circuit. If at any instant

after the break the current in the secondary circuit is t, the

law of decay of this current is expressed by the equation

L — + Bt=0.

dt
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The solution of this is

i = C«~'L'

and the constant C is found from the condition that when

M
t = Oi= _ I. Hence we have

£1

i=-Ml«-f: (91)

L

This gives us the value of the direct or "break" induced

current in the secondary at any instant after the break of the

primary. Graphically, this may be represented by a curve,

such as that in Fig. 85. During the time 0 T in which the

primary is being broken the induced electromotive force is

 

0 t q

Fio. 85.

creating an induced current, the rising strength of which is

represented by the rise 0 P. The time occupied by the break

S f is 0 T. As 0 T is diminished in value, the magnitude of

M
the maximum ordinate P T approximates to —I, and this is

L

the initial value of the inverse secondary current when the

break is very sudden. After the break the current decays

away along a path represented by P Q, and becomes zero only

after an infinite time.

The whole quantity of the induced current is obtained by

integrating equation (91) with respect to the time from zero to

infinity, thus : . t

j>-n*-!,«-¥
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We see, then, that both the maximum value and whole

quantity of the direct secondary current are proportional to

the coefficient of mutual induction and to the strength of

the primary current, and, moreover, that the whole quantity of

electricity set in motion in a secondary circuit of total resis

tance R by suddenly removing from it M I lines of force is

equal to the quotient of number of lines removed by the total

resistance of the secondary circuit.

If the induced current is sent through a galvanometer the

indications are proportional to the magnitude of ^LI. If, how-

It

ever, the induced current is employed to magnetise steel

needles, the magnetisation acquired is dependent upon the

M I
magnitude of -=-, and is therefore greater in proportion as

L

the coefficient of self-induction of the secondary circuit is less.

Lord Rayleigh has pointed this out,* and shown by experi

ment that, within certain limits, the magnetising effect of the

break-induced current on steel needles is greater the smaller

the number of turns of which the secondary consists, the

opposite being, of course, true of the galvanometer. The

galvanometer takes account of the total quantity of the induced

current ; whilst the magnetising power depends mainly on the

magnitude of the current at the first moment of its formation,

without regard to the time which it takes to subside.

Returning to the equations (89) and (90), we can now find

the constants of integration, counting the time from the instant

of " make " of the primary. It is obvious that when t = 0, y = 0

and x = 0, and that the whole quantity of the make-induced

current, or i y d t, must be equal to the whole quantity of the

break-induced current, which we have seen is equal to .

B

In (90) put t = 0, y = 0 ; we get

A*+B* = 0, or B'=-A'.

 

and

Hence,

 

* Phil. May., Ser. 4, Vol. XXXIX., 1870, p. 429.
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/ _ "' _ 2-LA
y=-zle L+M_e l-mJ . . . (92)

Hence the whole quantity of the " make "-induced current is

2 A' M MI
————, and this must be equal to _—, which is the whole

R a

quantity of the " break " current. Hence A' = - - .

2

Therefore we get for the instantaneous strength of the

•" make " secondary current

2(

Again, in (89) put t = 0, x = 0,

and we get A+B+ I = 0,

or B--(I+A);

and by substitution in (89)

B K

x = Ae L+M-(A+I)f

From this equation we can find the value of A by substitut

ing the value of —^ derived from equation (92),and.^. derived

dt at

from the above in the original differential equation (88), and we

find A = - ~ . Hence we arrive at the equation for the value

of the primary current at any instant, and it is

Kj R1

= 1- i^f-E+S+e L-jij . . . (98)

This gives the law according to which the primary current

grows up in its circuit. If M = 0, that is, if there is no secon

dary circuit ; then

a;=I (1-e-^j,

which is the ordinary law of current growth. If M = L, which

is the greatest possible value of M, then

x = l(l- -a--teV

\ 2 /

Hence it is obvious that the presence of the secondary circuit

hastens the rise of the primary current and operates on it to

reduce its inductance.

On making the primary we get a " make " or inverse

secondary current according to the law of growth expressed by

the equation

If 5! _ -2i-\
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and we see that under the circumstances assumed the "make

secondary starts from an initial value zero, rises up to a maxi

mum, and then decays away again. To find the time of reach

ing maximum, equate —? to zero, and we find

2 R M B VL - M/'

and this function increases as M decreases. So that the more

nearly M is equal to L the sooner does the secondary reach

its maximum. It is not difficult to show that when M = L the

above value for t' becomes zero, and when M = 0 t' = - .

 

Fig. 86.

Curves representing roughly the current value of the make-lnrtuced current for

different and Increasing values of M.

If, then, we trace a series of curves (Fig. 86) representing

the values of y, or the make-induced current at each instant

for various and increasing values of as the coils are moved

M

further apart, we find a series of curves with decreasing maxima,

but the maxima happening later as M decreases.

Lastly, on breaking the primary current we have a break-

induced current in the same direction as the primary, which at
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any instant after the " break " is decaying away according to

the law

r - • 1 c l

L

If the break was absolutely instantaneous, the induced current

M
would start with a finite value equal to _ of that of the primary,

but as no form of break entirely eliminates sparking, the rise of

the direct secondary current is a gradual one. Also we have

another element of disturbance which enters into the case.

The self-induction of the primary creates direct electromotive

force in its own circuit at the instant when the induction

through the primary due to its own current vanishes. When

the primary is broken either at a mercury cup or at a platinum

point the fusion and volatilisation of metal which takes place

keeps open for a little time a conductive path through which

flows the extra current due to the self-induction of the primary.

As will be explained later, the decay of the current on breaking

a circuit may often be by a series of oscillations or diminishing

periodic currents.

This direct extra current in the primary will have its effect

in introducing a very short inverse-induced current, which

will precede the main direct-induced current due to the decay

of the primary current. In any event it will introduce an

electrical oscillation tending to render the growth of the direct

secondary current a gradual matter. It is an interesting case

to examine the relative maximum values and duration of the

two induced currents under an assumption very nearly realised

when the primary and secondary are wound together on the

same bobbin, viz., when M = L. In this case the values of y

and z become

I -B«

J 2

z = I e l '

The maximum of the direct currents ("break") is I, and

that of the inverse (or "make") is ^. If we wish to know at

the end of what times ( and t' the strengths of the two induced

currents y and z are reduced to — of that of the primary we

m
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obtain by substitution of - for y and z in the two above equa-

m

tions the following :—

We see that t' is always greater than t, and that, in propor

tion as m increases, «' tends towards a limit 2 t, or the inverse

current has a duration about double that of the direct secondary.

We shall now see how this theory is confirmed by experiment.

§ 7. Comparison of Theory and Experiment.—Masson and

Breguet carried out a series of experimental researches on induced

currents which illustrate and confirm the foregoing theory.

The principal part of their apparatus was a commutator keyed

on a revolving shaft, which enabled them to separate the

direct and inverse-induced currents. Two brass wheels were

keyed on one shaft, but insulated from it, and the wheels

had depressions cut in their periphery which were filled up

with ivory. These wheels could be shifted relatively to

each other, and were insulated from each other and from

the shaft (see Fig. 87). Two springs pressed against the edge

of the wheels, and two against the hub of the wheel. The

whole arrangement served as a moans to break and make one

circuit, and at the same time to control a second circuit so that

it was broken at the time when the first was made, and made

at the time when the first was broken, or vice versa. One of

these wheels was inserted in tho circuit of a primary coil and

battery, and the other in the circuit of a secondary coil and

galvanometer. On rotating the wheel at a certain fixed speed

the series of " break " and " make "-induced currents are

separated out ; all one set are stopped out and all the other

are sent through the galvanometer. In this way it was shown

that the quantities of the induced currents were equal, but

very different in maximum magnitude, and hence in duration,

the break-induced currents being greatly superior in making

sparks.

_ = « l for the direct-induced current,

m

and — =-e 2l for the inverse-induced current,

m 2

and therefore
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Lenz* wound a spiral of wire on the soft iron armature of a

magnet and connected the ends of the wire to a ballistic gal

vanometer. He detached the armature suddenly, and observed

the throw of the galvanometer. If 6 denotes the angle of

deflection and x the number of windings, he found that the

1 6
product — sin - was a constant quantity, which shows that,

x 2

cceteris paribus, the quantity of electricity set in motion was in

proportion to the number of lines of induction withdrawn

from the circuit. He also established experimentally, in con

firmation of Faraday, that the electromotive force of induction

was independent of the width, thickness or material of the

 

Fig. 87.

wire windings,t and by other experimentalists also the fact

has been established that the electromotive force is indepen

dent of everything except the form of the conductor and the

nature of the change it experiences in relation to the magnetic

induction through it. Felici J carried out an extensive series

of experiments on induction, using a form of induction

balance.

• Lenz, Poggemlorfs Annalen, Bd. XXXI., 1835, p. 385.

t See Faraday, " Exp. Researches," Ser. II., § 193, et scq. ; also for

Electrolytic Circuits, see L. Hermann, Pogg. Ann., 1871, p. 586.

% Felici, Nuovo Cimento, Vol. IX, 1859, p. 345, also Ann. de Chimic [3],

Vol. XXXIV., 1852, p. 64,

Ji2
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In this apparatus a secondary circuit, consisting of two coils,

is arranged in series with a galvanometer. These coils are so

far apart as not to influence one another. In contiguity to

each secondary coil is a primary coil, and the primaries are

wound in opposite directions. The primaries are in circuit

with a buttery and a key. The circuits can be so arranged, by

adjusting the distances of the coils, that the induction of the

primaries on their respective secondaries balance each other,

and the galvanometer indicates no current, however strong may

be the primary current. If three pairs of coils (see Fig. 88) are

thus taken and balanced, two and two, so that the induction

of A on a is equal to that of B on b and C on c, then, if we con

nect the primary A in series with 13 and C in parallel, so that

 

Fig. 8a

the current divides between them in the ratio of their resis

tances, and connect the secondaries with a galvanometer, all in

series, so that the current in a is opposed to that in b and in c,

then no induced current is detected when the battery circuit is

made and broken. This proves that the quantity of the induc

tion current is proportional to the strength of the primary

current.

If a primary and secondary coil are taken in fixed positions

and the " throw " of a galvanometer observed when a definite

steady electromotive force E is applied to the primary, then, if

the position of battery and galvanometer are reversed, the

application of the same electromotive force E to the secondary
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will give the same " throw" on the galvanometer now attached

to the primary circuit, provided that the galvanometer and

battery either have equal internal resistance or that their

resistance is negligible in comparison with that of the coils.

Hence we may assert that the induction of a circuit A upon B is

the same as that of B upon A. For, if the resistances are B and

S, then we have seen that the total quantity Q of the secondary

current is where I is the steady value of the primary

» E M E
and*M is the mutual inductance; but I = — hence Q = thr--

If, then, the positions of battery and galvanometer are reversed,

we get a quantity of induced current equal to ^-5, which is

the same as before. For any two coils it is possible to find a

number of relative positions in which the interruption of a

current in one produces no induced current in the other. In

such cases the coils are said to be conjugate to each other. It

is manifest that when in these positions the lines of induction

produced by one coil do not pass through the other. It is

possible to use one coil in this way to explore the field of

another.

Let P be a primary coil and S be a small flat secondary coil,

both being shown in section in Fig. 89. Then, if S is placed

in a position conjugate to P, it will be found possible to move

the coil S along a certain line ABC, maintaining the fiat face

of the coil always tangent to that line and so that in all these

positions P and S are conjugate. It is evident that such a line

is a line of induction of the coil P.

When one coil is in a conjugate position to the another, as

far as regards inductive action they may be considered to be at

an infinite distance apart. It follows, therefore, that if a coil

is moved suddenly from a conjugate position to one not conju

gate in the field of a primary traversed by a steady current,

and then the primary current is stopped at the instant of arriv

ing at the second position, a galvanometer in the second circuit

will have its needle jerked from one position of rest to another

of rest, because the interruption of the current takes out

of the circuit of the second coil just as many lines of induction

due to the first coil as the motion from one position to the
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other put in. A series of well-devised experiments on the

conjugate positions of two coils has been carried out by Mr.

W. Grant*

An elaborate investigation into the duration of induced

currents was made by Blaserna.f

A commutator was constructed which consisted of two insu

lating cylinders keyed on one shaft and having on part of their

surface brass coverings cut into steps {see Fig. 90). These

cylinders were capable of being set in any relative position to

each other on the shaft. The shaft could be revolved at a high

rate of speed, and its velocity ascertained by a siren plate

attached to the axis. This siren plate consisted of a disc

pierced with holes against which was directed a jet of air.

From the pitch of the musical note given out, when ascertained

by comparison with standard tuning forks, the speed could be

determined. Two springs pressed against the hubs of these

cylinders and two against the surfaces of these cylinders, and a

current entering by the hub was conducted to the brass coating

and escaped by the other spring, if the cylinder was in such a

position that this last spring was pressing on the metal part.

The apparatus, therefore, formed a device by which each

* See Proc. Physical Sue, London, Vol. III., p. 121 ; also Proc. Physical

Soc. London, Vol. IV., p. 361.

t Blaserna, " Sul sviluppo e la durata delle Correnti d'induzione," Oiornalc

di Science Naturali, Vol. VL (Palermo, 1870).

 

Flo. 89.
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pair of springs might be brought into electrical contact for

a definite portion of the time of a revolution of the cylin

ders and be insulated also for a given time, each pair cf

springs being in connection relatively to the other in a deter

mined manner for a determined time. In the circuit of the

one cylinder and pair of springs m M was placed a battery

primary coil and tangent galvanometer, and in the circuit

of the other pair a secondary coil and sensitive galvano

meter. This being prepared, the primary coil P and the

secondary S were placed a given distance apart. On revolving

the commutator it periodically interrupts the primary current,

the time during which the primary current is kept on depend

ing upon the position of the spring M on its cylinder. The

other cylinder can be so set as to collect either the direct or

 

Via. 90.

inverse secondary currents, and send them in series through the

sensitive galvanometer, the time during which this secondary

circuit is closed being capable of regulation by the adjustment

of the spring Mt. In his experiments Blaserna first investi

gated the duration of each of the induced currents. The

interrupters were so arranged relatively to one another that,

whilst the primary circuit was made and broken, the secondary

circuit was not closed until a small time after " making" the

primary, and then broken again before the primary was broken.

By adjusting the secondary interrupter a position could be

found in which the galvanometer just showed no current. The

interval between the closing of the primary and the opening of

the secondary was then the interval occupied by the secondary
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current, and this was the duration of the " make "-induced

current. Blaserna found that the " make" secondary (inverse)

lasts a longer time than the "break" current (direct). For

the coils used the times were—

Inverse secondary lasts -000485 second.

Direct secondary lasts -000275 second.

He next proceeded to obtain the curve of each current, and

to determine the time of arrival at a maximum.

The secondary interrupter was so set that the secondary

circuit was closed just before the primary, and opened after at

a certain definite interval of time. The galvanometer thus

 

B

Fio. 91.

received a current which was made up of repeated doses of the

whole quantity of the induced current up to a certain fraction.

Knowing the speed of the commutator and the coefficient of the

galvanometer, the value of the whole quantity of the induced

current, extending over a certain fraction of its whole duration,

was known ; and from those observations, repeated at regular

progressive intervals during the whole period of the current,

the value of the ordinates of the current curve can be obtained.

For, if the curve (Fig. 91) A P P' B (upper figure) represents the

variation of current during a time A B, so tbat PX = y repre
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sents the current strength at a time X, and P' X' represents the

current strength after a very small interval of time, X X' = d t ;

then the area P P' X' X = y d t represents the quantity of elec

tricity which has passed in the time XX'. Call this dQ,

Hence dQ = ydt, or y = ^3.

d t

Suppose another curve A'P'R (lower curve) is drawn on an

equal abscissa A'B', such that its ordinate at every point

represents the whole area of the upper curve up to the

corresponding point—that is to say, the lower curve is a curve

such that its ordinate P' X' is proportional to the area A P X

of the upper curve, A X (upper curve) being equal to A' X'

(lower curve), when the time interval d t becomes very small.

It is easily seen that if the area A P X (upper curve) is called

Q, and the ordinate P X is called y, that the tangent of the

angle PYX' (lower curve) which the geometrical tangent

drawn at P' makes with the axis A'B', and which is repre

sented by — , is proportional to the ordinate PX. Hence the

d t

upper curve is a derived curve of the lower, and, if we are

given a curve like the lower curve, the ordinates of which

represent the whole quantity of electricity which has from a

given epoch flowed past a point, we can, by drawing a curve

whose ordinates represent the slope of the first curve, obtain a

second curve, which is a curve of current. In this way it is

possible to describe the current curve, and to determine its

form and position of maximum.

Blaserna found that the greater the distance apart of the

primary and secondary—in other words, the less the mutual

inductance—the less was the maximum value of the secondary

current, and the greater the delay in the appearance of that

maximum. This is in accordance with the above elementary

theory. In the case of the "break," or direct secondary

current, he found the delay in establishing the maximum not

so great, and the maximum ordinate was greater though the

total duration of the current was less. He established by direct

experiment the equality of the quantity of the two induced

currents. When the coils were very near together the induced

current at starting established itself by a series of electrical

oscillations.
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By the help of the same apparatus Blaserna investigated

the rise of a current in a coil when the same is placed suddenly

in connection with a constant source of electromotive force.

For the " make " extra current only one of the revolving

interrupters was used, and the circuit was completed by the

means of a battery, galvanometer, and coil. When the com

mutator was revolved it first started the current and then

after an interval cut it off again, and the effect on the

galvanometer is due to the sum of all these small quantities

of electricity so cut off and integrated whilst the current is in

process of increasing. As the duration of the time of contact

was increased the galvanometer deflection increased (speed of

revolution remaining constant), but when the time of contact

was long enough to fully establish the current, then increase

 

of speed of rotation did not increase the galvanometer deflec

tion. By this apparatus the fact was established that the

primary current established itself in its coil by a series of

oscillations, or short alternating currents.

Similarly, on breaking the circuit the course of the current

was investigated. For this purpose one revolving interrupter,

I, was inserted in the circuit of a battery, B, and coil, C, and

from the ends of the coil (see Fig. 92) other wires were brought

and led through the galvanometer G, and other interrupter I',

arranged as a shunt on the coil. The break in the battery

okcuit at p was so arranged that each time the current was

fully established before being broken again. The break in the
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galvanometer or shunt circuit was so arranged relatively to

the other that the shunt circuit was closed a little before the

battery circuit was broken, and then opened at a definite

interval afterwards. In this way there was a little flow of

current through the galvanometer due to the steady current,

but this could be estimated and allowed for. 0n plotting out

a current curve from the quantity curve it was found that the

current decayed away on interrupting the circuit by a series of

oscillations which followed each other much quicker than those

on the establishment of it, and the whole duration of the extra

current at " break," or the time of falling fiom steady current

to practical zero, was less than the time required to fully estab

lish the current. It was found that the first oscillation, on

beginning to interrupt the steady current, had a much greater

amplitude than any of those on starting the current.

The duration of an oscillation was perhaps three or four ten-

thousandths of a second, and about 50 to 100 oscillations pro

bably happened before the current became steady ; hence the

whole duration of the variable period, or of the extra current,

was about two to three-hundredths of a second. Very roughly,

the nature of the oscillatory character of the current at the

make and break may graphically be represented by the curve

in diagram Fig. 93.*

Blaserna drew from his observations the deduction that there

is an interval of delay in the starting of the secondary currents,

and that a small but measurable time elapses between the

instant of making or breaking the primary circuit and the

beginning of the secondary current. From this he made a

calculation as to the velocity of electromagnetic induction, and

he also stated that the interposition of dielectric substances

such as glass or shellac between the coils reduced the so-

calculated velocity.

Bernstein (Pogg. Ann., Bd. CXLII., 1871, p. 72) repeated

these observations of Blaserna, but did not confirm these last

results. He found that the first oscillation always began at

the instant of breaking or making the primary circuit, and he

* In The Electrician for June 1, 1888, a curve is given by Mr. F. Higgins,

showing the rise of current in the magnets of type-printing telegraphs, and

the oscillatory character of the current at starting is well marked. Mr.

Higgins's curve gives the results of actual observations.
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found no effect produced by the interposition of dielectric

media.

Helmholtz has carefully examined these results of Blaserna

and criticised them.* He remarks that Blaserna used for his

coils flat spirals of wire with many turns, and also he used the

current from several Bunsen cells to create the primary current.

Not only do the spirals act like a condenser, giving the whole

apparatus a sensible electrostatic capacity, but the use of a

battery of high electromotive force causes a considerable spark

at the break, which spark has a very sensible and rather

irregular duration. Also in Blaserna's experiments, the two

circuits were placed at various distances apart. If a current
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is started in a primary coil the effect of the induced current

created in the secondary by its re action on the primary is to

hasten the rise of the primary current, and at the break to

accelerate its decay. As the secondary circuit is moved further

off this effect is less marked. Hence, the rise and fall of the

primary is more gradual and the arrival of the secondary

current at its maximum value is more delayed. From this

results, then, an apparent retardation of the time of the arrival

of the maximum of the induced current.

* Hclmholtz, " 0n ttie Velocity of the Propagation of Klectrodymimic

Effects," PhiL Mag., Ser. 4, VoL XLII., 1871, p. 232.
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Helmholtz conducted a scries of experiments by means of

his pendulum chronoscope. A heavy iron pendulum P (see

Fig. 94), the lower end of which carried two plates of agate,

could be made to execute one swing and then be caught by a

detent. These plates of agate in the course of the swing were

caused to strike against and tip over two little levers I, V . One

of these levers was fixed, and the other could be moved

forward so as to separate the blows. One was made to break

the circuit of a primary coil Pi; when tipped over, and the

 

Fig. 94.

other by its movement separated a connection between a con

denser and the ends of a secondary coil, Sec, attached to it.

These being arranged, the fall of the pendulum executed

these two "breaks" successively, separated by an interval of

time capable of being calculated from the known motion of

the pendulum. The two circuits were placed 170 centimetres

apart. The primary consisted of 12 turns of thick wire, and

the secondary of 560 turns of tine wire. The current was sent
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from one Daniell cell. The two ends of the secondary were

connected to the two plates of the condenser, and when the

pendulum fell it broke the primary current and started in the

secondary circuit an oscillatory current reverberating to and

fro in the secondary wire, the condenser acting as a resonator.

At a definite interval after rupture of the primary, the

condenser was separated and examined by a quadrant electro

meter. The charge in the condenser showed the phase of the

electrical oscillation existing at the instant of such separation.

In one case Helmholtz observed 85 oscillations in -^th of a

second. In order to discover if any retardation took place

with increased distance of the coil, it was necessary to fix

attention upon some phase in the oscillations. The successive

zero points of the current were very sharply defined, and

suitable for this purpose. Helmholtz found that alteration of

the distance between the primary and secondary coils made

no perceptible difference in the position of the zero points,

and that, as far as the apparatus he was using could detect,

the velocity of the electro -magnetic impulse must be greater

than 195 miles per second. He pointed out in this Paper

that the commencement of the secondary current is not a

sharply marked thing. The spark which takes place at break

of the primary lasts an appreciable time, and all this time the

primary is dying gradually, and the induced current therefore

is increasing. The period of duration of the break spark may

be something like y^^th to xffJ^g-th of a second, and is,

therefore, a large fraction of the duration of a single electrical

oscillation, which amounted to about Tr^n^h °f a second.

The duration of the break spark can be found by observation

of the time which elapses from beginning of break up to the

first zero point of the secondary current oscillations, as com

pared with the mean value of the duration of an oscillation.

The interval up to the first zero point is the duration of the

break spark plus the time of half a complete oscillation. The

duration of the spark is never constant, and depends a good

deal on the amount of platinum thrown off from the contacts

each time. The average duration of the spark in Helmholtz's

experiments was found to be about one-tenth of the whole

period of an oscillation. Helmholtz also noticed in some

earlier observations evidence of electrical oscillations set up in



MUTUAL AND SELF INDUCTION. 255

a flat spiral, one end of which was insulated. In this case

some 45 oscillations were detected in the space of ^th

of a second. Henry also noticed that the time of subsidence

of the current, when the circuit is broken by means of a

surface of mercury, is very small, and probably does not

much exceed the ten-thousandth part of a second. It has,

however, a quite appreciable duration, for Henry found

that the spark at ending presents the appearance of a band

of light of considerable length when viewed in a mirror

revolving at the rate of six hundred revolutions per second.

Bernstein, with the aid of a contact break somewhat

different from that used by Blaserna, also examined the

duration of the oscillations set up in a secondary coil. He

found that the duration of the first oscillation at breaking

primary was longer than that of the subsequent ones. The

mean duration when using a single Grove cell in the primary

circuit was "0005 second, and when using a Daniell cell only

•0001 second. We shall return later to consider more recent

researches on these electrical oscillations in inductive circuits

and point out that they can only occur when some part of the

circuit possesses sensible electrical capacity. In the case

of a coil or bobbin of wire we have not only resistance and

inductance, but measurable capacity present in the conductor.

§ 8. Magnetic Screening and the Action of Metallic

Masses in Induction Coils.—At one stage* of his investi

gations Henry made the important discovery that, if a

primary and secondary coil are separated by a metallic sheet,

a notable decrease takes place in the intensity of the shock

taken from the secondary circuit when a sudden discharge is

passed through the primary, or continuous current started or

stopped in the primary circuits. A thick copper plate was found

more effective than a thin one in thus preventing the inductive

effect of the primary upon the secondary coil. If a radial slit

was cut in a circular metallic plate the annulling effect was

altogether stopped. If the two edges of the gap (see Fig. 95)

were furnished with wires leading to a magnetising spiral,

Henry found he could in this way make evident the existence

in the plate of a current induced by the action of the primary.

~* PhuTihuj., Vol. XVI.~i840, p. 257. '
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A flat coil of insulated wire was substituted for the metal

plate, and it was found that the screening action of this coil

was only sensible when the two ends were joined so as to com

plete the circuit. This action, by which the induction of a

primary coil on a secondary is prevented by the interposition

of a metallic plate, cylinder, or closed circuit of insulated wire,

is called magnetic screening. The elementary explanation of

this effect is not difficult to arrive at. Suppose a small con

ducting circuit of resistance R to be placed in a magnetic field

so that it is traversed normally by N lines of magnetic induction.

Let the constant coefficient of self-induction of this circuit be

L. If, then, in any small time d t a variation of the lines of

induction traversing this circuit takes place, the impressed
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rft '

electromotive force on that circuit will be represented by -

and if at that instant the current in the circuit is i, by the

principles laid down in the last chapter the current equation

will be

T d % t> . d N
L — + R i = -

dl dt

or -A(l£ + n) + r;-o.

Suppose the conductivity of this circuit to be perfect, and R

therefore zero, we have, by integration of the above equation,

the result

L £ + N = const. ;
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in other words, the lines of induction L *, linked to the circuit

at any instant due to the induced current generated in it, are

opporite in direction to those whose variation is producing

the current, and together with them make up a constant

number. Hence, if the variation of N is such as to take

lines of induction out of the circuit, the action of the

current thereby induced is to add or increase them in the

circuit at an equal rate. If we suppose our circuit to be

a perfectly conducting metal plate, and just behind this metal

plate there is another small closed circuit, then any variation

of lines of induction passing through this plate will not take

effect in producing any induced current in the small circuit,

because the inductive action of the current induced in the plate

nullifies, as far as the small circuit is concerned, any vari

ation of the external field. It is clear that these conclusions

would apply to any surface of finite extent which possessed

perfect conductivity; the induced currents which any vari

ation of the external field would produce in this surface

would always be such that the induction through each portion

would be kept constant—in other words, that the perpendicular

component of the magnetic induction at each point on the

surface would retain a fixed value. It follows that a closed

surface of zero resistance is a complete screen for all points in

the interior against the effects of variation of the field on

conductors on the outside of the surface ; these effects reduce

to the production of surface currents in the shielding conductor,

which keep the resultant field in the interior constant or at

zero.

Faraday describes (" Exp. Researches," Vol. L, §1720 et seq.)

an experiment which at first sight seems to disprove the fact

of magnetic screening. He placed a flat copper wire spiral,

which was in connection with a battery and key, between two

other flat spirals which were respectively connected with the .

two coils of a differential galvanometer. The coils were so

joined up that the inductive effect of a break and make of the

battery circuit produced no movement of the galvanometer

needle because it was subjected to two equal and opposite

impulses from the two coils. When an exact balance was

obtained a flat plate of copper, nearly three-quarters of an inch

thick, was interposed between the primary spiral and one of

s
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the secondaries. The galvanometer needle was not, however,

any more affected than if the copper was absent. To under

stand this we must bear in mind that the break or make of the

primary current produces in the copper a secondary current,

but as the effect of the primary coil on the secondary coil on

that side is balanced by the other one we may regard the

secondary coil next the copper plate as free to receive any

inductive effect it can from the eddy current induced in the

copper block. This secondary current induced in the copper

generates a tertiary current in the secondary spiral, and this

tertiary current consists, as we have seen, of a double short

flux of electricity equal in quantity and opposite in sign. The

galvanometer is then traversed by two small equal quantities

of electricity in opposite directions, and as this does not

sensibly affect a not very sensitive galvanometer no movement

of the needle is seen. If, however, instead of the differential

galvanometer, Faraday had used a differential telephone, he

would have found distinct evidence of a screening action.

Again, suppose that, instead of a simple make or break,

Faraday had employed a steadily periodic or alternate cur

rent in the primary, this would have set up a steady periodic

secondary current of equal frequency in the copper plate, and

this again would have set up in the secondary coil on that side

a steadily periodic tertiary current of equal period, and this

might have been detected by the use of a sensitive differential

electro-dynamometer or a soft iron needle galvanometer.

Henry found that a sheet of tinfoil afforded a very small

amount of screening for shock, but a thick sheet of copper a

very considerable one in the case of induction by battery cur

rents, and in the case of induction by Leyden jar discharges

the same phenomenon was apparent. In the case of an iron

screen there is an additional effect, due to the fact that the

iron, by its small magnetic resistance, conducts away the lines

of induction somewhat through its mass, and prevents them

from extending to the space on the other side. In this case

also a considerable thickness of metal is necessary to bring

about the effect of annulment. When we are limited to the

use, as we are in practice, of materials whose conductivity is

far from being perfect, it is found that a thin screen of metal

hardly affords any sensible protection from inductive effect.
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In other words, the field on the other side of the screen is

very far from constant. This has been well demonstrated

in certain investigations by Prof. D. E. Hughes in carrying

on some highly valuable experimental researches into the

means of preventing induction upon lateral telegraph wires.*

It has many times been proposed to annul mutual induction

between telegraph and telephone wires by covering them

over with thin metal covering, which covering is kept " to

earth." It is now known, and well exemplified in Prof.

Hughes's experiments, that this shielding affords no protec

tion when the covering is not very thick and when the rate oi

change of the currents is not very rapid. A gutta-percha

wire was enclosed in ten coverings of tinfoil, and such

arrangement was not found to afford protection to induction,

as detected by a telephonic wire stretched alongside. Even

when twenty coatings of thin charcoal iron were put round

the wire, not only was there found to be a very sensible per

manent field outside the iron, but changes of field were made

manifest also. It is not to be taken that these experiments

disprove the fact of magnetic screening, but only that the

low conductivity of the envelopes used is ineffective at the

speed of current change employed to render visible the effect

of magnetic screening. It is different, however, if the induc

tive effects are being produced by a very rapid rate of change

of field. For suppose that a small circuit, as before, is placed

in a uniform field, and is traversed by q lines of induction due

to this external field. Suppose q varies according to a simple

periodic law, so that q = Q cos p t, where p = 2jt n, n being the

frequency of the alternations. Then we have

_l* = Q»sin pt;

il t

but - — is the value of the impressed electromotive force in

d t

the circuit, and if we call the current at any instant t, then,

by the principles in Chap. III., we have

i= Qp sin (pt-0).

* See a Paper by Prof. Hughes " On Lateral Induction in Telegraph

Wires," read before the Society of Telegraph Engineers, Starch 12, 1879.

Published in The Electrician, March 22, 1879.

S2
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in which R is the resistance and L the inductance of the

circuit, and

0-tan-1^.

R

Suppose that R is very small compared with lip, which

is the case when n or the frequency of alternation is made

very great, then R vanishes compared with hp, and if we call

)" the value towards which i approximates in this case, we

have

i' = -^cosy f,

L

and — = Q/> sin p t,

dt L

or L — = Q p am v t = - —X.

dt dt

Hence L — = -

dt dt

or Li' + y = constant.

Hence the field due to the current in the circuit, together

with the external field, is a constant quantity, and we get the

condition of perfect shielding. We may sum up the fore

going by saying that, if a screen of absolutely no electrical

resistance is interposed between a primary and secondary coil, it

effects a perfect magnetic screening, whatever may be its thick

ness. If, on the other hand, the screen has a finite conductivity,,

then the screening will be very imperfect, unless a very great

thickness of material is used, and the above will be true when,

the change of field or the change of primary current is a simple

" make" and "break" or a slowly periodic change. When,

however, the change of current in the primary is very rapidly

periodic, then the screening effects of even imperfect conductors

will make themselves felt, and a comparatively thin screen of

metal will effect a nearly perfect shielding for induction. This .

theory is strikingly confirmed by some very beautiful experi

ments of Mr. Willoughby Smith, which are described in the-

,Journal of the Society of Telegraph Engineers (November 8,.

1888, Vol. XII., p. 458),* and entitled " Experiments on Volta-

* See also The Electrician, November 17, 1883, p. 18.
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Electric Induction." Mr. Willoughby Smith's apparatus con

sisted of two flat coils A and B (see Fig. 96), placed a certain

distance apart. 0ne of these was a primary coil connected with

a battery, and the other was connected with a sensitive galvano

meter. In the circuit of both were current reversers, which

reversed the galvanometer and battery alternately, and hence

made the opposite induced currents both affect the galvano

meter in the same direction. This being arranged, the commu

tator was started so as to reverse the currents very slowly, and

a sheet of copper interposed between the spirals. Under these

circumstances the interposition of the copper produced but

little effect. If, however, the commutator was driven at a very

rapid rate the copper plate caused a marked diminution in the

galvanometric deflection, and this diminution was greater in

proportion as the speed was greater. In the original Paper
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a curve is given (Fig. 97) which shows the decrease in the

galvanometer deflection, expressed as a percentage of the

original undiminished deflection, corresponding to various

speeds of reversal. It will be seen that the less the conduc

tivity of the metal the greater must be the speed in order that

the magnetic screening may approach perfection. Iron, of

course, occupies an exceptional position. It cuts off, even at

very low speed reversals, a large portion of the field, not by a

true screening action, but by conducting away the lines of

magnetic force and preventing their access to the secondary

c>il. It will be seen that at any given speed the order in

which the metals reduce the deflection is the order of their

electric conductivity, and that as far as the diagram goes the

lines all (except iron) slope upward, indicating that at very
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high speeds the screening of even the worst conductors will

approach perfection. It would no doubt be found that, if the

telephone were used as a detector, the magnetic screening of a

copper plate or thin tinfoil sheet would become very manifest

for high note? when not in any way marked or distinguishable

for notes or sounds of low frequency of vibration.*

As far back as 1840 Dove had made experiments! on the

effect of the introduction of cores of various materials into the

primary circuit of an induction coil. His apparatus consisted

of two similar primary bobbins wound on tubes of non-metallic

substance and connected in series (Fig. 98). 0ver each primary

bobbin was wound a secondary circuit, and these secondary

circuits were connected in series, but so that the induction of
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the two primary bobbins operated in opposite directions and

nullified on the whole secondary circuit each other's effect.

Exact neutralisation was obtained by adjusting one of the

secondaries. When this was the case, various cores of iron

rods of different kinds were inserted in one primary bobbin,

and it was found that the induction balance was destroyed.

* The above explanation of the cause of the difference between the

screening of the different metals is not that given by the distinguished

investigator, but it is the explanation which to the author seems most in

accordance with known principles.

+ Dove, PoggeudortTs Annalcu, Vol. XLIX., 1840.
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By inserting iron wires of a certain size in the other core,

balance could be again obtained, but not simultaneously, as

estimated by the galvanometer and by the shock. Thus, with

a bar of forged iron, 110 wires had to be inserted in the other

coil to obtain an equilibrium, as estimated by the galvano

meter; but, as far as could be judged by the shock, 15 wires
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were sufficient. With regard to different kinds of iron, experi

ment shows that if we class them according to galvanometrio

effect we obtain a different series to that at which we arrive

when classifying them in the order in which they create

sensation by shock. Thus grey rough castjcnr^-^e- kind
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which approached nearest to bundles of soft iron wire in

respect of increasing the shock. Enclosing iron wires in a

brass tube reduced the action of the wires in disturbing the

inductive balance and rendered them very little better than a

bar of solid iron. When the primary current was a discharge

from a Leyden jar, Dove found that the physiological effect

(shock) of the secondary current, as estimated, was reduced by

the introduction into the primary bobbin of non-magnetic

conducting cores ; in other words, the introduction of a core of

non-magnetic but highly conducting material into the primary

bobbin reduced the power of a primary discharge to create a

secondary discharge. These last results may be obtained in a

more modern form by the substitution of a Bell telephone to

detect the tertiary currents generated by the metal core.

Let a Bell telephone be connected in series with the

secondary coil of a small induction coil, of which the primary

is wound on a hollow bobbin and the frames are wholly

of wood or non-metallic substance. A convenient form is

that known as Du Bois-Reymond's sliding coils. Let an

interrupter in the primary circuit make and break the circuit

rapidly. This being so, the telephone emits a steady rattle

or hum. If a massive copper rod is introduced into the

primary bobbin as a core, the telephonic rattle is more

or less suppressed ; if a core of soft iron wire is introduced

the noise is increased ; if a core of solid iron or steel is

used the noise may be increased, but not so much as when

the divided iron is used. The explanation of the exalting

effect of the soft iron wire is simple. The presence of the

iron reduces the reluctance of the magnetic circuit. More lines

of induction therefore flow through the secondary circuit, and

hence the strength of the secondary current is increased, and the

mean rate of change of induction through it is also increased.

The diminishing effect of the copper core is explicable in the

light of the knowledge that in such a conducting core the

primary current generates induced currents, and these in their

turn re-act upon the secondary circuit, inducing in it a tertiary

current. The directions of the currents induced by the primary

in the solid core and in the secondary circuit are the same.

The direction, however, of the first half of the tertiary current

developed in the secondary by the current in the copper core is



MUTUAL AND SELF INDUCTION. 265

opposite to the direction of the current developed in the secon

dary by the action of the primary. Hence it results that the

current in the secondary circuit is more or less wiped out by

the opposing inductions due to the primary circuit and the

currents induced in the copper core. 0therwise the operation

might be regarded thus :—Suppose the primary circuit to be

traversed by a periodic current creating a simple periodic flux

of induction through the copper core. As we have seen, under

the head of magnetic screening, this variation of induction

would induce currents in the copper core, which would them

selves generate a flux of induction which would, if the con

ductivity of the core were perfect, or the rapidity of change

of induction infinite, be exactly equal and opposite at each

instant to the flux of induction producing those currents.

If the conductivity is not quite perfect, or the rate of

variation not very great, yet nevertheless the direction of

2 |

1--- V

2

Fia 99.

the field of magnetic force inside the copper, due to the cur

rents induced in its mass, will more or less oppose the field of

force at every instant which is by its fluctuations generating

those currents. If the thick line 1 1 1 in Fig. 99 represents the

sinusoidal or simple periodic change of induction or magnetic

field in the interior of the copper, due to the primary helix,

and if the dotted line 2 2 represents roughly the changing

field due to the eddy currents generated in the core, which are

nearly 180° behind the primary in phase, the integral or sum

of both superimposed fields represented by 3 3 at any instant

is less than the original one due to the primary alone at the

corresponding instant. Also the mean rate of chamje of the

resultant field is less, and the secondary circuit experiences at

every instant a less inductive electromotive force. The same

reasoning which we have employed in the case of magnetic
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shielding applies here, and the differences in the reducing

effect of cores of various metals would be found to be less

at high speeds of alternation than at low. In some small

induction coils used for medical purposes the strength of the

secondary current is graduated by drawing in or out of the

primary coil a copper tube which slips over the bundle of fine

iron wires used as a core. The rationale of the action of this

copper tube in so operating is in a general way to be found

in the principles laid down above.

When Henry obtained possession of the " Experimental

Researches " of Faraday, as detailed in the fourteenth series of

his " Experimental Researches," he was exercised in his mind

to reconcile the results obtained by Faraday on the interposi

tion of metallic screens between inducing and induced circuits

with his own. Faraday had found that when the galvanometer

was used as a current finder " it makes not the least differ

ence " whether the space between the primary and secondary

coils was air, sulphur, shellac, or such conducting bodies as

copper and other non-magnetic metals. On the other hand,

Henry found that a shock from a secondary coil which

would paralyse the arms was so much reduced by the inter

position of a metallic plate as hardly to be sensible on the

tongue. Here was evidently something to be explained, and

in a long memoir (Phil. Mag., Series 3, Vol. XVHL, 1841,

p. 492 ; also Transactions of the American Philosaplncal

Society, Vol. VIII., 1840) Henry examined this and other

matters. He first verified Faraday's experience by attaching

the ends of a secondary coil to a galvanometer and bringing

up suddenly towards it a permanent magnet, or a coil

traversed by a steady current. The swing of the galva

nometer was found to be quite unaffected in extent by the

interposition of a plate of copper. Again, in place of the

copper plate, a closed metallic conductor (an endless coil) was

employed, but whether the circuit of this coil was open or

closed it made not the slightest difference on the galvano-

meter deflection.

Forty feet of copper wire, covered with silk, were wound on

a short cylinder of stiff paper, and into this was inserted a

hollow cylinder of sheet copper, and into this again a rod

of soft iron. When the latter was rendered magnetic, by
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suddenly bringing in contact with its two ends the different

poles of two magnets, a current was generated in the wire,

but the strength of this current, as measured in the galvano

meter, was the same whether the copper cylinder was present

or was removed. Henry then noticed that there was one

element of difference between the indications of a galvano

meter and that of the magnetising spiral. If the two

secondary currents at "break" and "make" of a primary

were sent through a magnetising spiral and through a gal

vanometer, the arrangement might be such that the induced

current at " make " of the primary was unable to give any

sensible magnetisation to the steel needle enclosed in the

spiral, but at " break" was able to magnetise it to saturation.

Nevertheless, in both cases the " throw " of the galvanometer

was the same. Similarly with the degree of shock felt, the

galvanometer indications being alike for the inverse and

direct induced current ; yet that induced current gave the

greatest shock which was able to produce the greatest magne

tisation. The explanation of these facts became clear as soon

as it was seen that the deflections of the galvanometer

depended upon the whole quantity of the discharge, and must

necessarily be alike for the inverse and for the direct current,

but that the magnetising effect and the physiological shock

depended upon the maximum value of the instantaneous

discharge current, and might therefore be very different for

the two induced currents. It was then evident that any

actions by which this maximum value of an induced current

was decreased, whilst its duration was increased and total

quantity left unaltered, would result in rendering this current

less easily detectable by shock or magnetisation, but make no

difference in its effect on a galvanometer. Aided by this

thought, he repeated Faraday's experiment with the balanced

coils referred to in § 8 (" Experimental Researches," Vol. L,

§ 1,790 et seep). A galvanometer was provided having two

equal wires of the same length and thickness wound on the

same frame, and also a double magnetising spiral was pre

pared by winding two equal wires round the same piece of

hollow straw. Coil No. 1, connected with a battery, was

supported perpendicularly on the table, and coils Nos. 8 and 4.

were placed parallel, one on each side, and each coil connected
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in series with one coil of the differential galvanometer and

with one spiral of the magnetising helix. The two outside

coils were then adjusted so that when the battery circuit was

made and broken, and the current started and stopped in the

middle coil, no indication was given by the galvanometer, and

no magnetisation produced in a steel needle placed in the

double helix. A thick zinc plate was then introduced between

the primary coil and one of the secondaries, and it was found

that the needle of the galvanometer still remained stationary

on making and breaking the primary current, but that the

steel needle in the spiral became powerfully magnetic. This

indicated that the two secondary currents, whilst still equal

in total quantity, had been so affected that one had a less

maximum value than the other, and hence a differential

magnetising action was produced. A similar effect was

'observed when a galvanometer and magnetising spiral were

together introduced into the secondary circuit of a single

primary and secondary circuit. The interposition of a metal

sheet considerably reduced the magnetising power or the

shock, but left the galvanometer deflection unaltered. In

order to increase the number of facts, this last experiment

was varied by the exchange of a soft iron needle for the hard

steel needle in the magnetising coil, the metal screen being

interposed in each case, and it was found that whereas the

metal screen cut off almost entirely the power of the secondary

current to magnetise hard steel, it could yet slightly magnetise

the soft iron. A screen of cast iron half an inch thick, how

ever, not only neutralised the power to magnetise hard steel,

but reduced the deflection of the galvanometer as well. The

general explanation of the foregoing facts, as due to Henry, is

as follows :—The secondary current, as we have seen, is a

brief discharge, which rises very suddenly to its maximum

value and then fades gradually away. The current curve

of the secondary current, due to the rupture of a primary

circuit, may be represented by the thick firm line in Fig. 100.

If a metal screen is interposed between the primary and the

secondary circuit the screen gets a similar secondary curreat

generated in it, and this last again acts by induction to gene

rate a tertiary current in the secondary circuit. This tertiary

current consists of two portions—first, an inverse part opposite
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in direction to the secondary current in the screen, and, secondly,

a succeeding direct current. Let the current curve of this

tortiary current in the secondary circuit be represented by the

fine firm line in Fig. 100. The total quantities of electricity

flowing in each part of the two portions of the tertiary current

are equal. The resultant effect, then, of the action of the

primary current when interrupted is to cause in the secondary

circuit the true secondary current, which is an unidirectional

flux (thick curve), and a superimposed tertiary current, which

is a bi-directional flux, its algebraic total of quantity being,

zero.

 

Fio. 100.

If we add together at each instant the ordinates of the two-

current curves we get a resultant curve (dotted line) which

represents the actual current curve in the secondary circuit.

The total area (electric quantity) enclosed between the hori

zontal line and the dotted curve must be equal to the total

area enclosed between the thick firm line and the horizontal,

because we have added and substracted equal areas ; but the

maximum ordinate of the dotted curve will be less than that of
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the thick firm line curve, and the form of the curve will be

very different also. It is, then, clear that the superposition

of a complete tertiary current, which is of itself but very little

able to affect a galvanometer on a secondary current which

gives a definite galvanometer indication, is not able to alter

that galvanometer deflection, depending as it does on the total

quantity of the discharge. The magnetising power and shock,

however, depend upon the maximum value or suddenness

with which the induced current rises to its maximum value,

and this factor is very much affected by the overlaying of

a secondary current by a tertiary. We see, then, that the

experiences of Faraday and Henry may be completely recon

ciled, and that the detection of magnetic screening depends

upon the nature of the detecting instrument in the secondary

circuit.

The practical outcome of much of the foregoing discussion

of magnetic screening is that the use of lead-covered cable for

the conveyance of periodic currents of the usual frequency (60

or 100 alternations per second) is of no advantage in respect

of prevention of inductive disturbance in neighbouring tele

phone wires. Not only is the lead too poor a conductor,

but the frequency of alternation is too small to render the

magnetic screening effective. The only effective method of

annulling the inductive disturbance is to carry the periodic

current along a conductor which lies in the axis of, and is

insulated from, a concentric enclosing tube or sheath, which

acts as a return. This return must be itself insulated from

the earth, and the condition to be fulfilled is that at any

instant, and at any section the algebraic sum of the currents

in the core and sheath must be zero ; reckoning current in

one direction positive, and in the other negative.

The whole question of magnetic screening has been worked

out mathematically by several mathematicians, and besides

the section in Clerk-Maxwell's Treatise (Vol. II. § 654, 2nd

Ed.), the advanced student may be referred to memoirs by

Prof. Charles Niven " 0n the Induction of Electric Currents

in Infinite Plates and Spherical Shells" (Phil. Trans. Roy.

Soc., 1881, p. 807), and also to Prof. H. Lamb " 0n Elec

trical Motions in a Spherical Conductor" (Phil. Trans. Roy.

Soc., 1888, p. 519).
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§ 9. Reaction of a Closed Secondary Circuit on the Pri

mary.—If a Bell telephone is placed in series with a coil

of many turns of fine wire wound on a hollow bobbin, and if

both are placed in series with the secondary circuit of a small

induction coil, the strength of the secondary current can be so

adjusted that the telephone emits a low murmur or rattle.

This being the case, let a solid bar of copper be introduced

into the bobbin of fine wire, and it will be found that the

noise of the telephone is increased. If a bundle of fine iron

wires is substituted for the copper rod it will, on the other

hand, reduce the noise or stop it altogether. The explanation

of this effect is to be found in the reaction which a closed

secondary circuit has upon its primary in changing the

resultant impedance of the primary. We have shown in

Chapter III. (p. 180), that the re-active effect of the

secondary is to increase the resistance and reduce the

inductance of the primary circuit, and we have deduced

two formulre given by Maxwell for the value of the equivalent

resistance R' and the equivalent inductance L' of a primary

coil of resistance R and inductance L in the presence of a

secondary coil of resistance S and inductance N, the mag

netic circuit having a constant resistance, and the mutual

inductance being M. Hence, the equivalent impedance of

the primary coil in presence of the secondary is \' H'-+}rh'-,

and that which we may call its isolated or intrinsic impedance

is equal to V R2 + /,- L2. For brevity we may write the symbol

Im for VW+JFU and Im' for VR'2 + p'h"', also Ino2 for

\/ S2+j>2N2. The question then arises, which is the greater—

Im' or Im ? To discover this, take for 11' and L' the values

given on page 180, and we have

p2M2S
R' = R +

and L' = L -
p2M2N_

Forming from these the function R^ + p'L'2, we have
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or (Im' )» = (Im)2 - £M1 { »> (2 L N - M») - 2 R S }.
y (Im,)2 1 y ' '

If S = x , or the secondary circuit is open, the right-hand

side of the above equation is zero, and we find that the

impedance of the primary circuit is not altered by the pre

sence of the open secondary, as of course it should not be.

If S is not infinite, that is if the secondary circuit is closed,

then the above equation shows us that, if the quantity 2RS

is greater than the quantity p2 (2 L N - M2), then Im' is greater

than Im, or the impedance of the primary circuit is increased by

closing the secondary. But if 2 R S is less than p2 (2 L N- M2) ,

then Im' is less than Im, or the impedance of the primary is

decreased by closing the secondary circuit.

If aj stands for and a, for and also if /? stands for

a n

M

^|==, it is not difficult to show* that to make Im' greater

than Im we must have

a4 oj less than - .

2 — fi

When the secondary circuit has a certain critical value it is

possible to show experimentally that above this value closing

the secondary circuit increases the primary impedance, but

below this value closing the secondary circuit decreases the

primary impedance.

The following experiment was made in the laboratory of

Prof. Elihu Thomson t :—A small induction coil had its

primary circuit arranged in series with nine incandescent

lamps joined in parallel, thus exciting it with an alternating

current of about ten amperes. When the secondary circuit

was closed by means of a vacuum tube of high resistance, a

marked fall occurred in the candle-power of the lamps used

as a resistance in the primary circuit. The impedance of the

* See Mr. E. C. Rimingtoo, "On the Behaviour of an Air Core Transformer

when ihe Frequency is Below a Certain Critical Value," Proe. Physical

Soc., London, October 27, 1893.

t See The Electrician, Vol. XXXII., p. 225.
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primary was thus increased. When the secondary circuit

was closed through a water resistance, the lamps brightened

up, thus showing that the primary impedance was decreased.

Hence the closing of the secondary circuit does not always

decrease the primary impedance. Mr. Rimington (loc. cit.)

quotes an experiment with an air core transformer or induction

coil consisting of two circuits without iron core, in which

closing the secondary circuit had the effect of decreasing the

primary current by about 8 per cent., thus showing an increased

primary impedance. Generally speaking, however, the closing

of the secondary circuit so that the total secondary circuit

resistance is small has the effect of decreasing the primary

circuit impedance.

Hence also holding a conductor or conducting circuit of low

resistance near a primary coil has the effect of decreasing the

impedance of that coil and therefore increasing the flow of

primary current through it under the influence of a constant

impressed primary electromotive force.

The explanation of our experiment with the induction coil

and the copper rod is now simple. The introduction of the

copper rod into the fine wire helix is equivalent to approxi

mating to a primary coil a closed secondary circuit. The

impedance of the fine wire circuit to the alternating current

from the secondary circuit of the induction coil is hence

reduced ; it gets more current, and the telephone is made to

emit a louder sound. If, however, a core of divided fine iron

wire is introduced into the fine wire helix, the result is simply

to increase the impedance of that circuit, and therefore to

reduce the current actuating the telephone. When considering

in particular the theory of the induction transformer as applied

to electric distribution we shall see the above principles have

important practical bearings.

In a Paper recording some experimental results on the

self-induction and resistance of compound conductors* Lord

Eayleigh has given some comparisons of the results of theory

and experiment on Maxwell's formulae above alluded to. By

the use of a resistance and inductance bridge, very similar to

one designed by Prof. Hughes, the measurements of the

inductance and resistance of a circuit can be made separately

* See Phil. Mag., December, 1886, p. 469.

T



274 MUTUAL AND SELF INDUCTION.

with ease. A pair of wires was wound on one bobbin ;

each wire had a resistance of nearly -1 ohm, and a diameter

of •037in. Each coil consisted of nine double convolutions.

In certain arbitrary units the resistance of one of these copper

wires to steady currents was 1-75, and its inductance 112°.

These values were obtained when the other coil was on open

circuit. 0n closing the unused coil, the resistance of the first

rose to 2-67 and its inductance fell to 4'7\

To compare this with the theory.

The formulas are R' = E + f M* ST

S2 + /N2

I/-L-

Now R= S= 1-75 x -0492 xlO2 absolute C.-G.-S. units of

resistance,

and L = N = ll0,2x 1558 centimetres,

M = 11° X 1558 centimetres,

and p = 2tt » = 2 x 8-1415 x 1050.

The periodic current used had a frequency of 1050 per second ;

hence pj^l— - .g

Therefore R' = R (1 + -6) = 1-6 R,

and L' =L (l--6) = -4L;

but 1-6 x 1-75 = 2-8 = R\

and -4x ll°-2 = 4°-5=L'.

These calculated values compare very favourably with the

observed values, viz. :

R" = 2-67, L' -4 7%

and experimentally confirm the truth of Maxwell's formulas

for the increased resistance and diminished inductance of a

circuit when placed near a closed secondary circuit.

§ 10. Hughes's Induction Balance and Sonometer.—In 1879

Prof. Hughes constructed and described a very perfect induc

tion balance, with which he was able to conduct researches of

an exceedingly interesting character. In order to have a

perfect induction balance he found it necessary to make all the
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four coils exactly similar.* Four boxwood bobbins (see Fig. 101)

are each wound over with 100 metres of No. 82 copper wire.

These coils are arranged in pairs at a considerable distance

apart, so that the coefficient of mutual induction between the

separated pairs is negligible. Two of the coils, A andB, are joined

in series with each other and with a battery and interrupter I,

and the other two coils, C and D, are employed respectively as

secondary coils to these two. These secondary coils are in series

with each other and with a telephone receiver T, and are so

joined up that the direction of the induction of A on C is oppo

site to that of B on D. One pair of coils is placed in a fixed

position, and the other pair can be slightly moved to or from

 

I

Fio. 101.

each other by means of a micrometer screw. The coils are first

adjusted so that the inductions are equal and opposite, and on

listening at the telephone the opposing secondary currents

produce at best but a very slight sound, which can be perfectly

abolished by adjusting the distance of one pair of coils. When

this is the case, if we insert in the opening of the bobbin of one

of the primary coils a disc or piece of metal d, the balance is

destroyed, and we hear sounds more or less intense. In order

to get some comparative measurements, Prof. Hughes designed

* " On an Induction Current Balance." By Prof. D. E. Hughes. Proc

Bay. Soc., No. 196, May 5, 1879.

T 2
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a companion instrument, called a sonometer. In this instrument

a pair of primary coils are, as before (see Fig. 102), joined in

series with each other and with a battery. The coils are fixed

at the extremities of a bar. Between these primary coils slides

a single secondary coil, and the primary coils are so wound that

their inductions on this secondary coil are equal and opposite.

When this secondary coil is exactly between the two primary

coils, a telephone placed in series with the secondary coil gives

out no sound when the primary current is rapidly interrupted.

If, however, the secondary coil is slid from one primary and

towards the other, the differential action creates an induced

current detected by the telephone. By reading off on the bar

the extent of displacement necessary to create in the telephone

a sound of a certain magnitude an arbitrary reading can

 

Fig. 102.

be obtained corresponding to every different value of the

secondary current. A switch is provided, by means of which

the same telephone can be shifted rapidly from the induction

balance secondary circuit to the sonometer secondary circuit.

The experiments first performed consisted in placing within

one primary coil of the induction balance certain equal-sized

discs of different metals, and then so arranging the sono

meter secondary coil that the noise in the telephone produced

by the current in the secondary of the sonometer was judged

by the ear to be equal tc the sound produced in the telephone

when it was shifted to the secondary circuit of the induction

balance, and in which the inductive balance had been broken
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down by the insertion of the disc of metal. Discs of various

metals the size and shape of an English shilling were made,

and, when inserted in the induction coil, the sonometer bar

readings, reckoned from the centre or absolute zero of sound

given in certain arbitrary degrees, were as follows :—

Silver (chemically pure) 125 I German Sitver 50

Gold 117 | Iron (pure) 40

Silver coin 115 1 Copper (alloy) 40

Aluminium 112 | Lead 38

Copper 100 Antimony 35

Zinc 80 Mercury 30

Bronze 76 I Bismuth 10

Tin 74 I Zinc (alloy) 6

Iron (ordinary) 52 | Carbon 2

This list does not agree in order entirely with that of any

of the lists of electrical conductivity. In some degree it

evidently has reference to conductivity, because, roughly

speaking, the best conductors come at the top and the worst

at the bottom ; but whilst it is headed by silver, which has the

highest conductivity per unit of volume, we find aluminium,

which has the highest conductivity per unit of mass, occupying

a position above that of copper. The disturbing effect of

the metal on the inductive balance is not, however, simply

proportional either to the conductivity per unit of mass or per

unit of volume. In more recent experiments a graduated zinc

wedge pushed in more or less between one pair of coils of the

induction balance was employed to obtain comparative numbers

representing the disturbance produced when discs of various

metals are inserted in the other coil. The elementary theory

of the induction balance is of course contained in all that has

gone before in this and the last chapter. It is, generally

speaking, dependent for its action on effects similar to those

producing magnetic shielding. If the discs are slit so as to

prevent circumferential electric currents in their mass, their

action in disturbing the inductive balance is mitigated or

annulled. If the metal disc is replaced by a copper coil with

open extremities no effect is observed on the inductive balance.

If the ends of the coil are joined, the coil behaves as if it were

a metallic disc and causes loud sounds in the telephone. The

effect due to the iron disc is a mixed one. It in part acts like

any other metal disc, but it differs from them in one respect.

If any non-magnetic disc is placed edgeways in the centre of
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the primary bobbin it has a diminished effect in disturbing the

balance ; in the case of iron the disturbance is increased by

turning the disc edgeways. In order to have before us a

typically simple case, imagine an induction balance made of

two very long primary helices and each embraced near the

centre by a small secondary coil. Let the primary coils be

traversed by a simple periodic current. We have then in the

interior of the primary coil a uniform magnetic field varying

synchronously with the primary current in a simple periodic

manner, and the rate of change of the magnetic field at any

instant will be a measure of the electromotive force acting in

the secondary circuit. Suppose into one primary helix is

inserted a thin copper tube ; this will form a closed secondary

circuit, and secondary periodic currents will be induced in it,

flowing round the cylinder in directions parallel to the turns

of the primary helix. As this copper cylinder possesses a very

sensible time constant, the phase of these secondary currents

in the copper cylinder will be nearly opposite to that of the

primary current. The resultant magnetic field in the interior

of the cylinder is therefore that due to the resultant of these

two simple periodic currents which are nearly opposed in

phase. Hence the absolute magnitude of the interior field

and its rate of variation will be less than if the copper

oylinder was removed. It results, therefore, that the induction

through the secondary helix and the electromotive force

impressed on it will be diminished by the presence in the

primary coil of this copper cylinder. The diagram given on

page 177, showing a geometrical construction for the

magnitudes of the primary and secondary currents in an

induction coil without iron, shows us why the primary and

secondary currents are thus more or less opposite in phase.

Since, in a general way, the higher the conductivity of the

tube or disc introduced into the primary the greater the time

constant, and the greater the lag in phase of the currents

induced in this metallic circuit behind the phase of the

inducing primary, it follows that the resultant interior field

acting to produce inductive electromotive force in the

secondary helix will be diminished by the introduction of

discs of very high conductivity more than by discs of very

low conductivity.
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From the principles discussed under the head of magnetic

shielding it would appear that the differences between various

metals inserted as discs in the induction balance would be less

marked at very high speeds of interruption than at very low

ones. With respect to the action of iron, two effects have to be

considered which are the results of very different actions. The

introduction of the iron into the primary coil reduces the

magnetic resistance of the circuit of induction of that coil, and

this cause, if.it operated alone, would destroy the inductive

balance by raising the inductive electromotive force in that

secondary circuit corresponding to the primary into which the

iron is introduced; but the iron disc, like every other disc,

gets circumferential induced currents created in it, and these,

if they acted alone, would destroy the inductive balance by

lowering the inductive electromotive force in that secondary

coil.

These two effects conflict, and it is an interesting confirmation

of theory to find that Prof. Hughes says it is possible to intro

duce into one primary coil of the induction balance a disc of

iron and some soft iron wires in such positions that these

opposite actions nullify each other, and, though each mass of

iron separately would destroy the induction balance, yet the

two together being introduced complete silence in the tele

phone is the result. The sensibility of the induction balance

to minute differences of electric conductivity and magnetic

permeability is very remarkable. If into one coil of a carefully-

adjusted balance we place a good sovereign, or shilling, and

into the other a bad one, the telephone detects the base coin

with unerring certainty by the loud noise given out. In the

same way, if two pieces of soft iron are introduced into the two

primary coils, and a balance is obtained, the mere magnetisa

tion of one of them will be at once detected, because that

magnetised piece becomes thereby less permeable, and destroys

the balance. We may present the rough general theory of the

induction balance in another way. Let the " coin " be simply

regarded as a closed circuit, between which and the primary

oircuit surrounding it there is a certain coefficient of mutual

induction. The two primary coils forming one primary

circuit have, on the whole, no action on the two secondary

coils forming one secondary circuit, and we may therefore
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consider the primary circuit as if it were in a position

conjugate to the secondary. The coin, however, is acted upon

inductively by the primary circuit, and the eddy currents or

secondary currents generated in it react on the secondary

circuit, causing in it tertiary currents, which affect the

telephone. Looking at it from this point of view, we might

construct an induction balance thus. Let A (see Fig. 108)

be a single primary coil, and B a secondary coil, having a

telephone in series with it. Place the coil B in a position

conjugate to A—that is, with its axis at right angles to that

of A. Then let variation of current in A produce no current

in B. Now hold a sheet of copper anywhere, say at C, and

the telephone will be caused to sound. For A, though it
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cannot affect B inductively directly, yet it can produce a

secondary current in C held at a non-conjugate position, and

these secondary currents in C will create other tertiary

currents in B. The experiment thus appears to indicate a

sort of reflection of inductive power.*

This was experimentally shown by Mr. Willoughby Smith

in his Paper on " Volta-Electric Induction" (see Journal of

Society of Telegraph-Engineers, Vol. XII., page 465).

* The full theory of the induction balance has been given by Prof. 0liver

Lodge. See /Vac. Phyt. Soc. Ij)ndoni Vol. III., p. 187. Also in the tame

volume is a Note by Prof. J. H. Poyuting " On the Graduation of the

Sonometer."
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An interesting experiment due to Mr. 'Willoughby Smith is

to employ a simple Bell telephone receiver, unconnected with

any circuit, as an induction finder. If a coil of wire is traversed

by an electric current, either rapidly intermittent or alternating,

then a Bell telephone held anywhere in the magnetic field

emits a sound. The pulsating field disturbs the magnetism

of the telephone magnet, and enables us, therefore, to detect

rapid electromagnetic disturbances at the place where it is held.

It is obvious, then, that the induction balance, combined with

a telephone, is an apparatus of extreme sensitiveness. It

can render evident the smallest differences of weight, nature,

degree of purity or temperature of two conductors of identical

dimensions, such as two coins placed in identical conditions

in respect of the two systems of coils.

It enables us to detect very small masses of metal in a badly

conducting body, and may be employed with much advantage in

verifying the insulation of the different windings of a coil, the

ends of which are open. At the same time, however, it lends

itself better to qualitative than to quantitative work, as it is

difficult to interpret rigorously the results obtained.*

§ 11. The Transmission of Rapidly Intermittent or Alter

nating Currents through Conductors.—Some experiments by

Prof. Hughes in 1886 on the self-induction of metallic wires

were the means of directing the general attention more closely

than before to the nature of the propagation of electric

currents of high frequency through metallic conductors, and

although mathematical writers, particularly Maxwell and

Oliver Heaviside, had previously considered the problem

theoretically, the experimental results drew the attention

of many to this question to whom the more recondite

mathematical investigations were unknown. Prof. Hughes's

* For further information on the use and theory of the induction balance

the student may consult, with advantage, Maseart and Joubert's " Elec

tricity," Vol. II., § 986 ; al-o Hughes, Phil. Mag. [5], Vol. II., p. 50, 1879.

On the differential telephone, see Chrystal, Phil. Trans. Hoy. Soc. Edin,,

Vol. XXIX., p. 609, 1880. 0. Lodge, Proc. Physical Soc. London,

Vol. III., p. 187, on intermittent currents and the theory of the induction

balance.
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experiments* on the self-induction of metallic wires were

made with a combined resistance and induction bridge of

somewhat novel form. Suppose that a quadrilateral arrange

ment be formed of four conductors P, Q, R, S, only one

of which, P, has any sensible self-induction, and let the

diagonals be completed by a telephone T, and battery B,

with interrupter I. In the first place, let the resistance-

balance be obtained for steady currents. This can be

achieved by placing the telephone with the interrupter as a

conjugate circuit to the battery (»<>e Fig. 10-1), and altering one

resistance, say, It, until a balance is obtained. By a suitable
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adjustment of the four resistances complete silence can be

obtained in the telephone.

Next, let the interrupter be removed to the battery circuit,

all the other arrangements remaining the same (see Fig. 105).

It will be found that the balance is destroyed, and that no

mere change in the value of the resistance R will enable a per

fect balance to bo obtained. The reason for this is that, on

* These experiments formed the subject of Prof. Hughes's Inaugural

Discourse to the Society of Telegraph-Engineers on the occasion of his

election to the office of President. See Journal of the Society of Telegraph

Engineers, January 28, 1886, " The Self-induction of aa Electric Current

in Relation to the Nature and Form of its Conductor."
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closing the battery circuit, the inductance of P introduces a

counter electromotive force into P and the potential rises at

c faster than at d, and on breaking the circuit the potential at

e dies down faster than at d ; and hence at each make and

break the telephone is subjected to an alternate flux of current

which causes it to emit a sound. Supposing that an attempt

is made to get rid of this sound by shifting the point c so as to

alter R, the steady balance will be destroyed, and the telephone

will be traversed by a current during the time when all the

currents have become steady ; but no such change in the value

of R will prevent a variation of current taking place through

d
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the telephone during the complete period from the first instant

when the battery circuit is closed to the instant when it is

opened again.

The only way in which a balance can be obtained in this last

arrangement is by introducing into the telephone circuit an elec

tromotive force which shall be capable of being made to balance

at every instant the inductive electromotive force due to the

inductance of P. Prof. Hughes does this very ingeniously by

introducing a pair of mutually inductive coils into the battery
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and telephone circuits, and the final arrangement is as shown

in Fig. 106. Mi and M2 are a pair of coils, one of which, M„

is in the battery circuit and is fixed, and the other, M1, is

in the telephone circuit, and can be placed so that, whilst its

centre coincides with that of M2, its axis makes any required

angle with that of Mi. In this way the mutual inductance

between Mi and Ms can be varied from zero when the coil axes

are at right angles to a definite maximum value when they are

co-linear.

It is found that, when the coils Mi M2 are in certain

positions, the inductive electromotive force set up in the
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telephone circuit by the induction of Mi on M2 can be made

to neutralise the electromotive force of self-induction due to the

inductance of P, when, in addition, a certain value is given to

the resistance R. Under these circumstances the bridge can

be balanced and the telephone completely silenced, both when

the interrupter is in the battery circuit and also in the tele

phone circuit ; in other words, the bridge can be balanced both

for steady and for variable currents.

In the arrangement adopted by Prof. Hughes the resist

ances Q, R, and S, were sections of one and the same fine
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German silver, 1 metre long, and having a total resistance of

4 ohms (see Fig. 107). The ends of this wire were joined to
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the conductor P under investigation, and the rest of the

apparatus was arranged as described.

In order to investigate the relation between the resistances

and inductances which holds goodwhen the bridge is balanced for
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steady and also for variable currents, a diagram must be drawn

(Fig. 108) representing the network of conductors. Then call
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the current at any instant in the inductive branch P, x,

that in the branch Q, y, and that in the telephone circuit z.

The current in the branch battery is then x + y. Let L be the

inductance of P, and M the mutual inductance of the coils placed

in the circuits B and T, and let all the other circuits, Q, R,

and S, have no sensible inductance. Let e be the electromotive

force of the battery at any instant t. Then the currents in the

various branches at that instant are as follows :—

In the branch P the current is *

lI i> R >. >i z+*

>, .. & ,.,.!/-,

,i » Q >, y

„ >. B „ „ x + y

„ „ T „ „

Applying KirchhofPs corollaries to each of the three meshes

of the network, we have three equations, viz.,

P*+ BJ+^ + Rl+i=»«-L 4f- (94)

Bx + y + 8y-z+ Qy =e-lA . • • (95)

d t d t

it 2

It

E^+ T,-S^7=-M^^. • • (96)

and these three equations enable us to find at any time

t the current in any branch.* If we suppose the bridge

to be balanced for variable currents, then z is zero, and on

making this limitation we find the above equations reduce to

the two,

Qy-P*-L^'= Ra-Sy, . . . (97)

dx dy _ -

and -M j- -ll-ft=Kx-&y. . . . (98)

Furthermore, let us assume that the currents vary according

to a simple periodic law. In this case, if X is the maximum

value of x, then wc can write

a- = X sin pt,

* The general method of finding the current equations for any network

is given in Maxwell's " Treatise on Electricity," 2nd Edition, Vol. II.,

§ 755. Also tee "Problems on Networks of Conductors," by J. A. Fleming,

Phil. May., September, 1E85, Vol. XX., p. 221 ; or Procecdingt Phys. Soc.,

Lond., 1885.
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where p as usual = 2tt n, n being the frequency of the alterna

te

tion. Hence

and

=2,Xcos^t,

d2x

T3 = -i'2Xsinpt

dt

&\

dt

Adopting the fluxional notation, it is convenient to write x for

dx •• d2x

77 and a; for 775- Hence, for simple periodic variation of a

current a;, we always have the condition

— x=p1 x.

If we differentiate with respect to t the two equations (97)

and (98), and eliminate x by the help of the equation x= -p2x,

we obtain two other equations, which, together with the original

two (97) and (98), give us the necessary four equations for elimi

nating the four variables x, y, x, y. We have thus,

Qy-Vx-hx =B.x-By. . . . (99)

. -Mi-Mj =E*-S.v. . . . (100)

Qy-P'x + Jjp'-x-Rx-Sy. . . . (101)

Mp2x + Mp2y =Ux-Sy. . . . (102)

The student who has mastered the elements of determinant

analysis will recognise that the variables x, y, x, y can be

eliminated from these equations, and the relation which must

always hold good between the constants can be found by

equating to zero the determinant of these four equations. We

have then

-L, 0, -fP + R), (Q + S)l

-M, -M, R, 8

-(P + R), (Q + S), hf, 0

-R, S, Up2, Up> • 0.

This determinant writes out into the sum of three terms,

viz.

p>L[L(MV + S2)-M(S2 + SQ + RQ + SR)] +

-(P + R) [MV(P + Q + R + S)-S(QR-SP)] +

+ (Q+S) [MLpS(R+S) + R(SP-RQ)-MV(P+ Q

+ R + S)] = 0.
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This long equation reduces to the simpler form

[(pSL^-CpMCP + Q + R + S) )«] + [(MLpt)t

-(QR-bP)s] = 0.

In order that the sum of the two left hand terms in the

above equation may always be zero, each factor in the square

brackets must be separately zero, and it will be seen that each

of these factors equated to zero are equivalent to the two

equations :—

QR-SP= ML/, (108)

and M(P + Q+R + S) = SL (104)*

These equations express the relation which holds good

between the resistances of the branches and the self and mutual

induction coefficients of a Hughes bridge when the bridge is

balanced for variable currents.

It will be seen that the ordinary relation of the resistances

for steady balance, viz., P:Q = R;S is departed from, and that

we have for the resistance of branch P, when traversed by

variable currents, the value

p QR-MLp2 OR ML/»2

and for the inductance of branch P under these circumstances,

the value

L = MJP±Q + R+S). m m t (10G)

S

In some of his experiments Prof. Hughes interpreted his

OR
results on the assumption that Pwas always equal to and

S

L was equal to M ; but the complete investigation shows that

this is not the case. A very full theoretical and practical

examination of the induction bridge has been given by Prof.

H. F. Weber, for which the student is referred to the pages of

the Electrical Review, Vol. XVIII., p. 821, 1886, and VoL XIX.,

p. 80, 1886.t

* Theae equations were given by Lord Rayleigh in the discussion on

Prof. Hughes's Paper. See also Lord Rayleigh " On the Self-induction

and Resistance of Compound Conductors," Phil. Mag., Dec. 1886, p. 47L

Equivalent equations have been also arrived at by Prof. H. F. Weber and

Mr. Oliver Heaviside.

t Set alto Mr. Oliver Heaviside in the Phil. Mag., August, 13S6.
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The whole method of the construction and use of the induc

tion bridge has been the subject of elaborate examination by

Lord Rayleigh in a Paper on the self-induction and resistance

of compound conductors (Phil. Mag., December, 1886), from

which we shall quote freely in what follows. Lord Rayleigh

discarded the tooth-wheel interrupter, as it does not give a

regular variation of current corresponding in period to the

passage of a tooth ; and he substituted a harmonium reed,

the vibrating tongue of which made contact once during each

period with the slightly-rounded end of a brass or iron

wire advanced exactly to the required position by means

of a screw cut upon it. Blown with a regulated wind, such

reeds are capable of giving interruptions of current up to

about 2,000 per second. The one usually employed had a

frequency of 1,050 vibrations per second. The induction

compensator consisted of two circular coils, one of which

was fixed and the other movable round an axis, so placed

that the flat circular coils could be placed either with their

planes coincident or at right angles. If the inner coil is very

small compared with the other, and the coils are placed with

centres coincident and axes inclined at any angle, 6, and if M0

be the maximum mutual inductance and M the inductance in

any position, 6, then

M = M0 cos 6.

This law is, however, not followed when the coils are sensibly

of the same size. In this case Lord Rayleigh has shown that

the mutual induction is very approximately proportional to the

angle between the axes of the coils for a range between 40° and

140°. In the actual experiments the mutual inductance of the

coils was determined for each degree of angular displacement

of the axes by comparing it with the calculated coefficient

between two wires, wound in measured grooves, cut in a cylinder,

and it was found that every degree of movement of the movable

coil, when the axes were not far removed from perpendicu

larity, was equal to 776*8 centimetres of mutual induction, the

maximum when 0 = 0 being 56,100 centimetres. The first

experiment described in the Paper referred to is one on the

self-induction, and resistance of a coil of copper wire. In the

bridge used the resistances Q + R + S were together equal to

4*00 ohms. Resistances were, however, measured in scale

u
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divisions of the bridge wire, each one equal to 2-04 x 10s

centimetres per second. The copper coil being balanced on

the bridge, it was found that the readings of the three

resistances and of M were as follows :—

Q = 610, B=190, S = 1,160,

M = 86° = 36 x 776 centimetres,

and the frequency n of the vibrations = 1,050. Hence p = 2-

x 1,050. Taking the equations (103) and (104) on page 288,

and eliminating L, we have for the value of P, the equation

s

r- j*'M'(Q + B + S) 1

*~ S.Q.B

I 1+V J

Substituting the values above, we find

Q K

P = -876 -y- = 87"6 scale divisions.

This gives the value of the real resistance of P for the periodio

currents used ; and we see that if we neglected the peculiarity of

the bridge, and simply assumed the ordinary law, that the resis

tance of P was equal to Q K-hS, we should make an error

of some 12 per cent. 0n actually balancing the bridge for

steady currents the resistance of P was found to be 87"8 scale

divisions, thus indicating that for this copper coil at the

frequency employed the resistance to variable currents was

the same as to steady ones.

0n inserting a solid copper rod into the aperture of the coil

and measuring again the resistance and self-induction, it was

found that the values of the reading were Q = 660, R = 190,

M = 295°, instead of as before, Q = 610, M = 86°. Hence the

introduction of another closed secondary circuit (viz., the

copper rod) increased the real resistance and diminished the

real self-induction in accordance with the principles explained

on page 180, at which place we demonstrated Maxwell's

equations for the increased resistance and diminished self-

induction of a primary circuit when in contiguity to a closed

secondary circuit.

The next example selected was that of a soft iron wire, 160

centimetres long and 8-8mm. dia. Here, with the variable
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currents from the reed interrupter of the same period as

before, a balance was obtained for

'Q = 178, B = 190, S- 1,592, M = 8 x 776 centimetres,

from which we find

P = -985 = 20-93 scale divisions.

The resistance of the same wire to steady currents was

P 100 x 190 = 11-88 d divisions.

0 1,670

Hence the effective resistance to variable currents having a

frequency of 1,050 was 1-84 times the resistance to steady

currents. We have presented to us here the phenomena

characteristic of the behaviour of conductors to electric

currents rapidly intermittent or reversed. The real resistance

of the conductor is increased. This is not to be confused

with the fact tbat for intermittent currents the impedance

{VW+jflTfi) measured in ohms is greater than the ohmic

resistance (R) ; but it is to be understood as a real increase

in the rate at which energy is dissipated per unit of current.

It is now well understood that such increase of resistance

is due to the fact that the current density for rapidly

periodic currents is not uniform over the cross-section of

the wire, but is greatest along the outer layers of the wire.

Hence, under rapidly periodic currents the inner portions

•of a conducting wire are never reached by the current, and,

as far as current carrying duty is concerned, might as well

be away. This difference may be graphically represented

thus : Let relative density of current or quantity passing per

second through unit of cross-section of a conductor per unit

of time be represented, like relative density of population, by

•degree of density of shading. Then the flow of a steady

current through the section of a wire might be represented

as in Fig. 109 ; and the flow of current over the cross-

section when the current is rapidly periodic might be repre

sented as in Fig. 110.

We must consider that the current in beginning in a

conductor starts its flow first on the outside, and soaks or

penetrates inwards into the deeper layers by degrees. We see

that, in consequence of this, if the current is reversed in sign,

u 2



292 MUTUAL AND SELF INDUCTION.

or rapidly intermitted, it will not have time to soak or diffuse

very far into the mass of the conductor before it is, so to

speak, re-called, and its operations will be confined to

the outer layers. This is a rather broad way of stating

modern views on the modus operandi of current flow-

According to these views the current in a wire is not

established by a process analogous to starting a flow of

water in a pipe by a push applied one end, but it is put

into the wire at all points of its surface by energy absorbed

from the surrounding dielectric. 0ther things being equal,

the rate at which this equalisation of current across the cross-

section of the conductor goes on will be a function of the

magnetic permeability of the material. The current in

flowing along a magnetisable circuit magnetises it circularly.

This magnetisation involves work, and the impressed electro-
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motive force which is increasing the current has to do work,

not only against that which may be called the formal

inductance of the circuit, or against that part of the counter

electromotive force of induction which depends on the form of

the circuit, but has to create this circular magnetisation.

By keeping to the outer layers of the conductor the periodic

current avoids magnetising the deeper layers of the material.

Proof will be given later in describing the remarkable investi

gations of Hertz that this description of the mode of establish

ment of a current is one supported by experimental facts.

We are thus able to offer a consistent theory of the real

increase of resistance which we find for rapidly periodic

currents. The inner core or central portion of the conductor

is not used by the current, and, so far as conducting it goes.
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might as well be absent ; hence the solid conductor does no

more, or not much more, in the way of carrying the current

than a hollow or tubular conductor would do : and, accord

ingly, the real or ohmic resistance of the conductor for such

variable currents is greater than it is for steady currents.

Another way of regarding this inequality of current distribu

tion over the cross-section of a wire is as follows :—The counter

-electromotive force arising from self-induction is greater at

the axis or central portion of the wire than it is near the

surface. If we consider the whole current flowing across any

section of the conductor as made up of little streamlets of

currents flowing parallel to each other, the central streamlets

or filaments of current experience more opposition in reaching

full magnitude than do the outer ones, because of the mutual

induction with those surrounding them. The current there

fore arrives at its maximum value at the surface of the con

ductor belore it does at the deeper or central portions. If

the current is periodic or transitory the central streamlets or

current filaments are always greatly inferior in strength to

those at the surface. There is reason, then, to believe that a

sudden rush of current, very brief in duration, such as the dis

charge from a Leyden jar or condenser, moves chiefly along

the surface of a discharging wire, and the same statement

holds good for very rapid pulsatory or alternate currents.

Although it may be said that the general principles governing

the behaviour of alternating current flow as conductors were

virtually given by Maxwell,* they have been subsequently

chiefly developed mathematically by Mr. Oliver Heaviside and

Lord Rayleigh, and were brought to the notice of practical

electricians principally by the experiments of Prof. Hughes

previously mentioned.

This increase of the resistance proper of a wire for rapidly

periodic currents is one of the most striking of the results of

Prof. Hughes's researches. The full mathematical develop

ment of the problem, even for comparatively simple cases,

leads to some very complex mathematical expressions. Lord

* Maxwell's " Ejectricity," Vol. II., § 689-630. In this paragraph it is

shown that the counter electromotive force of self-induction at any point

in a conductor is a function not only of the time but of the position of the

point considered, and varies over the cross-section of the conductor.
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Rayleigh has, however, treated with great fulness* one or

two cases of practical importance. If R and L are the true

ohmic resistance and inductance of a cylindrical straight wire

of length I and magnetic permeability ju. to steady currents or

currents of very slow alternations, and if an alternating

current of simple periodic form and frequency n is sent

through it, then the resistance is increased to R1 and the

inductance diminished to L1 in such wise that if p = 2?r n, as

usual, we have

R. =Rfl+IW_l_£*V+. . . &c.,~l(107>

L 12 E* 180 IV J

and U = l rA+^l-lt^U^^, . VI (108)
L \2 48 E* 8640 E1 /J V '

A being some constant depending on the position of the return

wire.

These formula express the fact that the resistance is in

creased and the inductance diminished in proportion as the

frequency of alternation gradually increases from zero to-

infinity.

At slow rates of alternation the chief opponent with which

the impressed electromotive force has, so to speak, to contend

is the ohmic resistance ; and the distribution of current across

the cross-section of the conductor under these conditions is

such as to make that resistance a minimum, and this is known

to be so when the distribution is a uniform distribu tion. The

current is then taking the greatest advantage of the conductor,

and the heat generated and dissipated per unit of time is less

under these conditions than if the same total current were

distributed in any other way over the cross-section of the

conductor. This last statement can be easily proved. Let the

cross-section of the conductor, supposed to be a cylindrical wire,

be divided into two equal zones by a circular line. Let the

resistance per unit of length of the conductor be r for each

portion corresponding to the outer and inner zone. Call the-

outer portion the sheath and the inner the core of the con

ductor for brevity. If a total quantity of current, x, flows

through the conductor, then the rate of dissipation of energy

* "0n the Self-Induction and Resistance of Straight Conductors^

Phil. May., May, 1886, p. 382.
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as heat is— for each portion per unit of length, or for the

whole conductor, on the assumption that the current is equally

divided between the sheath and the core.

If, however, we suppose the total current, x, to be distributed

so that a portion, y, travels by the sheath, and the remainder,

z, travels by the core, then the heat generated per unit of

length per unit of time is r-if for the sheath and rz1 for the

core. Hence, for the equi-distribution of current, the energy

dissipation is —= ' , and for the uneqni-distribution it

is r(ys+22). Which, then, is greater, rJl'-±fl or r tf+z*) ?

Consider the following inequalities :—

(y - if is greater than \(y- if,

or rf + z2 — 2 y z is greater than - (y - if ;

2

but \(y-if-\{y+*f-*yz-

Hence, yi + z>-2yziB greater than - (y + zf - 2 // z.

Adding 2 y z to both sides, we have

if + z* is greater than ^ (>/ +

Accordingly it follows that

rif + rz* is greater than - (i/ + 2)2,

or nf + rz* is greater than - Xs ;

2

that is to say, the rate of energy dissipation is greater for the

assumed unequal distribution than for the distribution in

which the current is equal in density over the cross-section of

the conductor. The same kind of proof may be extended

to any other arbitrary distribution of current over the cross-

section, and the reasoning will lead to the conclusion that

the equi-dense distribution is that which causes the least rate

of dissipation of energy per unit of current.
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For slew alternations, therefore, the current adopts that mode

of distributing itself over the cross-section of the conductor

which makes the rate of energy dissipation a minimum.

0n the other hand, for rapid alternations the current meets

with its greatest obstacle from the counter electromotive force

of self-induction, and it accordingly distributes itself over the

cross-section of the conductor, so as to get as much to the

outside as possible, and thus avoids, in the case of magnetic

conductors, magnetising the inner layers or portions of the

conductor. The endeavour is to make the self-induction a

minimum irrespective of resistance. This is only an instance

of the broad, general principle that behaviour of current for

very rapid pulsations, or alternations, is determined by the

inductances rather than the resistances, whereas for steady or

slowly periodic currents the behaviour is governed by resistance

rather than by self-induction.

In order to see under what conditions the alteration of resis

tance and self-induction becomes sensible, we have to examine

the value of the term — - — in the above-given series for12 8

B\ We will first take the case of an iron wire 0-4 centimetre,

say, 0-16 inch diameter (No. 8 B.W.G.). The specific resis

tance of iron in C.G.S. measure is about 10* ; so that

B — 10* = 10°

I 7t x 0-04 4tt '

p2=4ir>ns, n being the frequency.

Let us take « = 100, so that there are supposed to be 100

complete alternations per second. The value of p. is more

difficult to assign. For small degrees of magnetisation and

solid iron, we may, perhaps, take /u=800;

then — lf££= 1 4;r27iV2;2— 5-2 (An*

12 R- 12 B2 1010

If /*=300, n = 100, /*2 m2 = 9x10s, andl £££ =0-47

= 0-5 nearly.

Accordingly, for this case R' = B (1+0-47) nearly, or the

resistance is increased to about half as much again.

If «= 1,000 we should find B1 = 48 B, or the resistance would

be increased nearly fifty times.
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Consider next the case of copper. The specific resistance is

1,6-10 C.G.S. units. If a be the radius of the wire in centi

metres, then we have

1 p2/y_ ar4 a4 n* 1-2 a4 «2

1^ K" ¥ (1,640)* 105

If, as before, n = 100, this fraction becomes equal to 0-12a\

This shows that for a diameter of one centimetre we should

have R' = K (1+0-12);

and hence for diameters of one centimetre and upwards the

resistance of round copper rods becomes very sensibly increased

for alternating currents of a frequency about 100 and up

wards. The practical conclusions of importance in electrical

engineering from the above investigation are these :—First,

copper rods or conductors should be used, and not iron, for

transmitting alternate or intermittent electric currents having

a moderate frequency, say of 100 to 1,000 per second ; secondly,

to avoid, as far as possible, the increase of resistance due to

the current keeping to the outer portions of the conductor, the

conductor should be in the form of a thin strip, or better, a

tube having walls thin in proportion to the radius. It is to be

noted that mere stranding of the conductor, or building it up

of separate insulated conductors joined in parallel, will not

prevent this augmentation of resistance, unless the stranding is

of such a kind that portions of the cable which at one point of

its length form the inner parts or heart of the cable at another

part of its length form the outside.

The object to be achieved is to construct some kind of

stranding by which all portions of the conductor are brought as

near as possible to the dielectric, so that the energy arriving

from the dielectric finds all parts of the mass of the cable,

both surface and interior, equally accessible. In order to

avoid external inductive disturbance, the proper form to give

to a cable intended to convey rapidly intermittent or alternate

currents is a couple of rather thin concentric tubes of copper

well insulated from each other, and both insulated from the

earth, of which one forms the lead and the other the return.

By this device the metal will be most economically employed.

An equivalent device used in practice is a concentric cable,
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which consists of a central core of stranded copper cable-

covered with insulation, and then plaited over with a sheath

of other copper wires which form the return conductor.

In a further experiment, Lord Rayleigh (loc. cit.) examined

the resistance of an iron wire of hard Swedish iron 10-03

metres long and 1-6 millimetre in diameter. In arbitrary units

the resistance of the wire to steady currents was 10-4 units

or 0-51 ohm, and to currents of 1,050 complete alternations

per second its resistance was 12-1 units, or 0-595 ohm, which

is an increase of about 20 per cent. In the case of a stouter

wire, 18-34 metres long and 3-3 milliniatres in diameter, the
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resistance to steady currents was 4-7 units, and the resistance

to the interrupted currents of the above-mentioned frequency

was 8-9 units, or nearly double. This illustrates the fact that,

for a given frequency of alternation, the ratio in which the

resistance is increased is greater the greater the diameter of

the conductor, assuming it to be a round solid rod.

Lord Rayleigh found it more convenient in many researches

to slightly alter the arrangement of the induction balance as

described by Prof. Hughes, and to make it as follows (Fig. 111).
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Two arms of a quadrilateral, R and S, consist of equal resist

ances of German-silver wire, wound double, so as to have

negligible inductance. One arm, Q, consists of a coil having

inductance and resistance greater than that of any conductor,

P, to be placed in the fourth arm. B and I are a battery and

an interrupter, T is a telephone in the "bridge," and it1 is

a German-silver wire of appropriate resistance, along which

elides the contact of the bridge. The arm P includes a pair

of coils joined in series, and which act upon each other by

mutual induction, so that the resulting self-induction of

the two coils in series can be varied within certain limits by

turning one coil round within the other. For the resulting

self-induction of such a pair of coils used in this manner

may be regarded as made up of the component self-inductions

of each coil taken separately and of twice the positive or

negative mutual self-induction, depending upon which faces

of the coils are presented to each other. It is possible, then,

within certain limits to vary the inductance of the branch

PC, and to vary also the resistance of the branches Q and

P C by shifting the contact of the telephone along r r1.

The condition for obtaining a true balance when the current

is periodically interrupted is that the resistances and induc

tances of the branches Q and PC shall be separately equal.

Suppose a balance has been obtained without the use of P, in

which the resultant self-induction of C is made to balance the

inductance of Q, and the resistance of C + r1 is made to be equal

to that of Q + r. Let, now, any conductor, P, be inserted as in

the figure ; the telephone contact will have to be shifted, and

also the inductance of C will have to be changed to re-obtain a

balance. The inductance of P is measured by the amount by

which that of C has to be reduced on inserting P, and the

resistance of P is measured by twice the resistance of that

length of the German- silver wire rr1 by which the telephone

contact point has to be shifted to regain the balance. This

method of employing the induction balance separates out at

once the real resistance of P from its effective induction.

With the aid of this balance an interesting experiment was

made, showing the effect of a closed secondary circuit on the

resistance and inductance of the primary. The frequency was

again, as usual, 1,050 per second. A coil was prepared of
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two copper wires, wound side by side on one bobbin. The

diameter of each wire was about 0-08in., and the length of

each wire 818in. There were 20 (double) turns, so that the

mean diameter of the coil, wound as compactly as possible,

"was about 5in., and the resistance of each wire was 0-05 ohm.

The coefficient of mutual induction of the two wires was

determined by comparison of the self-induction L of one wire

with that of the two wires connected oppositely in series, viz.,

.(2 L - 2 M). In this way it appeared that

M- 48-1° = 43 1 x 1,553 centimetres.

Observation showed that closing of the circuit of one wire

reduced the self-induction of the other from 44-4° to 3-4°. The

resistance to steady currents was 0-92 (arbitrary units). The

resistance to the periodic currents was 0-97 with the secondary

circuit open, und 1-74 with the secondary circuit closed.

Hence, L = 44- 1 x 1,553 centimetres, and

R = 0-97 x 0-0192 x 10" centimetres per second.

From Maxwell's formulae, page 180, we get

P2 M» 10" x 1-951 =0.g32

KJ + //'LJ 107 x 0-023 + 1017x 2-071

Hence, L' = L (1 -0-932),

•where L1 is the decreased inductance. Hence,

Li = 0-068 L,

or L1 = 0-068 x 44-4° = 8",

and the observed value is 3-4°, which is in very tolerable

agreement.

Again, the steady resistance with secondary open is 0-92,

and hence the resistance R1 with secondary closed is

Ri- 1-932x0-92 = 1-77;

and observation gives the value 1-74. We see, then, that

observations with this bridge confirm, with a considerable

degree of accuracy, the deductions from the theory of simple

periodic currents, that the closing of a secondary circuit

increases the resistance and diminishes both the inductance

and the impedance of an adjacent primary circuit.

From a practical point of view the most important difference

between the conduction of steady electric currents and rapidly



periodic currents is that of the locale of the currents in the

conductor and the consequent rise in the ohmic resistance of

the conductor as a whole when employed with such periodic

currents. Prof. Hughes called attention in 1883 to this great

difference in the resistance of an electrical conductor if mea

sured during the variable instead of the stable condition of the

current.*

In experiments with his induction bridge Prof. Hughes was

able to assure himself that the resistance of an iron telegraph

wire of the usual size was more than three times greater for

rapid periodic currents of about 100 per second than for steady

currents. The full elucidation of the propagation of currents

in conductors under periodic electromotive force is not to be

attempted without following out some very elaborate mathe

matical analysis. The subject has received its most complete

treatment perhaps in the published writings of Mr. Oliver

Heavisidet and all that can be attempted here is to give a

slight sketch of the views which are now very generally

held on this subject.

Consider a long level tank or canal full of liquid. There

are, amongst others, two ways in which we might suppose

this liquid to be set in motion. A paddle or the hand

might be placed in the liquid, and by giving the liquid

bodily a push it might be made to move forward ; or we

might suppose some body floating on the surface, such as a

plank of wood to be dragged along the surface. The friction

between the plank and the layer of water beneath it would

then cause the subjacent layer of liquid to move with the

plank, and the motion of this layer would be gradually com

municated to the other and deeper-lying layers by reason

of the viscosity of the fluid. Or take the case of a basin

containing water. The liquid might be set in rotation by

stirring it with a paddle or the hand, but it might also

be set in rotation by twisting the basin rapidly. In this las:

case the rotation of the basin would be communicated by

friction to the water in contact with its sides, and then handed

* Discussion on a Paper by Mr. W. H. Preece on " Electrical Conductors,"-

Proceedings Inst. Civil Engineers, Vol. LXXV., 1883.

t "Electromagnetic Theory," by Oliver Heaviside in The Electrician

Series, and " Electrical Papers," published by Messrs. Macmillan.
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on from layer to layer of the water by internal fluid friction.

Thus the twist or spin of the basin would be gradually propa

gated inwards from the circumference to the centre. Imagine

the whole mass of the liquid divided up into very thin con

centric shells, like the coats of an onion. If the liquid were

a perfect fluid there would be no friction between these layers,

but since every liquid possesses some degree of viscosity or

internal fluid friction, the sliding of one layer of fluid over

another gradually causes the second layer to partake of the

motion of the first. Hence, when the rotation of the basin

commences the friction between its sides and the first layer

of fluid starts that gradually in motion ; this motion is then

transmitted to the second layer, and so on, until the whole mass

of the liquid possesses an equal angular velocity round the

axis of rotation. The greater the fluid friction or viscosity the

more rapid will be this equalisation of the angular velocity of

all parts of the fluid, and so a rotating vessel full of tar would

arrive at a stationary condition as regards angular velocity

sooner than one filled with a limpid liquid as alcohol or etber.

Just as the angular velocity diffuses inwards from the circum

ference to the centre in the case of such a revolving basin of

liquid, so, according to modern views, does the current diffuse

inwards from the circumference to the axis of the electric con

ductor, The student who has been accustomed to think of a

current as produced in a conductor by a sort of push given to

it in the conductor—such conception being based on a rough

working hypothesis of a hydrodynamic nature—will perhaps

have some difficulty in discarding this notion and realising that

the current in a wire may perhaps be generated in it by an

action taking place at all parts of the surface of the wire which

gradually soaks or diffuses into the conductor out of the sur

rounding dielectric, but he will find that this new hypothesis

serves to establish a mode of viewing the induction phenomena

which makes various experimental results much more easily cor

related. It was well demonstrated by the experiments of Prof.

Hughes and others that a flat sheet or strip of metal has a less

self-induction than a round wire of equal cross-sectional area.

On the present hypothesis, this is explained by saying that the

flat strip offers a greater absorption surface to the dielectric; the

current therefore soaks in more quickly to the centre and arrives
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at a uniform distribution over the cross section very soon—in

other words, the variable state is sooner over, and we express

this fact by saying that the self-induction is small. Again, if the

electromotive force is oscillatory or rapidly periodic, we see at

once that the current has not time to penetrate right into the

core of the conductor before its sign or direction is reversed.

It has hardly started on its journey inwards, soaking from sur

face to centre, before it is recalled ; hence the flow of a current

when very rapidly periodic is confined to the surface of the

conductor, the real or ohmic resistance is increased, and the

self-induction is diminished.

Lord Kelvin has shown (Bath British Association Meeting,

1888) that for alternating currents of a frequency equal to about

150 complete alternations per second, the depth to which the

currents penetrate into the substance of the copper is about

three millimetres, so that portions of the conductor beyond

this distance from the surface are almost useless for conduction.

The practical moral of this is that the proper form for a con

ductor for alternate currents is either a flat sheet of copper or

a copper tube, in which, lor the above frequency, the thickness

of material is not more than one-quarter of an inch. It is

useful in this connection to note a few facts with regard to

cables as used for alternating currents. A seven strand cable

has an overall diameter of three times one strand. A nine

teen strand cable has an over-all diameter of five times one

strand. A No. 12 wire (S.W.G.) has a diameter of 0-109 inch.

Hence a 19/12 cable has a diameter of 0-5 inch, and a cross-

sectional area of 0-1615 square inch. At a current density of

600 amperes per square inch this cable will carry 100 amperes,

and it has a resistance of one-sixth of an ohm per 1,000 yards.

For alternating currents, therefore, of about 100 frequency,

a 19/12 stranded cable is about the largest size that should be

employed. For alternating currents of 100 frequency, beyond

about 100 amperes, a form of cable must be employed in

which the thickness of the conductor is not at any part

greater than about one quarter of an inch ; and this is only

to be achieved by the employment of concentric tubes or

concentric stranded cables in which the core or central strand

is not of greater thickness than half an inch, and which con

dition necessitates, therefore, that when above a certain cross
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sectional area the central conductors should also be of tubular

form. 0ne of the advantages to be gained by the employment

of alternating currents of low frequency is that the limiting

diameter of the conductors is much larger for low than for

high frequency. To return to our illustration of the twisting

basin of fluid. Suppose the action on the vessel consists in

rapidly twisting it through a small angle, first one way and

then the other, the liquid in the interior would be subjected to

a strain which would consist in the various concentric layers

of the liquid sliding backwards and forwards over each other.

The interior of the liquid would be thrown into stationary

waves, in which the nature of the wave motion consisted in

each particle of water being displaced first one way and then

another along an arc of a circle described on a horizontal

plane, with its centre in the axis of rotation. The more rapid

the motion the greater would be the rate of decrease in the

amplitude of each wave in passing from the circumference to

the centre of the vessel ; in other words, for very rapid oscilla

tions the bulk of the water in the centre of the basin would

remain nearly at rest.

Every experiment as yet made on the self-induction or change

of self induction in conductors is consistent with the above*

hypothesis. It shows, for instance, why a conductor composed,

of thin insulated wires or thin insulated strips has a less self-

induction than a solid conductor of equal cross-section. Prof.

Hughes says* :—" We can reduce the self-induction of a

current upon itself to a mere fraction of its previous value

by simply separating the contiguous portions of a current

from each other, the results proving that a comparatively small

separation, such as is obtained by employing ribbon conductors

in place of a wire of the same weight, reduces the self-induction

80 per cent, in iron and 85 per cent, in copper, and if we still

divide the current by cutting the ribbon into several strips

(separating the strips at least 1 centimetre from each other),

then the combined but separated strips show a still greater

reduction, being 94 per cent, in iron and 75 per cent, in copper."

These, and many other experiments of a similar sort, indicate

that we may regard the inductance of a conductor as an effect

which is due to the fact that the current takes time to pene-

* luaugural Address, Journal Soc. Tel. Eng., 1886.
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trate into the conductor, and that a reduction of the time

required to arrive at an equal current density in all parts

of the conductor can be effected by any change of form

which brings the inner parts of the conductor nearer the

surface, or makes them more get-at-able from the dielectric,

The better the conductor the slower is the rate of equalisation

of current density over its cross-section—in other words, the

less rapid is the rate of diffusion of the current inwards from

circumference to centre; and the " time constant " of the

circuit, or the time in which, under the operation of a constant

electromotive force, the current will rise to a definite fraction

of its maximum value, is a quantity proportional to the con

ductivity of the circuit, and to another factor (the formal

inductance), which may be considered as expressing the

accessibility of the conductor as regards geometrical form to

the entrance of the current into it ; and finally, in the case of

magnetic conductors, to a quantity (the permeability) deter

mined by the capacity of the conductor to utilise part of this

incoming energy in producing magnetisation of its substance.

We are indebted to a Paper read before the Austrian

Academy by Prof. Stefan for a simple and intelligible analogy

helping to comprehension of the electrical distribution of

current in a conductor. Imagine a cylinder or cylindrical

wire heated throughout to a uniform temperature ; let it be

suddenly brought into a chamber where the temperature is

higher. The outer layers of the cylinder will rise first in

temperature, and gradually convey the heat to the successive

interior layers. Precisely the same order of phenomena

occurs if an E.M.F. is suddenly set up between the ends of

the wire or cylinder. The current during the variable state

passes first through the outer layers alone, and gradually

penetrates the inner layers. When the external E.M.F.

is suddenly removed, the action, of ceasing in the current

resembles the cooling of the cylinder. The current ceases

first, or, rather, most quickly, in the outer layers.

Now, let us imagine the cylinder transferred to and fro

from a very hot place to a cool one. It is easy to see that

waves of heat will pass in and out radially, and also that the

condition at any instant will depend largely upon the rate of

transference.

z
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When the rate of motion is sufficiently slow, the waves of

heat passing any given point in the radius of the wire follow

exactly with the periodic changes of position. The amplitudes

of these variations have values which decrease from the sur

face inwards. When the rate of change is increased, the

amplitude of the waves gets shorter and shorter, and at an

infinite velocity of transference the wire would acquire an

equable temperature throughout. In the electrical analogue

the rate of transference corresponds to the inverse of the

periodic time of an alternating current. The heat conducting

power of the material corresponds to electrical resistance.

Prof. Stefan gives some numerical illustrations which are

useful. If an alternating current have a frequency of 250 per

second and is passed through an iron wire of 4mm. diameter,

the amplitude of the waves of current density is about twenty-

five times greater upon the surface than at the axis of the wire.

For double the number of vibrations per second the external

amplitude becomes only six times as great. The difference of

phase is one-third the duration of the vibration in the first

case and one-half in the second. The latter statement implies

that the external current is at a given moment actually in the

reverse direction to the internal current.

For non-magnetic wires the difference is not nearly so

marked, and it decreases as the specific resistance increases.

For a copper wire of 4mm. diameter, with a periodic time of

one 500th second, the difference between the current density

at the surface and at the centre is only 14 per cent. If, how

ever, the copper wire be increased to 20mm. diameter, then

we should get the same difference as in the particular iron

wire quoted.

It is obvious that this non-homogeneous distribution of

current must increase dissipation of energy, which is, of

course, proportionate in each transverse section to the square

of the current strength at that spot. In the case of the iron

wire quoted, the increase of resistance is 48 per cent, at the

250 per second frequency, and 100 per cent, at the higher

speed. As the frequency of alternation is increased, the

resultant self-induction of the circuit is lessened, but although

the true resistance is increased, the impedance may be

diminished on the whole.
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§ 12. Electromagnetic Repulsions.—The effects of self and

mutual induction in conducting circuits are well illustrated in

studying the dynamical actions taking place between con

ductors conveying currents and other circuits. On the 2nd

day of October, 1820, Ampere presented to the Royal Academy

of Sciences in Paris an important memoir, in which he summed

up the results of his own and Arago's investigations in the

then new science of electro-magnetism, and crowned that labour

hy the announcement of his great discovery of forces of

attraction or repulsion existing between conductors conveying

electric currents.* Respecting that achievement, when deve

loped in its experimental and mathematical completeness,

Clerk Maxwell speaks of it as " one of the most brilliant in

the history of physical science." Our wonder at what was

then accomplished is increased when we remember that hardly

more than two months before that date John Christian Oersted

had startled the scientific world by the announcement of the

discovery of the magnetic qualities of the space near a current-

traversed conductor. Oersted named the actions around the

conductor, which we now refer to as the magnetic field, the

electric conflict, and in his first Paper.t in describing the

newly-observed facts, he says : " It is sufficiently evident that

the electric conflict is not confined to the conductor, but is

dispersed pretty widely in the circumjacent space." "We

may likewise collect," he adds, "that this conflict performs

circles round the wire, for without this condition it seems

impossible that one part of the wire when placed below the

magnetic needle should drive its pole to the east and when

placed above it to the west." These words are taken from the

original paper, which stimulated the philosophic thought of

* Mcmoire presente a l'Academie Royale des Sciences le 2 Octobre,

1820, oij se trouve compris le resume1 de ce qui avait 6t6 lu a la meme

Academie le2 18me et 2Sme Septembre, 1820, sur le2 effete des courante

Electrique, par M. Ampere. See Vol. XV. Annales de Chimie, 1820.

t In the Annals of Philosophy for October, 1820, VoL XVI., p. 274, is

to be found an English translation of Oersted's original Latin essay, dated

July 21, 1820, describing his immortal discovery. This Paper is entitled

" Experiments on the Effects of a Current of Electricity on the Magnetio

Needle," by John Christian Oersted, Knight of the Order of Danneborg,

Professor of Natural Philosophy in Copenhagen.

x2
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Ampere, and finally led him to the valuable discovery of

the electro-dynamic actions between conductors conveying

currents.

Referring the student to text-books on Physics for the

complete statement of Ampere's work, we may describe briefly

some illustrations of the interactions of two circuits traversed

by currents in the same or opposite directions. Holding a

circular coil traversed by a continuous electric current near to

a similar circuit free to move, we find that when the circuits

are parallel to each other there is an attractive force between

them if the currents in adjacent parts of the circuits flow in

the same direction, and a repulsive effect if they flow in the

opposite. This is the electro-dynamic action discovered by

Ampere and utilised in the construction of instruments for the

measurement of electric currents in practical work. If one

conducting coil, such as that of an electro-magnet, is traversed

by an alternating current, and the other is simply a closed

circuit or coil placed a little distance off, but in its field, it has

been previously explained that the closed circuit becomes the

seat of an alternating induced current, which, if the inducing

current is sufficiently powerful, can be made to render itself

evident by illuminating a small incandescent lamp placed in

the secondary circuit.* We notice, however, that in perform

ing the experiment the secondary circuit must be so placed

that the magnetic induction of the primary coil perforates

through the secondary circuit. If the secondary circuit is

held in such a position that the reversal of direction of the

primary current causes no reversal of direction of the magnetic-

field traversing the secondary circuit, because it is not linked

with any of the lines of induction of the primary, the secondary

circuit is no longer the seat of any induced current.

* The experiments described in the following paragraphs can be shown

with an alternating current magnet, having a core formed of a bundle of

fine iron wire about 3in. in diameter and 12in. long, excited by an alternat

ing-current dynamo, giving a current at an electromotive force of about

100 volts. A small shelf around the core a little above the middle serves

as a support for rings, &e., to be projected. The performance of these

experiments on a scale suitable for large audiences requires from 10 tc.

15 horse-power at least, and can hardly be shown well unless the alternator

can provide a current of 100 amperes at 100 volts available at the moment

of maximum demand.
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This electromagnetic induction thus taking place across

Bpace is not stopped by the interposition of a non-conducting

screen. The magnetic induction passes freely through a

deal board or a plate of glass, but if we interpose a thick sheet

of copper (Fig. 112) we thereby screen the secondary circuit

from the inductive action of the primary. The rapid heating

of this copper screen makes us aware that the secondary

currents are induced in the copper sheet in the form of eddy

currents, and it therefore screens the secondary circuit, as

already explained, because the inductive action of these eddy

 

Fia. 112.—Copper Plate interposed between a Primary and a Secondary

Coil and shielding the Secondary from Induction.

currents on the side remote from the magnet is exactly equal

and opposite in inductive effect to that of the primary circuit

on the secondary coil.

If a continuous current is sent through the coils of an

electro-magnet, and magnetises its iron core very powerfully,

it is found to be impossible to strike the pole of the magnet a

sharp blow by means of a sheet of copper. Holding a sheet

of copper over such a magnetic pole, and exciting the magnet,

the hand holding the copper sheet feels a repulsive action at
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the moment when the current is put on and an attractive

action when it is cut off. If we try to slap the magnet pole

sharply with the copper sheet, it is found that this repulsive

force prevents anything like such a sharp blow being given to

the pole when the current is on as can be given when the

current is off. Moreover, when a very powerful electro

magnet is employed, it is found that a disc of copper let fall

over the pole does not fall down sharply and quickly on to it

when the current is flowing through the coils of the magnet,

but settles down softly and slowly as if falling through some

viscous fluid. The correct explanation of these facts is to be

found in the statement that the motion of the conductor

towards the magnetic pole causes eddy electric currents to be

generated in it by electro-magnetic induction, and that these,

being in the opposite direction to the exciting current of the

magnet, cause a repulsive force to exist between the inducing

and secondary circuits, which creates the apparent resistance

we feel.

In order to exhibit the stress brought into existence between

an electro-magnet and a metal sheet held near it when induced

currents are set up in the disc, we may arrange the following

experiment :—0ver the pole of a powerful electro-magnet

we balance a small disc of copper, the size of a penny,

carried on one end of a delicately-balanced bar. A mirror

attached to that bar serves to reflect on to a screen a ray

of light indicating the smallest motion of the copper disc.

0n magnetising the magnet the copper is suddenly repelled,

but comes to rest again immediately in its initial position.

When the magnet is demagnetised the copper experiences a

momentary attraction. 0r we may illustrate the same action

in another way. Consider, for instance, a ring of copper

hanging in front of the pole of an electro-magnet (see Fig. 113),

having the plane of the ring perpendicular to the lines of

magnetic force proceeding out from the pole. Let the

magnet be an electro-magnet, and let the pole be suddenly

made a north or marked pole. Lines of magnetic force are

thrust into the aperture of the ring. This magnetic flux, in

accordance with a well-known law, generates an inductive

electromotive force, which causes a transient current to flow

round the ring in a counter-clockwise direction, as looked at
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ftom the north magnetic pole. The ring becomes virtually a ,

Magnetic shell, having a north pole facing the north pole of

the exciting magnet. By the fundamental laws of action

between currents and magnets established by Ampere, the

ring experiences a slight repulsive force, due to the electro-

dynamic action between the current in the ring and the

magnetic pole. The generation of the momentary induced

current in the ring is accompanied by an electro-dynamic

impulse tending to thrust it away from the pole.

Suppose, next, that the electro-magnet is demagnetised.

The ring has generated in it a reverse induced current flowing

in the direction the hands of a clock move when looked

at from the magnetic pole. This is also accompanied by an

electro-dynamic attraction of the ring towards the pole, but

 

Fig. 113.—Copper Ring hung in the Field of an Electro-magnet, and

Repelled or Attracted when the Current is put on or cut off.

which is much more feeble than the previous repulsion. These

attractions and repulsions are obviously due to the Amperian

stress set up between the magnet and the metal by reason

of the induced currents set up in the latter. It has been

pointed out by Prof. S. P. Thompson that Ampere himself

probably observed an effect of this kind (Proc. Phys. Soc. of

London, Vol. XIII., p. 493, " Note on a Neglected Experiment

of Ampere."). Impulsive effects of this nature have been also

studied by Prof. Vernon Boys (see Proc. Phys. Soc. of London,

Vol. VI., p. 218, " A Magneto-electric Phenomenon ").

Let us in the next place consider a circuit, say a closed

conducting ring, suspended in front of the pole of an electro

magnet, and let the coils of the electro-magnet be trans-
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versed by an alternating current of electricity (Fig. 118).

The magnetic field of the magnet is then an alternating field.

We shall suppose it to vary in strength according to a

simple periodic law. The closed circuit is therefore subjected

to an inductive action, and we know that the induced electro

motive force in that circuit is at any instant proportional

to the rate of change of the magnetic field in which it is

immersed. If, therefore, the variation in strength of that field

is represented geometrically by the ordinates of a periodic

curve, the varying electromotive force acting in the ring circuit

is represented by the ordinates of another such curve of equal

 

Fig. 114.—Diagram showing the Equality of the Attractive and Repulsive

Impulses in a Non-inductive Circuit when held in an Alternating Magnetic

Field.

wave length, shifted a quarter of a wave length behind the

first. In the diagram (see Fig. 114) the variation of the in

duced magnetic field, and the induced electromotive force in

the circuit, are represented as usual by two harmonic curves.

This induced electromotive force creates an induced current

flowing backwards and forwards in the ring, and we shall,

in the first instance, suppose that this current flows in

exact synchronism with its electromotive force. The

induced current and the inducing magnetic field may there

fore be represented as to relative phase and strength by the

curves in the diagram (Fig. 114). The dynamical action,
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or the force which the ring experiences, is at any instant

proportional to the product of the strength of the magnetic

field in which the ring is immersed and to the strength of the

induced current created in it. If we multiply together the

numerical values of the ordinates of these two curves at any

and every point on the horizontal line, and set up a new

ordinate at that point representing this product, the extremi

ties of these last ordinates define a curve, which is a curve

representing the force acting on the secondary circuit ; and it

is seen from the diagram (Fig. 114) to be a wavy curve having

a wave length equal to half that of the first two curves. More

over, the whole area enclosed between the outline of this force

curve and the horizontal line represents to a certain scale the

time integral of that force, or the impulse acting on the secon

dary circuit, and the theory shows us that, under the assump

tions made, the secondary circuit so acted upon experiences in

each period of the current four impulses, two positive or repul

sive, and two negative or attractive. Hence, it follows that

such an ideal conducting circuit held in front of an alter

nating electro-magnet should experience a rapid alternate series

of equal pushes and pulls, or of little impulses to and from the

magnet. These equal and opposite impulses in quick succession

'would neutralise one another, and our supposed circuit would

not, on the whole, be subject to any resultant force.

When we present a real conducting circuit to the pole of an

olectro-magnet traversed by a powerful alternating current,

we find that under the actual circumstances there is a powerful

repulsive action between the pole and the circuit. With a

powerful alternating current electro-magnet striking effects

of repulsion may be thus shown.

If we hold a copper ring over the pole of a powerful vertical

alternating electro-magnet, we find at once that there is a

perceptible and strong repulsion. Letting the ring go, it

jumps up into the air, impelled so to do by the electro-magnetic

repulsion acting upon it (Fig. 116). All good conducting rings

will execute this gymnastic feat, and rings of copper and

aluminium are found to be most nimble of all. Rings of zinc

and brass are sluggish, and a ring of lead will not jump at all.

Prof. Elihu Thomson was the first to call attention to this

strong repulsive action between conducting rings and an
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alternating electro magnet. He has thus described his first

notice of these effects :—" In 1884, while preparing for the

International Electrical Exhibition at Philadelphia, we had

occasion to construct a large electro-magnet, the cores of which

were about Gin. in diameter and about 20in. long. They

were made of bundles of iron rod about TVn- m diameter.

When complete the magnet was energised by a current from

a continuous-current dynamo, and it exhibited the usual

powerful magnetic effects. It was found also that a disc of

sheet copper of about in thickness and lOin. in diameter,

if dropped fiat against a pole of the magnet, would settle down

softly upon it, being retarded by the development of current*

 

Fig. 115.

in the disc, due to its movement in a strong magnetic field,

and which currents were of opposite direction to those in the

coils of the magnet. In fact, it was impossible to strike the

magnet pole a sharp blow with the disc, even when the

attempt was made by holding one edge of the disc in the hand

and bringing it down forcibly towards the magnet. In

attempting to raise the disc quickly off the pole a similar

but opposite action of resistance to movement took place,

showing the development of currents in the same direction as

those in the coils of the magnet, and which current, of course,

would cause attraction as a result. The experiment could be

tried in another way. Holding the sheet of copper by one
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edge, just over the magnet pole (see Fig. 115), the eurrent in the

magnet coils was cut off by shunting them. At that moment

was felt an attraction of the disc, or a dip towards the pole.

On starting the current the plate experienced a powerful re

pulsion." The question may then be asked : Why is it the

metal rings are always repelled by the alternating magnet ?

The explanation is not difficult to find. The real ring possesses

a quality, called its inductance, of which we took no account

in our examination of the case a moment ago. As a con-

 

Fig. 116.—Aluminium Hiug projected from the pole of an Alternating

Electro-magnet, and floatiug over the pole when restrained by three

strings.

sequence of this inductance we have seen that the current

induced lags in phase behind the inducing electromotive force.

We have then to correct the diagram considered just now,

to make it fit in with the facts of nature, and we must repre

sent the periodic curve which stands for the fluctuations of

the induced current in the ring as shifted backwards or

lagging behind the curve which represents the electromotive

forci) in the circuit brought into existence by the fluctuating
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magnetic field. Making this change (Fig. 117), and forming,

as before, a force curve to represent the impulses on the ring, we

then find that, owing to the " lag " of the secondary current,

one set of the impulses, namely, the positive or repulsive

impulses, has been enlarged at the expense of the negative or

attractive impulses. Theory, therefore, points out that, as a

consequence of the self-induction of the ring, the balance

between the attractive impulses and the repulsive impulses ia

upset, and that the latter predominate. The real ring behaves

therefore, very differently to the ideal non-inductive ring.

The real ring is strongly repelled, because the resultant action

/ ^ Bepulsive Iwjw1tcs. / . *S 

Fio. 117.—Diagram showing the Inequality of the Attractive and Repul

sive Impulses in the case of an Inductive Circuit when held in an Alter

nating Magnetic Field.

of all the impulses is to produce, on the whole, an electro

magnetic repulsion. This repulsion is evidence of the self-

induction or inductance of the circuit exposed to the magnetic

field, and it forms a new way of detecting it. But although

this is part of the truth, it is not the whole truth. The lag of

the induced current in the ring, and hence the predominance of

the repulsive impulses, depends on the conductivity of the

material of which the ring or circuit is made ; and the better
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this conductivity the greater is that repulsion, because both

the induced current and the lag are thereby increased. Hence

it comes to pass that there are two factors involved in making

this repulsive effect, the conductance of the ring or disc and

its inductance. For equal conductivities, the greater the self-

induction the greater the repulsion. For equal self-inductions,

the greater the conductivity of the circuit so much the more

repulsive effect will be produced.

We can show the effect of the relative conductivity of discs

of equal size, and therefore of equal self-induction, by weighing

similar discs of various metals over an alternating pole. If we

take discs of copper, zinc, and brass of equal form and size,

and weigh these discs on the scale pan of a balance placed

over the pole of an alternating current magnet, the scale pan

being made of a good non-conductor, we can measure the

electro-magnetic repulsion on the disc by the loss in weight it

experiences.*

The same result can be illustrated by placing over the pole

of our alternating magnet a paper tube. Taking one of the

copper rings, and first exciting the magnet, we let the ring

drop down the tube. It falls as if on an invisible cushion that

buoys it up, and it remains floating in the air. If rings of

different metals and equal size are placed -on the tube, they

float at different levels like various specific-gravity beads in a

liquid. The greater the conductivity of the ring the greater

is the repulsion on it in any given part of the alternating

field, and hence the highly conducting rings will be sustained

in a weaker field than the feebler conducting ring, assuming

the rings to have about equal weights. Moreover, we are able

to show by another experiment the fact that these rings are

traversed, when so held, by powerful electric currents. If we

press down the copper ring upon the zinc or brass ring floating

beneath it, the rings are attracted together and the copper ring

holds up the zinc. This is obviously because the rings are all

traversed by induced currents circulating in the same direction.

It is, of course, an immediately obvious corollary, from all

that has just been said, that any cutting of a ring or disc which

* Experiments of this kind have been made by M. Borgman. See

Campus Xendus, No. 16, April 21, 1890, p. 849, and also February 3, 1890,

Vol. CX., p. 233.
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hinders the flow of the induced currents causes the whole of

the repulsion effects to vanish. We illustrate this by causing

a ring of copper wire to jump off the pole, and then cutting it

with pliers, find it has ceased to be capable of giving signs of

life. When the metallic masses or circuits which are pre

sented to the alternating magnetic pole are of very low

resistance the electro-magnetic repulsion may become very

powerful, many pounds of thrust or push being produced by

apparatus of quite moderate size. It is, in fact, quite startling

to hold over the pole of a very powerful alternating magnet a

very thick plate of high conductivity copper. It would greatly

surprise anyone not acquainted with these principles to be told

that a massive copper ring weighing eight or ten pounds could

 

Flo. 118.—Copper Ring "floating" in air over the pole of an Alternating

Current Electro-magnet, when restrained by strings.

be made to float in the air, but it is possible to show tbis

easily. The ring needs to be tethered by light strings

(Fig. 118) to prevent it from being thrown off laterally,

although these strings in no way support its weight.

0ne of the most beautiful of Prof. Elihu Thomson's experi

ments exhibits this effect of electro-magnetic repulsion on a

closed coil, which is buoyed up in water by a small incandes

cent lamp in circuit therewith. In a glass vase is floated

a little glow-lamp like a balloon (Fig. 119). The car con

sists of a coil of insulated wire, and the ends of this coil
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are connected with the lamp. The whole arrangement is

accurately adjusted to just, or only just, float in water.

Placing the vase over an alternating magnetic pole, the

magnetic induction creates a current in the coil which lights

the lamp, and, moreover, the electro-magnetic repulsion on

the coil causes the lamp and coil to rise upward in the water.

There is also another class of actions—namely, deflections

and rotations—produced by electro-magnetic repulsion on

highly conducting discs or rings. If the conducting ring

or disc which is presented to the alternating magnet is con

strained by being fixed to an axis around which it can rotate,

Flo. 119.—Incandescent Lamp and Secondary Coil floating in water and

Repelled by an Alternating Current Electro-magnet placed beneath.

the action may reduce to a deflective force. 0n presenting a

flat suspended disc to the pole, the disc is prevented by its

constraint from being repelled bodily ; so it sets its plane

parallel to the lines of magnetic induction, and places itself in

a position such that the induced currents in it are reduced to

a minimum. 0n this principle, before becoming acquainted

with Prof. Elihu Thomson's original work, the author devised
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a little copper disc galvanometer for detecting small alter

nating currents.

This deflection by an alternating current of a copper disc

suspended within a coil with its plane inclined to the plane of

the coils was, in March, 1887, noticed independently by the

author, who subsequently described a copper disc galvanoscope

for alternating currents based on this fact (see The Electrician,

May 6, 1887). He did not at the time know how thoroughly

Prof. Thomson had explored the phenomena, but the sub

stantial explanation of the facts as above given had already

occurred to him.

More interesting than the deflective actions are those which

result in the production of continuous rotation in highly

 

Fia. 120.—Alternating Electro-magnet with Shaded Poles, causing a

Copper Disc placed between the Jaws to revolve.

conducting bodies placed in an alternating field. We employ

for this purpose an electromagnet having a laminated iron

core (see Fig. 120), the ends of the iron circuit being provided

with copper bars, which embrace and cover portions of the

polar terminations of the magnet. When the magnet is

excited by a periodic current, these secondary circuits become

the seat of powerful induced secondary currents. Taking in

hand a large copper disc pivoted at the centre and held in a

fork, we hold this wheel so that part of the disc is inserted

between the jaws of the electro-magnet. Immediately, rapid
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rotation is produced. The reason is not far to seek. The

alternating field creates induced currents, both in the closed

coils and in the neighbouring portions of the disc ; and the con

ductors in which they flow are therefore drawn together. If

the polar coils are so placed as to partly shield the poles

these attractive actions act unsymmetrically on the disc and

pull it continuously round. The action is, perhaps, better

illustrated by a simpler experiment. If we hold a pivoted

copper disc (Fig. 121) symmetrically over an alternating

pole, the action of the pole is one of pure repulsion on the

disc, and it causes no rotation in it. When a copper sheet

is so placed as to shield or " shade," as Prof. Thomson calls

 

Fio. 121.—Revolution of a " Shaded " Copper Plate held over the Pole of

an Alternating Current Electromagnet.

it, part of the magnetic pole, currents are induced both in

the fixed plate and in the movable one. The fixed disc

shields part of the other from the induction of the pole, and

I on 'c causes the induced currents in that plate and disc to be

so located that they are in positions to cause continual attrac

tion between the conductors and to continuously pull round

the movable disc into fresh positions, so creating regular

rotation.

This principle of " shading " a portion of a conductor from

the inductive action of the pole, and so causing the eddy

currents in it to be located in a portion of its service and tc

cause attraction between that conductor and the shading

conductor, is capable of being exhibited in various ways.
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We place on a copper plate a light, hollow, copper ball (see

Fig. 122), and support it in a little depression in a copper

plate. Holding the arrangement over the alternating magneti

the ball begins to spin round rapidly when the magnet is

excited. This rotation is caused by the continual attraction

of the eddy currents induced in the fixed plate and in that

part of the ball which is not shielded from the pole by the

plate. We may vary the experiment, and exhibit many more

or less curious and amusing illustrations of it. If we float

these copper balls in water (Fig. 128), and place the glass

bowl containing them over the alternating pole, the interposi-

 

Fio. 122.—Light, Hollow, Copper Ball standing in a depression on th«

edge of a Copper Plato, and set in rotation when held over the Pole of an

Alternating Electro-magnet.

tion of a copper sheet between the pole and the balls causes the

latter to begin to spin in a highly energetic manner.*

Amongst other illustrations of the principles above described

Prof. Elihu Thomson invented a novel form of electro

magnetic gyroscope (Fig. 124). Over the alternating magnet

a gyroscope of the usual form is suspended. The wheel of the

gyroscope is made of iron, and the tyre of the wheel is a thick

copper band. Immediately the iron core is magnetised, the

* For a mathematical discussion of these electro magnetic rotations, see

Phil.. Trans. Royal Soc., Vol. CLXXXIIIa., 1892, p. 279, Mr. G. T.

Walker on " Repulsion and Rotation produced by Alternating Elcctrio

Currents."
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gyroscope begins to rotate with great rapidity over the pole.

In this case the unsymmetrical disposition of the eddy currents

in the copper band around the wheel is sufficient by itself to

cause the rotation to occur. The phenomenon, however, which

lies at the bottom of all these effects is that the self-induction

of the secondary circuit causes the eddy currents to be delayed

in phase behind the magnetising field, and hence to persist

into the period of reversal of that field, and so produce the

repulsion between the primary conducting circuit and that

part of the secondary conducting circuit in which the eddy

currents are set up.

 

Fra. 123.—Hollow Copper Ball floating in water over an Alternating

Current Electro-magnet, and caused to revolve by the interposition of a

" shading " copper plate.

0ne more experiment in this part of the subject may be

referred to. Returning to the use of the electro-magnet,

in which the iron circuit is all but complete, we find that,

when a highly-conducting disc is put between the closely

approximated half-shielded jaws of this electro-magnet, and an

alternating current employed to excite it, the conducting disc

is held up in the air gap by reason of the attraction set up

between the currents induced in the disc and the shielding

polar plates. If, however, the disc has a relatively poor con

*2
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duetivity the attraction is not nearly so marked. A good or

bad silver coin can thus be discriminated, because the good

silver coin has sufficient conductivity to be the seat of power

ful induced currents, but the bad coin has not.

Closely akin to the foregoing, but more difficult to explain,

are the rotations in copper and iron discs which can be

caused by the approximation to them of a laminated iron bar

alternately magnetised. These actions have been carefully

studied by Prof. Elihu Thomson, and applied by him and

others in many practical devices. Across the top of an

electro-magnet is placed a long bar of laminated iron with the

plane of the lamination vertical (Fig. 125). This bar is

 

Fia. 124.—Electromagnetic Gyroscope Revolving over the Pole of an

Alternating Current Electro-magnet.

surrounded at intervals by copper bands, which iorm small

closed secondary circuits upon it. If we excite the magnet

and hold near the bar an iron disc capable of free rotation, it

begins to rotate rapidly. Not only can this be done with a

laminated bar throttled by conducting circuits, but oven a solid

bar of hard steel will serve the same purpose, and a couple of

steel files placed across the poles can cause rapid rotation in

pivoted discs of copper or of iron held with their edges close

to the bars so alternately magnetised.

To understand the operations which produce this rotation,

we have to return to some elementary principles. Consider
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a conducting ring held in front of the electro-magnet as in

Fig. 113. Let a sudden flux of magnetic induction be made

through the ring aperture, that is, in common parlance, let

" lines of force" be thrust through the opening of the ring.

If these lines proceed out from a north pole, they will create

an electromotive force in the ring in such a direction as to

make a current flow counter-clockwise round the ring as seen

from the pole. This current in the ring itself creates a

magnetic field round the ring, and a consideration of the

direction of the current will show tbat in the central aperture

of the ring the dire tion of the inducing field and the field due

to the induced current are in opposite directions. The effect of

 

Fio. 125.—Alternating Current Magnet with Laminated Iron Bar across its

pole causing Revolution of two Iron Discs held near its extremities.

this opposition is to retard the formation of the field due to

the magnet in the aperture of the ring. In other words,

the current induced by the internal field causes the lines of

induction due to the external pole to be, as it were, momen

tarily thrust out laterally, and resisted in their endeavour to

pass through the aperture of the ring.

If we consider a bar of iron surrounded with a copper

band, and imagine that this bar is suddenly acted upon by

a magnetising force at one end, the result of the current

induced in the ring will be that for a brief time the
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magnetic induction in the bar will be caused to leak

out laterally, and go round the copper ring on the out

side, its passage through the ring being resisted. If, then,

we throttle a magnetic circuit, such as a laminated iron

bar, with copper coils closed upon themselves, and place a mag

netising coil at one end, the closed conducting circuits hinder

the rise of magnetic induction in the bar ; or, in other words,

give it what may be called magnetic self-induction. If the

source of magnetism is a rapidly-reversed pole, the consequences

of this delay or " lag " in the induction is that a series of alter

nating magnetic poles are always travelling with retarded speed

up the bar, and these may be considered to be represented

by tufts of lines of magnetic induction which spring out from

and move laterally up the bar. If the bar is not laminated and

not throttled, the eddy currents set up in the mass of the bar

itself act in the same way, and operate to resist the rise of

induction in the bar and to delay the propagation of mag

netism along it. Hence we must think of such a throttled

bar, when embraced by a magnetising coil at one end, as sur

rounded by laterally moving bunches of lines of magnetic

induction, which move up the bar. Each reversal of current

in the magnetising coil calls into existence a fresh mag

netic pole at the one end of the bar, which is, as it were,

pushed along the bar to make room for the pole of opposite

name, which appears the next instant behind it. When an iron

disc is held near such a laminated and throttled bar, these

laterally moving lines of force induce poles in the disc which

travel after the inducing poles, and hence the disc is continually

pulled round. If the disc is a copper disc, the laterally moving

lines of magnetic force induce eddy currents in the disc, and

these, by the principle already explained, create a repulsion

between the pole and that part of the disc in which the eddy

currents are set up, causing revolution of the disc.

An interesting application of the above principle has been

made in the meter of Messrs. Borel, Wright and Ferranti

for measuring alternating currents. It consists of a pair of

vertical electro-magnets (see Fig. 126), with laminated iron

cores, and each magnet bears at the top a curved horn of

laminated iron which is throttled by copper rings. These

curved horns, springing from the magnets, embrace and
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nearly touch a light iron-rimmed wheel, free to turn in the

centre. The actions just explained drive the wheel round,

when the magnet coils are traversed by an alternating current.

The iron wheel carr es on its shaft a set of mica vanes, which

retard the wheel by air friction. Under the opposing influ

ences of this retardation and the electro-magnetic rotation

forces, the wheel takes a certain speed corresponding to

different current strengths in the magnetic coils, and hence

the total number of revolutions of the wheel in a given time,

as recorded by a counter, serves to determine the total

quantity of alternating current which has passed through

the meter.

The rotat'on of iron discs can be shown also by means of a

badly-designed transformer. If a closed laminated iron ring

 

Pig. 127.—Magnetic Leakage across a Throttled Iron Ring, causing rotation

of an Iron Disc placed near the Secondary Coil.

(Fig. 127) is wound with a couple of conducting circuits, such

an arrangement constitutes a transformer. If these two

circuits are wound on opposite sides of the iron ring, the

previous explanations show that the arrangement will be

productive of great magnetic leakage across the iron circuit.

In designing transformers for practical work, one condition

amongst others which must be held in view is to so arrange

the conductive and magnetic circuits that a great magnetic

leakage of lines of force across the air does not take place.

If, however, this leakage exists, it indicates that the secondary-

circuit is not getting the full benefit of the induction created

by the primary. To detect it we have merely to hold near the
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iron circuit a little balanced or pivoted iron disc, and if it is

set in rapid rotation it indicates that there are laterally-

moving lines of magnetic force outside the iron, which have

escaped from the iron in consequence of the back-magneto-

force of the secondary circuit.

The above described phenomena have been utilized in the

construction of measuring instruments of various kinds, and

the effects due to the magnetic leakage of magnetic fields will

be found to have applications which will be considered more

carefully in discussing the action of transformers.

§ 13. Symmetry of Current and Induction.—A consideration

of the effects described in the present chapter will have dis

closed to the careful reader that there is a complete symmetry

between the two fundamental quantities, electric current

and magnetic induction. Let the diagrams in Fig. 128

represent a circuit of iron (magnetic circuit) linked with

a circuit of copper (conductive circuit) and let the iron circuit

have wound on it a magnetising coil capable of imposing a

magneto-motive force (M.M.F.) on it, whilst the conductive

circuit has a source of electromotive force (E.M.F.), say a

battery, introduced into it. Suppose, then, that this E.M.F. is

suddenly introduced in the conductive circuit, the linking of

this circuit with the iron circuit bestows considerable self-

induction on the conductive circuit, and this operates to delay

the rise of the current strength in the conductive circuit when

the E.M.F. is suddenly applied. If the two circuits were

plunged into a good conducting liquid medium, the action of

the iron circuit would be to cause a leakage of current across

the conductive circuit. Quite similarly, we find that if a

magnetomotive force is suddenly applied to the iron circuit,

the induced current set up in the conductive circuit opposes

the growth of the induction in the magnetic circuit, and, as

air is not an insulator for magnetic induction, it causes a

leakage of magnetic induction across the circuit. Hence the

growth of electric current in the conductive circuit is hindered

by linking it with an iron circuit, and the growth of magnetio

induction in an iron circuit is hindered by linking it with a

copper circuit. This is only one instance of the fact that the

laws of current establishment in conductive circuits are similar
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to the laws of establishment of magnetic induction in magnetic

circuits.

The growth of current from surface to centre of con

ductors has been described in sections of this chapter. The

gradual soaking in, or growth of the magnetic induction, from

the surface to the centre of the iron cores of electro-magnets,

when a sudden external magnetising force is applied, has been

experimentally examined with great skill by Dr. J. Hopkinson

and Mr. E. Wilson, and the reader is referred for a full account

Electric CircutL Magnetic Circuit.
 

Electric Circuit. Magnetic Circuit, i
 

Copper lron.

Flo. 128.—Di2grams illustrating the Symmetry in relation between

Electromotive Force and Electric Current, and Magnetomotive Force

and Magnetic Induction.

of their work to 2> Electrician, Vol. XXXIV., 1895, p. 510.

Very briefly it may be said that these experiments consisted in

showing experimentally that in the case of an electro-magnet

with a very large solid iron core the magnetic induction in

the iron is not established instantaneously at its full value

at all points in the iron when the magnetising force is
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applied, but it begins at the surface of the core and slowly

works inwards to the centre. In an entirely similar manner

we know that in a conductor of large cross-section the

actions involved in the production of a current in the

conductor establish the current first at the surface of the

conductor, and the central portions of the conductor are

only reached by it after a certain finite time. We shall

return in the next chapter to the discussion of some of these

theoretical questions.



CHAPTER T.

DYNAMICAL THEORY OF INDUCTION.

§ 1. Electromagnetic Theory.—In the matter so far before

the reader attention has been directed to the chief facts of

electromagnetic induction without any inquiry into the

possible mechanism by which this may be effected. Attention

may at this stage be directed to modern views of the subject,

which have been the outcome of the work of Faraday and

Maxwell and all their illustrious followers in this field of

study. The cardinal principle of these methods of viewing

the phenomena is the denial of action at a distance. That is

to say, if at any point in a field we find a force due to a

current flowing in some conductor, this force cannot be

regarded as appearing there without anything happening in

the interspace, but must be the consequence of successive

changes in closely contiguous places, and not the result of

operations at a distance without intermediate machinery.

Whenever we find an electromagnetic effect taking place

at any locality we are directed therefore by these notions

to look for its antecedents or consequences at the adjacent

places, and the apparent phenomenon is not to be regarded as

the whole of it, but to be taken as a portion of the whole

of the effects which are produced in every part of the region

or medium. The finite velocity of light, and the impossibility

of accounting for its propagation on any other hypothesis than

that of actual transmission of something across space, or the

propagation of a state of stress and strain or periodic change

of some kind through a medium, led to attempts to settle

between the rival hypotheses by crucial experiment, with the

result that the vast bulk of the accumulated evidence decides
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in favour of the existence in space of a medium which has

properties not possessed by the ordinary atomic matter, but

which may certainly be called a material substance in the

sense that it can be the recipient or vehicle of energy. The

study of the phenomena of light indicates that along the path

of a ray there are certain changes which are periodically

repeated, such that at portions of the medium separated by a

distance called a wave-length, changes of a similar kind are

being coincidently effected. The application of mathematical

analysis to optical phenomena has led to the conclusion that

we can offer a tolerably satisfactory account of them by

making the supposition that there exists such a universally

diffused ether or medium in which these changes go on. At

this point, however, the profound difficulties of the subject

begin. To offer a complete account of the phenomena of light,

and to deduce all the observed effects from a fundamental

principle, we have to construct a hypothesis as to the structure

of this ether and the nature of the periodic changes which

constitute the wave motion in it. The periodic changes which

in the case of sound and fluid waves are known to exist

suggested that in the case of the ether the periodic changes

are motions of the parts of the ether relatively to one another,

and that these motions are the result of displacements taking

place under certain stresses. We cannot even attempt here a

sketch, however brief, of the various hypotheses which have

formed as to the sort of motions which may occur. 0n one

assumption the ether has been regarded as capable of having

displacements or deformations made in it against internal

forces, resisting these changes similar to the shearing strains

and stresses in solids. From this point of view, now some

times called the elastic solid theory of light, we may picture

this ether to ourselves as a distortable but incompressible

jelly-like solid, which exists everywhere and penetrates into

the interior of all material bodies. As long as the hypothesis

of a universal ether was demanded merely to correlate the

observed phenomena of light a limited order of facts had

alone to be considered ; but the conception that electric and

magnetic effects also required a similar assumption, increased

the difficulties to be dealt with. The mind of Faraday con

tinually turned to the thought that the medium assumed
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in both these regions of phenomena might be the same ; and

his great disciple, Maxwell, was led more definitely to formu

late a similar conception. If an ether or medium is demanded

as a fundamental cause of two or more classes of facts, then it

is certainly unscientific to fill space several times over with

ethers of different kinds until the attempt has been made

to ascertain if one alone cannot be found to fulfil all the

required functions. Maxwell was led therefore to the con

clusion that both luminous, electric, and electromagnetic

phenomena might be explained by the supposition of one

single medium capable of certain internal changes, and

possessing certain mechanical properties, and he thus avoided

the unscientific process of thought of postulating two different

ethers by boldly adopting the hypothesis that the medium

on which electric effects and optical phenomena depend for

their existence is one and the same. We shall see later how

this supposition has been supported.

One important element in Maxwell s electric theory is his

conception of electric displacement. When an electromotive

force acts upon any part of a dielectric which is uniform and

non-crystalline it is assumed that at all points along the line

of electrostatic induction there is an electric displacement, as

Maxwell calls it. The theory does not tell us what is the

physical nature of this displacement. We may, in the first

place, merely for the purpose of illustration, suppose that the

unknown something which we call electricity is moved along

a line of induction, and that on the removal of the electric

force it returns to its original position, and that a dielectrio

or insulator is a material in which the electricity, when dis

placed by the application of an electrostatic stress or force,

resists this displacement in virtue of an electric elasticity. The

apparent charge on conductors, according to this view, is the

electricity displaced out of, or into, the dielectric, and positive

charge or electrification may be regarded as the possession of

an excess which is extruded from the dielectric on to the con

ductor, and negative as a deficit when the conductor gives up

some to the dielectrio.

Maxwell's next principle is that change in electric displace

ment is an electrio current whilst the change lasts. He calls

this a displacement current, to distinguish it from a current in
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conductors called the conduction current. The displacement

current is supposed to have, however, all the properties of an

electric current. Conducting bodies must be regarded as

those in wh'ch there is no elastic force resisting displacement,

or, in other words, have no electric elasticity, and in which,

therefore, electric displacement can go on continuously. The

existence of a current of conduction is recognised by two

co-existing effects—first, the dissipation of energy into heat ;

and second, the existence of magnetic force the direction of

which is along closed lines described around the line of the

current. The displacement current in dielectrics, which takes

place at the instant of applying or changing the electric force,

is also considered to be accompanied by magnetic force. In

other words, we must consider the displacement current which

takes place in a dielectric when electrostatic force acts on it

as a very brief conduction current, and as originating a system

of lines of magnetic induction—surrounding it, just as a con

ducting wire is so surrounded, by its loops or closed lines of

magnetic induction. Conversely, when lines of magnetic

force penetrate through an insulator or dielectric, any change

in the density of these lines creates eddy displacement cur

rents in the mass. If the lines penetrate through a conductor

they produce, under similar circumstances, eddy currents of

conduction, whose energy is ultimately frittered down into

heat. Also, if a conductor is moved across a magnetic field

so that it " cuts " lines of induction we have seen that if the

conductor is a portion of a closed circuit it has a current of

conduction produced in it. Similarly, if a dielectric body is

moved in a magnetic field in a like manner it has during the

continuance of the motion a displacement current produced in

it. Since a dielectric circuit is always a closed circuit, a dis

placement current, or the production of electric displacement

in it is always the result of any change in the magnetic

field in its interior. For the purpose of obtaining a rough

illustrative working model of the actions going on in a

dielectric submitted to the action of electric force, it is

necessary to fall back on some material hypothesis of elec

tricity—that is, we must conceive of electricity as a something

which can be displaced relatively to the molecules of the

dielectric, and that it resists this displacement, and that
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when this displacement is made under the action of electric

stress the removal of this stress causes a disappearance of the

displacement. Dr. Lodge has suggested a form of apparatus

sprving as a rough working model of this dielectric action,

iii which buttons sliding along a rod, and held in certain

positions by elastic strings, represent the electric particles

capable of elastic displacement.*

We may quant tatively define electric displacement by saying

that in a homogeneous non-crystalline dielectric, if a plane be

drawn perpendicular to the line of action of the resultant

electric force, then under ths operation of this electric force the

quantity of electricity displaced normally across a unit of area

of this plane is called the electric displacement. This displace

ment is of the nature of an elastic strain, and is removed when

the electric force is removed. Let us fix our ideas by imagin

ing a sphere immersed in a dielectric medium to receive an

electric charge of quantity Q. Suppose this sphere to be sur

rounded by a concentric spherical shell (Fig. 129) also immersed

in the dielectric. On giving the central sphere a charge + Q

we know that on the inside surface of the insulated concentric

shell will appear an inductive charge - Q of equal quantity

and opposite sign, and a charge +Q on the outside surface.

* See Dr. 0. J. Lodge "On a Model Illustrating Mechanically the

Passage of Electricity through Metals and Dielectrics," PhU. Mag.t

November, 1876.

 

Fio. 129.
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Let this spherical shell be very thin and be placed at a distance

r from the central sphere, supposed to be very small. The

electric force due to the central charge Q at the surface of the

concentric shell is represented by and this force exerts a

K r2

displacing action on the electricity of the shell, causing posi

tive electricity to be displaced outwards or in the direction of

the force and negative electricity to be displaced inwards or

against the force.

The quantity K which appears in the above expression for

the magnitude of the electric force is called the dielectric con

stant, or the specific inductive capacity, according to Faraday,

of the medium. If the dielectric is air or other gas, K is very

nearly unity, and the law of the force becomes the ordinary

Newtonian law, viz., force varies as quantity divided by square

of distance—that is, the electric force at any point due to a

small quantity, Q, collected on a sphere is numerically equal

to where r is the distance of the point from the centre of

r2

the sphere. The quantity K is assumed to have a value of

unity in the case of a vacuum, and varies for known dielectrics

from a little above unity for dry air up to a value of 6 to 10 for

glass. In the case of metals and conducting bodies we may

consider K to be infinitely great, and generally K is a number

which expresses the ratio of the displacement in the given

dielectric to the displacement which would take place under the

same electric force if the dielectric was removed and a vacuum

left in its place. The whole quantity of electricity displaced out

wards through the conducting shell is + Q, and since the radius

of this spherical shell is r, its surface is Air r2 and the quantity

displaced through unit of area of this shell in the direction of

the force is ——— This quantity, then, Maxwell calls the

4ir r2

electric displacement, and denotes by the symbol D.

The electric force or resultant electric intensity at all points

over the spherical shell is -Q- , and this quantity Maxwell calls

K r2

the electromotive intensity at that point, and denotes it by £

We may also speak of D as the electric strain and E as the

electric stress by an extension of usual mechanical language.

z
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The quotient of a stress by its corresponding strain is, in

mechanics, called the coefficient of elasticity corresponding to

that stress. For instance, the quotient of stretching force by

longitudinal extension in the case of solid rods subjected to

extending forces is called Young's Modulus of Elasticity, or

the longitudinal elasticity. By a similar use of language the

quotient electric stress by electric strain may be called the

electric elasticity, and we have

- — = -— = tlie electric elasticity.

Q Iv

4>r r2

Hence the series of numbers obtained by dividing the

number 4 x 8-1416 by the specific inductive capacities give a

series of numbers which are the electric elasticities of these

substances.*

§ 2. Displacement Currents and Displacement Waves.—

Maxwell's second fundamental conception, as we have men

tioned, is that a displacement of electricity whilst it is taking place

is an electric current. That is to say, the variation of displace

ment, whether of increase or decrease, is a movement of elec

tricity which is in effect an electric current. A dielectric must,

however, be considered as a body which does not permit any

but a very transient electric current passing through it. If

continuous electric force is applied to it the dielectric is soon

strained to its utmost extent, and no more current or flow or

displacement takes place through it until the sign or direction of

the electric force is reversed. A dielectric may be considered

to be pervious to very rapidly reversed periodic currents, but

very opaque or impervious to continuous currents. This is

familiarly illustrated by the fact that a condenser inserted in a

telephonic circuit does not stop telephonic communication, but

does stop continuous currents. If D be at any instant the

displacement at any point in a dielectric, and if D varies with

* The occurence of this 4a- in electric and magnetic equations is an

objection from some points of view. Mr. Oliver Heaviside has discussed

the subject fully in his writings in The Electrician, and proposed a system

of rational units in which it is suppressed.
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the time so that — is its time rate of variation, then — , or

dt . dt

as it may be best written in Newtonian fashion D, is the dis

placement current, or rate of change of displacement. If at

any point in a dielectric rapid changes of displacement are

taking place, these variations of electric displacement are in

effect electric currents producing magnetic induction in the

surrounding portions of the dielectric. When we come to

discuss the investigations of Hertz we shall see that this view

receives support from experimental research. An electric

displacement taking place all along a certain plane is equi

valent to a current sheet, and an electric displacement taking

place along a certain line is a linear current. Electrostatically

speaking, lines of electric displacement are lines of electro

static induction, and these lines, when the displacement is

changing, become lines along which electric current flow is

taking place. The denial of action at a distance involves the

assumption that the only portions of a dielectric which can act

directly upon each other are those which are in immediate

contact or are contiguous.

§ 3. Maxwell's Theory of Molecular Vortices.—Given a

medium possessing certain mechanical qualities, such as elas

ticity, a definite density, a capability of relative displacement

of its parts, we may ask, is it possible to imagine a structure

which will mechanically account for the effects we have to

consider in electrical phenomena ? A full discussion of ether

theories is not possible here, but it may be of assistance to the

student to place before him a general account of one such

attempt to construct a mental imagery of its mechanism.

We should always remember, however, that even if we are

able to imagine a mechanism capable of producing even all

the effects we find in Nature in any region of fact, it does

not in the least follow that the real state of affairs agrees with

our conception of it. Maxwell put forward his theory of

Molecular Vortices in the Philosophical Magazine for 1861 and

1862. A general account of this theory has been given in the

" Life of James Clerk Maxwell," and as the limits of such an

elementary treatise as the present one preclude any detailed

account of the mathematical portion of this theory, we shall

z2
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borrow the language of the authors of the above-mentioned

work* in describing it. Maxwell supposes that any medium

which can serve as the vehicle of electro-magnetic energy

consists of a vast number of very small bodies called cells,

capable of rotation, which we may consider to be spherical,

or nearly so, when in their normal position. When magnetic

force is transmitted by the medium or acts through it, these

cells are supposed to be set in rotation with a velocity propor

tional to the intensity of the magnetic force, and the direction

of rotation is related to the direction of the force in the same

manner as the twist and thrust of a right-handed screw. We

have thus all the magnetic field filled with molecular vortices, as

Maxwell calls them, all rotating round the lines of forces as axes.

These cells as they revolve tend to flatten out like revolving

spheres of fluid, and to become oblate spheroids ; they thus con

tract along the lines of force and expand at right angles, creating

a tension along the lines of force, and a pressure at right angles

to them. These cells are supposed to be elastic spheres closely

packed together and incapable of separating from each other.

If any line of cells is set rotating the contraction of each cell

along its axis of revolution must set up a tension or pull along

that line, it behaves like a filament of muscular tissue, and

contracts in length and swells out or increases in thickness. If

several adjacent lines of cells or vortices are all set revolving

in the same direction, the swelling out of each line causes them

to press on each other ; hence there is a lateral pressure and a

longitudinal tension. In any space filled with these cells so

revolving the lines of tension or axes of revolution of the cells

will take up certain positions, depending on the necessity exist

ing for the stresses to adjust themselves to equilibrium, and

Maxwell has shown mathematically that such a system of

cells in tension and pressure is a system which will behave

in a manner similar to that in which we find actual lines of

magnetic force do, and that the behaviour of magnetic poles

to each other can be explained fully by the assumption of a.

* "Life of James Clerk Maxwell." By Lewis Campbell and William

Garnett. 1st Edition. 1882. The general description of Maxwell's views

in the above-mentioned work is due to Prof. Garnett, and in the annexed

paragraphs the expository account of this theory is taken in part almost,

verbatim from the pages of this book.
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tendency on the part of the lines of force between them to

contract like elastic threads along their length, and to push

one another apart when laid parallel and proceeding in the

same direction. To account for the transmission of rotation

from one cell to another in the same direction, and from one

line of cells or vortex to the next, Maxwell supposed that

there exists between the cells a number of extremely minute

spherical bodies which can roll without sliding in contact

with the vortex cells. These bodies serve the same purpose

as "idle wheels" in machinery, which coming between a

driving wheel and a following wheel serve to cause both to

turn in the same direction. These minute spheres Maxwell

supposed to constitute electricity. We shall speak of them

collectively as the electric matter. These electric particles

are furthermore . supposed to be free to move in conductors ;

but in dielectrics they are tethered to one spot, or rather into

one molecule of the substance, and can only be displaced a

little way against an elastic resilience, which brings them

back to their original position when the displacing force is

withdrawn. Furthermore, we must assume that both cells

and particles are very small, compared with the molecules of

matter. The passage of electric particles from molecule to

molecule in conductors, however, sets up molecular vibration,

or generates heat. Something of the nature of friction must,

therefore, be also postulated to account for the fact that the

electric particles, when set moving in a conductor, give up

energy to the molecules, and the energy is in them dissipated

in the form of heat. That there is some kind of rotation

going on along the lines of magnetic force has been held by

Maxwell to be indicated by the behaviour of a ray of polarised

light when passing through a dielectric along a line of

magnetic force, and he states* that Faraday's discovery of the

magnetic rotation of the plane of polarised light furnishes

complete dynamical evidence that wherever magnetic force

exists there is matter small portions of which are rotating

about axes parallel to the direction of that force. The further

assumption is made that the cells are composed of an elastic

material, and that they can be distorted or squeezed slightly,

returning again in virtue of their resistance to their original

* Article " Faraday," Encydojiccdia Britarmica, 9th Edition.
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form. In order to obtain a clear conception of the inter

relation of the idle wheels or the electric particles and the

revolving cells or lines of induction, we may construct a

mechanical illustration of one element of the mechanism as

it is supposed to exist in the dielectric.

Consider A and B (see Fig. 180) to be two wheels of india-

rubber, and that C is another small wheel lying between A

and 6 and transmitting motion from one to the other. Let C

be tethered to a fixed point, D, by an elastic spring, and let G

be at the same time capable of rotation round its centre.

Suppose A is set in rotation, clock-hand wise, whilst B is held

fast, and that the wheel C cannot slip on A, the result will be

to drag down C to the position of Cv stretching the spring and

displacing C. Let B be then set free ; the wheel C continues

to roll on A, and transmits its rotation to B. 0wing to the

assumed elasticity of the discs A and B, the wheel C can be

drawn down between them, and yet within the limits of its

displacement equally transmit the rotation of A to B without

slip. The same action of a preliminary displacement of C and

subsequent rotation of B will take place if the wheel B possesses

inertia—that is, if we assume it to be a heavy wheel which

cannot in virtue of its mass be set rolling with finite speed

in an infinitely short time.

If, then, we suppose a long row of such wheels with inter

mediate displaceable idle wheels, the main wheels being heavy

bodies, the result of causing the first wheel to rotate would be

to propagate along the line a successive displacement of the

idle wheels, and to set the main wheels successively in rota-

D
 

Fio. 130.
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tion. Translating these mechanical concepts into their elec

trical equivalents, Maxwell considers that the heavy wheels

are the analogues of the molecular vortices or lines of force,

and that their density is determined by what we call the

magnetic permeability of the medium; the elastically dis-

placeable idle wheels are the electricity in the dielectric ; and

that when a line of force is brought into existence in a

dielectric, or, in other words, when a line of cells is set

rotating, this action propagates itself outwards, producing

successive displacements of the electric particles, or generates

a displacement wave, and is accompanied by the successive

appearance of rotation in the cells, or by the propagation of a

wave of electromagnetic force.

The velocity of propagation of this wave will depend on the

elastic forces restraining displacement, and on the inertia of

the revolving vortices. We have seen that the elasticity of

the dielectric is expressed by the quantity -==1 where K is the

K

specific inductive capacity. We shall see later on that the

electromagnetic density of the medium is expressed by 4it/x,

where /* is the magnetic permeability.

The velocity of propagation of a disturbance through an

elastic medium is numerically equal to the quotient of the

square root of its effective elasticity e, by the square root of

If, then, for the electromagnetic medium a =_ and

tion of a wave of electric displacement or of magnetic force in

a medium is numerically equal to the square root of the

reciprocal of the product of its specific inductive capacity and

its magnetic permeability. Such a mechanical hypothesis

shows us how the spin of one line of vortices results in pro

ducing displacement of the idle wheels or electricity along

lines which are circles described round the initial vortex as

axis, and in propagating outwards the vortex spin or mag

netic force with a finite velocity from one line of molecular

vortices to another.

its density d, or by v =

 

d = 4ir p, we have v =
1

, or the velocity of lateral propaga-
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By the aid of the ideas which were discussed in the last

section we are enabled to arrive at a mechanical conception

which helps us to connect together observed facts, and which,

even if not a real representation of what is taking place, is

at least a working model, which may assist us to correlate

the actions taking place when an electric current is started

in a wire.

An electric current on this hypothesis is a flow or pro

gression of the electric particles which are free to move

forward in a conductor, and which only can move steadily

forward, owing to their incompressibility, when the circuit in

which they flow is a complete circuit. Suppose a thin con

ductor bent into the form of a very large circle, and that an

electromotive force urges a procession of electric particles

round it. As these particles go forward they cause the electric

cells next them to rotate, and the motion of this line of cells

embracing the line of current will be just like that which

would take place if a bracelet of spherical beads strung on an

elastic thread were rolled along a round rod which it closely

embraces. Each bead would turn over and over, rolling on

the rod, and the motion of the whole bracelet would be like

that of a tightly-fitting india-rubber umbrella ring pushed

along a round ruler. The progression of the electric particles

would start circular vortex rings revolving round the line of

motion. This corresponds to the fact that a linear current

creates a magnetic field composed of circular embracing lines

of forces. The first or adjacent line of vortices would, by the

intervention of the idle wheels, set in rotation another set of

cells lying on a concentric line, and cause them to rotate in the

same manner as the first oaes. Also, it would cause a back

ward displacement of the intermediate idle wheels, if we con

sider that only the central line of electric particles are conduct

ing matter, and that the next and all succeeding rows are in

a dielectric. The starting of the progressive movement of

the line of electric particles in the conductor will result

in an elastic displacement in the ojiposite direction of all

surrounding electric particles in the dielectric along lines

parallel to the line of current ; and also in setting up a

system of molecular vortices composed of revolving cells, the

axes of these vortices being co-axial circles described round
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the line of flow, the rotations and displacements being propa

gated out laterally from the line of current. In consequence,

of the fact that the revolving cells are supposed to possess

inertia or mass, and that all the mechanism is supposed to ba

rigidly connected together, a steady force applied to set the

central line of electric particles in motion will not be able to

produce in them the full velocity until time has elapsed suffi

cient to allow the inertia of the connected mechanism to be

overcome. We are thus able mechanically to imitate the

phenomena of self-induction of the circuit and the gradual rise

of current strength in an inductive curcuit under the operation

of a steady impressed electromotive force, and to deduce it aa

a consequence of the fundamental hypothesis.

Our theory, then, points out that a current should rise

gradually in strength, and also that the embracing lines of

 

Fig. 131.

magnetic force must be considered to come into existence

successively as the rotation is taken up in ever-widening

circles by the molecular vortices successively receiving motion

of rotation. Also, on withdrawing the impressed electromotive

force the inertia of the mechanism tends to make it run on

for a little and the electric particles, which by their motion

started the vortices, are now themselves urged forward for a

little in the same direction, and this coustitues the extra

current at "break."

Let us next endeavour to see what ought to happen on the

supposition that there are two conducting circuits in the field,

both forming closed circuits, and to one of which an impressed

'electromotive force can be applied. LetVj, V2, V3,&c. (Fig. 131),
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represent the sectional view of a series of vortex lines of electric

cells, and let I„ I2, I3, &c., be the idle wheels or electric particles.

Let the row of electric particles \ be supposed to be lying

inside a conducting circuit, A, represented by the dotted lines,

and by our fundamental supposition, the particles lx are quite

free to move along the conductor, and to rotate on their axes.

Let there be another conductor, B, placed parallel to A, and

let I5 be the electric particles in it. The space C between is

supposed to be occupied by a dielectric, and in it the electric

particles can only be displaced elastically from a fixed position.

We may regard these idle wheels I2 13 1, as tethered by springs

to one spot. Such being the mechanism, imagine that the row

of particles It is urged forward in a downward direction. As

the row of particles pass between the cells Yl V2 they will set

them in rotation in opposite directions. 0wing to the inertia

of the vortices tin first effect of the rotation of V2 will be

to cause I2 to roll over V3 and be displaced in an upward

direction ; its displacement is resisted by the elastic force of

the spring. The rotation of I2, however, sets V8 in rotation,

and after a short interval V3 is rotating at the same speed and

in the same direction as Vs. I2 then ceases to be displaced,

because the action of V2 on I2, and the reaction of V3 on I2,

simply amount to a couple or twist on I2. The same sort of

action results in a gradual handing on of the rotation from

vortex to vortex, and a propagation of displacement from

one idle wheel to the other. When the motion reaches the

conductor B, the first result is to cause a displacement of

the electric particles upwards, the rotation of V5 not being

instantly acquired by V6. This amounts to a current in the

upward or opposite direction. As soon, however, as the vortex

V6 has accepted the full speed of rotation, then the forces

on the electric particles I5 amount only to twists, and not

to forces of displacement ; hence the particles I5 cease to

experience any force impelling them forward, and come to rest

in virtue of the fact that the conductor offers a resistance to

their motion. They fritter down their energy of motion into

heat, and come to rest. Hence the induction current in the

conductor after a short flow ceases, and the vortex spin becomes

equal in the vortices on either side of it. Suppose now that

the impressed force in the circuit A is withdrawn, the electrio
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particles in the A circuit are driven forward for a short time

by the energy stored up in the adjacent vortices ; these last,

however, give up one by one their energy to the circuit A,

where it is dissipated as heat. This surrender of velocity is

propagated outwards until at the surface of the circuit B the

state of things finally is, that when the vortex V6 has come

nearly to rest, the motion of V6 still continues. The energy of

V6 and of vortices beyond expends itself in moving forward the

electric particles in circuit B in the same direction as that in

which the current in A was travelling originally—in other

words, part of the energy of the field is spent in making a

transitory current in B as well as in A in the same direction.

It follows, therefore, that there is a less induction current in

A at breaking circuit when a closed circuit B is present

than if B were not there—that is to say the presence of a

closed secondary circuit B diminishes the self-induction of

the primary circuit, as is known to be the case. We see,

therefore, that the theory is so far in accordance with observed

facts.

The theory must, however, be taken for no- more than it is

worth, viz.: an attempt to construct a mechanical system

which shall act in the manner in which we find electro-magnetic

fields and circuits do act. The true mechanism may be

very different; the one described has at least the utility

that it shows a way in which the observed effects might be-

produced. The various dynamical elements in the supposed

mechanism have their equivalents in the recognised electrical

and electro-magnetic qualities. The angular velocity of the cells

or vortices around their axis represents the intensity of the mag

netic force, or the strength of the magnetic field. The angular

momentum of the vortices represents the magnetic induction,

hence the mass of each cell, or the density of the medium, is the

analogue of the magnetic permeability. This is greater in

paramagnetic substances than in air or vacuum, and greatest of

all in iron ; in fact, so exceptional is it in iron that Maxwell

supposed the particles of the iron themselves to take part in

the vortex action. Hence, the energy of a magnetic field is

greater if that field contain iron, and accordingly the presence

of iron in a core immensely increases the vortex energy for a

given vortex velocity, that is, it increases the inductance of
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the circuit. The energy associated with any revolving cell or

vortex is proportional to the product of its velocity and

momentum, or the product of the magnetic force, and the

magnetic induction estimated in the same direction is a

measure of the energy per unit of volume existing in that

portion of the field. The " number of lines of force " passing

through any circuit is on this theory to be identified with the

whole momentum of the molecular vortices linked with that

circuit. If any circuit is traversed by lines of force or linked

with lines of molecular vortices, and the cause creating this

field is removed, say, by withdrawing the magnet or repressing

the electric current creating it, the vortices give up their energy

gradually to this secondary circuit, and it appears there aa

energy of motion of the electric particles or as an electric cur

rent. When one system of bodies in motion sets another set in

motion by mutual action and reaction, and there is no loss of

energy by anything like friction or imperfect elasticity, then

the momentum gained by one must be equal to that, lost by

the other, and the rate of gain of momentum of the one

system is at any instant equal to the rate of loss of momentum

by the other. Hence, if the vortices lose momentum their

rate of loss of momentum—that is, the rate of withdrawal of

lines of induction from the circuit, must he equal to the rate

of gain of momentum of, or to the force acting on, the electric

particles which are absorbing the momentum. Hence we see

that the impressed electromotive force in the circuit must be

equal to the rate of withdrawal of lines of induction, and the

theory conducts us to Faraday's law of induction, as a

necessary dynamical consequence of our fundamental assump

tion. Maxwell has extended the theory of molecular vortices

to the explanation of electrostatic phenomena, with which we

are not, however, here directly concerned. We have seen

that the theory is capable of affording an explanation on

mechanical principles, of self-induction, mutual induction, and

the law of electro-magnetic induction. In order to complete

the theory as far as regards the phenomena of magnetism, it

is necessary to suppose that the particles of magnetisable

metals, such as iron, are set in rotation by the molecular

vortices which traverse them, and that an increase of speed of

these vortices does not increase proportionally the rotation of
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Hie iron molecules. These last behave like wheels slung

loosely on a shaft, between which shaft and the wheel there

is friction decreasing as the speed of rotation of the shaft

increases. If, then, the wheel experiences a constant fric-

tional resistance from external causes, indefinite increase of

speed of the shaft would accelerate the wheel's rotational

velocity up to a certain point, and the wheel would then cease

to rotate. This supposition would enable us to make our

theory agree with the fact that increase of magnetic force

does not increase indefinitely the magnetic induction through

iron, but brings it up to a point at which, approximately

speaking, the induction remains stationary. To sum up, we

may say that the hypothesis of molecular vortices is an

endeavour to imagine a mechanism capable of accounting for

electro-magnetic induction on dynamical principles, and on

the assumption that the energy of a magnetic field is energy

stored up in a medium in virtue of a particular kind of

rotation of its parts.

This medium consists of portions capable of elastic displace

ment when we consider parts of it lying in dielectrics or

capable of progressive movement when in conductors, and

these portions constitute what we call electricity. Other por

tions are capable of rotation round closed axes of rotation, and

these constitute what we call " lines of force." The medium:

possesses, therefore, an elastic resilience, and the reciprocal

of this quality, or its freedom of yielding to electromotive

force, is recognised as the specific inductive capacity. The

medium possesses also density, and we call this its magnetic

permeability, or magnetic inductance. The mass of unit of

length of the vortices is equal for all vortices, whether in

vacuum, air, or non-magnetic bodies, but in iron the vortices

are loaded by the adhesion to them of the molecules of the

metal, and the density is increased, and hence the permea

bility ; but for very great angular velocities—that is, for great

magnetic forces—the adhesion of the molecules and vortices

must be supposed to cease, and the permeability approximates

to unity. The magnetic force at any point in a field is the

angular velocity of the vortex motion at that point, and the

magnetic induction is the angular momentum. Magnetic

attraction and repulsion is due to the tension set up along a
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vortex line by the polar contraction and equatorial expansion

of the vortex cells. At places where there is magnetic

polarity or free magnetism there is a discontinuity in the

angular velocity of the vortices within and without the iron.

Self-induction is the result of the inertia of the molecular

vortices, whereby motion set up in them cannot be generated

or checked instantaneously. Mutual induction, or the pro

duction of induction currents, is due to the fact that differences

in the angular velocity of adjacent vortex filaments or cells

<;au8e a displacement of the electric particles or idle wheels.

Finally, electromotive force is the force causing displacement

of the electrio particles, and electric currents consist in con

tinuous or periodic movements of these electric particles.

Electric currents always produoe magnetic fields because

there is nothing of the nature of slip between the particles

and cells, and, therefore, any progressive movement of the

first sets up rotation in the second, and conversely differential

rotations or spins of the cells or vortices sets up displacement

of the electric particles, causing either electric strain in a

dielectric or electric current in a conductor.

§ 4. Comparison of Theory and Experiment.—The test of

any physical theory is its power to predict new phenomena

as well as to interpret ascertained experimental results. The

theory of molecular vortices leads to the conclusion that

electro-magnetic induction must be propagated through the

medium with a finite velocity, and that in dielectrics of unit

permeability the velocity of propagation is inversely as the

square root of the specific inductive capacity. In the

dynamical theory of light it is shown that the ratio of

the velocity of light in vacuo to its velocity in any given

transparent medium is a constant quantity for each definite

wave length, and is called the index of refraction of that body

for that wave length, and is denoted in physical optics by the

symbol Hence, the velocity of light of definite wave-length

is inversely as the refractive index for that wave-length. The

refractive index for very long wave-lengths can be calculated

from observed values of /t for definite rays, and hence numbers

obtained representing the relative velocity of these undulations

in various transparent bodies. The values of the dielectric
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constants, or reciprocal of the electrio elasticities, of various

transparent and semi-transparent bodies have also been deter

mined, and it has been found that for a large group of bodies

there is a tolerably close agreement between the values of

the square root of the dielectric constant and the index of

refraction (ix for very long waves, as shown by the selection

from the results of some experimental determinations given

in Table A.

Table A.

(Dielectric Constant).

K
M»

(Refrac

tive Index).

Authority. Reference.

Coluphouium . .. 2 55

1-96

1-59

1-52

2 041

1-54 \

1-54J

Boltzmann
tPoyn.Ann.SyU..,

\ 1B74, p. 482.

1-45 1-50 Schiller
/ P»iy. Ann.,

CLIl.,p.535.

Pogg. Ann.,

CLVI., 1875,

Oil of turpentine 2-21 1-49

1-43

1-48

1-38

1-44

1-46

1-49

1-461

1-46^

1-49)

1-381

1-44 1

1-44 f
1-46 )

Petroleum 2037 Silow

{ p. 395.Benzine 2198

Petroleum spirit 1'92

Petroleum oil ...2 07
J. Hopkinsou

( Trant. Roy. Soc.

\ 1877, 1878 and

{ 1881.

For some other dielectrics, such as glass and the vegetable

and animal oils, the agreement is not by any means so close

but for gases, as determined by Boltzmann (Pogg. Ann., CLL,

1875, p. 403), there is a fair coincidence. (See Table B.)

Table B.

Gas. E

1-00059 1-000295 1-O00294

1-000946 1-000473 1-000449

1-000264 1-000132 1-000138

1-00C69C 1000345 1-OQ0340

1-000994 1000397 1-000503

1-001312 1 000656 1-000678

1 000944 1-000472 1-000443

The gases are taken at 0°C. and 760 millimetres pressure.

Accordingly, we can say that, for a large group of dielectrics, of

which the magnetic permeability is unity, and hence the

velocity of propagation of an electro-magnetic impulse propor
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tional to the square root of the electric elasticity or to the

reciprocal of the square root of the dielectric constant, we

do find a fair agreement between these numbers and the

numbers representing the refractive indices or the relative-

velocities of propagation of very long waves or disturbances in

the ethereal medium postulated to account for the phenomena

of light. The imperfect agreement between the values of the

refractive index for long wave-lengths and the square root of

the dielectric constant for some other bodies shows that the

theory is only approximately in agreement with fact, and

that the results obtained by the methods adopted for deter

mining the dielectric constant are perhaps impure, and do

not give the true value of the electric elasticity. When we

consider that the displacements which constitute the light

wave motion of the luminiferous ether are changed some

billions of times per second, it is seen to be highly prob

able that measurements of the specific inductive capa

city in which the electric stresses are only reversed tens or

hundreds of times in a second may be rendered impure or

mixed owing to the presence of effects due to an imperfect

electric elasticity introduced by the superposition of electric

conduction or of electrolytic transport upon the true or elastic

displacement effect. In fact those bodies, such as glass and

the vegetable oils, which exhibit the greatest discrepancy, are

those in which the chemical composition indicates a possibility

of electrolysis. There may be an electro displacement in such

electrolisable bodies over and above the true electrostatic

displacement which is engendered by a molecular change in

the body, which change results in actual decomposition when

the electric force reaches a certain limit. Put broadly, it

may amount to this, that the true electric displacement

is a displacement of electricity within the molecule, but that

in electrolisable bodies electric stress sets up a strain of

the molecule itself which, within certain limits, is an elastic

strain, and disappears with the removal of the stress, but

that beyond these limits molecular disruption takes place.

In these cases the displacement measured in taking the specific

inductive capacity is the true or dielectric displacement plw

a displacement due to strain of the molecule, and the result-

would be to make K appear too great, and, in faot, for glass
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and certain oils the values in Table C have been obtained,

which in all cases are such that JK exceeds the value of

, or the refractive index, for very long waves of light.*

Table 0.

Substance.

Glass, extra dense flint

„ light flint

„ crown

„ plate

Castor oil

Sperm oil

0live oil

Neatafoot oil

K

9-896

672

6-96

8-45

4-78

302

3-16

307

3-1

2-59

263

2-90

218

1-73

1-77

1-75

H„ (approx.)

1-5 to 1-6

1-46

1-46

1-46

1-45

J. Klemencic (abstract in the Journal of the Society of Tele

graph Engineers, 1886, p. 108) has experimented also on the

specific inductive capacity of gases and vapours, and given a

table (see Table D) in which he compares Jli with p (refrac

tive index) of these same bodies. It is seen that the agree

ment of Jli and p is very close for the simple gases, but

that a marked difference exists in the case of more complicated

molecules.

Table D.

Gas.

Air...

Hydrogen

Carbonic acid

Carbonic oxide

Nitrous oxide

0lefiant gas

Marsh gas

Carbonic bisulphide

Sulphurous acid ....

Ether

Ethyl chloride

Ethyl bromide

V-

Boltzmann. Klemencio.
Kefractive

index.

1-000295 1-000?93 1000293

1-000132 1-000132 1-000139

1-000473 1-000492 1-000454

1-000345 1000347 1-000335

1-000497 1-000579 1-00.516

1-000656 1-000729 100J720

1-000472 1-000476 1-C00442

— 1 001450 1-001478
 1-0C477 1-000T03

— 103372 1-00154

— 100776 1001174

— 1-00773 1-00122

The specific inductive capacity of a vacuum is taken as unity, and Boltz-

mann's values are given for comparison.

* See Dr. J. Hopkinson, Phil. Trans. Royal Society, Vol. CLXXII., 1881,

p. 372.

UNI
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§ 5. Velocity of Propagation of an Electromagnetic Dis

turbance.—There is another line of experimental enquiry

which leads to an important relation between electric and

optic phenomena. This is the comparison of electrostatic and

electromagnetic measurements. If two very small spheres

are electrostatically charged and placed with their centres

at a unit of distance apart, the stress between them may

be mechanically measured. If the conductors are equally

charged with opposite kinds of electricity, and the stress

when at a unit of distance in air is one unit, the electric

quantities are said to be unit electrostatic quantities. If

such unit quantities are discharged through a conductor at

the rate of one discharge per second, the resulting flow or

current is called an electrostatic unit of current.

In the above definition we suppose the dielectric to be a

vacuum or some substance such as air, of which the dielectric

constant does not differ sensibly from unity. If q and ql be

two quantities measured electrostatically, and then be placed

on small conductors separated by a distance r in a dielectric of

constant K, the dynamical force between them will be nu-

numerically equal to %~ ; and if <7 = o1,then the force is -.
K rl K rl

Hence, if r is always taken equal to unity, the real quantity of

electricity producing by its action on another equal quantity a

unit of force will vary as the square root of K when the experi

ment is performed in various dielectrics. In other words, the

absolute magnitude of the electrostatic unit of quantity, and

therefore also of the current, will vary as the square root of the

specific inductive capacity of the medium in which the charges

exist. There is another mode in which a unit of current may be

defined, and this depends on the definition of a unit magnetic

pole. If two magnetic poles of equal strength, m, are placed at

a distance r apart in a magnetic medium of permeability p, the

stress or force between them will be numerically equal to

in which expression it is seen that m and /* appear as quantities

analogous to g and K in the electrostatic analogue. Hence, when

r is unity, we see that to produce a unit stress between the

poles m the pole strength must vary as the square root of /*, or

the absolute magnitude of the unit magnetic pole varies directly
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as the square root of the magnetic inductive capacity of the

medium in which the experiment is performed, the absolute

unit magnetic pole being defined as a pole which at a unit of

distance acts on another like pole with a unit of force in a

magnetic medium, assumed to be vacuum, or some standard

substance of unit permeability.

Since an electric current produces a magnetic force, it may be

defined as to magnitude by agreeing that the unit of current is

to be one which, when flowing in a circular circuit of unit radius,

acts for every unit of length of that circuit with a unit of force

on a unit magnetic pole placed at the centre of that circle

The magnitude of the force on the magnetic pole is proportional

to the product of the strength of the pole and the strength of

the current. Hence, if the magnitude of the unit pole is varied

the magnitude of the unit of current will vary inversely as the

magnitude of the strength of magnetic pole which is taken as

the unit pole. When the medium is varied, the magnitude of

the unit magnetic pole, or of the pole which fulfils the condi

tion of acting on another equal pole at a unit of distance with

a unit of force varies directly as the square root of the permea

bility of the medium. It follows, then, that the magnitude of

the electro-magnetic unit of current varies inversely as the square

root of the magnetic permeability of the medium in which the

experiment is made.

We have, then, that the electrostatic unit of current is a

quantity which varies directly as the square root of the electro

static inductive capacity of the medium, or as \/K, and the

electromagnetic unit of current is another unit of current

which varies inversely as the square root of the magnetic induc

tive capacity of the medium, or as \/p. The electrostatic unit

of current represents a much smaller quantity of electricity

per second than the electro-magnetic—in other words the

value of the ratio of the magnitude of the unit electro-magnetic

current based on the definition of a unit magnetic pole, to the

magnitude of the unit electrostatic current, based on the

definition of a unit of electrostatic quantity, is an integer

number, and a large one. This ratio of the two units of

current varies when the fundamental inductive capacities of

the medium is changed, but so that the ratio of the electro

magnetic to electrostatic unit varies inversely as the square

a a2
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root of the product of K and /*. If Cm is the magnitude of the

electro-magnetic unit of current, and C, is that of the electro

static unit for the standard dielectric, in which K = 1 and it = 1,

C
then, when the dielectric is changed, — is changed in the ratio

. °2

of 1 : VK p. Let R„ac denote the value of the ratio for

vacuum or for a standard dielectric, of which K = 1 and 1i = 1,

and Rm denote its value for any other medium of which the

dielectric constant is E and the magnetic constant p, then

We have next to consider what is the physical meaning of

this ratio of the electro-magnetic and electrostatic units.

The degree in which one quantity is greater or less than

another, or to put it more precisely, that amount of stretching

or squeezing which must be applied to the latter in order to

produce the former, is called the ratio of the two quantities.*

The ratio of two physical quantities is therefore the expres

sion of the operation which must be performed on the one to

make it the physical equivalent to the other. What operation

must be performed on an electrostatically measured unit of

electricity to make it the equivalent in every way of an electro-

magnetically measured unit of electricity? The reply is, it

must be set in motion with a definite velocity. The electric

current produces a magnetic field. The electro-magnetic mea

sure of current is obtained by defining the field by stating its

dynamical effect on a defined magnetic pole, and the unit of

electric quantity measured electro-magnetically is the quantity

conveyed by the unit current so measured in a unit of time.

If we imagine a circular or other conductor conveying a unit

(electro-magnetic) current to have stretched alongside of it

another closely adjacent conductor of like form, each unit of

length of which is charged electrostatically with a unit (electro

static) of electric quantity, we might submit the following

question :—The current flowing in the first named conductor

transmits a unit (electro-magnetic) quantity of electricity across

each section of it per unit of time : with what velocity must

electricity in the second conductor be set flowing in order that

* W. K. Clifford, " The Common Sense of the Exact Scienoes," p. 94
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there may be an equality in the quantities flowing past any

sections in each of the conductors, as evidenced by equality in

the magnetic fields produced by the first-named current and

the moving electric charge ? This velocity is evidently a

concrete velocity, which depends on the very nature of the

qualities of the medium which determine magnetic and

electrostatic attraction, and this velocity may be called the

ratio of the magnitude of the electro-magnetic to the electro

static unit of quantity. This velocity is evidently one which

is determined by the nature of the medium, and not by the

particular units of length, time, and mass selected for use in

the measurements. This comparison assumes that a moving

electrostatic charge is in effect the equivalent of an electric

current. This has been put to the test of experiment by Prof.

Rowland.* A rigid gilt ebonite disc was fixed to an axis, and

could be rotated between two gilt glass discs. 0ne member

of a very delicate astatio system of magnetic needles was

placed near the disc and shielded from electrostatic disturbance.

0n charging the gilt ebonite disc and setting it in rapid

rotation it was found to affect the magnetic needle whilst

rotating just as a current of electricity would have done if

flowing in a circular conductor coinciding in form with the

periphery of the disc. Since 1876 Prof. Rowland has again

in the United States repeated the experiment and confirmed

the general result. There is, therefore, experimental founda

tion for the view that a static charge of electricity conveyed

on a moving body creates a magnetic field whilst it is in

movement. This kind of electric current, in which a static

charge is bodily moved on a conductor, is called a convection

current. The experiment of comparing the magnitudes of an

electrostatic and an electro-magnetic unit of electric quantity

aa above defined was first made by Profs. Weber and

Kohlrausch, and the value of that ratio for a medium such as

air, in which approximately we have K and u both equal to

unity, gave as a result a velocity very nearly identical with the

velocity of light. Since that time very many experimentalists

have determined the value of this ratio, which is denoted by

* See Phil. Mag., 1876, Vol. II., Fifth Series, p. 233 : Dr. Helmholtz,

'' 0n the Electro-Magnetic Action of Electric Convection." These experi

ment*; of Prof. Kowland were carried out at Berlin.
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the symbol " v." The names and the results of the observa

tions made by some of the principal observers are set out in

the Table on opposite page.

One of the best determinations of the velocity of light is

that made by Prof. Newcomb, at Washington, in 1882. The

method employed was the revolving mirror method of Foucault,

the distance between the revolving and fixed mirror being in

one portion of the experiments 2,550 metres, and in the other

portion 8,720 metres. The resulting velocity of light in vacuo

is 2-99860 x 1010 centimetres per second.

The following results of other observations are abstracted

from Prof. Everett's book, "Units and Physical Constants,"

2nd edition :—

Velocity in centimetresObserver. J .
per second.

Michelson, at Naval Academy, 1879 2-99910 x 1010

Michelson, at Cleveland, 1882 2-99853 x 10",

Newcomb, at Washington, 1882 (best results) ... 2-99860 x 10u

Newcomb (other results) 2-99810 x 10'°

Foucault, at Paris, 1862 2 98000 x 10'°

Cornu, at Paris, 1874 2 98500 x 1010

Cornu, at Paris, 1878 3 004 x 10"

Last result discussed by Listing 2-9999 xlO10

Young and Forbes, 1880-81 3-01382 x 1010

Earlier observations gave as follows :—

Roemer's method, by Jupiter's satellites 3-000 x 1010

Bradley's method, by stellar aberration 2-977 xW

Fizeau 3-142 xlO10

The general result of the best determinations is that the

velocity of light is very close to 3-000 x 1010 centimetres per

second, or nearly one thousand million feet par second.

We have, therefore, the following facts :—The velocity Vm

of light of definite wave length in any medium is connected

with the velocity V, of the same ray in vacuo by an equation—

V _ ^7<,
' m 1

where /* is the refractive index of that medium for the par

ticular wave length considered, and also that the velocity V is

very nearly 8 x 1010 centimetres per second. Also we find that

the ratio of the electro-magnetic to the electrostatic unit of

electric quantity or current in any dielectric and magnetic
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medium Em is connected with the same ratio measured in vacuo

R, by an equation—

-R - R»

m—W

where K is the dielectric constant and p the magnetic per

meability.* Experiment has also indicated that within narrow

limits, taking best results, R„ and V„ have the same value,

namely, 8 x 1010 centimetres per second, and that Jli has the

same value as p (refractive index) for media, for which p (per

meability) has the value unity. We are led, therefore, to infer

that this close relationship is not a matter of accident, but

that it indicates a very intimate connection between electricity

and light, and that the hypothesis that light is a disturbance

propagated through an elastic medium may be supplemented

with some considerable show of reason by the hypothesis that

electro-magnetic phenomena are the result of actions taking

place in identically the same viedium or ether. There are no

transparent media for which the magnetic permeability differs

by more than a very small quantity from unity, and hence the

approximate identity of the values of the ratio of the units

compared in air with the value of the velocity of light waves of

very long wave-length ; and the approximate identity for true

dielectrics of the value of the refractive index and of the square

root of the dielectric constant furnishes a test of the proba

bility of the truth of the electro-magnetic theory of light.

Maxwell's mathematical method of arriving at this theory

consisted in forming certain equations expressing the velocity of

propagation ofrector potential, and noticing that these equations

were mathematically of the same form as those which determine

the velocity of propagation of a disturbance through an elastic

medium. The physical meaning of this term, vector potential,

may be arrived at as follows :—

Suppose a regiment of soldiers to set off marching down a

street, the ranks being well spaced out. At any place in the

street let two lines be drawn across the street parallel to

each other and a few yards apart. Let two observers take

* It is unfortunate that usage has consecrated the same Greek letter in

for refractivity in optics and magnetic inductivity in electro-magnetics. In

some respects it would be an advantage in electro-optics if these quautitiet

were differently symbolised,
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note of how many soldiers cross each line. At any instant

the total number of soldiers which are contained between the

two lines is equal to the difference between the numbers which

have crossed each line respectively. However irregular the

movement may be, the total number of soldiers at any instant

in the area or the product of the area, and the number of

soldiers per unit of area within the boundary, will be equal to the

number obtained by reckoning the algebraic sum of the soldiers

which have from the beginning of the time crossed the whole

boundary line, calling those numbers positive when soldiers

have stepped into the area and negative when they have stepped

out of it. We have here a simple example of the way in which

a line integral may be the equivalent of a surface integral. If

the area be irregular in shape and contain A square yards, and

if the perimeter be I linear yards, then if n2l &c., are the

number of men which have stepped across each yard length

of the boundary, and if N2 N2, &c., are the number of men

in respective square yards within the area at any instant, then

Ni + N2 + , &c., to A terms or SN is called a surface integral

and will be equal to 7^ + )^ + , &c., to I terms, which is a line

integral, provided that each n is reckoned positive when men

step in, and negative when men step out of the area over each

yard of the boundary. The algebraic sum of all the stepping

over the boundary all the way rouiul the area is equal to the

sum of the men per square yard all over the area. We have

here given an illustration of an important proposition in

mathematical physics, viz., that a surface integral, or the sum

mation of a certain quantity over an area, can be replaced by

a line integral, or the summation of another relative quantity

all along the boundary line of that area. We proceed to

illustrate it from an electrical point of view.

Let C (Fig. 182) be the circular cross-section of an infinite

straight wire conveying a current G. Round C describe a

circle of radius r. The magnetic force at p is known to be

2 C
equal to — units, and is directed along the circumference

r

of the circle ; the line integral of the magnetic force along the

2 C
dotted line is equal to — x2it r=iir C, and the surface

r

integral of the current through the area enclosed by the dotted
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circle is C. Hence we have generally that the line integral of

the magnetic force is equal to 4r times the surface integral of

the current. This proposition is generally true, and it is easy

to show that if A be any area (see Fig. 183) traversed normally

by a current, such tbat the current density is u over any element

 

Fio. 132.

of area d s, then the integral of u d s all over the area, or Juds,

is equal to the line integral of the magnetic force taken along

the boundary line. The mathematical operation of taking a

line integral has been called by Maxwell curling, and we express

 

Fio. 133.

the above proposition by saying that 4jt times the total current

through the area is equal to the curl of the magnetic force

round it. On the theory that lines of magnetic force do not

spring suddenly into existence in a field, but are propagated

onwards from point to point in the field, it is possible to show
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that just as the current is the curl of the magnetic force so the

magnetic force is the curl of another quantity called the vector

potential.

Let A B (Fig. 184) be a portion of a straight conductor in

which a current can be started. Let x x, y y' be two lines drawn

a unit of distance apart, parallel to each other and at right

angles to the conductor. These lines bound a strip of plane space

taken in the plane of the current. Draw any two transverse

lines ab,cd, parallel to the conductor and separated by a small

distance. We know that when a current is started in the con

ductor the lines of magnetic force F will be circles formed round

A B as axis, and having their planes perpendicular to the

plane x x, y y'. Let us now assume that if a current is

suddenly started in the conductor A B the magnetic force is
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propagated outwards from the conductor with a finite velocity

v. In other words, each circular line of force must be con

sidered to expand outwards like a circular ripple on the surface

of water. When once the field has arrived everywhere at its

normal value the magnetic force at a distance r from the wire

2C

is — , where C is the value of the current, and we shall sup

pose, as usual, that the magnetic field is indicated as to value

by the density of the lines of force, or that the number per

square centimetre traversing normally the plane x x, y y' is at

any point proportional or numerically equal to the magnetic

force at that point. If, then, we neglect for the moment all

effect of self-induction, and suppose the current in the wire to

rise up instantaneously to its full value, we may yet regard the
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circular lines of force as expanding outwards with a certain

velocity of enlargement, and attaining or taking up their final

positions after a short interval of time. If we represent the

intersections of these rings of force on the plane of x x y y' by

dots, these dots will march forward like the soldiers in the pre

vious illustration. The total number of lines of force which at

any instant are found traversing the area a b d c is equal numeri

cally to the difference in the number between those which from

the beginning of the epoch have intersected or cut through the

Jine a b and those which have cut through c d. In other words,

the surface integral of the magnetic force over abed may be

represented by, or is equal to, the line integral round abed

of a certain quantity called the vector potential, which, physi

cally interpreted, is the total number of lines of force which

have cut through a unit element of the boundary in the process

of expansion or propagation outwards. This term vector poten

tial is justified as follows :—If F be the total number of lines

of force per unit of length of a b which have cut through a b

from the instant of beginning the current, and if the small

distance b d is called Sx, the length x b being called x, then by

Taylor's theorem (Diff. Calc.), the number which have cut

dF

through unit of length of c d is F — -r— 8 x, and hence the

dF

difference between F and this last quantity is -r— Sx, and this

last when multiplied by Si/, which we may take for the length

rfF

of a b or c d—that is -j— S a- S y—is the total number of lines of

force included in the area abed. If we call the induction

through this area B—that is to say, the number of lines of

force per square centimetre is B—it follows that the number

through a b e d is B S x S y. Hence, equating the two values,

d F

we have -j— Sx 8y = JM> xSy,

dx

Hence, the mean magnetic force over the small area is numeri

cally equal to the space variation of a certain quantity F. In

electrostatics the electric force X at any point in the electrio
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field is the space variation of a certain quantity V, called the

electrostatic or scalar potential—that is to say,

ax

and accordingly by anology that quantity F whose space varia

tion gives the magnetic force under the circumstances considered

above is called the vector potential of the current. From Ampere's

investigations it is known that the magnetic force due to an

element of a current C of length S s at a distance r from this

element, has the value ——, and is along a line at right angles

to the plane containing 8 s and r. The space variation of - -^-^

C 8 s
is —j- ; hence the vector potential of an element of current at

any point is proportional to the length of that element divided

by its distance from that point.

In electrostatic phenomena we obtain the static potential at

any point due to any charge Q by taking each element q of the

charge,, and dividing the magnitude of this element of charge

by its distance from the point at which the potential is required,

and taking the sum 2 $ of all such quotients. In electrostatics

r

the potential at a point is a scalar or directionless quantity,

and the summation is merely an algebraic sum ; but in dealing

C 8 i
with currents the quotients are vectors, or directed quan-

r

tities, and have to be added together according to the laws

for the addition of vector quantities just as forces and velocities

are added. Hence the potential of a current at any point is a

vector or directed quantity. The lines of vector potential of

a straight current are lines described in space parallel to the

current, and the lines of vector potential of a circular current

are circles described on planes parallel to the plane of the cur

rent. Returning to the simple case of a straight current, let

us suppose that a unit of length is described somewhere parallel

to the current, and that on starting the current suddenly cir

cular lines of magnetic force are propagated outwards with a

velocity V ; these lines will, as they expand, cut perpendicularly

through the element of length just as the expanding ripples on

water due to a stone dropped into it would " cut through " a
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stick held perpendicularly in the water a little way from the

place where the "splash " was made. Suppose that after N

lines of force have cut through the element of length this little

line is made to move forward parallel to itself, so that there is

no further increase in the number of lines of force which after

wards cut through it, it is evident that it must move with the

velocity of propagation of the expanding rings of force. But the

number expressing the number of lines of force which have cut

through the element of length already is the value of the vector

potential at that point where the element is at that instant ;

hence the velocity of propagation of the vector potential is

the velocity of propagation of an electro-magnetic disturbance.

Maxwell's general mathematical method of investigating the

propagation of an electro-magnetic disturbance consisted in

forming equations expressing the change of the value of the

vector potential of a current or system of currents at any point

in the field, and deducing equations which mathematically are

of the same type as those which express the propagation of a

disturbance through an elastic solid or fluid, and his result

was that the velocity of propagation of the vector potential

through a medium of electrostatic and magnetic inductivities

K and p was equal to .——, or to (K1x)-i.

The complete proof of the above proposition as given by

Maxwell in all its generality requires some elaborate analysis,

but is is not difficult to give a simple illustration by treating a

reduced case, and which will exhibit the principles of the more

complete problem.

Let an infinite straight conductor be supposed situated in a

dielectric medium of specific inductive capacity (electrostatic

inductivity) K and of permeability (magnetic inductivity) p.

We proceed to investigate the velocity of lateral propagation of

electro-magnetic induction on the supposition that if a current

is instantaneously started at its full value in the conductor,

supposing this possible, the magnetic force travels outwards

laterally from the conductor in all directions with a velocity t>.

This amounts to the supposition that the circular lines of

magnetic force surrounding the conductor swell out or expand

outwards from the surface of the conductor, so that the radius

of any determinate circular line of force increases or grows
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with a velocity v. It must be borne in mind that the

magnetic force at any point in the field at any instant is

defined by the density or concentration of the lines of force—

that is, by the number passing normally through a unit

of area. If we complicate the problem by supposing the

strength of the current in the conductor to gradually increase,

then the concentration of the lines at any point must be

supposed to increase gradually, but the rate of increase of

concentration—that is, of the force—is a different thing from

the rate of outward movement of the lines of force.

We might in imagination suppose each line of force to be

labelled so as to recognise it. All the lines travel outward

from the conductor at the same rate, but some go out farther

than others. The first ones shed off expand out to reach

x

i

Fio. 135.

positions in the most distant portions of the field, and the

succeeding ones reach intermediate positions, and as the

current strength grows up fresh arrivals or deliveries of lines

of force happen which pack the space fuller, and increase the

concentration at all points of the field, at a rate depending on

the rate of growth of the current.

Let 0 C (Fig. 135) be a portion of the straight conductor.

In the plane of 0 C take any little rectangular area abed, with

side a c equal to unit of length, and side a b equal to S x, S x

being a very small quantity compared with the distance between

0 C and a c, that is, let the distance Oc = x and 0 d = x + S x,

and let the distance 8 x be the distance by which the radius

of any circular line of force of the conductor 0 C increases
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in a small time St. At any instant the number of lines

of force which pass normally through the small area abed

is equal to the difference between the number which have

"cut" across ac and those which have cut across Id in

consequence of our supposition as to the outward growth or

expansion of the circular lines of force. Let F be the total

number of lines of force due to the current in 0 C which have

from the beginning of the current flow " cut across " a c, then,

by the principles of the Differential Calculus, the number

which have cut across bd is represented by the quantity

d F
F-. — S x, and the number existing in, or perforating through,

dx dF

the area abed is the difference between F and F - — Sx, or

dF dx

equal to — Sx. Let B stand for the induction through

dx

unit of area of the rectangle abed, or to the number of lines of

force per unit of area, then ihe total number of lines of force

through abed is represented also by B S x, since the area of

a b c d is 5 x square units, ac = bd being unity.

Hence, ^= B (109)

dx

or the induction is represented by the space rate of change of

the vector potential of the current at that point in the direc

tion of x. In this case let it be borne in mind that the vector

potential signifies the number of lines of force which have from

the beginning of the epoch cut through unit length taken

parallel to the current. Again, since by supposition each line

of force moves outwards parallel to itself through a distance

Sx
Sx in a time St, — is the velocity of propagation v of the

St

electro-magnetic disturbance or of the vector potential. The

rate of " cutting across " ac at any instant is represented by

— ; hence the number of lines of force added to the area in

d t

d F
a time S t must be —- 5 1, and this must be equal to the accu-

d t

mulation of the lines in abed in the same time in the area

abed.
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If in a small time interval the rate of cutting across a c is

d F
—-, then the rate at which " cutting" is taking place across

a length b d, removed by a distance S x, is

^+*(™)8x,
dt dx \ dt /

and the rate at which accumulation of lines of induction is

going on in the area is

-* (d-I)Sr.

dx \ dt/

Hence, since B is the induction per unit of area and the area

of abed is Sx square units, the rate of increase of induction

through a b c d is

dt

Accordingly we have

dtK ' dx\dtJ

or since Sx is constant,

ciB= - d—(dF\

dt dx\dt)'

= -d (dF\dt_

ilt \ dt) dx'

'1? 'll= -'111 dt .

or' dxVt U1 Tx'

dx
but — =» = velocity of propagation of the impulse. Hence,

d t

-<PF

(iio)

d x

or, generally, sinco B = ^— ,

. d*F , srPF n
we have —r + v -7—., = ° .... (Ill)

a t* a x"

as the equation of motion of the vector potential. This

equation, which is a reduced case of the general one, is of

the same type as that obtained in the theory of sound for the

B B
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propagation of an impulse along a tube or canal. In the case

of sound the symbol F would be the velocity potential* In the

electro-magne'.ic problem the F is the rector potential. It might

perhaps be more expressively called the induction potential.

The rate of cutting, or the value of , also expresses the

d t

electromotive force acting along the unit of length a c in the

dielectric. 0n Maxwell's hypothesis this electromotive force in

the dielectric acting parallel to the current in the conductor

produces a displacement in the dielectric, such that if E is the

electromotive force we have as above

dt K

where D is the displacement through unit of area ; hence,

d* K di (U2)

and is the rate of displacement or the displacement current

d t

flowing through unit of area taken perpendicularly to the cur

rent in 0 C at the point considered. Let this displacement

current be denoted by u. We have then that -—- = i77 " K

dt2 K

being the dielectric constant of the medium.

Consider now a small parallelopipedon (Fig. 186) or solid

rectangle described in the dielectric, of which the sides are

respectively ac = l, c d = Sx, c e = Sy.

The 'effect of the cutting across of this solid rectangle by

expanding lines of induction will be to generate in it a displace

ment current such that the total displacement current parallel

to a c and through cdfc will be u d x d y. By a previous theorem

the line integral of magnetic force round any line is equal to

Att times the surface integral of the current through the area

bounded by that line, and this is true whether the magnetic force

be produced by that current, or whether it is a current produced

by a certain changing magnetic force. Apply the theorem to

the small rectangle bounded by the lines cefd. The surface in

tegral of the current through c efd is udx dy. The magnetic

* See llesaul's " Hydromechanics," p. 251 (Third Edition).
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' B
force along c e is -, where B is the induction at c and p is the

magnetic permeability of the medium, since by a fundamental

theorem the magnetic induction B at any place is equal to /*

times the magnetic force at that point. The magnetic force

along d f removed by a distance S x from c e is - (b - — 5 x ) .

dx r

and there is no magnetic force along c d and cf, for these sides

are perpendicular to the direction of the magnetic force of the

 

Fio. 136.

current in 0 C. Henco, the line integral of magnetic force round

c ef d is

l(ll8y-(Bdy-^8z8y)),

[*\ dx J

ldB

H d x '
or

hence,

or

— 8 x8y;

iiruSxSy = 1 S x 8 y,

p d x

4it p. u = ....

d x

(118)

Accordingly, in the equations (112) and (113) above, we have

. d* F d B

obtained values for the quantities -75 and -t— in terms of

the permanent constants of the medium ; and by substitution

d n Si
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of these values in equation (111) above, we see that the square

of the velocity of propagation of the vector potential is

that is, the velocity of propagation of the magnetic force is the

square root of the reciprocal of the product of the magnetic

and electrostatic inductive constants of the medium. We have

above proved that the ratio of the electro-magnetic to the

electrostatic units of electric current is expressed by the same

quantity, and indicated that accurate experiment shows this

ratio to be numerically the same as the velocity of light.

Hence, the velocity of an electro-magnetic disturbance or

magnetic force is the same as the velocity of light, and the

conclusion is urged upon us with great force that the medium

concerned in both phenomena is the same.

§ 6. Electrical Oscillations.—A survey of the phenomena of

electric current induction would be very incomplete if it did

not contain some reference to the subj set of electrical oscilla

tions. Recent researches have endowed this department of

electrical investigation with fresh interest. We proceed to

consider the manner in which electrical oscillations may arise.

If a material body is subjected to elastic constraint, and is dis

turbed from a position of equilibrium, it returns when set free

to its original position. If that body is endowed with mass,

and hence possesses the quality of inertia, its motion of return

to its position of equilibrium will, under certain circumstances,

carry it beyond that point and set up oscillations, which decay

gradually away. Two illustrations of this readily present

themselves, one a mechanical and the other a pneumatical

example. The first case is that of a pendulum or straight

spring. Let this pendulum or spring be deflected from its

position or condition of equilibrium and held in constraint. Next

let it be set free—the elastic or restoring forces urge it back

again to its first position. In virtue of its mass it will acquiro

 

01

 

(114)
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a certain momentum, and on reaching the position of equili

brium this momentum may carry it past this point, and the

acquired kinetic energy will then be expended in making a

displacement against the elastic forces. If there is nothing of

the nature of friction present to fritter away the work expended

on the body in making the first displacement, then the energy

would remain associated with it for ever, being alternately

potential and kinetic, and the oscillations continue with undi

minished amplitude. If the spring or pendulum vibrates in a

viscous fluid, then a frictional retardation will be experienced,

and in so far as this is present the energy is gradually dissi

pated, and the oscillations decay away, becoming gradually less

and less in amplitude. It may so happen that the work done

against frictional resistance during the first quarter of a com

plete oscillation in starting to return from the position of

greatest displacement is just equal to the work done in origin

ally making tbe displacement. When this is the case the

whole energy is dissipated by the time the deflected or dis

placed body reaches its original position of rest, and there are

then no oscillations. Accordingly a pendulum or spring may

be set in a viscous fluid of such a kind that the frictional

resistance is just sufficient to secure that when the body

is disturbed and then set free it returns to its original

position without ever passing it ; in other words, there are

no oscillations. Another illustration of oscillatory and non-

oscillatory establishment of equilibrium is as follows : Sup

pose there be two large vessels, or reservoirs, connected by a

pipe, closed or able to be closed in the middle by a stop

cock. Let one of these vessels, A, be exhausted of its air, and

let the other, B, have air in it at the atmospheric, or a greater

than the atmospheric pressure. First, let the connecting pipe

be supposed to be long and narrow ; on opening the stopcock

air will rush over from B into A, and the flow of air will con

tinue uniformly in the pipe in one direction until the pressure

in A and B is equalised. Second, let the connecting pipe be

very short and large, so that little tubular friction is offered to

the flow of air. Under these circumstances the result of open

ing the tap would be that a rush of air would take place, which

would be succeeded by a series of oscillations of the air in the

tube. The air, in fact, rebounds from side to side, and the
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equilibrium is only finally established after a series of gradually

diminishing oscillations or backward or forward currents of

air in the tube. This establishment of equilibrium or pressure

by oscillatory movement takes place when the resistance to the

flow is small. That this is no fanciful description is proved

by the experience of MM. Clement and Desormes in their

experiments to determine the ratio of the specific heats of gases.

In these experiments a large glass vessel had a partial vacuum

made in it. A stopcock was then quickly opened and closed,

and the pressure of the air determined after a short time.

These experiments were repeated by MM. Gay Lussac and

Welter. See Journal de Physique, LXXXIX., 1819, 428, and

Ann. de Ch. et de Phys. [1], XIX., 1821, 486.

M. Cazin (Ann. de Ch. et de Phys. [3] LXVL, 1862, 206)

first pointed out a source of error which resulted from these air

oscillations, and showed that the final pressure depended upon

the phase of the oscillation at which the stopcock is closed.

These examples are sufficient to indicate that when a material

system of bodies having inertia is displaced against elastic forces

which compel it to return, if free, to a definite position, whilst

at the same time its motion is resisted by actions of the nature

of frictional resistance which dissipate its energy, we have a

resulting motion which may be oscillatory or non-oscillatory,

according to the relation of the constants of the system. Under

certain conditions as to mass, or inertia and friction, we have

oscillations dying gradually away. Under other conditions we

have a gradual return to the original position without ever

passing it. The motion is then said to be perfectly dead-beat.

We shall investigate presently the conditions which must hold

good, and the relation between the inertia factor, in virtue of

which the moving system possesses kinetic energy, and the

resistance factor, in virtue of which the energy bestowed upon

the system at its first displacement is frittered away into heat,

in order that the motion may be vibratory or dead-beat.

When a condenser or Leyden jar is discharged through a

conductor, the potential energy runs down in the form of an

electric current. In this case we have a similar state of things

to that existing when a bent spring is released. This trans

formation of the potential energy may take place either by a

vibratory current, that is, by a series of electrical oscillations—or
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by a uni-directional discharge. It is highly probable that Prof.

Joseph Henry, as far back as 1842, was the first to recognise

that the discharge of a condenser might be of an oscillatory

character. It is remarked by him* that " The discharge,

whatever may be its nature, is not correctly represented by

a single transfer of imponderable fluid from one side of the

jar to the other ; the phenomena require us to admit the

existence of a principal discharge in one direction and then

several reflex actions backward and forward, each more feeble

than the preceding, until equilibrium is attained. All the

facts are shown to be in accordance with this hypothesis, and

a ready explanation is afforded by it of a number of phenomena

which are to be found described in the older works on electricity,

but which have until this time remained unexplained." A littla

later on in the Paper he gives an explanation of the reversal

of polarity of the needles by the oscillatory discharge. In his

celebrated Essay, " Erhaltung der Kraft " (Berlin, 1847),

Helmholtz alluded also to such a possible form of electric

discharge in the following words : " We assume that the dis

charge (of a jar) is not a simple motion of the electricity in one

direction, but a backward and forward motion between the

coatings in oscillation, which become continually smaller until

the entire vis viva is destroyed by the sum of the resistances."

He adds : " The notion that the discharge consists of alter

nately opposed currents is also favoured by the phenomena

observed by Wollaston while attempting to decompose water

by electric shocks, that both descriptions of gases are evolved

at both electrodes." The investigation which, however, marks

an epoch in this subject is the Paper by Lord Kelvin (then Sir Pap

William Thomson) in the June number of the Philosophical

Magazine for 1853, on " Transient Electric Currents." In

this Paper the author discusses, first, the equations which

determine these currents at any instant when a condenser or

Leyden jar is discharged through a conductor. The dis

charging conductor is supposed to have self-induction, or as

* " The Scientific Writings of the late Prof. Joseph Henry." Washing

ton : 1886. Vol. I. This statement of Prof. Heury had attention directed

to it by Mr. A. D. Raine in Ihe Electrician of November 2, 1888, p. 831.

It had been previously mentioned, however, in the sketch of the life of

Frof. Joseph Henry, given in the Encyclopedia Brittanica, Ninth Edition.
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Lord Kelvin then called it, " electro-dynamic capacity," and

also to have ohmic resistance, which is constant, and indepen

dent of the rate of discharge. 0n these two assumptions he

builds up an equation which mathematically contains the whole

theory, as follows :—

If C is the electrostatic capacity of the jar or condenser, and

E the ohmic resistance, and L the constant inductance of the

discharging conductor ; and if q is the electric quantity in the

jar, and v the potential difference of its coatings at any instant

/, then by the definition of electric capacity we have

j = Ci>,

and 'll = i = the current at that instant in the conductor, wbich

d t

is equal by 0hm's law to ^ . By the principle of conservation

a

of energy the rate at which electro-magnetic energy is being

taken up-by the conductor, viz., — (J L i2), together with the

d t

rate at which energy is being dissipated as heat in the con

ductor, viz., K il (by Joule's law), must be equal to the rate of

decay of the energy contained in the jar, or to

- n a <,>-/,(» 0-

Hence

Cdt dt

but i =—, or the current is the rate of loss of charge, there

in t

fore 1 o. . . . (115)

d t1 L d 1 L C

The value of q, or the charge in the jar at any instant, is

given by the solution of this equation.

Let us write the equation in the form

—-1 + a. 1 + bq = 0.

d t' dt 1

In order to solve this equation we may proceed as follows :

The charge q in the jar begins by possessing a certain initial
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value, and ends by being zero. Let us assume that q can be

expressed as a function of the time t in the form q = Aemt,

'where A is a constant and e is the base of the Naperian

logarithms, and to is also a certain function determined by

the capacity, resistance, and inductance of the system. For

it is clear that by a suitable value for A and m the func

tion A emt may be made to express the mode in which the

charge q dies away with increase of the time t. The problem

is reduced, then, to finding A and to. The solution of nearly

every differential equation is by a process of happy guessing ;

there is generally no systematic or direct method of obtaining

the required result. Take, then, the expression q = kemt,

form the first and second differential coefficients, and sub

stitute these results in the original equation, and we arrive

at the expression

Aem,(j/i2+am+6)=0.

Hence, the value A assumed for q will satisfy the equa

tion (115) ; that is, when substituted for q in the original

expression, render it zero, provided that m is such a quantity

that wi2+rt 7ii+b = 0. The two roots of this last quadratic

equation are obtained by a simple solution, and they are

Two cases then arise, first, when — is greater than 6—that

4

R2 1 R2 1
is, when —— is greater than _— , or —— greater than _. In

L (J 4 L C

this case the roots of the quadratic are real, and if we call

them j'j and w2 we can say that the solution of the dif

ferential equation is »i f *«£ *

2=A6m« + Bem2< (116)

where A and B are constants determined by the initial circum

stances of the discharge, and mj and m2 are equal respectively

to~"+ /--6 and - - - ~-b. This solution for the

2 V 4 5S V 4

value of q is called an exponential solution, and it indicates

that under these circumstances when the inductance, resistance
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and capacity are of such magnitudes that R is greater than

.J^t the quantity q dies away regularly, diminishing with

the time in a continuous manner. In this case the discharge

of the jar is always in one direction, and the current or rate of

decay ^-^-0 of the charge is also always in one direction.

If, however, R is less than ^J^yt then ("J"-') *s a ne6a"

tive quantity, and the square root of it is an imaginary one,

and the roots of the quadratic m2 + am + b = 0 are unreal.

It is shown in treatises on algebra that a quadratic equation

has either two real or two imaginary roots, and when this last

is the case the roots of the quadratic can always be expressed

in the form a + /3 V - 1 .

Accordingly, the solution of the original equation (115)

under these circumstances is of the form

By a simple transformation, based on the employment of

the exponential values of the sine and cosine, as given on

page 106, this solution can be thrown into the form

9 = e"'(Pcos/3« + P1sin/8 0 . . . (118)

where P and P1 are constants, and

2 2L r V 4 VLC 4LS

The general result is then that the equation

dt* Ldt LC*

has two solutions—one, called the (lend beat case which applies

when R is greater than */- r, and is of an exponential form,

and indicates that the charge q dies away regularly with lapse

of time, and the discharge current is uni-directional ; the

other, called the oscillatory case, which applies when R is less

than ^/iil, contains sine and cosine terms, and indicates a

periodically changing discharge decreasing by a series of
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oscillations, in which case the charge on each plate of

the condenser is first positive and then negative, but

at the same time always decreasing ; or, in other words,

is a periodic variation superimposed on a steadily decreasing

variation, the currents or rates of discharge following

the same distinction. These two modes of discharge, or
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solutions of the differential equation, are best indicated

graphically by the two curves in Fig. 187, in which the

upper curve represents the gradual decrease, according to an

exponential law, which is indicated as the proper solution of

the equation, when the value of R or the resistance of the
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discharging circuit is greater than and the lower one

the oscillatory discharge, which is indicated by the trigono

metrical solution of the differential equation, when the

resistance R is less than When R has such a
v o

value that R= w — , the discharge is just non- oscillatory.

We find, then, that according to Lord Kelvin, analysis

indicates that for a certain relation between the resistance

and inductance of the discharge circuit and of the capacity of

the jar the discharge is a simple current in one direction

or an oscillatory but decreasing current, according as R

/in
is greater or less than ^—. If the discharge is oscillatory,

then the electrical oscillations are isochronous, and the

periodic time of a complete oscillation is

2tt

7 1 _ W

V LC TIT"LO 4 V

for in the second solution (118),

q = ea '(P cosBt + Q sin B t),

we see that at intervals of time equal to ^ the sine and cosine

terms have the same values, since sinj8t = sin/J^t + !0,and

the same for the cosine. Hence, the trigonometrical factor in

the value for q periodically repeats itself in value at intervals

of time equal to - , and is zero at times when tan B t= - - .

Hence the complete periodic time of the oscillation is

2jt 2ir
or

VLC 4L2

and the frequency of the oscillations, or number in one second,

is 1 A7¥
27tV LC 41/
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Accordingly, when E = w — there are no oscillations in one

second, or the motion is just non-oscillatory, or dead bent. In

the case of the uni-directional discharge the values of the in

stantaneous current in the discharge circuit can be represented

as we have seen by the ordinates of an exponential curve, and in

the case of the oscillatory discharge by those of a periodic curve

whose successive maxima descend in geometric progression as

the time increases in arithmetic progression. During equal

intervals of time the whole quantities which pass decrease

also in geometric progression, and the zero points, or instants

of reversals of sign of current, are uniformly separated.

The foregoing predictions of analysis have been confirmed

by the experiments of Feddersen, Paalzow, Bernstein, Blaserna,

Helmholtz, Schiller and Bood. Lord Kelvin in his original

Paper pointed out and suggested the application of Wheat-

stone's mirror in the examination of the discharge. In

Feddersen's experiments the spark from a Leyden jar battery

was taken between two brass balls placed in front of a revolv

ing mirror. The discharge was passed through a high resist

ance. The image of the spark was viewed by a telescope.

Under these circumstances the image of the spark was drawn

out when the mirror revolved into a continuous band of light

in a direction perpendicular to that of the discharge.* When

the resistance was gradually reduced a point was reached at

which the image was broken up into a series of separated

strips, each strip corresponding to a discharge. This showed

that the discharge was intermittent.

In Paalzow's experiments a similar discharge from a Leyden

battery was passed through a resistance coil and through a

vacuum tube, and the image of the discharge in the vacuum

tube viewed in a revolving mirror. As before, with a small

resistance the image consisted of a number of separate images,

each of which corresponded to a discharge, and a bluish light

showed itself at both poles of the vacuum tube. When the

* An experimental research of a very complete character on the duration

and nature of the discharge of a Leyden jar is described by Prof. Ogden

Rood in the American Journal of Science and Artt for September, 1869 ;

January, 1871 ; September, 1871 ; October, 1872; November, 1872; March,

 

1873.
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resistance was increased the bluish light showed itself only at

one pole. In the former case a magnet held outside the tube

split the discharge into two lines of light, showing that it con

sisted of currents travelling in both directions ; but in the last

case the magnet did not divide the discharge. This sufficiently

indicated that with a low resistance the discharge was oscillatory

and alternate, and not uniform or uni- directional.

Feddersen found that the critical resistance at which the

discharge just becomes oscillatory varies inversely as the square

root of the capacity of the battery, which is in agreement with

the predictions of theory.

A good account of the researches of these experimentalists is

given in Wiedemann's Galvanismus, Part II, § 800, et seq*

We can cast the expressions for the charge at any instant

left in the condenser into more convenient forms. First,

consider the dead-beat case (equation 116) is

q=Aemit + Bem2t,

where m1 and w, are the real roots of the quadratic equation

m2 + a m + b = 0 ;

* For the sake of readers wishing to pursue the subject we give here a

few references, to original P2pers, in which are included some collected

by Sir. TunzeUnann in a series of articles on Electrical Oscillations in

The Electrician of September 14, 1888, and succeeding numbers.

Feddersen, PoggendorfTs Annalen, Vol. MIL, p. 69, 1858 ; VoL CVIII.,

p. 497, 1869 ; Vol. CXII., p. 452, 1861 ; Vol. CXIII., p. 437, 1861 ; Vol.

CXV., p. 336, 1862 ; Vol. CXVI., p. 132, 1862.

Paalzow, Pogg. A an., Vol. CXII., p. 537, 1861 ; Vol. CXVIIL, p. 173, 1863.

Bernstein, Pogg. Ann., Vol. CXLII., p. 54, 1871.

Helnjholtz, Monattberichlc dcr Berl. Akad., 1874.

Kirchoff Ocsammcltc Abhandlungcn, p. 168, containing remarks and

criticisms of Fcdderscn's results.

Von Oettingen, Pogg. Ann., Vol. CXV, p. 115, 1862; also Jubelbaud,

p. 269, 1874.

L. Lorenz, Wiedemann's Annalen, Vol. VII., p. 161, 1879.

Schiller, Pogg. Ann. Vol. CLII., p. 535, 1872.

Mouton, These, Paris, 1876, Journal dc Physique, Vol. VI., pp. 5 and

46, 1876.

Kolacek, Beiblatter en Wiedemann's Annalen, VoL VII., p. 541, 1883.

Olearsky, Verhandlungen dcr Academic von Krakau, Vol. VII., p. 141,

1882.

Oberbeck, Wiedemann's Annalen, Vol. XVII., pp. 816—1,040, 1882; Vol.

XIX., pp. 213 and 265, 1883.

Biehat et Bloudlot, Compta Jtcndui, VoL XC1V., p. 1,590, 1882.
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•, R i , 1 , R / R2 1
and as a = - and b = —- , we have m, = - — + . /—.

L C L 1 2 JLi V 4 L* 0 L'

which we will write as - a + li, and similarly, w2 is -a- li.

The constants A and B are determined by the condition that

when t — 0 the charge q is the original charge Q ;

hence Q = A + B, (119)

and since the current i at any instant is the rate of loss of

charge, or-^-?, we have t= -— = -Ani1e™i<-B?»2c",2e.

dt dt

Ijlfhen t- 0, t - 0.

Hence Am1 + Bm3 = 0 (120)

From these two equations (119) and (120) A and B are deter

mined in terms of nij and rn2, or of a and li, and we find

2fi *

2)8 H

Let the quantity * be called T. and let - be called

a — p a + p

T2, then it is easily seen that A = T' Q, and B = - . . Tt - Q,

J-i— i.t Tj — T2

and the equation for q may be written

?=T^T,{Tie"^"T2e"^}- * • (121)

The ratio of the potential v of the condenser at any instant

to its original potential V is the same as that of q to Q.

The two quantities T, and T2 are such that their sum is

equal to C R and their product to C L—statements easily

verified by taking the values of Ti and T2 in terms of a and 0,

and recollecting that a stands for and li for - *

2 Li * 4 L CIj

Hence also the current i at any instant is given by the

equation Or' « •>

•'"f^f,{*~'2 ~*~tl / • • • • (122)

These two equations (121) and (122) contain the complete

solution of the discharge in the dead-beat case, giving the

current, potential and quantity at any instant reckoned from

the moment of closing the circuit of the condenser.
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Suppose that the discharging circuit possesses no inductance,

then L = 0, and the equation reduces to

q = Qe~*c'

In the above expression the product B C, or the product of the

resistance of the discharging circuit and the capacity of conden

ser, is a quantity of the dimensions of a time, and is called the

time constant of the condenser. It represents the time in which

the charge of the condenser falls to 1th part of its original value

e

(e being 2-71828) . Let R C be denoted by T. Then if we begin

with a charge Q, in a time T the charge left is — . In a time

e

2 T it is% and in a time n T it is 9„. Now, since e2= (2-71828)°,

e e"

or nearly 20, and e* is nearly 54, it follows that in time 7 T

only one-thousandth of the original charge remains, and in a

time 21 T only one thousand millionth ; so that in a period of

time equal to 5 or 6 times the length of the time constant the

condenser is practically discharged. If the discharging circuit

possesses inductance then in the dead-beat case there are two

time constants of unequal importance. These are the quantities

we have called Tt and T2 above. ^ is the larger of the two.

The rapidity of decay of the charge with an inductive dis

charger depends chiefly on T1P For if we refer again to equa

tion 121, we see that q will become zero when tho quantity

- L - *
in the bracket, viz., the function {T^ ta-Ts<? t2}, becomes

zero.

Starting with given values of Ti and T2 depending on the

values of L, C, and R, and knowing that Ti is greater than

T.2, the function starts with a value equal to Tj - T2 when t = 0,

and as t increases without limit both exponentials tail away

down to zero ; but since T, is greater than T2, the first expo-

- t

nential,viz., e t,, is longer getting down to practical zero

- t

than the other. Hence, the evanescence of e ti practically

determines the time of discharge of the condenser, and we

may call Tj the principal time constant of the system.
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If we call the expression A, then bearing in mind that

T,= _L and T, = —i- where a = .A and /?= . -_L
a-p a + f} 2L H V4L» CL'

we can express T\ and T2 in terms of A and C R or T, and we

have by simple substitution

T 2TA

and T2=

1- ^i-U'

2T A.

1+ s/i^TT

and the product T, T2 = T2 A.

Hence, if a horizontal line is taken, on which the values of

A. are set off (see Fig. 188), and values for Tj and Ta plotted

 

Fio. 138.

off vertically, the locus of the extremities of these ordinates is

a parabola. In the figure, lengths along 0 1 represent values

of A, and the corresponding values of T, and T2 define a

parabola P M 0, such that 0 P = T = C R, and the ordinates of

the upper portion P M of the curve are the values of T,, and

those of 0 M are those of T2. The value of A = ^ is the abscissa

O A, for which T^T2, for when JL ,

0 Br

then /3 = 0, and in

oo
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VCL 4L2"

this case Ti = T2, and T1 has its minimum value. For this

particular value of A., which is just the value when the dis

charge ceases to be dead-beat, and becomes oscillatory—that

is. when ^ = -A- or J^— — J—the time constants have equal

4L2 CL CE! 4 ^

values, and TV becomes a minimum. Hence, for this particular

value of the inductance the time of discharge of the condenser

is a minimum, and less, therefore, than the time of discharge

when the discharge circuit has no inductance.*

Turning next to the case when the inductance of the dis-

R2
charge circuit is such that A. is greater than J, or when is

1 .
less than - -, we have to consider the periodic function which

C L

then applies.

Referring to equation 118 for the value of q in terms of t we

have ? = «ot(Pcos^t + P1sin/3t),

where a — - as before, but B now stands for

2L

From the conditions that q = Q when t = 0, and that when

t = 0, i = ^| = 0, we find that P = Q and P' = Q^.

Hence, q = Qe 'L |cos B t + sin/8 tj.

0n the convention that y is such an angle that

tan7 =^,

we can write the above expression

-r^sinj^n

* l sin y J

Hence, we see that the expression for the currents and for the

remanent quantity of electricity at any time t consists of a

periodic part, which is a sine function, and a decreasing part,

* This appears to have been first noticed by Dr. W. E. Sumpner (PhiL

Mag., June, 1677), and discussed by Prof. 0liver Lodge in an interesting

paper in The Electrician for May 18, 1888, p. 39, from which article some

portion of the above paragraph and figures have been taken.
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which is an exponential function, and that the rate of decay

of the maxima of the waves is determined by the value of

R 2 L
_— ; in other words, —. is the time constant for the oscillatory

2 h ft

form of discharge.

This is expressible as 2 T A in our notation, and is, hence,

simply proportional to A. In Fig. 138 the variation of the

time constant T8, or for oscillatory discharge is represented

a

by the straight line M Q.

The really important part of the time constant curve is the

part P M Q, consisting of a bit of a parabola and a straight

line, and having a minimum ordinate corresponding to A = J.

The current at different times for the two cases A, = 0 and

A = £ are plotted in Figs. 189 and 140.

For A = \ we have T3 = T, since T3 = 2 T A. In other words,

the time of discharge of the condenser when _ii2=J is the

C K

same as when L = 0, and just double that when A = \ ; and in

this last case the rate of discharge is a maximum. Hence, so

far from reducing the rate of discharge, a little self-induction

in the discharge circuit is a positive help to the condenser in

getting rid of its charge. Dr. Sumpner* has pointed out that

since a lightning discharge resembles that of a condenser, a

little inductance in a lightning rod may assist matters instead

of blocking the way of the discharge.

A pendulum swinging in treacle was long ago suggested by

Lord Rayleigh as a mechanical analogue to the Leyden jar dis

charge. Dr. Lodget has pointed out that we may make the

analogy exact by considering a loaded spring bent aside or

compressed in a resisting medium in such way that gravity is

not concerned in the motion and then let go.

The pliability of the spring corresponds to the capacity of

the condenser, its displacement to the electric charge. The

load or inertia corresponds to the self-induction of the circuit ;

the viscosity of the fluid to its resistance. If the viscosity

friction be supposed to vary accurately as the speed, then the

equation of motion is

m — - R t) = R ar,

d t

* Lac. eU. t See The EUctrioiom, May 18, 1888, p. 41.

C02
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where * is the displacement and v the velocity = - —. Writing

j dt

L for m, and - for C, and x for Q, we have the condenser

a

 

Cnrre I. represents the strength of the disc harge current of a condenser in a circuit
of no sel,-induction. Tn=S R. This curve corresponds t<, the point P in r ig. 13i
Curve II. represents the strength of the discharge current oi the same condenser

in a circuit of the same resistance, hut with self-induction enough Just to bring the
discharge to the verge of oscillation, this being the condition which e1iects complete
discharge in the shortest time possible. this curve corresponds to the point M in
Klg. 13b.

Charge

In Jar

 

0 t To To i Z61h 2To Tima

Fio. 140.

Curve I. shows the charge rem2ining in the jar at any time, the circuit being
practically devoid of sel,-induction.
Curve II. shows the same thinpr for L = l 8 R2—that Is, for the quickest discharge

possible. At ,irst Curve I has the advantnge, but at a time r26H8 the second

curve overtakes It and discharges the jar more rapidly.

equation (115); the two are seen to be the same, and every

thing we Lave said of the electrical problem applies to the

mechanical one.
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It is obvious mechanically that if the resistance is moderate

and the mass considerable, the recoil of the spring will be

accompanied by oscillations, and that with great resistance and

small inertia the motion will be a slow sliding back without

oscillation ; and there must exist between the strength of

the spring, the mass of its load, and the viscosity resistance

of the medium some definite relation which shall constrain

the recoil to be dead beat, just returning to the original

position of equilibrium without overshooting the mark. This

relation is now seen to be

R2 = 4Rm,

and under these circumstances the recovery of the spring is

effected in the shortest possible time.

Iu addition to the experimental researches of Blaserna, to

which reference has been made at page 246 et seq., very

extensive experiments have been made by Bernstein* and by

Moutonf on the subject of electrical oscillations in the case of

induced currents. Bernstein's experiments were made with a

revolving wheel interrupter, which closed a primary circuit, and

for a very short time, at a determinable period after the closure

of the primary, put the secondary circuit in series with a delicate

ballistic galvanometer. In this way the state of the secondary

circuit could be investigated at various instants of time after

closing or opening the primary circuit, and the general results

of Blaserna were confirmed. In Mouton's experiments a rather

different form of commutator (see Jamin's "Cours de Physique,"

Vol. IV., p. 201, third edition) was employed to break a

primary circuit and to examine with a quadrant electrometer

the electrical state of the terminals of an open secondary

circuit at various instants afterwards. Mouton found that a

potential difference declared itself at less than one four-mil

lionth of a second after rupture of the primary, and that this

potential difference died away with decreasing amplitude by

rapidly reversing sign, thus indicating the existence of electrical

oscillations set up in the open secondary circuit. The duration

of the first semi-oscillation was greater than that of succeeding

ones. In the case of a secondary circuit of 18,860 turns he

* Pogg. Ann., Vol. CXLII., p. 54, 1871.

t "Etude Experimental sur les Phdnomenes d'Induction Electrodyna-

mique." Thdse de Doctoral, 1876.
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found that the first semi-oscillation had a duration of 110

millionths of a second, and the succeeding ones about 77

millionths of a second, and he was able to count about 80

complete oscillations.

§ 7- The Function of the Condenser in an Induction Coil.—

Fizeau appears to have been the first* to suggest that the

action of an induction coil employed for raising the electro

motive force of a current would be increased by the employ

ment of a condenser. Its mode of use is as follows :—Let P

be a primary circuit which takes current from a few cells of a

battery, and let I be an interrupter in the primary circuit, either

automatically worked by the magnetisation and demagnetisation

of the iron core or by any other means. Let S be a secondary

circuit of many more turns and high resistance. Under these

circumstances each break of the primary current is accompanied

by the production of an electromotive force in the secondary cir

cuit capable of producing a discharge across an air space in the

secondary circuit. This electromotive force in the secondary is

increased by any action tending to increase the suddenness of

the stoppage of the primary current, and decreased by anything

promoting a spark at the points of rupture of the primary circuit.

Fizeau found that if a condenser, formed of alternate sheets of

tinfoil and mica or paraffined paper in such fashion as to form

a Leyden jar, has its two opposite coatings connected with the

two extremities between which the rupture of the primary

circuit takes place, then the electromotive force in the secon

dary circuit under these circumstances is increased. In

most current text-books this action is explained by saying

that the extra current in the primary circuit, instead of

being expended in making a spark at the contact points,

darts into the condenser and hastens the decay of the primary

current. This explanation as generally given is, however, very

imperfect. A more complete examination of the nature of the

condenser action has been given by Lord Rayleigh (Phil. May.,

Vol. XXXIX., 1870, p. 428, et seq.). In the experiments there

detailed a sewing needle was submitted to the magnetising action

of an induced secondary current produced by the " break " of

the current in a primary circuit. In some previous experiments

* Comptet Hcndus, Vol. XXXVI., p. 418, 1853. "



DYNAMICAL THEORY OF INDUCTION. 391

by the same writer (Phil. Mag., July, 1869, p. 9) it had been

shown that the magnetising effect of the secondary current

was, cet. par., proportional to the initial strength of the in

duced current, and that this initial strength was proportional

to the quotient of M by N, or to the value of the ratio of the

coefficient of mutual induction to the coefficient of self-induc

tion of the secondary circuit. It was then found that the mag

netising effect of the secondary current was greatly increased

by connecting the plates of a condenser respectively to the

two points between which the break of the primary circuit

occurred. The complete investigation of the values of the

induced and primary currents would under these conditions be a

good deal more complicated than the investigation of the more

simple case of the discharge of a condenser through a single

inductive circuit. We are here, however, only concerned with

the first part of the electrical motion, the manner in which the

currents wear down under the action of the resistances being

of subordinate importance. It appears that when the electrical

motion is decidedly of the oscillatory type the first few oscil

lations will take place almost uninfluenced by resistance, and

on this supposition the calculation (following Lord Rayleigh)

becomes remarkably simple.

Let L, M and N be the primary, mutual and secondary in

ductance, and let i and i' be the primary and secondary current

strengths at any instant, and q and q' the quantities of elec

tricity which have flowed through these circuits from the

instant of beginning to reckon the time t,

and if we neglect resistance effects, as we can do at the instant

after " breaking " the primary circuit, and call C the capacity

of the condenser bridging across the " break " of the primary

circuit, the equations giving the values of the primary and

secondary current i and i' at the instant after breaking the

primary circuit are—

then

 

 

(123)

(124)
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Eliminating i' we have

(125) may be written

(L-"*)S+S-° ™

A differential equation of this type always indicates an

oscillatory motion. For, consider the simple periodic function

2ir
x — A sin pi, where p =—, T being the periodic time of the

motion, we have —=pk cos v t, and —f = - «2 A sin p t :

dt dt2

hence, <!L^ + pt x = 0, and therefore # = Asinptisa particular

solution of this equation.

In the above differential equation p is seen to be 2tt times

the frequency of the oscillation.

Accordingly, equation (126) indicates an oscillation of the

primary current, of which the periodic time is equal to

N/o(l-!>

and this is the periodicity of the electric oscillation set up in

the primary at the first instant after " break."

Equation (124) gives by integration the connection between

t and t', and it is

M i + N i = constant, . . . (127)

which shows that the currents in the primary and secondary

oscillate synchronously, the maximum of the one coinciding

with the minimum of the other. Since i' is zero at the

instant of "break," the constant in equation (127) must be

equal to M I, where I is the current strength in the primary

just before " breaking " primary circuit.

Accordingly, we have

., M/T -
t=—(I-t),

so that when, after half an oscillation of the primary, t becomes

equal to — I, we have

*' = 2|l (128)
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This equation gives us the initial value of the secondary

current i' in terms of the value of the primary current just

before the " break " when the condenser is used. Comparing

equation (128) with the results on page 236, where it is shown

that, if the condenser is not used across the " break " of the

primary, the initial value of the secondary current under the

assumption of a perfectly sudden break is equal to ^1,

N

we see that the value of the secondary current just imme

diately after the break of the primary, is double that which

is there deduced as the value when the primary is simply

suddenly stopped without the intervention of the condenser.

Stripped of symbolism, what the above amounts to is this : if

a condenser is inserted across the " break points " of a primary

circuit, then on breaking the primary circuit, the primary

current continues to run on into the condenser for a short time ;

it then rebounds, and is reversed in sign, retaining initially its

full strength. The electromotive force set up in the secondary

circuit is then the result of a stoppage of a primary current and

its immediate reversal in direction, and this is equivalent to the

removal of a certain number of lines of induction from the

secondary circuit, and their immediate insertion into it in the

opposite direction. Hence, when a condenser is so employed,

the inductive electromotive force in the secondary must be just

double that which it would be if there were no such rebound

of the primary. The condenser acts by setting up electrical

oscillations, and it does away with the spark, or largely dimi

nishes it, in virtue of the fact that the condenser acts at the

moment of " break " as if it were a shunt circuit of negative

self-induction, only with this difference—that instead of dissi

pating energy like a conducting circuit it returns it again to

the primary circuit in the form of a reversed current, and

increases the total change of induction through the secondary

circuit in the short interval of time immediately succeeding

the " break."

Since the sparking distance of the secondary current depends

on the initial electromotive force in the secondary—that is, on

the maximum of the electromotive force—we see that the con

denser so applied can greatly increase the sparking distance

of the secondary discharge.
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The action is essentially a phenomenon of resonance. The

condenser causes an elastic recoil in the current and enables

the electro-kinetic energy of the steady primary current to be

utilised in producing secondary electromotive force rather than

suffer dissipation in the form of a contact spark. In order to

be efficient in quenching spark the capacity of the condenser

must be great enough to take the full primary current, or

to receive charge at a rate equal to the delivery of the full

primary current for a time during which the contact or break

points are separating to a distance too great to permit of much

sparking jumping across. There is a certain capacity of

condenser suitable for any given coil which produces the most

beneficial result in quenching contact spark and lengthening

secondary spark. The required capacity is best determined by

trial, since the experimental data necessary to furnish the

means to calculate it would be probably more difficult to obtain,

owing to the fact that it will be determined by several variables,

viz., the effective resistance and inductance of the primary

circuit, the rate of breaking, and probably also by the ampli

tude of movement of the " break points." If the primary coil

of an induction coil is traversed by an alternating current then

the condenser as ordinarily used becomes superfluous. It will

be remembered that the late Mr. Spottiswoode obtained

secondary sparks of great magnitude from his large coil by so

using the alternating current of a De Meritens machine.

If a condenser is discharged through a circuit of which the

resistance is so small that it may be neglected in numerical

comparisons, then the equation of discharge is

dfi G '

where the symbols have the same signification as before. As

above explained, this indicates that the discharge is oscillatory,

and that the time of a complete oscillation is 27r JiJq.

In describing the experiments of Blaserna we saw that the

frequency of the electrical oscillation set up in circuits on

starting and stopping currents in them could be reckoned by

tens of thousands per second. In the case of Leyden jars dis

charged through very short circuits, the frequency may rise to

numbers reckoned by millions per second. Since the frequency
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of luminous vibrations falls between 400 and 700 billions

per second, these condenser oscillations fall in frequency in the

gap between the acoustic and luminous vibrations.

It is of interest here to note that since these electrical

oscillations in a circuit are creating pulsatory electrical dis

turbances, which spread out from the wire laterally, the

wire in which the electrical oscillations are going on is

virtually emitting "light," although not such light as can

affect our eyes. The ether waves in the case of these elec

trical disturbances are too long to be eye-affecting. If the

velocity of a wave disturbance is V, and the wave length is A,

and the frequency of the oscillations corresponding to this

wave length is n, then V»nA, for the wave motion travels

over the length of one wave in the time of one complete oscil

lation. In the case of ether disturbances we have seen that

V is 8 x 1010 centimetres per second, or 186,000 miles per

second. Hence when the frequency of the electrical oscilla

tions is known, the wave length of the lateral disturbance

emitted can be found. According to Dr. Lodge, a microfarad

condenser discharging through a good conducting coil having

an inductance of one henry gives a current alternating 160 times

in a second, and emits ether waves about 1,200 miles long.

A gallon Leyden jar (capacity about 0-008 microfarad) dis

charging through a stout wire suspended round an ordinary

sized room emits ether waves between three and four hundred

yards in length, its current alternating at the rate of about one

million per second. A pint Leyden jar sparking through an

ordinary pair of discharging tongs gives a current of 15 million

alternations per second, with ether waves some 20 yards in

length. An ordinary electrostatic charge on a sphere two feet

in diameter, if disturbed in any way, will surge to and fro at

the rate of 800 million vibrations per second, emitting ether

waves a yard long. Electric charges on bodies of atomic

dimensions, if able to oscillate at all, would vibrate thou

sands of billions of times a second, and produce ultra-violet

light.

The ordinary use of a condenser with an induction coil shows

how it can be employed to neutralise the effect of self-induction

in a circuit. We have considered on page 187, § 81, of Chapter

IV., the case of a condenser having its terminals shunted by a
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resistance, and the combination placed in series with an

inductive circuit and there shown that capacity can neutralize

self-induction. We may also consider the case of a condenser

in parallel with an inductive circuit as another similar problem.

Let L R (Fig. 140) be an inductive circuit, and let the ter

minals a b be closed by a condenser C of capacity C. Let L be

the inductance and R the resistance of the coil. Let i be the

value at any instant of a simple periodic current sent through

the relay and condenser in parallel, and let £,, i2 be the simul

taneous current strengths at that instant in the condenser

circuit and the coil circuit. As the potential difference of the

points a and b oscillates, an ebb and flow of current is produced

in the condenser circuit ; the condenser, in fact, is charged and

discharged by the periodic current ; also a periodic current is

produced in the inductive circuit L R. The current in L R

1,
 

Fio. 140.

lags in phase behind the impressed electromotive force or

potential difference of the points a b, and the current flowing

into the condenser lags 90deg. in phase behind the same im

pressed electromotive force. From this it results that the

mean current through the inductive circuit may, under some

circumstances, be greater when the condenser is joined up to

its ends than when it is not so joined ; its effective self-induction

is thereby lessened, and it acts as if it had experienced a

diminution of self-induction. The condition most favourable

for producing this result may be investigated as follows :—

Let v be the potential difference of the points a and b at the

instant when the current in the undivided circuit is i and that

in the branches is i, and ij. We then have, by the principle

of continuity,

»-ti + ts (129)
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also ti = C^, (180)

a t

and L^2 + Bis=» (181)

a t

and we may take the original current before division to be

simply periodic, and to be expressed by

i = Isinpt (182)

where I is its maximum value.

Then by elimination of v and ii and i from the above four

equations we arrive easily at the equation—

CL'i^ + CR^ + iWsinpt. . . (188)
dt2 dt v

Now, since i, must be a simple periodic current lagging in

phase behind that of the undivided current i, we may take i2

to be of the form

4 = L,sin(pt- 9) (134)

I2 being the maximum value of t2, and 6 its phase lag be

hind I].

Hence, by differentiation of (131) and substitution in (183)

we arrive at

(1 - C L ps) I, sin {p t - 6) + C Rp I2 cos (pt - 6) =1 sin p t, (135)

which by the lemma on page 161 may be written—

P ^(l-CL/J' + CBV (sin p t - 6 + <£) = I sin p t. (136)

Both sides of this last equation are the expressions for the

same thing, viz., the value of i, and hence, equating the

coefficients, we have

(iy= (l-CL/.2)2 + C2RV- • • (137)

This gives us the value of the ratio of the maximum or mean

values of the strengths of the undivided current and the

current in the inductive circuit. If we differentiate the

right-hand side of (137) with respect to C, and apply the

usual criterion to ascertain whether we have a maximum

or minimum value, we find that the expression on the right

hand side of (137) has a minimum value when

0 = ^— -=- (138)
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In other words, if the capacity of the condenser is so chosen as

to have a capacity equal numerically to the quotient of the

inductance by the impedance of the coil, then, under these

circumstances, the mean strength of the current in the coil

circuit will be greater than the mean strength of the current

before subdivision ; and it is easily seen, by substituting in

equation (187) the value of C given by (188), which makes the

ratio of current strength a minimum, that with this value of

the capacity the strength of the current in the inductive coil

is to the strength of the current before division in the ratio of

the impedance to the resistance of the inductive circuit.

The expression (188) gives the value of the condenser capacity

which will produce the required result of minimising the self-

induction of a relay of resistance R and inductance L when

applied to it. Another problem of a like kind, but not so

practically useful, is the investigation of the behaviour of a

condenser when joined in series with an inductive coil and

traversed by a simple periodic current. Let a condenser of

capacity C be joined in series with an inductive circuit of

resistance R and inductance L, and let a simple periodic

current of frequency n be sent through the two in series. It

is not difficult to show that, if we take p for '2ir n, as usual,

and if the capacity and inductance are so related to the

frequency of oscillation that p = A- , then, under these

»/L C

circumstances, the condenser just annuls the self-induction

of the coil, and the two together permit the passage of the

same current which would traverse the coil in virtue of its

resistance R, assuming it to have no inductance. This is

easily proved as follows :—Lot L be the inductance and R the

resistance of the inductive circuit, and C the capacity of the

condenser in series with it. Let v = V sin p t be the potential

difference at the instant t, measured over the condenser and

inductive resistance, and let vy and w2 be the fall of potential

down the inductive circuit and condenser respectively. Then

also,

f = », + r2 ;

dt

(139)

(110)

and

 

(141)
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where i is the value of the current flowing in the circuit at

the instant when the potential difference between the ends of

the whole circuit is v.

Hence by substitution we have

L^+ Rt + i fidt = Vsmpt. . . (142)

at LiJ

The current being also simply periodic must have a value i

expressed by the equation,

i = Isin(j,t-0), .... (148)

since it will differ in phase by an angle 6 from the potential

difference v.

Accordingly, we find that by differentiating (148) and

substituting the values in (142) we arrive at the equation

(l-CLps)sin {pt-e) + B,CpeoB(j,t-e) = ^lcoBpt.

The maximum value of the current, viz., I, is therefore

given by the expression

i cvy

= J {l-CLff + WC2/

If then 1 = C h p2 or p = we see that the above equation

reduces to 1 = ^,
a

and the whole circuit of coil and condenser is equivalent to a

simple non-inductive circuit of resistance R, in other words

the inductance is annuled. Hence a certain relation between

the inductance, capacity, and frequency, causes the inductance

to be neutralised by the capacity, and the whole circuit to be

effectively non-inductive.

§ 8. Impulsive Discharges and Relation of Inductance

thereto.—If between the ends of a conductor a difference of

potential is created which is brought about slowly, the result

shows itself in a current in the conductor, and the resulting

current is determined as to strength by the mode of variation

of the potential and by the capacity as well as by the induct
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ance and ohmic resistance of the conductor. If, however, the

difference of potential is created with great suddenness, the

resulting electric flow is less determined by the true resist

ance, and more by the inductance of the conductor. In this

case we have the phenomena of impulsive discharges. We have a

mechanical analogy in the case of impulses or sudden blows

given to heavy bodies, which well illustrates how strikingly

force phenomena may be altered when for steady or slowly

varying forces we substitute exceedingly brief impulses or

blows. If an explosive, such as gun-cotton, is laid on a stone

slab in open air, and simply ignited, it burns away with com

parative slowness ; the slab is uninjured, and the evolved gases

simply push the air away to make room for themselves. But

it is well known that by means of detonators the same explo

sive can be fired with enormously greater rapidity, and in this

case the blow or impulse given to the air is so sudden that it

has not time to be pushed away, and in virtue of its inertia its

incapacity of receiving a finite velocity in an infinitely small

time bestows on it an inertia resistance, which causes nearly the

whole of the effect of the explosion to take effect downwards

on the slab, and this last is shattered. The inductance ol

conductors introduces a series of phenomena which are the

electrical analogues of the above mechanical experiment. We

have seen that the counter electromotive force of self-induc

tion is proportional to the rate of change of another quantity,

called the electro-kinetic momentum, and this quantity phy

sically interpreted is the total flux of induction or number

of lines of induction enclosed by the conducting circuit at

that instant. A conductor of sensible inductance can no more

have a current of finite magnitude created in it instantaneously

than a body of sensible mass can have a finite velocity in

stantaneously given to it. In both cases there is an immense

resistance to very sudden change of condition. A very loose

plug of snow or earth stuffed into the muzzle of a loaded gun

will cause it to burst when fired, since the inertia resistance

of the plug to very sudden motion is exceedingly large,

though the frictional resistance may be small. Accordingly,

the study of the behaviour of conductors under exceedingly

sudden electrio blows or electromotive impulses leads us to

consider some very interesting effects. We shall best eluci
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date these effects by describing some interesting and suggestive

experiments due to Dr. Oliver Lodge.*

His first experiment is called the experiment of the alternative

path. The two terminal knobs of a Voss or Wimshurst electrical

machine (see Fig. 141) are connected to the two inside coatings

of a pair of Leyden jars. The two outside coatings are con

nected to the balls of another discharger, B, and the terminals

of this discharger are short-circuited by a metal wire, indicated

by the dotted line. The Leyden jars stand on a badly insu

lating wooden base. On turning the handle of the electrical

machine the inside coatings receive equal and opposite elec

trical charges, and there is an induced charge on the outer
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coating of each, which, in the language of the old school of

electricians, was called the " bound " charge. When the differ

ence of potentials of the inner coatings reaches a certain value

the air space at A is cracked, and a spark passes, discharging

the inner coatings of the jars. At that instant the charges of

the outer coatings are set " free," or, in modern language, the

potential of one rises and that of the other falls. The effect of

this is that whereas before the spark passed at A the balls at B

* The account of these experiments is taken from the report of Dr.

Lodge's Mann Lectures before the Society of Arts. These suggestive

lectures were reprinted in The Electrician, entitled " Protection of Build

ings from Lightning," Vol. XXI., pp. 234, 273, 302.

D D
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were at equal potential, on a spark at A happening the balls

at B are instantaneously brought to a very great difference

of potential. It might be thought that since the balls are

short-circuited by a metallic wire this difference of potential

will expend itself on making a current in the wire. On the

contrary, very little of the discharge may take place through

the wire. A spark passes at B, or, in other words, the

discharge passes in great part across the exceedingly highly

resisting air space at B, rather than take the circuit of the

metallic wire of very low resistance, so that although there is

a divided circuit open to the discharge, one branch of which

measures hundreds of thousands of ohms or megohms and

the other only a small fraction of an ohm, it nearly all goes by

the route of higher resistance. The explanation of this is that

when the balls at B are thrown with great suddenness into

opposite electrical states the counter electromotive force of

self-induction of the circuit of metal L makes it virtually

non-conducting. The electromotive impulse meets with

such resistance owing to the electro-magnetic inertia of the

circuit that it rebounds and cracks through the air. In order

that it shall do this, however, the distance of this air gap

at B has to be less than a certain amount. There is a certain

critical distance of the knobs B for less than which the dis

charge always jumps across B, and for greater than which the

discharge keeps mainly to the metallic circuit. Even if the

short-circuiting metal is a thick rod, still when B is not great

the discharge chooses the air-gap path. The phenomenon here

presented has had fresh interest and attention called to it by

Dr. Lodge, but it has really been long a familiar one, though

its explanation has not stood out hitherto so sharply as it does

now.
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Faraday was acquainted with it, and showed that if a charged

Leyden jar is discharged by means of a wire crossed or bent so

that there was a loop (Fig. 142), the wires at a nearly but not

quite touching, then when the spark happened at b, a spark

took place also at a, showing that some at least of the discharge

jumped across a instead of pursuing the course of the metal

loop.

The same fact lies at the base of the action of all lightning

arresters placed on telegraph or telephone instruments. Mr.

C. F. Varley, we believe, first suggested that the coils of the

single-needle instrument might be protected from damage by

lightning by twisting together the earth and line wires where

they leave the case, the theory being that although ordinary

 

Line
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currents were not short-circuited by reason of the cotton

covering of the wires, yet lightning discharges would meet

with such resistance in the inductive coils that they would

jump across the knot from wire to wire rather than pass

round and damage the coils. In the same way the ordinary

comb protector is supposed to act. Between the line wire

L (see Fig. 148) and the electromagnetic instrument, relay,

telephone, &c., is placed a metal comb, which has its points in

opposition to another comb in connection with the earth, and

the other terminal of the electromagnetic instrument is also

" to earth." An incoming current has then two paths open to it

to get to earth, one of comparatively low resistance through the

instrument, and one of enormously high resistance across the

D D 2
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air-gap between the comb points. Ordinary currents, steady or

periodic, pass entirely through the metallic circuit. Very violent

electric impulses, such as a lightning discharge, meet with an

enormous inductive opposition in the electromagnetic instru

ment owing to the inability of an inductive circuit to respond

to an electromotive impulse instantaneously. Hence the air-

gap is cracked, and the discharge passes across the combs and

the instrument may be saved. Evidence exists, however,

pointing to the fact that the protection afforded by these con

trivances is very far from complete. We are not here concerned

with their efficiency as practical devices, but only with them

as illustrating the principle of the alternative path and the

behaviour of inductive circuits to impulsive discharges. That

these devices are insufficient has been fully demonstrated by

many experimentalists.*

In these experiments of the alternative path it was found by

Dr. Lodge that the critical distance at which the discharge just

prefers to jump the air-gap was greater for a thick copper rod

40 feet long (No. 1 B.W.G.) than for an iron wire (No. 27

B.W.G.) of 88-8 ohms resistance, indicating a less inductive

inertia on the part of the iron ; but this fact is only true for

the particular circumstances of the experiment. A very clear

difference was established between copper rod and tape, using

conductors of the same length and weight. The tape has an

advantage in permitting more easily the passage of sudden

electric discharges. A controversy on the relative suitability of

rod and tape for lightning conductors dates from the time of

Faraday and Sir W. Snow Harris, and a possible explanation

of the reasons for preferring one rather than the other presents

itself when we consider the matter in the light of those con

siderations which induce us to think that an electric current

begins always at the surface of conductor, and takes a certain

time to diffuse or soak into the mass of the metal. It is not

cross-section but surface which is here concerned ; and, other

things being equal, the conductor which offers the greatest

surface to the dielectric is able to drain the energy out of the

* For an account of some interesting experiments by Prof. Hughes and

Prof. Guillemin on " Lightning Protectors " see The Electrician, Vol. XXI.,

p. 301, July 13, 1888. It was found that a protector consisting of two

opposed flat plates was better than a comb or opposed mink
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dielectric most quickly and dissipate it as heat in the con

ductor. We have referred to this on a previous page (see ante,

p. 252), and it will be mentioned again in connection with some

views of Prof. Poynting.* With respect to the apparent supe

riority of iron, it would naturally have been supposed that,

since the magnetic permeability of iron bestows upon it greater

inductance, it would form a less suitable conductor for dis

charging electric energy with great suddenness. Owing to the

fact that the current only penetrates just into the skin of the

conductor, there is but little of the mass of the iron magnetised,

even if these instantaneous discharges are capable of magne

tising iron. This last fact has been thought to be due to an

actual time lag of magnetisation, viz., that magnetising force

required to endure for a sensible time in order to produce

magnetisation, but recent views tend in the direction of con

sidering the apparent lag as a consequence of the fact that the

eddy currents produced in the surface layers of the metal by

the discharge shield the inner and deeper layers from inductive

influence, as described under the head of Magnetic Screening.

In any event the final result is the same ; the electromotive

impulses, or sudden rushes of electricity, do not magnetise the

iron, and hence do not find in it any greater self-inductive oppo

sition than they would find in a non-magnetic but otherwise

* For some special remarks on the self-induction of wires of various cross-

sections see Mr. Oliver Heaviside in the Phil. Mag., January, 1887, p. 11 :

—" The magnetic energy per unit of length of a circuit is J L t*, where t is

the current in the wire and L the inductance per unit of length. As regards

the diminution of L in general by spreading out the current in a strip

instead of concentrating it in a wire, that is a matter of elementary reason

ing founded on the general structure of L. If we draw apart currents,

keeping the currents constant, thus doing work against their mutual

attraction, we diminish their energy at the same time by the amount of

work done against their attraction. Thus the quantity J L t- of a circuit

is the amount of work that must be done to take the current to pieces,

so to speak—that is, to separate all its filamentary elements of currents to

an infinite distance. If wires are taken, each of a unit of length and of

the same total cross-sectional area, but of different forms of cross-section,

round, Bquare, elliptical, equilateral triangle, narrow rectangle, &c., the

ratio of their inductances is the same as the ratio of their torsional rigidities.

Thus the narrow strip has the least torsional rigidity, and the circular-

sectioned wire the greatest, and this is true also for their relative self-

inductions."
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similar conductor. Dr. Lodge's further researches seem to

show that there is a real advantage in using iron for lightning

conductors over copper, and that its greater specific resistance

and higher fusing point enable an iron rod or tape to get rid

safely of an amount of electric energy stored up in a dielectric

which would not be the case if it were copper. This point is

further elucidated by some other experiments of Dr. Lodge.

Two tinfoil conductors were prepared of approximately equal

resistance and length. 0ne of these was formed into a spiral,

each layer being insulated with paraffin paper, and wound on

a glass tube. The other was made into a zig-zag or non-

inductive resistance. These conductors were then employed as

alternative paths, as in the former experiment with the copper

wire. In the case when the tin-foil zig-zag was employed to

short-circuit the jars it was not possible to get a B spark (see

Fig. 141) until the distance of the A balls was shortened to 0-6

(tenths of inch). When the tinfoil spiral was used the critical

spark distance at B rose to 0"4. When the iron wire bundle

was inserted in the tube it did not in any perceptible degree

increase this distance. The length of the sparking distance at

A was 7"3, and when no alternative path was used at all to

connect the jars the critical distance of the B balls, at which

sparks sometimes passed and sometimes failed, was 11-1. Here,

then, we have the non-magnetisability of iron by sudden dis

charges illustrated. Dr. Lodge has called attention to the

fact that a " choking " coil having a core of divided iron and

wound over with many turns of wire does not add to the

apparent self-induction of a circuit discharging a Leyden jar.

It may even diminish it when the discharge is oscillatory and

of sufficient frequency, although the oscillations may be as few

as 500 per second. This experiment shows, as we know from

other facts, that eddy currents are set up even in a core of

finely-divided iron, and that these eddy currents, under suffi

ciently rapid alternations, are confined to the surface of the

core, and moreover, since they are as regards phase nearly in

opposition to that of the current in the coil, they actually tend

to diminish the total flux of induction through the coil, and

hence diminish the self-induction of the circuit.

The inductive opposition to electric discharge presented by

even a short length of conductor, when the difference of poten



DYNAMICAL THEORY OF INDUCTION. 407

tial between the ends is made very suddenly, is seen in the

tendency under such circumstances to tide, flash. If a conduc

tor, say, a straight rod of copper, has one end to earth, and

somewhere very near its side is the end of another conductor

also " to earth," then if the free end of the first conductor is

suddenly exalted in potential the impulsive rush of electricity,

meeting with such an obstacle in the inductance of the conduc

tor, spits or flashes out laterally and sparks to the other con

ductor. No conductor is able to prevent side flash altogether

unless it has practically no inductance. As long as a conduc

tor must be straight (like a lightning conductor) so long will

there be a tendency to side flash. This is illustrated by the

following experiment. A massive conductor has (Fig. 144) a

very fine wire stretched alongside and air gaps in this bye-

path left by bringing the ends of the fine wire very near to the

sides of the large conductor. On sending an impulsive rush of

electricity through the large conductor little sparks are seen at

a and b, showing that some of the discharge has left the thick

Fig. 144.

conductor and travelled along the fine wire, even although it

had to leap across an air gap. If the bare hands are applied to

the ends of an open spiral of very stout copper wire, one end of

which is connected to a "good earth," shocks will be felt when

a Leyden jar is discharged through the copper. In this case

the human body forms the bye-path, and the experiment indi

cates that the law of division of steady currents or slow dis

charges between conductors in parallel, viz., a division in the

ratio of their conductivities, does not hold good for impulsive

discharge, and that the relative inductance of the circuits

has more influence in the latter case in determining what

happens.

The distinction between the resulting discharges due to a

steady electromotive force or strain and that due to an elec

tromotive impulse or impulsive rush of electricity has been

illustrated by some further experiments by Dr. Lodge on the
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behaviour of model lightning conductors when subjected to

the action of these two modes of discharge. Two tin plates

are placed horizontally and insulated, and these are supposed

to represent the earth and a thunder-cloud. These plates are

connected, as in Fig. 145, to an electrical machine, and bywork

ing the handle are brought up to a steady potential difference.

0n the lower plate are placed little rods of various heights,

sharp, or having knobs, and these represent lightning con

ductors. At a certain potential difference the electric strain

set up in the air exceeds the limit which the dielectric can

sustain, and it breaks down, giving rise to a spark. A discharge

then takes place towards one or other of the mimic lightning

conductors. In one experiment three conductors were used—

one with a large knob, 0-9in. less in height than the distance

between the plates, the second with a small knob, 2in. less in

height, and a sharp short point. The point even when very

low prevents discharge altogether. It may be too low to be

effective, or it may be insufficient to cope with the supply of

electricity if that is supplied very fast, but it acts to prevent

discharge. If the point is removed or covered up we then find

that the discharge takes place, when the potential difference

of the plates is made great enough, to the small knob by

preference, and it does so even when the stem of the short

knob is lower than that of the large knob. In other words,

when the stems are the same height the small knob protects

the large one, and it does this until lowered in height to about

two inches less than the other ; when this is the case both

knobs are struck indifferently. And it does this even when a

resistance of one megohm is interposed in the stem of the

smaller knob. The state of things is, however, very much

altered if in place of bringing up the two plates gradually to a

sparking potential difference they are very suddenly thrown
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into opposite electrical conditions by connecting them to the

electrical machine as shown in Fig. 146.

The jars c large up as they stand on the same wooden table,

and when th 3 potential rises to sparking amount they discharge

at A, and c violent electric rush then takes place between the

two plates, r.nd the conductors between are struck. If the same

three kinds of conductors are used, and they be adjusted until

they are a-1 about equally struck, we find that the smaller and

shorter-stemmed knob no longer protects the larger one, and

the sharp point no longer protects either ; all three, large ball,

small ball and point, are liable to be struck equally if at the

same height, and if they differ in height the highest is most

likely to be struck, no matter what it is. Points are, then, no

protection against these impulsive rushes of electricity. The

special virtue of a point in the case of the slower-timed dis

charges is that it prepares the path of the discharge to itself,
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for in this case the path is pre-arranged by induction. If one

of the conductors has a large resistance—say a liquid megohm

inserted in it—then this one is no longer struck ; it ceases to

protect the other conductors even if higher than them, and

even if it be so raised in height that it touches the top plate,

thus connecting the plates by a bad conductor, the two other

conductors get struck with apparently the same ease as before.

This indicates that a lightning conductor with a bad earth can

not protect well against discharges of the nature of a sudden

rush. Mr. Wimshurst has, however, shown reason for consider

ing that in this experiment the electrical state of plates, as

regards sign of electrification, may be of importance. The

question how far the point protects from the impulsive rush is

not altogether cleared up. It is still sub judice.
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In performing the first experiment of the alternative path

(Fig. 141) it was noticed that the B spark was longer than the A

spark. Plainly this indicates that the discharge at A sets up

electrical oscillations. The manner in which this is brought

about is as follows :—0n the commencement of the discharge

the air-space is intensely heated, and its conductivity so far

increased that the conditions as to the relation of inductance,

resistance and capacity of the discharger and condenser are ful

filled, and the discharge takes the oscillatory form. If a couple

of long leads are attached to the A discharger (Fig. 147), the

farther ends being insulated, and a discharger B bridged across

at Bi, B2 or B2, then it is found that at every discharge at A a

spark can be obtained at B, and for a certain length of A spark

the B spark will be longer at B3 than at the nearer positions.

Evidently what happens is that the electrical oscillation across

 

Fia. 147.

the A discharge intervals sets up violent surgings to and fro

in the open circuit wires, just like water in a long trough

when it is tilted, and the recoil at the insulated ends, combined

with the inductance of these leads, produces a cross flash at

B. It is, in fact, a case of resonance ; the long open circuit

leads act like resonators to the oscillating discharge across A,

and the nearer the length of the leads approaches to half a

wave length or to some multiple of half a wave length the

more perfect will be the resonance and the greater the recoil

at the open ends, and hence the greater the spark at B,.

If the experiment is tried in the dark, the B discharger

being removed, it is seen that the leads glow at the ends with

a vivid brush light at the moment when the jars are dis

charged. When the proper length of open circuit lead has
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been found which resonates best in accord with the jars used

as dischargers, then the whole of the effects described can be

made to disappear by connecting a very small Leyden jar to

the ends of the wires. The increase of static capacity thus

given to the leads reduces their potential below sparking

point. Arranging the jar so as to leave an air-space between

it and one of the wires, a spark passes into it at each A

spark ; but the jar is not in the least charged afterwards,

proving that the spark is a double one, first in and then out

of the jar, a real recoil of the reflected pulse. Hence, also, we

see that the brush visible in the dark is the same on each wire,

and one is not able to say that one brush is positive and the

other negative, for each is both.

A curious experiment illustrating the electrical surgings or

oscillations set up in a conductor which is suddenly discharged

at one end is as follows : Attach one end of a long wire to one

knob of a Wimshurst machine, and connect the other pole to

earth. The wire is otherwise insulated, and now forms one

coating of a condenser of which the other is the walls of the

room. The wire is bent round so that its free end nearly touches

its initial end (see Fig. 148). Under these circumstances one

would naturally say that a spark at B was absurd, and yet

it is found that even if the wire is a stout copper wire a

spark happens at B when one is produced at A. This B spark

is caused by an electrical oscillation in the wire. The wire is,

as it were, pumped full of electricity by the machine, and

when the spark happens at A a release is given at that end for

one brief instant. Then ensues a rebound of the electricity,

and the pressure rises at the free end to sparking amount.

The whole effect is just analogous to the effect of suddenly

opening and closing a tap on a high-pressure water service—a

concussion is heard in the tap on shutting, and if one could see

the water it would be found that it rebounds, and-a reflected

 

Fig. 148.
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wave is set up in the pipe, which, if the pipe is not strong

enough, will burst it at some weak point. The practical moral

of this is that any large conductor suddenly discharged has set

up in it violent electrical surgings, which may cause it to spit

off discharges at other points, and these sparks may be as long

as the principal spark.

Another way of making these electrical surgings conspicuous

is by their effect in causing a Leyden jar to overflow, i.e.,

to spark round its edge. A jar does this when its coat

ings are very suddenly raised to a great potential difference.

Fig. 149 shows the arrangement. The inside of the jar is made

to communicate direct to one machine pole, and the outer

coating, through the intervention of a long wire, to the other

pole.

When a spark happens at A, and the length of the wire L is

sufficiently great, the jar sparks over its edge. The explanation

 

of this is as follows :—Whilst the handle of the machine is being

turned the potential difference of the jar coatings increases. At

a certain limit the air in the A space breaks down, and, being

heated, becomes for a moment a very good conductor ; there is,

therefore, a rush of electricity put of the inner coating and into

the outer coating, but the spark at A ceasing, this outflow from

the jar is suddenly stopped and rebounds, whilst at the same

time the inductance of the wire L causes a rush to continue into

the jar. The rebound of the flow when the rush through the air

space is suddenly stopped causes the potential difference of the

coatings to rise to a point at which they spark over the edge of

the glass. In an example given by Dr. Lodge the jar was a

one gallon jar, with glass fully three inches above the tinfoil.

L was a thick No. 1 copper wire circuit round a room. The jar
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overflows every time a spark happens at A, even though the

length of this spark is only 0"64in. If the long lead L is short-

circuited, then the jar refuses to overflow until the A spark has

been increased to l-7in. The higher potential difference needed

to cause overflow or rebound in the case with a short circuit is

illustrative of the fact that a little self-induction in the dis

charging circuit bestows momentum on the flow and assists in

making a back splash.

A hydraulic analogue to the above might be found in con

sidering the case of a liquid flowing steadily along a trough or

canal. If an obstruction was suddenly created, as by closing a

valve or sluice, the liquid would rebound and a wave would be

created; and, as in the case of the hydraulic ram, the rebound of

the liquid against a closed valve might be made to lift some of

it to a higher level than that from which it originally fell. In

the electrical case, the rebound is made to raise the jar coatings

to a greater potential difference than that which existed at the

instant when the jar commenced to discharge.

§ 9. Theory of Experiments on the Alternative Path.—We

may proceed, following Dr. Lodge,* and quoting freely from

him in what follows, to examine a little more in detail the

electrical oscillations set up in an open circuit by Leyden jar

discharges. These stationary electrical oscillations in linear

conductors resemble those which can be set up in a cord fixed

at one end, or in a trough of liquid, by suitably-timed im

pulses. As we have seen, if a jar discharges at A (see Fig. 150)

in the ordinary way, simultaneously an even longer spark may

be obtained at B, at the far end of two long open circuit

leads. Or if the B ends of the wire are too far apart to allow

of a spark, the wires glow and spit off brashes every time

a discharge occurs at A. The theory of the effect seems

to be that oscillations occur in the A circuit with a period

T = 2tt J L C, where L is the inductance of the A circuit and

C the capacity of the jar. These oscillations disturb the

surrounding medium, and send out radiations of the precise

nature of light, only too long in wave length to affect the

* See Phil. Mag., August, 1888; also The Electrician, Auguot 10, 1888,

p. 435.
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retina of our eyes. The velocity of these electro-magnetic

impulses is, as we have seen, equal to v, where

1

= J /i K '

so the wave length of the oscillations is

V p • K •

L C
Now — is the electro-magnetic measure of inductance, and -

ju K

is the electrostatic measure of capacity, /* being the magnetic

permeability, and K the electrostatic inductivity of the medium

surrounding the wire.

Each of these quantities is of the dimensions of a length, and

the wave length of the radiation is 2ir times their geometric

mean. We may look upon it, then, that the magnetic field

due to the oscillatory current in the A circuit, which circuit

 

consists partly of metal wires, partly of the dielectric of the

jar, and partly of the heated air in the spark space, acts

inductively upon the other or B circuit which is adjacent to

it, and has, in fact, the jar dielectric as a common boundary.

The pulsating field induces oscillatory currents in the open B

circuit. These electric pulses rush along the surface of the

wires with a certain amount of dissipation, and are reflected at

the distant end, producing a recoil kick or impulse tending to

break down the dielectric in the air gap B with production of

a spark. These currents continue to oscillate to and fro unti

damped out of existence by the resistance of the wires. The

best effect in the way of spark at B is observed when the

length of each wire is such that the time occupied by an elec

tric pulse in travelling along the wires and back again is equal

to the time of a complete oscillation in the A circuit ; that is,
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when the length of the open circuit wires is equal to half a

wave length or to some multiple of half a wave length. The

natural period of oscillation in the long wires will then agree

with the oscillation period of the discharging circuit and the

oscillations in the open circuit wires, and the field due to the

oscillations in the A circuit will vibrate in unison like a

column of air in a pipe resonating a tuning fork, or like a

string vibrating when attached to the tongue of a reed.

The elementary theory of the open circuit oscillations is as

follows :—

Let li and ri be the inductance and resistance of the straight

wires per unit of length, as affected by the periodicity, and let Ci

be the capacity per unit of length. It has been shown by

Lord Rayleigh (Phil. Mag., May, 1886) that with very rapid

oscillations owing to the circumferential distribution of the

current the inductance and resistance have values different from

the steady current values, and when the frequency of the oscil

lations is very great the resistance ry per unit of length is the

geometric mean of its ordinary value r and \ p m, where is

the magnetic permeability of the material of the conductor, or

pp0r, p being, as usual, 2ir n, n being the number of

complete oscillations per second.

And again, when n is very great, the inductance it per unit

of length is equal to a constant phis —?, or

I being the induction for slowly fluctuating currents.

In the case of the two parallel wires we have for the slope

of the potential -ILL along them the usual equations,

{ being the instantaneous current in the section of the length

lying at a distance x from the origin ; and also for the accumu

lation of charge in this element d x of the length we have the

equation

 

 

(114)

rfV 1 di
(145)

dt C,d»
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The elimination of i between these equations gives us a

differential equation for V, and shows that stationary waves

r»f current are set up in finite wires of suitable length under

»,j : r. action of .'in alternating electromotive force. The solution

of tua equation 'ir a long wire when rj is small and p is very

large is

V = v/<-> cos

r , 1
where to, = - and n, = -'

The velocity of propagation of the wave is therefore nj and the

wave length is —

P

For two parallel wires, as in the Leyden jar case, we have

each wire

ri= J ipHvr-

r being the ordinary resistance. And again, as Lord Rayleigh

has shown (Phil. May., May, 1886), we have

I, = 4,alog- + -1i

a p

I being the distance between the parallel wires and a the

radius of either, and /* the magnetic permeability of the

material of the conductors.

For immensely quick oscillations the second term is zero.

Also, the capacity of the wires per unit of length is, by a

known theorem,

ok- K '

hence

J Lj Cj \/p K'

and the velocity of the pulse along the wires is the same as in

the dielectric round them. In riher words, the electric pulses

set up in the wires rush to and fro with a velocity equal to

that with which the electro-magnetic impulse is propagated

through the dielectrio rouud them. Hence, we have here a

means of determining experimentally the wave length of a given

discharging circuit. Either vary the size of the A circuit or
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adjust the length of the B wires until the recoil spark B is as

long as possible. Then measure, and see whether the length

of each wire is not equal to

A small condenser can be made having an electrostatic

capacity of, say, two or three centimetres, and if such a coated

pane be made to discharge over its edge, the discharged circuit

will have an electro-magnetic inductance of a few centimetres.

Under these circumstances the electrical oscillations would be

at the rate of a thousand million a second, and the wave length

of the electro-magnetic disturbance radiated would be about 20

to 80 centimetres.

If a conductor as small as an atom could have its electrical

charge disturbed in the same way, oscillations would be set up

of the frequency of light waves and electro-magnetic disturb

ances of light wave length radiated ; and it seems probable

that this is just what light waves are, viz., electro-magnetic

disturbances propagated through the ether and due to electric

oscillatious set up in the atomic charge.

§ 10. Impulsive Impedance.—In the experiments of the

"alternative path," as described by Dr. Lodge, the main result

is very briefly summed up by saying that when a sudden dis

charge had to pass through a conductor it was found that iron

and copper acted about equally well, and indeed iron sometimes

exhibited a little superiority, and that the thickness of the

conductor and its ordinary conductivity mattered very little

indeed. We are led by this to see that the impedance which a

conductor offers to a sudden discharge, and which may be

called its impulsive impedance, is something quite different

from its ordinary or ohmic resistance, or even its impedance,

defined as VK2 +p2 L2, to slowly periodic or oscillatory cur

rents. As already mentioned, the resistance of a conductor

to very rapidly changing currents is expressed by Bu where

B being the resistance to steady current, the permeability

of the material of the conductor and I its length, and p = 2n-

 

E E
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times the frequency of the oscillation. Also the corresponding

inductance L, is

P

where L is a constant depending on the size and form of the

circuit, but only in a small degree upon its thickness. Hence,

forming the function iJ'Rl*+p,hl*, and calling this Iml,'ve

have

where i» = ^ I /*0R.

In the case of enormously rapid oscillations the value of Im,

practically reduces to p L, and hence the impulsive impedance

varies in simple proportion to the frequency, and depends on

the form and size of the circuit, but not at all on its specific

resistance, magnetic permeability, or diameter.

All this is borne out by experiment. In some of his

experiments Dr. Lodge found the impedance of a No. 2 wire

of two and a-half metres length bent into a circle to be 180

ohms at twelve million oscillations per second, and for a

No. 40 wire the impedance was only 300 ohms, although the

ohmic resistances of these wires were respectively -004 ohms

and 2-6 ohms. At three million oscillations per second, or

at one-fourth the frequency, the impedances of the same

circuits were 48 ohms and 78 ohms. At one-quarter million

oscillations per second the impedances are reduced to

four and six ohms respectively for the thick rod and fine wire.

Hence, for frequencies of a million per second and upwards,

such as occur in jar discharges, and perhaps in lightning, the

impedance of all reasonably conducting circuits is the same,

and independent of conductivity and permeability, and hardly

affected greatly by enormous changes in diameter.

§ 11. Hertz's Researches on the Propagation of Electro

magnetic Induction.—The classical researches of Hertz on

electrical oscillations and the propagation of electro-magnetic

induction through space form an epoch in the history of
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electrical science. These investigations have been well

described by Dr. Lodge in his book on " The Work of

Hertz,"* and the reader is referred to this for an account

of the chief work of Hertz and his followers. There is

therefore no need to enter here at very great length into

an account of these discoveries ; but a very excellent

abstract of Hertz's work has been given by Sir. G. W.

de Tunzelmann.f

Preliminary Experiments.—It is known that if in the second

ary circuit of an induction coil there be inserted, in addition to

the ordinary air space across which sparks pass, a Riess spark

micrometer, with its poles joined by a long wire, the discharge

will pass across the air space of the micrometer in preference

to following the patli of least resistance through the wire,

provided this air spaca does not exceed a certain limit ; and it

is upon this principle that lightning protectors for telegraph

lines are constructed. It might be expected that the sparks

could be made to disappear by diminishing the length and

resistance of the connecting wire; but Hertz found that though

the length of the sparks could be diminished in this way, it is

almost impossible to get rid of them entirely, and they can

still be observed when the balls of the micrometer are con

nected by a thick copper wire only a few centimetres in length.

This shows that there must be variations in the potential

measurable in hundreds of volts in a portion of the circuit

only a few centimetres in length, and it also gives an indirect

proof of the enormous rapidity of the discharge ; for the differ

ence of potential between the micrometer knobs can only be

due to self-induction in the connecting wire. Now the time

occupied by variations in the potential of one of the knobs

must be of the same order as that in which these variations

can be transmitted through a short length of a good conductor

to the second knob. The resistance of the wire connecting >

the knobs is found to be without sensible effect on the results.

* Published by " The Electrician " Printing and Publishing Company,

Limited.

+ This section originally appeared as a series of articles in the pages of

The Electrician, in Vol. XXI., pp. 587, 625, 663, 696, 725, 757, 788 (1888).

The writer felt it would be difficult to make a more complete digest of

Hertz's work than is contained in these excellent articles, and, by the kind

permission of their author, he is allowed to reproduce them in these pages.

Ee2
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In Fig. 151, A is an induction coil and B a discharger. The

wire connecting the knobs 1 and 2 of the spark micrometer M

consists of a rectangle, half a metre in length, of copper wire

two millimetres in diameter. This rectangle is connected with

the secondary circuit of the coil in the manner shown in the

diagram, and, when the coil is in action, sparks, sometimes

several millimetres in length, are seen to pass between the

knobs 1 and 2, showing that there are violent electrical oscil

lations not only in the secondary circuit itself, but in any

conductor in contact with it. This experiment shows even

more clearly than the previous one that the rapidity of the

oscillations is comparable with the velocity of transmission of

electrical disturbances through the copper wire, which, accord

ing to all the evidence at our disposal, is nearly equal to the

velocity of light.

In order to obtain micrometer sparks some millimetres in

length a powerful induction coil is required, and the one used

by Hertz was 52 centimetres in length and 20 centimetres in

diameter, provided with a mercury contact breaker, and excited

by six large Bunsen cells. The discharger terminals consisted

of brass knobs three centimetres in diameter. The experiments

showed that the phenomenon depends to a very great extent

on the nature of the sparks at the discharger, the micrometer

sparks being found to be much weaker when the discbarge in

 

Fia. 151.
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the secondary circuit took place between two points or between

a point and a plate than when knobs were used. The micro

meters sparks were also found to be greatly enfeebled when the

secondary discharge took place in a rarefied gas, and also when

the sparks in the secondary were less than half a centimetre

in length ; while, on the other hand, if they exceeded 1 \ centi

metres the sparks could no longer be observed between the

micrometer knobs. The length of secondary spark which was

found to give the best results, and which was therefore em

ployed in the further observations, was about three-quarters

of a centimetre.

Very slight differences in the nature of the secondary sparks

were found to have great effect on those of the micrometer,

and Hertz states that after some practice he was able to deter

mine at once from the sound and appearance of the secondary

spark whether it was of a kind to give the most powerful

effects at the micrometer. The sparks which gave the best

results were of a brilliant white colour, only slightly jagged,

and accompanied by a Bharp crack.

The influence of the spark is readily shown by increasing

the distance between the discharger knobs beyond the striking

distance, when the micrometer sparks disappear entirely,

although the variations of potential are now greater than

before. The length of the micrometer circuit has naturally

an important influence on the length of the spark, as the

greater its length the greater will be the retardation of the

electrical wave in its passage through it from one knob of the

micrometer to the other.

The material, the resistance, and the diameter of the wire

of which the micrometer circuit is formed have very little

influence on the spark. The potential variations cannot,

therefore, be due to the resistance ; and this was to be

expected, for the rate of propagation of an electrical disturb

ance along a conductor depends mainly on its capacity and

..coefficient of self-induction, and only to a very small extent

on its resistance. The length of the wire connecting the

micrometer circuit with the secondary circuit of the coil is

also found to have very little influence, provided it does not

exceed a few metres in length. The electrical disturbances

must therefore traverse it without undergoing any appreciable
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ehange.' The position of the point of the micrometer circuit

which is joined to the secondary circuit is, on the other hand*

of the greatest importance, as would be expected, for, if the

point is placed symmetrically with respect to the two micro

meter knobs, the variations of potential will reach the latter

in the same phase, and there will be no effect, as is verified

by observation. If the two branches of the micrometer circuit

on each side of the point of contact of the connection with the

secondary are not symmetrical the spark cannot be made to

disappear entirely ; but a minimum effect is obtained when

the point of contact is about half-way between the micrometer

knobs. This point may be called the null point.

Fig. 152 shows the arrangement employed, e being the null

point of the rectangular circuit, which is 125 centimetres long

 

by 80 centimetres broad. When the point of contact is at a

or b sparks of from three to four millimetres in length are

observed ; when it is at e no sparks are seen, but they can be

made to reappear by shifting the point of contact a feW

centimetres to the right or left of the null point. It should

be noted that sparks only a few hundredths of a millimetre ib

length can be observed. If, when the point of contract is at t,

another conductor is placed in contact with one of the micro

meter knobs, the sparks reappear.

Now, the addition of this conductor cannot produce any

alteration in the time taken by the disturbances proceeding
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from e to reach the knobs, and therefore the phenomenon can

not be due simply to single waves in the direction c a and d b

respectively, but must be due to repeated reflection of tte

waves until a condition of stationary vibration is attained,

and the addition of the conductor to one of the knobs must

diminish or prevent the reflection of the waves from that ter

minal. It must be assumed, then, that definite oscillations

are set up in the micrometer circuit just as an elastic bar is

thrown into definite vibrations by blows from a hammer. If

this assumption is correct, the condition for the disappearance

of the sparks at M will be that the vibration periods of the two

branches e 1 and e 2 shall be equal.' These periods are deter

mined by the products of the coefficients of self-induction of

these conductors into the capacities of their terminals, and are

practically independent of their resistances.

In confirmation of this it is found that if, when the point of

contact is at e and the sparks have been made to reappear

by connecting a conductor with one of the knobs, this con

ductor is replaced by one of greater capacity, the sparking is

greatly increased. If a conductor of equal capacity is con

nected with the other micrometer knob, the sparks disappear

again ; the effect of the first conductor can also be counter

acted by shifting the point of contact towards it, thereby

diminishing the self-induction in that branch. The conclusions

were further confirmed by the results obtained when coils of

copper wire were inserted into one or other and then into

both of the branches of the micrometer circuit.

Hertz supposed that as the self-induction of iron wires is, for

slow alternations, from eight to ten times that of copper wires,

therefore a short iron wire would balance a long copper one ;

but this was not found to be the case, and he concludes that,

owing to the great rapidity of the alternations, the magnetism

of the iron is unable to follow them, and therefore has no effect'

on the self-induction.*

* In a note in Wiedemann's Annalcn, Vol. XXXI., p. 543, Dr. Hertz"

stated that since the publication of his Paper in the same volume he had'

found that Von Bezold had published a Paper, in 1870 (Poggendorff's;

Annalcn, Vol. CXL., p. 541), in which he had arrived by a different method

of experimenting at similar results and conclusions as those given by him

under- the head of Preliminary Experiments.
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Induction Phenomena in 0pen Circuits.—In order to test

more fully his conclusion that the sparks obtained in the

last experiments described were due to self-induction, Hertz

placed a rectangle of copper wire with sides 10 and 20 centi

metres in length respectively, broken by a short air space,

with one of its sides parallel and close to various portions of

the secondary circuit of the coil and of the micrometer circuit,

with solid dielectrics interposed to obviate the possibility of

sparking across, and he found that sparking in this rectangle

invariably accompanied the discharges of the induction coil,

the longest sparks being obtained when a side of the rectangle

was close to the discharger.

J*2
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A copper wire, igh (Fig. 153), was next attached to the

discharger, and a side of the micrometer circuit, which was

supported on an insulating stand, was placed parallel to a

portion of this wire, as shown in the diagram. The sparks at

M were then found to be extremely feeble until a conductor,

C, was attached to the free end, h, of the copper wire, when

they increased to one or two millimetres in length. That the

action of C was not an electrostatic one was shown by its pro

ducing no effect when attached at g instead of at h. When
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the knobs of the discharger B were so far separated that no

sparking took place there, the sparks at M were also found

to disappear, showing that these were due to the sudden dis

charges and not to the charging current. The sparks at the

discharger which produced the most effect at the micrometer

were of the same character as those described under the head

of Preliminary Experiments. Sparks were also found to occur

between the micrometer circuit and insulated conductors in its

vicinity. The sparks became much shorter when conductors

of large capacity were attached to the micrometer knobs, or

when these were touched by the hand, showing that the

-quantity of electricity in motion was too small to charge

these conductors to a similarly high potential. Joining the

micrometer knobs by a wet thread did not perceptibly diminish

the strength of the sparks. The effects in the micrometer

circuit were not of sufficient strength to produce any sensation

when it was touched or the circuit completed through the body.

In order to obtain further confirmation of the oscillatory

nature of the current in the circuit kih g (Fig. 158), the con

ductor C was again attached to h, and the micrometer knobs

drawn apart until sparks only passed singly. A second con

ductor, C, as nearly as possible similar to C, was then attached

to k, when a stream of sparks was immediately observed, and

it continued when the knobs were drawn still further apart.

This effect could not be ascribed to a direct action of the

portion of circuit i k, for in this case the action of the portion

of circuit g h would be weakened, and it must therefore have

consisted in C acting on the discharging current of C—a result

which would be quite incomprehensible unless the current

dn g h were of an oscillatory character.

Since an oscillatory motion between C and C is essential for

the production of powerful inductive effects, it will not be

sufficient for the spark to occur in an exceedingly short time,

but the resistance must at the same time not exceed certain

limits. The inductive effects will therefore be excessively small

if the induction coil included in the circuit C C is replaced by

an electrical machine alternately charging and discharging

itself, or if too small an induction coil is used, or, again, if the

air space between the discharger knobs is too great, as in all

these cases the motion ceases to be oscillatory.
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: The reason that the discharge of a powerful induction coil

.gives rise to oscillatory motion is that, firstly, it charges the

-terminals C and C to a high potential ; secondly, it produces

CA sudden spark in the intervening circuit ; and thirdly, as soon

•.as the discharge begins the resistance of the air space is so

much reduced as to allow of oscillatory motion being set up.

• If the terminal conductors are of a very large capacity—for

example, if the terminals are in connection with a battery—the

current of discharge may indefinitely reduce the resistance of

the air space, but when the terminal conductors are of small

capacity this must be done by a separate discharge, and there

fore, under the conditions of Hertz's experiments, an induction

LCoil was absolutely essential for the production of the oscilla-

: tion's.

-7

Fig. 154.

As the induced spirks in the experiment last described were

several millimetres in length, Hertz modified it by using the

arrangement shown in Fig. 154, and greatly increasing the

distance between the micrometer circuit and the secondary

circuit of the induction coil. The terminal conductors C and C

were three metres apart, and the wire between them was of

copper, 2 millimetres in diameter, with the discharger B at its

centre.

The micrometer circuit consisted, as in the preceding experi

ments, of a rectangle 80 centimetres broad by 120 centimetres

long. With the nearest side of the micrometer circuit at a
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distance of half a millimetre from C B C, sparks two milli

metres in length were obtained at M, and though the length of

the sparks decreased rapidly as the distance of the micrometer

circuit was increased, a continuous stream of sparks was still

obtained at a distance of one and a-half metres. The interven

tion of the observer's body between the micrometer circuit and

the wire C BC produced no visible effect on the stream of

sparks at M. That the effect was really due to the rectilinear

conductor CBC was proved by the fact that when one or other,

or both, halves of this conductor were removed, the sparks at M

ceased. The same effect was produced by drawing the knobs

of the discharger B apart until sparks ceased to pass, showing

that the effect was not due to the electrostatic potential differ

ence of C and C', as this would be increased by separating the

discharger knobs beyond sparking distance.

The closed micrometer circuit was then replaced by a straight

copper wire, slightly shorter than the distance C C, placed

parallel to C B C and at a distance of 60 centimetres from it.

This wire terminated in knobs, 10 centimetres in diameter,

attached to insulating supports, and the spark micrometer

divided it into two equal parts. Under these circumstances

sparks were obtained at the micrometer as before.

. With the rectilinear open micrometer circuit sparks were

still observed at the micrometer when the discharger knobs

of the secondary coil circuit were separated beyond sparking

distance. This was, of course, due simply to electrostatic

induction, and shows that the oscillatory current in C C was

superposed upon the ordinary discharges. The electrostatic

action could be got rid of by joining the micrometer knobs by

means of a damp thread. The conductivity of this thread was

therefore sufficient to afford a passage to the comparatively

slow alternations of the coil discharge, but was not sufficient to

provide a passage for the immeasurably more rapid alternations

of the oscillatory current. Considerable sparking took place at

the micrometer when its distance from CBC was 1-2 metre,

and faint sparks were distinguishable up to 3 metres. At these

distances it was not necessary to use the damp thread to get

rid of the electrostatic action, as, owing to its diminishing more

rapidly with increase of distance than the effect of the current

induction, it was no longer able to produce sparks in the micro
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meter, as was proved by separating the discharger knobs beyond

sparking distance, when sparks could no longer be perceived at

the micrometer.

Resonance Phenomena.—In order to determine whether the

oscillations were of the nature of a regular vibration, Hertz

availed himself of the principle of resonance. According to

this principle, an oscillatory current of definite period would,

other conditions being the same, exert a much greater inductive

effect upon one of equal period than upon one differing even

slightly from it.*

If, then, two circuits are taken having as nearly as possible

equal vibration periods, the effect of one upon the other will

be diminished by altering either the capacity or the coefficient

of self-induction of one of them, as a change in either of them

would alter the period of vibration of the circuit.

This was carried out by means of an arrangement very simi

lar to that of Fig. 154. The conductor C C was replaced by a

straight copper wire 2-6 metres in length and 5 millimetres in

diameter, divided into two equal parts as before by a discharger.

The discharger knobs were attached directly to the secondary

terminals of the induction coil. Two hollow zinc spheres, 80

centimetres in. diameter, were made to slide on the wire, one

on each side of the discharger, and since, electrically speaking,

these formed the terminals of the conductor, its length could

be varied by altering their position. The micrometer circuit

was chosen of such dimensions as to have, if the author's

hypothesis were correct, a slightly shorter vibration period than

that of C C'. It was formed of a square, with sides 75 centi

metres in length, of copper wire 2 millimetres in diameter, and

it was placed with its nearest side parallel to C B C and at a

distance of 80 centimetres from it. The sparking distance at

the micrometer was then found to be 0-9 millimetre. When

the terminals of the micrometer circuit was placed in contact

with two metal spheres 8 centimetres in diameter, supported on

insulating stands, the sparking distance could be increased up

to 2-5 millimetres. When these were replaced by much larger

spheres the sparking distance was diminished to a small

fraction of a millimetre. Similar results were obtained on

connecting the micrometer terminals with the plates of a

* ike Oberbeck, Wiedemauu's AnnaJ.cn, Vol. XXVI., p. 215, 1835.
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Kohlrausch condenser. When the plates were far apart the

increase of capacity increased the sparking distance, but when

the plates were brought close together the sparking distances

again fell to a very small value.

The simplest method of adjusting the capacity of the micro

meter circuit is to suspend to its ends two parallel wires the

distance and lengths of which are capable of variation. By this

means the author succeeded in increasing the sparking distance

up to three millimetres, after which it diminished when the

wires were either lengthened or shortened. The decrease of the

sparking distance on increasing the capacity was naturally to

be expected ; but it would be difficult to understand, except on

the principle of resonance, why a decrease of the capacity

should have the same effect.

«i

3
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Fio. 155.—Curve showing relation between length of Bide of rectangle

(taken as abscissa) and maximum sparking distance (taken as ordinate), the

sides consisting of straight wires of varying lengths.

The experiments were then varied by diminishing the capa

city of the circuit CBC so as to shorten its period of oscil

lation, and the results confirmed those previously obtained;

and a series of experiments in which the lengths and capacities

of the circuits were varied in different ways showed conclu

sively that the maximum effect does not depend on the con

ditions of either one of the two circuits, but on the existence of

the proper relation between them.

When the two circuits were brought very close together, and

the discharger knobs separated by an interval of 7 millimetres,

sparks were obtained at the micrometer, which were also
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7 millimetres in length, when the two circuits had been care

fully adjusted to have the same period. The induced E.M.F's

must in this case have attained nearly as high a value as the

inducing ones.

To show the effect of varying the coefficient of self-induction,

a series of rectangles, abed (Fig. 154), were taken, having a

constant breadth, ah, but a length, ac, continually increasing

from 10 centimetres up to 250 centimetres : it was found that

the maximum effect was obtained with a length of 1-8 metre.

The quantitative results of these experiments are shown in

Fig. 155, in which the abscisste of the curve are the double

lengths of the rectangles, and the ordinates represent the cor.

responding maximum sparking distances. The sparking dis

tances could not be determined with great exactness, but the

 

Fig. 15&.—Curvo showing relation between length of side of rectangle

{taken as abscissa) and maximum sparking distance (taken as ordinate), the

sides consisting of spirals gradually drawn out.

errors were not sufficient to mask the general nature of the

result.

In a second series of experiments the sides a c and b d were

formed of loose coib of wire which were gradually pulled out,

and the result is shown in Fig. 156. It will be seen that the

maximum sparking distance was attained for a somewhat

greater length of side, which is explained by the fact that in

the latter experiments the self-induction only was increased by

increase of length, while in the former series the capacity was

increased as well. Varying the resistance of the micrometer
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circuit by using copper and German silver wires of various

diameters was found to have no effect on the period of oscilla

tion, and extremely little on the sparking distance.

When the wire c d was surrounded by an iron tube, or

when it was replaced by an iron wire, no perceptible effect

was obtained, confirming the conclusion previously arrived

at that the magnetism of the iron is unable to follow such

rapid oscillations, and therefore exerts no appreciable

effect.

It is only proper, however, to interpolate at this point the

remark that other observers do not endorse entirely this

statement of Hertz. We may especially draw attention to

the work of Prof. J. Trowbridge and of Mr. C. E. St.

John* on the propagation of electrical oscillations on iron

wires. The experimental results obtained by these investi

gators may be summed up as follows :—

1. The magnetic permeability of iron wires exercises an

important influence upon the decay of electrical oscillations

of high frequenc}'. The influence is so great that the oscilla

tions may be reduced to half an oscillation on a circuit of

suitable self-induction and capacity for producing them.

2. Currents of high frequency such as are produced in

Leyden jar discharges therefore magnetise iron.

3. The self-induction of iron circuits is sensibly greater

than that of similar copper circuits under rapid electrical

oscillations 115 x 10s reversals per second.

4. This increase in self-induction produces a shortening of

the wave-length. • .

5. The permeability of annealed iron under the above rate

of alternation is about 385.

For full information as to the methods of obtaining these

results we must refer the reader to the original Papers.

Nodes.—The vibrations in the micrometer circuit which have

been considered are the simplest ones possible, but not the only

ones. While the potential at the ends alternates between two

fixed limits, that at the central portion of the circuit retains a

constant mean value. The electrical vibration, therefore, has

* See Phil. Mag., December, 1851, Mr. J. Trowbridge on " Damping of

Klectiieal Oscillations on Irou Wires ;" and Phil. Mag., November, 1894,

ilr. C. E. St. Juhn on " Wave-Lpugths of Electricity on Iron Wires. '
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a node at the centre, and this will be the only nodal point. Its

existence may be proved by placing a small insulated sphere

close to various portions of the micrometer circuit while sparks

are passing at the discharger of the coil, when it will be found

that if the sphere is placed close to the centre of the circuit

the sparking will be very slight, increasing as the sphere is

moved further away. The sparking cannot, however, be

entirely got rid of, and there is a better way of determining

the existence and position of the node. After adjusting the

two circuits to unison, and drawing the micrometer terminals

so far apart that sparks can only be made to pass by means of

resonant action, let different parts of the circuit be touched

by a conductor of some capacity, when it will be found that

the sparks disappear, owing to interference with the resonant

action, except when the point of contact is at the centre of the

circuit. Hertz then endeavoured to produce a vibration

with two nodes, and for this purpose he modified the apparatus

previously used by adding to the micrometer circuit a second

rectangle, efg h, exactly similar to the first (as shown in Fig.

157), and joining the points of the circuit near the terminals

by wires 1 8 and 2 4, as shown in the diagram.

The whole system then formed a closed metallic circuit, the

fundamental vibration of which would have two nodes. Since

the period of this vibration would necessarily agree closely

with that of each half of the circuit, and, therefore, with that

of the circuit C C, it was to be expected that the vibration

would have a pair of loops at the junctions 1 8 and 2 4, and a

pair of nodes at the middle points of c d and g h. The vibra

tions were determined by measuring the sparking distance

between the micrometer terminals 1 and 2. It was found that,

contrary to what was expected, the addition of the second

rectangle diminished this sparking distance from about three

millimetres to about one millimetre. The existence of

resonant action between the circuit C C and the micrometer

circuit was, however, fully demonstrated, for any alteration

in the circuit efg h, whether it consisted in increasing or in

decreasing its length, diminished the sparking distance. It

was also found that much weaker sparking took place between

cd or gh and an insulated sphere than between a e or bf and

the same sphere, showing that the nodes were in c d and g h.
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as expected. Further, when the sphere was made to touch

c d or g h it had no effect on the sparking distance of 1 and 2 ;

but when the point of contact was at any other portion of the

circuit the sparking distance was diminished, showing that

these nodes did really belong to the vibration, the resonant

action of which increased this sparking distance.

The wire joining the points 2 and 4 was then removed.

As the strength of the induced oscillatory current should be

zero at these points, the removal ought not to disturb the

vibrations, and this was shown experimentally to be the case,

the resonant effects and the position of the nodes remaining

unchanged. The vibration with two nodal points was, of

 

Fio. 157.

course, not the fundamental vibration of the circuit, which

consisted of a vibration with a node between a and e, and for

which the highest values of the potential were at the points

2 and 4.

When these spheres forming the terminals at these points

were brought close together slight sparking was found to take

place between them, which was attributed to the excitation,

though only to a small extent, of the fundamental vibration.

This explanation was confirmed in the following manner :—

The sparks between 1 and 2 were broken off, leaving only the
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sparks between 2 and 4, which measured the intensity of the

fundamental vibration. The period of vibration of the circuit

C C was then increased by drawing it out to its full length,

and thereby increasing its capacity, when it was observed that

the sparking gradually increased to a maximum, and then

began to diminish again. The maximum value must evidently

occur when the period of vibration of the circuit C C is the

same as that of the fundamental vibration of the micrometer

circuit, and it was shown that when the sparking distance

between 2 and 4 had its maximum value the sparks corre

sponded to a vibration with only one nodal point, for the

sparks ceased when the previously existing nodes were

touched by a conductor, and the only point where contact

could take place without effect on the sparking was between

a and e. These results show that it is possible to excite at

will in the same conductor either the fundamental vibration

or its first overtone, to use the language of acoustics.

Hertz appeared to consider it very doubtful whether it was

possible to get higher overtones of electrical vibration, the

difficulty of obtaining such lying not only in the method of

observation, but also in the nature of the oscillations them

selves. The intensity of these is found to vary considerably

during a series of discharges from the coil even when all the

circumstances are maintained as constant as possible, and the

comparative feebleness of the resonant effects shows that there

must be a considerable amount of damping. There are, more

over, many secondary phenomena which seem to indicate that

irregular vibrations are superposed upon the regular ones, as

would be expected in complex systems of conductors. If,

therefore, we wish to compare electrical oscillations from a

mathematical point of view with those of acoustics, we must

seek our analogy in the high notes intermixed with irregular

vibrations, obtained, say, by striking a wooden rod with a

hammer rather than in the comparatively slow harmonic

vibration of tuning forks or strings ; and in the case of vibra

tions of the former class we have to be contented even in the

study of acoustics with little more than indications of such

phenomena as resonance and nodal points.

Referring to the conditions to be fulfilled in order to obtaiD

ihe best results, Hertz noted a fact of very considerable interest
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and novelty, namely, that the spark from the discharger

should always be visible from the micrometer, as, when

-this was not the case, though the phenomena observed were

of the same character, the sparking distance was invariably

diminished. This effect of the light from the spark of an

induction coil in increasing the sparking distance in a

secondary circuit has been fully described by Dr. Lodge in

Jiis book on the work of Hertz, and he has pointed out that

the same effect is produced by light from burning magnesium

wire or other sources rich in the ultra-violet rays.

Theory of the Experiments.—The theories of electrical oscilla

tions which have been developed by Lord Kelvin, von

Helmholtz, and Kirchoff have been shown* to hold good for

the open circuit oscillations of induction apparatus, as well as

for the oscillatory Leyden jar discharge ; and it is of interest

to inquire whether the observed results are of the same order

as those indicated by theory.

Hertz considers, in the first place, the vibration period.

Let T be the period of a single or half vibration proper to the

•conductor exciting the micrometer circuit ; L its coefficient of

self-induction in absolute electromagnetic measure, expressed,

therefore, in centimetres ; C the capacity of one of its terminals

in electrostatic measure, and therefore also expressed in centi

metres ; and v the velocity of light in centimetre-seconds ;

then, if the resistance of the conductor is small,

rp—7r J L C

v

In the case of the resonance experiments, the capacity C was

approximately the radius of the sphere forming the terminal,

so thri C = 7-5 centimetres. t The coefficient of self-induction

* Lorentz, Wiedemann's Annalen, Vol. VII., p. 161, 1879.

+ In Hertz's original Paper the capacity of the spherical terminal ball

was taken as 15 units. M. Poincard first drew attention to the fact that

the capacity C in the above formula denotes the amount of electricity

which exists at one end of an oscillating conductor when the difference of

potential between the two ends is equal to unity. Hence, if the spheres

are far apart, the difference of potential between each of them and sur

rounding space is +4- Therefore the charge on the sphere is formed by

dividing its capacity, i.e., its radius in centimetres, by 2. Hence, C in the

Above formula is --=7-5.
2

FF 2
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was that of a wire of length Z = 150 centimetres and diameter

d = 1/2 centimetre.

According to Neumann's formula,

As, however, it is not quite certain that Neumann's formula

is applicable to an open circuit, it is better to use von Helm-

holtz's more general formula, containing an undetermined

constant k, according to which

Putting k = l, this reduces to Neumann's formula; for k = 0

it reduces to that of Maxwell, and for k = - 1 to Weber's. The

greatest difference in the values of L obtained by giving these

different values to k would not exceed a sixth of its mean

value, and therefore, for the purposes of the present approxi

mation, it is enough to assume that k is not a large positive

or negative number; for if the numbor 1,902 does not give-

the correct value of the coefficient for the wire 150 centimetres

in length, it will give the value corresponding to a conductor

not differing greatly from it in length.

Taking L = 1,902 centimetres, we have jtn/CL = 531 centi

metres, which represents the distance traversed by light during

the oscillation, or, according to Maxwell's theory, the length

of an electromagnetic ether wave. The value of T is then

found to ba 1-26 hundred-millionths of a second, which is of

the same order as the observed results.

The ratio of damping is then considered. In order that

oscillations may be possible, the resistance of the open circuit

must be less than 2 v Jh/C For the exciting circuit used this

gives G76 ohms as the upper limit of resistance. If the actual

resistance, r, is sensibly below this limit, the ratio of damping

rj

will be e2L. The amplitude will therefore be reduced in tha

ratio 1 : 2-71 in

 

which gives in tho case considered
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oscillations. We have, unfortunately, no means of deter

mining the resistance of the air space traversed by the spark,

but as the resistance of a strong electric arc is never less than

a few ohms we shall be justified in assuming this as the

minimum limit. From this it would follow that the number

of oscillations due to a single impulse must be reckoned in

tens, and not in hundreds or thousands, which is in accordance

with the character of the experimental results, and agrees with

Tesults observed in the case of the oscillatory Leyden jar

discharge. In the case of closed metallic circuits, on the

other hand, theory indicates that the number of oscillations

before equilibrium is attained must be reckoned by thousands.

Hertz compares, lastly, the order of the inductive actions of

these oscillations according to theory with that of the effects

actually observed. To do this it must be noted that the

maximum E.M.F. induced by the oscillation in its own circuit

is approximately equal to the maximum potential difference

at its extremities ; for if there were no damping these quanti

ties would be identical, since at any moment the potential

difference at the extremities and the E.M.F. of induction

would be in equilibrium. In the experiments under con

sideration the potential difference at the extremities was such

as to give a spark 7 to 8 millimetres in length, which must

therefore represent the maximum inductive action excited in

its own circuit by the oscillation. Again, at any instant the

induced E.M.F. in the micrometer circuit must be to that

in the exciting conductor in the same ratio as that of the

coefficient of mutual induction M of the two circuits to the

coefficient of self-induction L of the exciting circuit. The

value of M for the case considered is easily calculated from the

ordinary formulae, and it is found to lie between one-ninth

and one-twelth of L. This would only give sparks of from J

to § millimetre in length, so that according to theory visible

sparks ought in any case to be obtained; but, on the other

hand, sparks several millimetres in length, as were obtained

in the experiments previously described, can only be explained

on the assumption that the successive inductive actions pro

duce an accumulative effect; so that theory indicates the

necessity of the existence of the resonant^;^|^ifT^m«41y

observed. r c, THE ^\

UffNIVEilSITT)
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Hertz was at first inclined to suppose that as the micro

meter circuit was only broken by the extremely short air space

limited by the maximum sparking distance under the condi

tions of the experiment, it might therefore be treated as a

closed circuit, and only the total induction considered. The

ordinary methods of electro-dynamics give the means of com

pletely determining the total inductive effect of a current

element on a closed circuit, and would, therefore, in this case

have sufficed for the investigation of the phenomena observed.

He found, however, that the treatment of the micrometer

circuit as a closed circuit led to incorrect results, so that it,

as well as the primary, had to be treated as an open circuit,

and therefore a knowledge of the total induction was insuffi

cient, and it became necessary to consider the value both of

the E.M.F. of induction and of the electrostatic E.M.F. due to

the charged extremities of the exciting circuit at each point of

the micrometer circuit.

The investigations to which these considerations led are

described by Hertz in a Paper, " 0n the Action of a Rectilinear

Electrical 0scillation upon a Circuit in its Vicinity," published

in Wiedemann's Annalen, Vol. XXXIV.. p. 155, 1888.

In what follows the exciting circuit will be spoken of as the

primary and the micrometer circuit as the secondary. Hertz

points out that the reason that electrostatic effect cannot be

neglected is to be found in the extreme rapidity with which

the electrostatic forces change their sign. If the electrostatic

alternations in the primary were comparatively slow they

might attain a very high intensity without giving rise to a

spark in the secondary, since the electrostatic distribution on

the secondary would vary so as to remain in equilibrium with

the external E.M.F. This, however, is impossible, because the-

variations in direction follow each other too rapidly for the

distribution to follow them.

In the present investigations the primary circuit consisted of

a straight copper wire 5 millimetres in diameter, carrying at its

extremities hollow zinc spheres 80 centimetres in diameteiv

The ceotres of the spheres were one metre apart, and at the

middle of the wire was an air space \ centimetre in length.

The wire was placed in a horizontal position, and the observa

tions were all made at points near to the horizontal plane?
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through it, which, however, did not of course affect their

generality, as the same effects would necessarily be produced

in any plane through the horizontal wire. The secondary

circuit consisted of a circle of 85 centimetres radius, of copper

wire 2 millimetres in diameter, the circle being broken by

an air space capable of variation by means of a micrometer

screw.*

The circular form was selected for the secondary circuit

because the former investigations had shown that the sparking

distance was not the same at all points of the secondary, even

when the conductor as a whole remained unchanged in posi

tion, and with a circular circuit it was easier to bring the air

space to any part than if any other form had been used. To

attain this object the circle was made movable about an axis

passing through its centre perpendicular to its plane.

The circuits of the dimensions stated were very nearly in

unison, and they were further adjusted by means of little

strips of metal soldered to the extremities, and varied in

length until the maximum sparking distance was obtained.

We shall follow Hertz in first considering the subject

theoretically, and then examining how far the experimental

results are in accordance with the theoretical conclusions. It

will be assumed that the E.M.F. at every point is a simple

harmonic function of the time, but that it does not undergo

reversal in direction, and it will further be assumed that the

oscillations are at any given moment everywhere in the same

phase. This will certainly be the case in the immediate neigh

bourhood of the primary, and for the present we shall confine

our attention to such points. Let s be the distance of a point

measured along the circuit from the air space of the secondary,

and F the component E.M.F. at that point along the aircular

arc d s. Then F is a function of s, which assumes its original

value after passing once round the circle of circumference S.

It may, therefore, be expanded in the form

F = A + B cos
2tts

+ B'sin

 

S

* This small circular detector circuit may be called an electro-magnetio

eye, because it enables us to see the electro-magnetic disturbance and to

localise iu
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The higher terms of the series may be neglected, as the only

result of so doing will be that the approximate theory will

give an absolute disappearance of spark 5 where really the

disappearance is not quite complete, and indeed the experi

ments are not delicate enough to enable us to compare their

results with theory beyond a first approximation.

The force A acts in the same direction and is of constant

amount at all points of the circle, and therefore it must be

independent of the electrostatic E.M.F., as the integral of the

latter round the circle is zero. A, then, represents the total

E.M.F. of induction, which is measured by the rate of varia

tion of the number of magnetic lines of force which pass

through the circle. If the electro-magnetic field containing

the circle is assumed to be uniform, A will therefore be

proportional to the component of the magnetic induction

perpendicular to the plane of the secondary. It will therefore

vanish when the direction of the magnetic induction lies in

the plane of the secondary. A will consist of an oscillation,

the intensity of which is independent of the position of the

air space in the circle, and the corresponding spaiking dis

tance will be called a.

2tt s
The term B' sin —- can have no effect in exciting the funda-

b

mental vibration of the secondary, since it is symmetrical on

opposite sides of the air space.

"its , •
The term B cos will give a force acting in the same

direction in the two quadrants opposed to the air space, and

will excite the fundamental vibration. In the two quadrants

adjacent to the air space it will give a force in the opposite

direction, but its effect will be less than that of the former

one ; for the current is zero at the extremities of the circuit,

and therefore the electricity cannot move so freely as near the

centre. This corresponds to the fact that if a string fastened

at each end has its central portion and ends acted on respec

tively by oppositely-directed forces, its motion will be that

due to the force at the central portion, which will excite the

fundamental vibration if its oscillations are in unison with the

latter. The intensity of the vibration will be proportional to

B. Let E be the total E.M.F. in the uniform field of the
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secondary, the angle between its direction and the plane of

the latter, and 6 the angle which its projection on this plane

makes with the radius drawn to the air space. Then we shall

have, approximately,

and, therefore, B = - E cos <f, sin 6.

B, therefore, is a function simply of the total E.M.F. due

both to the electrostatic and electro-dynamic actions. It will

vanish when $ = 90°—that is to say, when the total E.M.F. is

perpendicular to the plane of the circle, whatever be the posi

tion of the air space on the circle. B will also vanish when

0 = 0—that is to say, when the projection of the E.M.F. on

the plane of the circle coincides with the radius through the

air space. If the position of the air space on the circle is

varied, the angle 9 will vary, and, therefore, also the intensity

of the vibration and the sparking distance. The sparking

distance corresponding to the second term of the expansion

for F can therefore be represented approximately by a formula

of the form 13 sin 6.

Now, the oscillations giving rise to sparks of lengths a and

P sin 6 respectively are in the same phase. The resulting

oscillations will therefore be in the same phase, and their

amplitudes must be added together. The sparking distance

being approximately proportional to the maximum total

amplitude may therefore also be obtained by adding the

sparking distances due to the two oscillations respectively.

The sparking distance will therefore be given as a function of

the position of the air space on the secondary circuit by the

expression a + f3 sin 9. Since the direction of the oscillation

in the air space does not come into consideration, we are con

cerned only with the absolute value of this expression and not

with its sign. The determination of the absolute values of

the quantities a and f3 would involve elaborate theoretical

investigations, and is, moreover, unnecessary for the explanation

of the experimental results.

Experiments with the Secondary Circuit in a Vertical Plane.—

When the circle forming the secondary circuit was placed

with its plane vertical, anywhere in the neighbourhood of the

primary, the following results were obtained.
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The sparks disappeared for two positions of the air space,

separated by 180deg., namely, those in which it lay in the

horizontal plane through the primary ; but in every other

position sparks of greater or less length were observed.

From this it followed that the value of a must have been

constantly zero, and that 6 was zero when the air space was in

the horizontal plane through the primary.

The electromagnetic lines of force must therefore have been

perpendicular to this horizontal plane, and therefore consisted

of circles with their centres on the primary ; while the electro

static lines of force must have been entirely in the horizontal

plane, and therefore this system of lines of force consisted of

curves lying in planes passing through the primary. Both of

these results are in agreement with theory.

When the air space was at its greatest distance from the

plane the sparking distance attained a maximum value of

from 2 to 3 millimetres. The sparks were shown to be due to

the fundamental vibration by slightly varying the secondary

so as to throw it out of unison with the primary when the

sparking distance was diminished, which would not have been

the case if the sparks had been due to overtones. Moreover,

the sparks disappeared when the secondary was cut at its

points of intersection with the horizontal plane through the

primary, though these would be nodal points for the first

overtone.

When the air space was kept at its greatest possible distance

from the horizontal plane through the primary, and turned

about a vertical axis, the sparking distance attained two

maxima at the points for which <f> = 0, and almost dis

appeared at the points for which </> = 90°.

The lower half of Fig. 158 shows the different positions of

minimum sparking. A A' is the primary conductor, and the

lines //i n represent the projections of the secondary circuit on

the horizontal plane. The arrows perpendicular to these give

the direction of the resultant lines of force. As this did not

anywhere vanish in passing from the sphere A to the sphere

A', it could not change its sign.

The diagram brings out the two following points :—

1. The distribution of the resultant E.M.F. in the vicinity

of the rectilinear vibration is very similar to that of the electro
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static E.M.F. due to the action of its two extremities. It

should be specially noted that near the centre of the primary

the direction is that of the electrostatic E.M.F., showing that

it is more powerful than the electro-dynamic, as required by

theory.

2. The lines of force deviate more rapidly from the line

A A' than the electrostatic lines, though thb is not so evident

on the reduced scale of the diagram as in the author's original

drawings on a much larger scale.

It is due to the components of the electrostatic E.M.F.

parallel to A A' being weakened by the E.M.F. of induction,

while the perpendicular components remained unaffected.

 

Fio. 158.

Experiments with the Secondary Circuit in a Horizontal Plane.

The results obtained when the plane of the secondary was

horizontal can best be explained by reference to the upper half

of the diagram in Fig 158.

In the position I., with the centre of the circle in the line

A A' produced, the sparks disappeared when the air space

occupied either of the positions bl or b'v while two equal maxima

of the sparking distance were obtained at ai and a\, the length

of the spark in these positions being 2-5 millimetres. Both

these results are in accordance with theory.

In the position II. the circle is cut by the electro-magnetio

line3 of force, and therefore a does not vanish. It will, how
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ever, be small, and we should expect that the expression o + li

sin 6 would have two unequal maxima, fi + a and li - a, both

for 0 = 9CP, and having the line joining them perpendicular

to the resultant E.M.F., and between these two maxima we

should expect two points of no sparking near to the smaller

maximum. This was confirmed by the observations.

The maximum sparking distances were 3-5 millimetres at

a2 and 2 millimetres at a'2. Now, with the air space at a2,

the sphere A being positive, the resultant E.M.F. in the oppo

site portion of the circle will repel positive electricity from A,

and therefore tend to make it flow round the circle clockwise.

Between the two spheres the electrostatic E.M.F. acts from A

towards A', and the opposite E.M.F. of induction in the neigh

bourhood of the primary acts from A' to A, parallel to the

former, and, acting more strongly on the nearer than on the

further portion of the secondary, tends to cause a current in

same direction as that due to the former, namely, in a clock

wise direction. Thus the resultant E.M.F. is the sum of the

two as required by theory, and in the same way it is easily

seen that when the air space is at a's the resultant E.M.F. is

equal tc their difference.

As the position III. is gradually approached the maximum

disappears, and the single maximum sparking distance <r8 was

found to be four millimetres in length, having opposite to it a

point of disappearance a\. In this case clearly a = li, and the

sparking distance is given by the expression a(l + sin 6). The

line a, a'0 is again perpendicular to the resultant E.M.F.

As the circle approaches further towards the centre of A A',

a will become greater than and the expression a + fi sin 6

will not vanish for any value of 6, but will have a maximum

a + R and a minimum a - fi ; and in the experiments it was

found that the sparks never entirely disappeared, but varied

between a maximum and a minimum, as indicated by theory.

In the position IV. a maximum sparking distance of 5-5

millimetres was observed at at, and a minimum of 1-5 milli

metre at a\.

In the position V. there was a maximum sparking distance

of 6 millimetres at a5, and a minimum of 2-5 millimetres at a',.

In these experiments the air space should be SQreened off from

the primary in the latter positions as well as in the earlier
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ones, in which it is unavoidable, as otherwise the results would

not be comparable.

In passing from the position III. to the position V. the line

a a' rapidly turned from its position of parallelism to the

primary circuit into a position perpendicular to it. In the

latter positions the sparking was essentially due to the induc

tive action, and therefore Hertz was justified in his previous

experiments in assuming the effect in these positions to be due

to induction.

Even in these positions, however, the sparking is not totally

independent of electrostatic action, except when the air space

is half-way between the maximum and minimum positions, and

therefore /3 sin 0 = 0.

Other Positions of the Secondary Circuit.—Hertz made

numerous observations with the secondary circuit in other

positions, but in no case were any phenomena observed which

were not completely in accordance with theory. As an

example of these consider the following experiment :—

The secondary was first placed in the horizontal plane in the

position V. (Fig. 158), and the air space was in the position a5

relatively to the primary. The circle was then turned about a

horizontal axis through its centre and parallel to the primary,

so as to raise the air space above the horizontal plane. During

this rotation 6 remained equal to 90deg., and the value of li

remained nearly constant, but a varied approximately in the

same ratio as cos "V, "9 being the angle between the plane of the

circle and the horizontal, for o is proportional to the number of

magnetic lines of force passing through the circle. Let a0 be

the value of a in the initial position, then in the other postions

its value would be cos V, and therefore the sparking dis

tance should be given by the expression a0 cos ¥ + /3, in which

a0 was known to be greater than fi. This was confirmed by

observation, for it was found that as the air space increased

its height above the horizontal plane the sparking distance

diminished from 6 millimetres down to 2 millimetres, its value

when the air space was at its greatest distance above the hori

zontal plane. During the rotation through the next quadrant

the sparking distance diminished almost to zero, and then

increased to the smaller maximum of 2-5 millimetres, which it

attained when the circle had turned through 180deg., and was
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therefore again horizontal. Similar results were obtained in

the opposite order as the circle was rotated from 108deg. to

860deg. When the circle was kept with the air space at its

maximum height above the horizontal plane, and then raised

or lowered bodily without rotation, the sparking distance was

found to diminish in the former case and to increase in the

latter—results completely in accordance with theory.

Forces at Greater Distances.—Experiments with the secondary

at greater distances from the primary are of great importance,

as the distribution of E.M.F. in the field of an open circuit is

very different according to different theories of electro-dynamic

action, and the results may, therefore, serve to eliminate some

of them as untenable. In making these experiments, how

ever, an unexpected difficulty was encountered, as it was found

that at distances of from 1 to 1*6 metre from the primary, the

maximum and minimum, except in certain positions, became

indistinctly defined ; but when the distance was increased to

upwards of two metres, though the sparks were then very

small, the maximum and minimum were found to be very

sharply marked when the sparks were observed in the dark.

The positions of maximum and minimum were found to occur

with the circle in planes at right angles to each other. At

considerable distances the sparking diminished very slowly as

the distance was increased. Hertz was not able to determine

an upper limit to the distance at which sensible effects took

place, but, in a room 14 metres by 12, sparks were distinctly

observed when the primary was placed in one corner of the

room, wherever the secondary was placed. When, however,

the primary was slightly displaced no effects could be observed,

even when the secondary was brought considerably nearer.

The interposition of solid screens between the two circuits

greatly diminished the effect.

Hertz mapped out the distribution of force throughout the

room by means of chalk lines on the floor, putting stars at the

points where the direction of the E.M.F. became indeter

minate. A portion of the diagram obtained in this manner is

shown on a reduced scale in Fig. 159, with respect to which

the following points are noteworthy :—

1. At distances beyond three metres the E.M.F. is every

where parallel to the primary oscillation. Within this region,
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therefore, the electrostatic E.M.F. is negligible in comparison

with the E.M.F. of induction. Now all the theories of the

mutual action of current elements agree in giving an E.M.F.

of induction inversely proportional to the distance ; while the

electrostatic E.M.F., being due to the differential action of

the two extremities of the primary, is approximately inversely

proportional to the cube of the distance. Some of these

theories, however, are not in accordance with the experi

mental result that the effect diminishes much more rapidly

in the direction of the primary oscillation than in a direc

tion at right angles to it, induced sparks being observed at

a distance exceeding 12 metres in the latter direction, while

they disappeared at a distance of about four metres in the

former direction.

 

Fio. 159.

2. That, as already proved, for distances less than one

metre the distribution of E.M.F. is practically that of the

electrostatic E.M.F.

8. There are two straight lines at all points of which the

direction of the E.M.F. is determinate, namely, the line in

which the primary oscillation takes place, and the perpendicular

to the primary through its middle point. Along the latter the

E.M.F. does not vanish at any point : the sparking diminishes

gradually as the distance is increased. This, again, is incon

sistent with some of the theories of mutual action of current

elements, according to which it should vanish at a certain

definite distance. A very important result of the investigation

is the demonstration of the existence of regions within which
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the direction of the E.M.F. becomes indeterminate. These

regions form two rings encircling the primary circuit. Since

the E.M.F. within them acts very nearly equally in every

direction, it must assume different directions in succession, for,

of course, it cannot act in different directions simultaneously.

The observations, therefore, lead to the conclusion that

within these regions the magnitude of the E.M.F. remains

very nearly constant, while its direction varies through all

the points of the compass at each oscillation. Hertz stated

that he was unable to explain this result, as also the

existence of overtones, by means of the simplified theory in

which the higher terms of the expansion of F are neglected,

and he considers that no theory of simple action at a distance

is capable of explaining it. If, however, the electrostatic

E.M.F. and the E.M.F. of induction are propagated through

space with unequal velocities, it admits of very simple explana

tion. For within these annular regions the two E.M.F.s are

at right angles and of the same order of magnitude ; they will,

therefore, in consequence of the distance traversed, differ in

phase, and the direction of the resultant will turn through all

the points of the compass at each oscillation.

This phenomenon appeared to him to be the first indication

which had been observed of a finite rate of propagation through

space of electrical actions, for, if there is a difference in the

rate of propagation of the electrostatic and electro-dynamic

E.M.F., one at least of them must be definite.

At the end of the Paper in which the preceding experiments

are described, Hertz describes some observations which he

made on the conditions at the primary sparking point

which affect the production of sparks in the secondary circuit.

He found that illuminating the primary spark diminished

its power of exciting rapid oscillations, the sparks in the

secondary being observed to cease when a piece of magnesium

wire was burnt or an arc lamp lighted near the primary

point. The observed effect on the primary sparks is that

they are no longer accompanied by a sharp crackling sound

as before. The effect of a second discharge is especially note

worthy, and it was found that the secondary sparks could be

made to disappear by bringing an insulated conductor close

to the opposed surfaces of the spheres forming the terminals
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at the primary air space, even when no visible sparking took

place between the latter and the insulated conductor. The

secondary sparking could also be stopped by placing a fine

point close to the primary air space, or by touching one of

the opposed surfaces of the terminals with a piece of sealing-

wax, glass, or mica. Hertz states that further experiments

led him to conclude that, even in these cases, the effect is due

to light too feeble to be perceived by the eye, arising from a

side discharge. He points out that these effects afford another

example of the effects of light on electric discharges, which

have been observed by E. Wiedemann, H. Hebert, and W.

Hallwachs.

Hertz's next Paper in order of publication in Wiedemann's

Annalen is " On Some Induction Phenomena Arising from

Electrical Actions in Dielectrics " (Vol. XXXIV., p. 278), and

contains an account of some researches which were under

taken with a view of obtaining direct experimental confirma

tion of the assumption involved in the most suggestive theory

of electrical actions, viz., that of Faraday and Maxwell, that

the well-known electrostatic phenomena observed in dielectrics

are accompanied by corresponding electro-dynamic actions.

The method of observation consisted in placing a secondary

conductor adjusted to unison, as regards electrical oscillations,

with the primary, as near as possible to the former, and in

such a relative position that the sparks in the primary pro

duced no sparking in the secondary. As the equilibrium

could be disturbed and sparking induced in the secondary by

the approach of conductors, it formed a kind of induction

balance ; but the point of special interest in connection with

it was that a similar effect was produced when the conductors

were replaced by insulators, provided the latter were of com

paratively large size. The observed rapidity of the oscillations

induced in the dielectrics showed that the quantities of elec

tricity in motion under the influence of dielectric polarisation

were of the same order of magnitude as in the case of metallic

conductors.

The apparatus employed is shown diagrammatically in

Fig. 160, and was supported on alight wooden framework, not

shown in the illustration. The primary conductor consisted

of two brass plates, A A', with sides 40 centimetres in length,

g o
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joined by a copper wire 70 centimetres long and half a centi

metre in diameter, containing an air space of three-quarters of

a centimetre, with terminals formed of polished brass spheres.

When placed in connection with a powerful induction coil,

oscillations are set up, the period of which, determined by the

dimensions of the primary, can be determined to within a

hundred-millionth of a second. The secondary conductor con

sisted of a circle, 35 centimetres in radius, of copper wire two

millimetres in diameter, containing an air space, the length

of which could bo varied by means of a screw from a few

hundredths of a millimetre up to several millimetres. The

dimensions stated were such as to bring the two conductors

into unison, and secondary sparks up to six or seven milli

metres in length could be obtained.

The circle was movable about an axis through its centre

perpendicular to its plane, to enable the position of the air

space to be varied. The axis was fixed in the position m n in

the plane of A and A', and half-way between them. The

centre of the circle was at a distance of 12 centimetres from

the nearest points of A and A'.

 

 

Fio. 160.
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When / was in either of the positions a or a' lying in the

plane of A A' no sparking occurred in the secondary, while

maximum sparking took place at b and b' 90deg. from the

former positions. The E.M.F. giving rise to the secondary

sparks is, as in previous experiments, partly electrostatic and

partly electro-magnetic, and the former being the greater will

determine the sign of the resultant E.M.F. The oscillations

must, for the reason previously explained, be considered as

produced in the part of the secondary most remote from the

air space. Assuming the E.M.F. and the amplitude of the

resulting oscillation to be positive when /is in the position b',

they will both be negative when/ is at b.

When the circle was slightly lowered in its own plane the

.sparking distance was increased at b' and diminished at 6, and

the null points lay at a certain distance below a and a'. The

electrostatic E.M.F. is scarcely affected by such a displacement,

but the integral of the E.M.F. of induction taken round the

circle is no longer zero, and therefore gives rise to an oscil

lation which will be of positive sign whatever be the position

of /, for the direction of the resultant E.M.F. of induction

is opposite to that of the electrostatic E.M.F. in the upper

half of the circle, and coincides with it in the lower half, where

the electrostatic E.M.F. has been assumed to be positive. Since

the new oscillation so produced is in the same phase as the

previously existing one, their amplitudes must be added

to give the resultant amplitude, which explains the pheno

mena.

Effects of the Approach of Conductors.—In making these

observations it was found necessary to remove all conductors to

a considerable distance from the apparatus, in order to obtain

a complete disappearance of sparking at the points a and a'.

Even the neighbourhood of the observer was sufficient to set

np sparking when the air space / was in either of these posi

tions, and the sparks had therefore to be observed from a

distance. The conductors used for the experiments were of

the form shown at C (Fig. 160), and consisted of thin metal

foil. The objects kept in view in selecting the material and

dimensions were to obtain a conductor which would give a

moderately large effect and having an oscillation period less

than that of the primary.

aa 2
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When the conductor 0 was brought near to A A', it was

found that the sparking distance decreased at b and increased

at V, and the null points were displaced upwards—that is, in

the direction of C.

From the results of experiments already described it is

evident that the effect of displacing A A' upwards would be

the same, qualitatively, as that of a current in the same

direction as that in A A' directly above it. The effect pro

duced by the approach of C was the reversa of this, and could

be explained by an inductive action, supposing there were a

current in C in the opposite direction to that in A A', which

is exactly what must occur ; for the electrostatic E.M.P. would

give rise to such a current, and since the oscillations in C are

more rapid than those of the E.M.F., the current must be in

the same phase as the inducing E.M.F. The truth of this

explanation was confirmed by the following experiments.

The horizontal plates of the conductor C being left in the same

position as before, the vertical plate was removed, and succes

sively replaced by wires of increasing length and fineness, in

order to lengthen the oscillation period of C. The effect of

this was to displace the null points more and more in an

upward direction, while at the same time they became less

sharply defined, a minimum sparking taking the place of the

previous absolute disappearance. The sparking distance at the

highest point had previously been much less than at the lowest

point, but after the disappearance of the null points it began

to increase. At a certain stage the sparking distance at the

two positions became equal, and then no definite minimum

points could be found, but sparking took place freely at all

positions of/. Beyond this stage the sparking distance at the

lowest point diminished, and very soon two minimum points

made their appearance close to it, not clearly defined at first,

but gradually becoming more distinct, and at the same time

approaching the points a a' , with which they ultimately coin

cided, when the minimum points again became absolute null

points. These results are in agreement with the conclusion

drawn from the former observations, for as the oscillation

period of C approaches that of A A' the intensity of the

current in the former increases, but a- difference of phase

arises between it and the existing E.M.F. When the two
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are in unison the current in C attains its maximum, and,

as in other cases of resonance, the difference of phase gives

rise to a slightly damped oscillation, having a period of about

a quarter that of the original one, which makes any inter

ference between the oscillations excited in the circle B by A A'

and C respectively impossible. These conditions clearly corre

spond to the stage at which the sparking distances at b and

V were equal. When the oscillation period of C becomes

decidedly greater than that of A A', the amplitude of the

oscillation in the former will again diminish, so that the

difference in phase between it and the exciting E.M.F. will

approach half of the original period. The current in C will

therefore always be in the same direction as that in A A', so

that interference between the two oscillations excited in B will

again become possible, and the effect of C will then be opposite

to its original effect. When the conductor C was made to

approach A A' the sparks in B became much smaller, which

is explained by the fact that its effect will be to increase the

oscillation period of A A', and therefore to throw it out of

unison with B.

Effects of the Approach of Dielectrics.—A very rough estimate

Bhows that when a dielectric of large mass is brought near

to the apparatus the quantities of electricity set in motion by

dielectric polarisation are at least as large as in metallic wires

or thin rods. If, therefore, the action of the apparatus were

unaffected by the approach of such masses, it would show that,

in contradiction to the theories of Faraday and Maxwell,

no electro-dynamic actions are called into play by means of

dielectric polarisation, or as Maxwell calls it, electric displace

ment. The experiments, however, showed an effect similar to

that which would be produced if the dielectric were replaced

by a conductor with a very small oscillation period. In the

first experiment made, the mass of dielectric consisted of a

pile of books, 1-5 metre long, 0-5 metre broad, and 1 metre

high, placed under the plates A A'. Its effect was to displace

the null points through about lOdeg. towards the pile. A

block of asphalte (D, in Fig. 160), weighing 800 kilogrammes,

and measuring 1-4 metre in length, 0-4 metre in breadth, and

0-6 metre in height, was then used in place of the books, the

plates being allowed to rest upon it.
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The following results were then obtained :—

1. The spark at the highest point of the circle was now

decidedly stronger than that at the lowest point, which was

nearer to the asphalte.

2. The null points were displaced through about 23deg.

downwards—that is, in the direction of the block—and at

the same time were transformed into mere points of mini

mum sparking, a complete disappearance being no longer

obtainable.

3. When the plates A A' rested on the asphalte block the

oscillation period of the primary was increased, as shown by

the fact that the period of B had to be slightly increased in

order to obtain the maximum sparking distance.

4. When the apparatus was moved gradually away from the

block its action steadily diminished without changing its

character.

5. The action of the block could be compensated by bringing

the conductor C over the plates A A' while they rested on the

block, the null points being brought back to a and a' when C

was at a height of 11 centimetres above the plates. When the

upper surface of the asphalte was 5 centimetres below the

plates, compensation was obtained when C was placed at a

height of 17 centimetres above them, showing that the action

of the dielectric was of the order of magnitude which had been

anticipated.

The asphalte contained about 5 per cent, of aluminium

and iron compounds, 40 per cent, of calcium compounds, and

17 per cent, of quartz sand. In order to make sure that the

observed effects were not due to the conductivity of some of

these substances a number of further experiments were

made.

In the first place, the asphalte was replaced by a mass of

the same dimensions of the so-called artificial pitch prepared

from coal, and effects of a similar kind were observed, but

slightly weaker, the greatest displacement of the null points

amounting to 19deg. Unfortunately this pitch contains free

carbon, the amount of which it is difficult to determine, and

this would have some conductivity.

The experiments wore then repeated with a conductor, C, of

half the linear dimensions of the former one, and smaller blocks
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of various substances, on account of the great cost of obtaining

large blocks of pure materials. The substances used were

asphalte, coal-pitch, paper, wood, sandstone, sulphur, paraffin,

and also a fluid dielectric, namely, petroleum. With the

smaller apparatus it was not possible to obtain quantitative

results of the same accuracy as before, but the effects were of

an exactly similar character, and left little room for doubt of

the reality of the action of the dielectric.

The results might possibly be supposed to be due to a change

in the distribution of the electrostatic E.M.F. in the neighbour

hood of the dielectric, but, in the first place, Hertz stated

that he was unable to explain the details of the observations

on this hypothesis, and in the second place it is disproved by

the following experiment :—

The smaller apparatus was placed with the line r s on the

upper near corner of one of the large blocks, in which position

the dielectric was bounded by the plane of the plates A A' and

the perpendicular plane through r s, both of which are equi-

potential surfaces, so that if the action were electrostatic no

effect should be produced by the dielectric. It was found,

however, to produce the same effect as in other positions. It

might also be supposed that the effects were due to a slight

conductivity, but this could hardly be the ease with such

good insulators as sulphur and paraffin. Suppose, moreover,

that the conductivity of the dielectric is sufficient to discharge

the plate A in the ten-thousanth of a second, but not much

more rapidly; then, during one oscillation, the plates would

loose only the ten-thousandth part of their charge, and the

conduction current in the substance experimented on would

not exceed the ten-thousandth part of the primary current in

A A', so that the effect would be quite insensible.

It is thus shown in the experiments described above that

when variable electrical forces act in the interior of dielec

trics of specific inductive capacity not equal to unity the

corresponding electric displacements produce electro-dynamic

effects. In a Paper, "On the Velocity of Propagation of Electro-

Dynamic Actions," in Wiedemann's Annalen, Vol. XXXIV.,

p. 551, Hertz showed that similar actions take place in the

air, which proves, as was previously pointed out, that electro-

dynamic action must be propagated with a finite velocity.
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The method of investigation was to excite electrical oscilla

tions in a rectilinear conductor in the same manner as in

former experiments, and then to produce effects in a secondary

conductor by exciting electrical oscillations in it by means of

those in the rectilinear conductor, and at the same time by the

primary conductor acting through the intervening space. This

distance was gradually increased, when it was found that the

phase of the vibrations at a distance from the primary lagged

behind those in its immediate neighbourhood, showing that

the action is propagated with a finite velocity which was found

to be greater than the velocity of propagation of electrical

waves in wires in the ratio of about 45 to 28, so that the former

is of the same order as the velocity of light. Hertz was

unable to obtain any evidence with respect to the velocity

of propagation of electrostatic actions.

 

Fiq. 161.

The primary conductor A A' (Fig. 161) consisted of a pair

of square brass plates with sides 40 centimetres in length, con

nected by a copper wire 60 centimetres in length, at the middle

point of which was an air space, across which sparks were

made to pass by means of powerful discharges from the induc

tion coil J. The conductor was fixed at a height of 1-5 metre

above the base-plate of the coil, with its plates vertical, and

the connecting wire horizontal. A straight line, rs, drawn

horizontally through the air space of the primary, and perpen

dicular to the direction of the primary oscillation, will be called

" the base-line ; " and a point in this, situated at a distance of

45 centimetres from the air space, will be referred to as " the

null point."
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The experiments were made in a large leeture-room, with

nothing near the base-line for a distance of 12 metres from

the primary conductor. The room was darkened during the

experiments.

The secondary conductor consisted either of a circular wire,

C, of 85 centimetres radius, or of a square of wire, B, with

sides 60 centimetres long. The primary and secondary air

spaces were both capable of adjustment by means of micro

meter screws. Both the secondary conductors were in unison

with the primary, the (half) vibration period of each being one

hundred-millionth of a second, as calculated from the capacity

and coefficient of self-induction. It is doubtful whether the

ordinary theory of electrical oscillations would lead to accurate

results under the conditions of these experiments, but as it

gives correct numerical results in the case of Leyden jar dis

charges, it may be expected to be correct as far as the order

of the results is concerned. When the centre of the secondary

lies in the base-line, and its plane coincides with the vertical

plane through the base-line, no sparks are observed in the

secondary, the E.M.F. being everywhere perpendicular to the

direction of the secondary. This will be referred to as " the

first principal position" of the secondary. When the plane of

the secondary is vertical and perpendicular to the base-line, the

centre still lying in the base-line, the secondary will be said to

be in its " second principal position." Sparking then occurs

in the secondary when its air space is either above or below

the horizontal plane through the base-line, but not when it is

in this plane. As the distance from the primary was increased,

the sparking distance was observed to decrease, rapidly at first,

but ultimately very slowly. Sparks were observed throughout

the whole distance of 12 metres available for the experiments.

The sparking in this position is due essentially to the E.M.F.

produced in the portion of the secondary remote from the air

space. The total E.M.F. is partly electrostatic and partly

electro-dynamic, and the experiments show beyond the possi

bility of doubt that the former is greater, and therefore deter

mines the direction of the total E.M.F. close to the primary,

while at greater distances it is the electro-dynamic E.M.F.

'which is the greater.

The plane of the secondary was then turned into the hori
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zontal, its centre still lying in the base-line. This may bo

called "the third principal position." When the centre of the

circular secondary conductor was kept fixed at the null point,

11 nd the air space was made to travel round the circle, vigorous

sparking was observed in all positions. The sparking distance

attained its maximum length of about six millimetres when its

air space was nearest to that of the primary, and its minimum

length of about three millimetres when the distance between

the two air spaces was greatest. If the secondary had been

influenced by the electrostatic force, sparking would only be

expected when the air spaca was close to the base-line, and a

cessation of sparks in the intermediate positions. The direction

of the oscillation would, moreover, be determined by the direc

tion of the E.M.F. in the portion of the secondary furthest

from the air space. There is, however, superposed upon the

electrostatically excited oscillation a second oscillation, due to

the E.M.F. of induction, which produces a considerable effect,

since its integral round the circle (considered as a closed circuit)

does not vanish; and the direction of this integral E.M.F. is

independent of the position of the air space, opposing the

electrostatic E.M.F. in the portion of the secondary next to

A A', and assisting it in the portion furthest from A A', as

explained previously.

The electrostatic and electro-dynamic E.M.F.s, therefore,

act in the same direction when the air space is turned towards

the primary conductors, and in opposite directions when the

air space is turned away from the primary. In the latter

position it is the E.M.F. of induction which is the more

powerful, as is shown by the fact that there is no disap

pearance of sparking in any position of the air space, for when

this is 90deg. to the right or left of the base-line it coincides

with a node with respect to the electrostatic E.M.F. In these

positions the inductive action in the neighbourhood of the

primary can be observed independently of the electrostatio

action.

Waves in Rectilinear Wires.—In order to produce in a wire

by means of the primary oscillations a series of advancing

waves of the character required for these experiments, the

following arrangements were made :—Behind the plate A was

placed a plate, P, of equal size. A copper wiro one millimetre
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in diameter connected P to the point M of the base-line.

From M the wire was continued in a curve about a metre in

length to the point N, situated about 80 centimetres above the

air space, and was then further continued in a straight line

parallel to the base-line for such a distance as to obviate all

danger of disturbance from reflected waves. In the present

series of experiments the wire passed through a window, and

after being carried to a distance of about 60 metres, was put

to earth, and a special series of experiments showed that tbis

length was sufficient. When a wire, bent so as to form a

nearly closed circuit with a small air space, was brought near

to this straight wire, a series of fine sparks was seen to

accompany the discharges of the induction coil. Their

intensity could be varied by varying the distance between the

plates P and A. The waves in the rectilinear wire were of the

same period as that of the primary oscillations, as was proved

by their being shown to be in unison with each of the two

secondary conductors previously described. The existence of

stationary waves showed that the waves in the rectilinear wire

were of a steady character in space as well as in time. The

nodal points were determined in the following manner :—The

further end of the wire was left free, and the secondary con

ductor was brought near to it in such a position that the wire

lay in its plane, and had the air space turned towards it. As

the secondary was moved along the wire, points of no sparking

were observed to recur periodically. The distance from the

point n to the first of these was measured, and the length of

the wire made equal to a multiple of this distance. The

experiments were then repeated, and it was found that the

nodal points occurred at approximately equal intervals along

the wire.

The nodes could also be distinguished from the loops in

other ways. The secondary conductor was brought near to

the wire, with its plane perpendicular to it, and with its air

space neither directed completely towards the wire nor com

pletely away from it, but in an intermediate position, so

as to produce E.M.F.S perpendicular to the wire. Sparks

were then observed at the nodes, while they disappeared

at the loops. When sparks were taken from the rectilinear

wire by means of an insulated conductor, they were found
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to be stronger at the nodes than at the loops ; the difference,

however, was small, and was, indeed, scarcely distinguishable

unless the position of the nodes and loops was previously

known. The reason that this and other similar methods do

not give a well-defined result lies in the fact that irregular

oscillations are superposed upon the waves considered ; the

regular waves, however, can be picked out by means of the

secondary, just as definite notes are picked out by means of a

Helmholtz resonator. If the wire is severed at a node, no

effect is produced upon the waves in the portion of wTire next

to the origin ; but if the severed portion of wire is left in its

place the waves continue to be propagated through it, though

with somewhat diminished strength.

The possibility of measuring the wave-lengths leads to

various applications. If the copper -wire hitherto used is

replaced by one of different diameter, or by a wire of some

other metal, the nodal points retain their position unchanged.

It follows from this that the velocity of propagation in a wire

has a definite value independent of its dimensions and material

Hertz states that even iron wires offer no exception to this,

showing that the magnetic susceptibility of iron does not play

any part in the case of such rapid motions. This conclusion

is not, however, confirmed by the researches of Prof. J.

Trowbridge, and investigations, referred to on page 481, show

that the magnetisability of the iron does exert an influence

sensible though small. It would be interesting to investi

gate the behaviour of electrolytes in this respect. In their

case we should expect a smaller velocity of propagation,

because the electrical motions are accompanied by motions of

the molecules carrying the electric charges. It was found

that no propagation of the waves took place through a tube

10 millimetres in diameter, filled with a solution of sulphate

of copper ; but this may have been due to the resistance being

too high. By the measurement of wave-lengths the relative

vibration periods of different primary conductors can be deter

mined, and it therefore becomes possible to compare in this

manner the vibration periods of plates, spheres, ellipsoids, &c.

In the experiments made by Hertz, nodes were very dis

tinctly produced when the wire was severed at a distance of

either 8 metres or 5-5 metres from the null point of the base
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line. In the first case the nodes occurred at distances from the

null point of - 0-2 metre, 2-8 metres, 5-1 metres, and 8 metres,

and in the latter ease at distances of - 0-1 metre, 2-8 metres,

and 5-5 metres. It appears, therefore, that the (half) wave

length in a free wire cannot differ much from 2-8 metres. The

fact that the wave-lengths nearest to P were somewhat smaller

was to be expected from the influence of the plates and of the

curvature of the wire. This wave-length, with a period of one

hundred-millionth of a second, gives 280,000 kilometres per

second for the velocity of propagation of electrical waves in

wires. Fizeau and Gounelle (Poggendorff's Annalen, Vol.

LXXX., p. 158, 1850) obtained for the velocity in iron wires

100,000 kilometres per second, and 180,000 in copper wires.

W. Siemens (Poggendorffs Annalen, Vol. CLVII., p. 809,

1876), by the aid of Leyden jar discharges, obtained a velocity

of from 200,000 to 200,000 kilometres per second in iron

wires. Hertz's result is very nearly the same as the velocity

of light. Space will not allow us to fully discuss the causes

which led to certain discrepancies in Hertz's earlier results.

Suffice it to say that he subsequently found that the velocity

of propagation of an electromagnetic disturbance along a wire

was the same as in free space, viz., the velocity of light. The

apparent difference between the velocity of long and short

waves was afterwards explained by Hertz himself, and the

causes of this were made clear by the experiments conducted

in the large hall of the Rhone waterworks by MM. Sarasin

and de la Rive. From these experiments it became clear

that the interference due to surrounding objects was the cause

of the apparent difference between the velocities of long and

short waves, but that in a sufficiently large space this

difference disappeared, and the velocity of both long and

short electromagnetic waves was the same. The reader may

consult with advantage on this point the notes and text of

the full translation of Hertz's electrical Papers made by Mr.

D. E. Jones.*

Interference of tJi* Direct Actions with those transmitted

through the Wire.—If the square circuit B is placed at the

null point in the second principal position, with the air space

• " Electric Waves." Authorised English translation of Hertz's Papers,,

by D. E. Jones.
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at its highest point, it will be unaffected by the waves in the

wire, but the direct action when in this position was found to

produce sparks 2 millimetres in length. B was then turned

about a vertical axis into the first principal position, in which

there would be no direct action of the primary oscillation, but

the waves in the wire gave rise to sparks, and by bringing P

near enough to A a sparking distance of 2 millimetres could

he obtained. In the intermediate positions sparks were pro

duced in both these ways, and it would therefore be possible

to get a difference of phase, such that one should either

increase or diminish the effect of the other. Phenomena of

this nature were, indeed, observed. When the plane of B was

in such a position that the normal drawn towards A A' was

directed away from that side of the primary conductor on

which P was placed, there was more sparking than even in

thj principal position; but if the normal were directed

towards P the sparks disappeared, and only reappeared when

the air space was made smaller. When the air space was at

the lowest point of B, the other conditions remaining the

same, the sparks disappeared when the normal was turned

away from P. Further variations of the experiment gave

results in accordance with these.

It is easily seen that these phenomena were exactly what

"were to be expected. To fix the ideas, suppose the air space

to be at the highest point, and the normal directed towards P,

as in Fig. 161. Consider what happens at the moment that

the plate A has its greatest positive charge. The electrostatic,

and therefore the total, E.M.F. is directed from A towards A'.

The oscillation to which this gives rise in B is determined by

the direction of the E.M.F. in the lower portion of B. There

fore positive electricity will flow towards A' in the lower

portion, and away from A' in the upper portion.

Consider next the action of the waves. As long as A is

positively charged, positive electricity will flow from the plate

P. This current is at the moment considered at its maximum

value at the middle point of the first half wave-length. A

quarter of a wave-length further from the origin—that is to

say, in the neighbourhood of the null point—it first changes

its direction. The E.M.F. of induction will here, therefore,

impel positive electricity towards the origin. A current will
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therefore flow round B towards A' in the upper portion and

away from /„v in the lower portion. The electrostatic and

electro-dynamic E.M.F.s are therefore in opposite phases and

oppose each other's action. If the secondary circuit is rotated

through 90deg., through the first principal position, the direct

action changes its sign, but not so the action of the waves, so

that they now tend to strengthen each other. The same

reasoning holds when the air space is at the lowest point of B.

Greater lengths of wire were then included between m and n,

and it was found that the interference became gradually less

marked, until within a length of 2-5 metres it disappeared

entirely, the sparks being of equal length whether the normal

were directed towards or away from P. When the length of

wire between m and n was further increased, the distinction

between the different quadrants reappeared, and with a length

of 4 metres the disappearance of the sparks was fairly sharp.

The disappearance, however, then took place (with the air space

at the highest point) when the normal was directed away from

P, the opposite direction to that in which the disappearance pre

viously took place. With a still further increase in the length

of the wire the interference reappeared, and returned to its

original direction with a length of 6 metres. These phenomena

are clearly to be explained by the retardation of the waves in

the wire, and show that here again the direction of motion in

the advancing waves changes its signs at intervals of about

2-8 metres.

To obtain interference phenomena with the secondary circuit

C in the third principal position, the rectilinear wire must be

removed from its original position and placed in the horizontal

plane through C either on the side of the plate A or of the

plate A'. Practically it is sufficient to stretch the wire

loosely, and to fix it by means of an insulated clamp on each

side of C alternately. It was found that when the wire was

on the same side as the plate P the waves in it diminished

the previous sparking, and when on the opposite side the

sparking was increased, both results being unaffected by the

position of the air space in the secondary circuit. Now it has

been already pointed out that at the moment when the plate A

has its maximum positive charge, and at which, therefore, the

primary current begins to flow from A, the current at the first
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node of tha rectilinear wire begins to flow away from the

origin. The two currents, therefore, flow A-'^md C in the

same direction when C lies between the rectilinear wire and A,

and in opposite directions when the wire and A are on the

same side of C. The fact that the position of the air space is

indifferent confirms the conclusion formerly arrived at that

the direction of oscillation is that due to the electro-dynamic

E.M.F. These interferences are also changed in direction

when the wire m n, 1 metre in length, is replaced by a wire 4

metres in length.

Hertz also succeeded in obtaining interference phenomena

when the centre of the secondary circuit was not in the base

line, but these results were of no special importance, except

that they confirmed the previous conclusions.

Interference Phenomena at Various Distances.—Interference

may be produced with the secondary at greater distances than

that of the null point ; but care must then be taken that the

action of the waves in the wire is of about the same magnitude

as the direct action of the primary circuit through the air.

This can be effected by increasing the distance between P

and A.

Now, if the velocity of propagation of the electro-dynamic

disturbances through the air is infinite, the interference will

change its sign at every half-wave length in the wire—that is

to say, at intervals of about 2-8 metres. If the velocities of

propagation through the air and through the wire are equal,

the interference will be in the same direction at all distances.

Finally, if the velocity of propagation through the air is finite,

but different from the velocity in the wire, the interference will

change in sign at intervals greater than 2-8 metres.

The interferences first investigated were those which occurred

when the secondary circuit was rotated from the first into the

second principal position, the air space being at the highest

point. The distance of the secondary from the null point was

increased by half-metre stages from 0 up to 8 metres, and

at each of these positions an observation was made of the

effects of directing the normal towards and away from P

respectively. The points at which no difference in the

sparking was observed in the two positions of the normal

are marked 0 in Table I. Those in which the sparking
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was least, showing the existence of interference, when the

normal was directed towards P, are marked + , and those in

which the sparking was least when the normal was directed

away from P are marked — . The experiments were repeated

with different lengths of wire m n, varying by steps of half a

metre from 1 metre up to 6 metres. The first horizontal line

in the table gives the distance, in metres, of the centre of the

secondary circuit from the null point, while the first vertical

Hue gives the lengths of the wire m n, also in metres.

Table I.

 

0 1 2 3 4 5 6 7 8

100 + + 0 0 0 0 0 0 + + + +

150 + 0 - - - - 0 0 0 0 0 + + + + + 0

200 0 - _ - - - 0 + + + + + 0 0 0 0 0

250 0 - - - - 0 0 + + + 0 0 0 0 0 0

son - —
'
— 0 + + + + + 0 0 0 0 — - -

?50 - - 0 + + + + + + 0 0 0

430 - - 0 + + + + 0 0 0 0

450 - 0 + + + + + 0 0 0 0

500 - 0 + + + + 0 0 0 0 0 +

650 0 + + + + 0 0 0 0 0 0 4"

600 + + + + 0 0 0 0 + + + +

An inspection of the table shows, in the first place, that the

changes of sign take place at longer intervals than 2-8 metres ;

and, in the second place, that the change of phase is more

rapid in the neighbourhood of the origin than at a distance

from it. As a variation in the velocity of propagation is very

unlikely, this is probably due to the fact indicated by theory

that the electrostatic E.M.F., which is more powerful than the

electro-dynamic E.M.F. in the neighbourhood of the primary

oscillation, has a greater velocity of propagation than the

latter.

In order to obtain a definite proof of the existence of similar

phenomena at greater distances, Hertz continued the observa

tions, in the case of three of the lengths m n, up to a distance

of 12 metres, and the result is given in Table II.

If we make the assumption that at the greater distance it is

only the E.M.F. of induction which produces any effect, the

experiments would show that the interference of the waves

H H
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excited by the E.M.F. of induction with the original waves in

the wire changes its sign only at intervals of about 7 metres.

Table II.

— 0 1 2 4 5 6 7 8 9 10 11 12

100 + 0 - 0 0 0 + + + + + 0
250 0 - 0 + + 0 0 0 0 -

400 0 • + 0 0 — — — 0 0 0

Table IN.

— 0 1 2 3 4

ICO - - - - 0

150 - — 0 0 0
200 0 0 0 + +

250 0 + + + +

300 + + + + +

350 + + + + 0

400 + + + + 0

450 + + + 1) 0

500 + + 0 0 0

550 + 0 0 0 —

600 0 — — -

In order to investigate the E.M.F. of induction close to the

primary oscillation, where the results are of special importance,

Hertz made use of the interferences which were obtained

when the secondary circuit was in the third principal position,

and the air space was rotated through 90deg. from the base-line.

The direction of the interference at the null point, which has

already been considered, was taken as negative, the interference

being considered positive when it was produced by the passage

of waves on the side of C remote from P, which make the signs

correspond with those of the previous experiments. It must be

borne in mind that the direction of the resultant E.M.F. at the

null point is opposed to that of the E.M.F. of induction, and

therefore the first table would have begun with a negative sign

if the electrostatic E.M.F. could have been eliminated. The

present experiments showed that up to a distance of 3 metres

interference continued to occur, and always of the same sign as

at the null point. It was unfortunately impossible to extend

these observations to a greater distance than & metres on
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account of the feebleness of the sparks, but the results obtained

were sufficient to give distinct evidence of a finite velocity of

propagation of the E.M.F. of induction. These observations,

like the former ones, were repeated with various lengths of

the wire mn in order to exhibit the variation in phase, and

the results obtained are given in Table III., which shows

that, as the distance increases, the phase of the interference

changes in such a manner that a reversal of sign takes place

at intervals of from 7 to 8 metres. This result is further con

firmed by comparing the results of Table III. with the results

for greater distances given in Table II., for in the former

series the effect of the electrostatic E.M.F. is eliminated,

owing to the special position of the secondary circuit, while

in the latter it becomes insensible at the greater distances

owing to its rapid decrease with increasing distance. We

should therefore expect the results given in the first table for

distances beyond 4 metres to follow without a break the

results given in Table III. for distances up to 4 metres. This

was found to be the case, as is evident from inspection of

Tables II. and III.

To show this more clearly, the signs of the interference of

the waves, due to the electro-dynamic E.M.F., with the waves

in the wire are collected together in Table IV., the first four

columns of which are taken from Table III., and the remain

ing columns from Table II.

Table IV.

— 0 1 2 3 4 5 6 7 8 9 10 11 12

ICO - - - - 0 0 0 + + + + + 0

250 0 + + + + + 0 0 0 0 - - -

400 + + + + 0 0 " — 0 0 0

From the results given in this table Hertz drew the

following conclusions :—

1. The interference does not change its sign at intervals of

2-8 metres. The electro-dynamic actions are therefore not

propagated with an infinite velocity.

2. The interference is not in the same phase at all points.

Therefore the electro-dynamic actions are not propagated

through air with the same velocity as electric waves in wires.

HII2
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8. A gradual retardation of the waves in the wire has the

effect of displacing a given phase of the interference towards

the origin of the waves. The velocity of propagation through

the air is therefore greater than through a wire.

4. The sign of the interference is reversed at intervals of

7-5 metres, and therefore in traversing this distance an electro-

dynamic wave gains one length of the waves in the wire.

Thus, while the former travels 7-5 metres, the latter travels

7-5 - 2-8 = 4-7 metres, and therefore the ratio of the velocities

is 75 : 47, which gives for the half wave-length of the electro-

dynamic action 2-8 x 75/47 = 4-5 metres. Since this distance

is traversed in 1-4 hundred-millionth of a second, the absolute

velocity of propagation through the air must be 320,000 kilo

metres per second. This result can only be considered reliable

as far as its order is concerned ; but its true value can hardly

exceed half as much again, or be less than two-thirds of this

amount. In order to obtain a more accurate determination of

the true value it will be necessary to determine the velocity of

electric waves in wires with greater exactness.

It does not necessarily follow from the fact that in the imme

diate neighbourhood of the primary oscillation the interference

changes its sign after an interval of 2-8 metres, that the velocity

of propagation of the electrostatic action is infinite, for such

a conclusion would rest upon a single change of sign, which

might, moreover, be explained independently of any change of

phase, by a change in the sign of the amplitude of the resultant

force at a certain distance from the primary oscillation. Quite

independently, however, of any knowledge of the velocity of

propagation of electrostatic actions, there exist definite proofs

that the rates of propagation of electrostatic and electro dynamic

E.M.F.s are unequal.

In the first place, the total force does not vanish at any

point on the base line. Now, near the primary the electro

static E.M.F. is the greater, while the electro-dynamic E.M.F.

is the greater at greater distances. There must, therefore, be

some point at which they are equal, and since they do not

balance they must take different times to reach this point.

In the second place, the existence of points at which the

direction of the resultant E.M.F. becomes indeterminate does

not seem capable of explanation, except on the supposition
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that the electrostatic and electro-dynamic components perpen

dicular to each other are in appreciably different phases, and,

therefore, do not compound into a rectilinear oscillation in a

fixed direction. The fact that the two components of the

resultant are propagated with different velocities is of con

siderable importance, in that it gives an independent proof

that one of them at any rate must have a finite velocity of

propagation.

Further researches of Hertz on electrical oscillations, of

which accounts have been published, are to be found described

in a Paper, "On Electro-Dynamic Waves in Air, and their

Reflection," in Wiedemann's Annalen, Vol. XXXIV., p. 609.

The author had been endeavouring to find a more striking and

direct proof of the finite velocity of propagation of electro-

dynamic waves than those which he had hitherto given ; for,

though these are quite sufficient to establish the fact, they can

only be properly appreciated by one who has obtained a grasp

of the results of the entire series of researches.

In many of the experiments which have been described,

Hertz had noticed the appearance of sparks at points in the

secondary conductor where it was clear from geometrical con

siderations that they could not be due to direct action, and it

was observed that this occurred chiefly in the neighbourhood

of solid obstacles. It was found, moreover, that in most

positions of a secondary conductor the feeble sparks produced

at a great distance from the primary became considerably

stronger in the vicinity of a solid wall, but disappeared with

considerable suddenness quite close to the wall. The most

obvious explanation of these experiments was that the waves

of inductive action were reflected from the wall and interfered

with the direct waves, especially as it was found that the

phenomena became more distinct when the circumstances

were such as to favour reflection to the greatest possible

extent. Hertz therefore determined upon a thorough investi

gation of the phenomena.

The experiments were made in the Physical Lecture Theatre,

which is 15 metres in length, 14 metres in width, and 6 metres

in height. Two rows of iron columns, running parallel to the

sides of the room, would collectively act almost like a solid

wall towards electro-dynamic action, so that the available
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width of the room was only 8"5 metres. All pendant gas-

fittings were removed, and the room left empty, with the

exception of wooden tables and forms, which would not exert

any appreciable disturbing effect. The end wall, from which

the waves were to be reflected, was of solid sandstone, with

two doors in it, and the numerous gas pipes attached to it

gave it, to a certain extent, the character of a conducting

surface, and this was increased by fastening to it a sheet of

zinc four metres high and two metres broad, connected by

wires to the gas pipes and a neighbouring water pipe. Special

care was taken to provide an escape for the electricity at the

upper and lower extremities of the zinc plate, where a certain

accumulation of electricity was to be expected.

The primary conductor was the same that was employed in

the experiments described on page 456, Fig. 161, and was placed

at a distance of 13 metres from the zinc plate, and, therefore,

two metres from the wall at the other end of the room. The

conducting wire was placed vertically, so that the E.M.F.s to

be considered increased and diminished in a vertical direction.

The centre of the primary conductor was 2-5 metres above the

floor of the room, which left a clear spaco for the observations

above the tables and benches. The point of intersection of the

reflecting surface with the perpendicular from the centre of the

primary conductor will be called " the point of incidence," and

the experiments were limited to the neighbourhood of this

point, as the investigation of waves striking the wall at a con

siderable angle would be complicated by the differences in their

polarisation. The plane of vibration was therefore parallel to

the reflecting surface, and the plane of the waves was perpen

dicular to it, and passed through the point of incidence.

The secondary conductor consisted of the circle of 85 centi

metres radius, which has been already described. It was

movable about an axis through its centre perpendicular to its

plane, and the axis itself was movable in a horizontal plane

about a vertical axis. In most of the experiments the secon

dary conductor was held in the hand by its insulating wooden

support, as this was the most convenient way of bringing it into

the various positions required. The results of these experi

ments, however, had to be checked by observations made

with the observer at a greater distance from the secondary, as
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the neighbourhood of his body exerted a slight influence upon

the phenomena. The sparks were distinct enough to be

observed at a distance of several metres when the room was

darkened, but when the room remained light they were

practically invisible even when the observer was quite close to

the secondary.

When the centre of the secondary was placed in the line of

incidence, and with its plane in the plane of vibration, and the

air space was turned first towards the reflecting wall and then

away from it, a considerable difference was generally observed

in the strength of the sparks in the two positions. At a

distance of about 0-8 metre from the wall the sparks were

much stronger when the air space was directed towards the

wall, and its length could be adjusted so that, while there was

 

Fig. 162.

a steady stream of sparks when in this position, they disap

peared entirely when the air space was directed away from the

wall. These phenomena were reversed at a distance of 8 metres,

and recurred, as in the first case, at a distance of 5-5 metres.

At a distance of 8 metres the sparks were stronger when the

air space was turned away from the wall, as at the distance of

8 metres, but the difference was not so well marked. When

the distance was increased beyond 8 metres no further reversal

took place, owing to the increase in the direct effect of the

primary oscillation and the complicated distribution of the

E.M.F. in its neighbourhood.

The positions I., II., III. and IV. (Fig. 162) of the secondary

circle are those in which the sparks were strongest, the distance



472 DYNAMICAL THEORY OF INDUCTION.

from the wall being shown by the horizontal scale at the foot.

When the secondary circle was in the positions V., VI., and

VII., the sparks were equally strong in both positions of the

air space, and quite close to the wall the difference between

the sparking in the two positions again diminished. Therefore

the points A, B, C, D in the diagram may in a certain sense be

regarded as nodes. The distance between two of these points

must not, however, be taken as the half wave-length, for if

all the electrical motions changed their directions on passing

through one of these points the phenomena observed in the

secondary circuit would be repeated without variation, since

the direction of oscillation in the air space is indifferent.

The conclusion to be drawn from the experiments is that in

passing any one of these points part of the action is reversed,

while another part is not. The experimental results, however,

warrant the assumption that twice the distance between two

of these points is equal to the half wave-length, and when this

assumption is made the phenomena can be fully explained.

For suppose a wave of E.M.F., with oscillations in a vertical

direction, to impinge upon the wall, and to be reflected with

only slightly diminished intensity, thus giving rise to stationary

waves. If the wall were a perfect conductor, a node would

necessarily be formed in its surface, for at the boundary and

in the interior of a perfect conductor the E.M.F. must be

infinitely small. The wall cannot, however, be considered as

a perfect conductor, for it was not metallic throughout, and

the portion which was metallic was not of any great extent.

The E.M.F. would therefore have a finite value at its surface,

and would be in the direction of the impinging waves. The

node, which in the case of perfect conductivity would occur at

the surface of the wall, would, therefore, actually be situated

a little behind it, as shown at A in the diagram. If, then,

twice the distance A B—that is to say, the distance A C—is

half the wave-length, the steady waves will be as represented

by the continuous lines in Fig. 162. The E.M.F.s acting on

each side of the circles, in the positions I., II., III., and IV.,

will, therefore, at a given moment be represented in magnitude

and direction by the arrows on each side of them in the

diagram. If, therefore, in the neighbourhood of a node, the

air space is turned towards the node, the strongest E.M.F. in
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the circle will act under more favourable conditions against a

weaker one under less favourable conditions. If, however, the

air space is turned away from the node, the stronger E.M.F.

acts under less favourable conditions against a weaker one

under more favourable conditions. In the latter case the

resultant action must be less than in the former, whichever

of the two E.M.F.s has the greater effect, which explains the

•change of sign of the phenomenon at each quarter wave

length.

This explanation is further confirmed by the consideration

that, if it is the true one, the change of sign at the points B

and D must take place in quite a different manner from that

of the point C. The E.M.F.s acting on the secondary circle,

in the positions V., VI., and VII., are shown by the corre

sponding arrows, and it is clear that in the positions B and

D, if the air space is turned from one side to the other, the

vibration will change its direction round the circle, and there

fore the sparking must, during the rotation, vanish either once

or an uneven number of times. In the position C, however,

the direction of vibration remains unaltered, and therefore the

-sparks must disappear an even number of times, or not at all.

The experiments showed that at B and D the sparking dimi

nished as the air space receded from a, vanished at the highest

point, and again attained its original value at the point f3. At

C, on the other hand, the sparking continued throughout the

rotation, being a little stronger at the highest and lowest

points. If, then, there is any change of sign in the position

C, it must occur with very much smaller displacements than

in the other positions, so that in any case there is a distinction

such as is required between this and the other two cases.

Another very direct proof of the truth of Hertz's repre

sentation of the nature of the waves was obtained. If the

secondary circle lies in the plane of the waves instead of in

the plane of vibration, the E.M.F. must be equal at all points

of the circle, and for a given position of the air space the

sparking must be directly proportional to its intensity. When

the experiment was made, it was found, as expected, that at

ull distances the sparking vanished at the highest and lowest

points of the circle, and attained a maximum value at the

points in the horizontal plane through the point of incidence.
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The air space was then placed at such a point and close to

the wall, and was then moved slowly away from the wall,

when it was found that, while there was no sparking quite

close to the metal plate, it began at a very small distance

from it, rapidly increased, reached a maximum at the point

B, and then diminished again. At C the sparking again

became excessively feeble and increased as the circle was

moved still further away. The sparking continued steadily

to increase after this, as the motion of the circle was con

tinued in the same direction, owing, as before, to the direct

action of the primary oscillation.

The curves shown by the continuous lines in Fig. 162 were

obtained from the results of these experiments, the ordinates

representing the intensity of the sparks at the distances repre

sented by the corresponding abscissa;.

The existence in the electrical waves of nodes at A and C,

and of loops at B and D, is fully established by the experi

ments which have been described ; but in another sense the

points B and D may be regarded as nodes, for they are the

nodal points of a stationary wave of magnetic induction which,

according to theory, accompanies the electrical wave and lags

a quarter wave-length behind it.

This can easily be shown to follow from the experiments, for

when the secondary circle is placed in the plane of vibration

with the air space at its highest point, there will be no spark

ing if the E.M.F. is uniform throughout the space occupied by

the secondary. This can only take place if the E.M.F. varies

from point to point of the circle, and if its integral round the

circle differs from zero. This integral is proportional to the

number of magnetic lines of force passing backwards and for

wards across the circle, and the intensity of the sparks may be

considered as giving a measure of the magnetic induction,

which is perpendicular to the plane of the circle. Now, in this

position vigorous sparking was observed close to the wall,

diminishing rapidly to zero as the point B was approached,

then increasing to a maximum at C, falling to a well-marked

minimum at D, and finally increasing continuously as the

secondary approached still nearer to the primary. If the

intensities of these sparks are taken as ordinates, positive and

negative, and the distances from the wall as abscissae, the
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curve shown by the dotted lines in Fig. 162 is obtained, which

therefore represents the magnetic waves.

The phenomena observed in the first series of experiments

described above may therefore be regarded as due to the

resultant electric and magnetic actions. The former changes

sign at A and C, the latter at B and D, so that at each of these

points one part of the action changes sign, while the other does

not, and therefore the resultant action which is their product

must change sign at each of these points, as was found to be

the case.

When the secondary circle was in the plane of vibration the

sparking in the vicinity of the wall was observed to be a maxi

mum on the side towards the wall and a minimum at the

opposite side, and as the circle was turned from one position to

the other there was found to be no point at which the sparks

disappeared. As the distance from the wall was increased, the

sparks on the remote side gradually became weaker, and

vanished at a distance of 1-08 metre from the wall. When

the circle was carried further in the same direction the sparks

appeared again on the side remote from the wall, but were

always weaker than on the side next to it ; the sparking, how

ever, no longer passed from a maximum to a minimum merely,

but vanished during the rotation once in the upper and once

in the lower half of the circle. The two null points gradually

receded from their original coincident positions until at the

point B they occurred at the highest and lowest points of the

circle. As the circle was moved further in the same direction

the null points passed over to the side next to the wall, and

approached each other again, until, when the centre was at a

distance of 2-85 metres from the wall, the two null points were

again coincident. B must be exactly half-way between this

point and the similar point previously observed, which give8

1-72 metre as the distance of B from the wall—a result which

agrees, within a few centimetres, with that obtained by direct

observation. Moving further in the direction of C, the spark

ing at different points of the circle became more nearly equal,

until at C it was exactly so. In this position there was no null

point, and as the distance was further increased the phenomena

recurred in the same order as before.

Hertz found that the position of C could be determined
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within a few centimetres, the determinations of its distance

from the wall varying from 4-10 to 4-15 metres ; he gives its

most probable value as 4-12 metres. The point B could not be

observed with any exactness, the direct determinations varying

from 6 to 7-5 metres as its distance from the wall. It could,

however, be determined indirectly, for the distance between B

and C being found to be 2"4 metres, taking this as the true

value, A must have been 068 metre behind the surface of the

wall, and 0-52 metres in front of it. The half wave-length

would be 4"8 metres, and by an indirect method it was found

to be 4-5 metres, so that the two results agree fairly well.

Taking the mean of these as the true value, and the velocity

of light as the velocity of propagation, gives as the vibration

period of the apparatus 1-55 hundred-millionth of a second,

instead of 1"4 hundred-millionth, which was the theoretically

calculated value.

A second series of experiments was made with smaller

apparatus, and though the measurements could not be made

with as much exactness as those already described, the results

showed clearly that the position of the nodes depends only on

the dimensions of the conductors, and not on the material of

the wall.

Hertz states that after some practice he succeeded in obtain

ing indications of reflections from each of the walls. He was

also able to obtain distinct evidence of reflection from one of

the iron columns in the room, and of the existence of electro-

dynamic shadows on the side of the column remote from the

primary.

In the preceding experiment the secondary conductor was

always placed between the wall and the primary conductor—

that is to say, in a space in which the direct and reflected

rays were travelling in opposite directions, and gave rise to

stationary waves by their interference.

He next placed the primary conductor between the wall and

the secondary, so that the latter was in a space in which the

direct and reflected waves were travelling in the same direction.

This would necessarily give rise to a resultant wave, the inten

sity of which would depend on the difference in phase of the

two interfering waves. In order to obtain distinct results it was

necessary that Ui& two waves should be of approximately equal
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intensities, and therefore the distance of the primary from the

wall had to be small in comparison with the extent of the

latter, and also in comparison with its distance from the

secondary.

To fulfil these conditions the secondary was placed at a dis

tance of 14 metres from the reflecting wall, and, therefore,

about 1 metre from the opposite one, with its plane in the plane

of vibration, and its air space directed towards the nearest wall,

in order to make the conditions as favourable as possible for

the production of sparks. The primary was placed parallel to-

its former position, and at a perpendicular distance of about

80 centimetres from the centre of the reflecting metallic plate.

The sparks observed in the secondary were then very feeble,

and the air space was increased until they disappeared. The

primary conductor was then gradually moved away from the

wall, when isolated sparks were soon observed in the secondary,

passing into a continuous stream when the primary was between

1-5 and 2 metres from the wall—that is, at the point B. This

might have been supposed to be due to the decrease in the

distance between the two conductors, except that as the primary

conductor was moved still further from the wall the sparking

again diminished, and disappeared when the primary was at

the point C. After passing this point the sparking continually

increased as the primary approached nearer to the secondary.

These experiments were found to be easy to repeat with

smaller apparatus, and the results obtained confirmed the

former conclusion—that the position of the nodes depends only

on the dimensions of the conductor, and not on the material

of the reflecting wall.

Hertz points out that these phenomena are exactly analogous

to the acoustical experiment of approaching a vibrating tuning-

fork to a wall when the sound is weakened in certain positions

and strengthened in others, and also to the optical phenomena

illustrated in Lloyd's form of Fresnel's mirror experiments ;

and as these are accepted as arguments tending to prove that

sound and light are due to vibration, his investigations give a

strong support to the theory that the propagation of electro

magnetic induction also takes place by means of waves excited

in a medium. They therefore afford a confirmation of the

Faraday-Maxwell theory of electrical action.
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§ 12. Further Rasearches on Electro-Magnetic Radiation.—

When once the experimental proof had been given that the

result of electrical oscillations in a conductor is to propagate

out into surrounding space radiations which are in all respects

of the same nature as light, except in that they cannot affect

the eye, it became evident that a new and vast field of

investigation had been opened, and one in which it would

be possible to produce the electro-magnetic analogues of all

the more familiar optical phenomena.

The reflection, refraction, dispersion, and polarisation of light

waves are well-known optical phenomena. We can perform

analogous experiments with rays of dark heat which differ only

from light rays in having a greater wave-length, and in being

thereby unable to affect the optic nerve. In performing these

experiments with dark heat or non-luminous radiation we have

to make use of the thermopile as a perceiver of the ray. The

electro-magnetic radiation scattered from a conductor in which

electric oscillations are set up differs again from light and dark

heat in having a still longer wave-length. In performing

experiments with electro-magnetic radiation we have seen that

Hertz's invention of the electro-magnetic resonator put us in

possession of an apparatus which is the exact equivalent of a

thermopile, or the human eye, as a ray localiser ; and more

recent researches have shown us how to construct a large

number of forms of receiver of even more sensitive character,

by means of which we can detect this electro-magnetic radiation.

In these electro-magneto-optic experiments of Hertz, the

source of radiation is a divided metallic cylinder about one

inch in diameter and twelve inches long. This is divided in

halves, and the two parts separated by a small distance.

They are respectively attached to the ends of the secondary

coil of a small induction coil. When the coil is put in action,

electrical oscillations are set up in these cylinders which

result in the outward propagation of ethereal undulations of

about two feet in wave-length and having a frequency of

about five hundred millions a second.

In order to see these waves, Hertz employed a resonator

consisting of a metallic circuit having a small spark interval.

With these simple appliances he has been able to show the

reflection of the electro-magnetic waves from plane surfaces,
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and the concentration of radiation by parabolic mirrors of

sheet zinc, repeating in fact the old experiment of the con

jugate mirrors. The radiation from this source could, he

found, be gathered up by one parabolic mirror, reflected to a

second and concentrated again to a focus. Another achieve

ment was the refraction of the rays by a great prism of pitch.

Placed in the path of an electro-magnetic ray, he found that

this pitch prism refracted it through an angle of 22deg., and

that the material had a refractive index of 1-7 for these long

waves. Again, it was found that metallic sheets were opaque

to this radiation, but that it passed through such non

conductors as dry wood, and that a laboratory door, although

opaque to light, is transparent to this ultra-ultra red or

electro-magnetic radiation.

The reader may be referred to Dr. Lodge's book on the

"Work of Hertz, and some of his Successors" for a full

account of the experimental proofs that electro-magnetic

radiation and that radiation wa commonly call light are one

in essential nature, although differing in wave-length. These

experiments are akin to the acoustic ones in which air waves,

too short to be audible, are generated ; and in place of the

«ar, now useless, a sensitive flame is employed to find or

indicate the waves, and inform us of the presence or absence

of aerial wave motion. In the same way all well-known

optical effects can be reproduced with ether radiation too long

in wave-length to affect the eye, but capable of acting on a

proper receiver.

It is a necessary corollary of Maxwell's electro-magnetic

theory of light that good conducting bodies should be opaque

and good insulators transparent. As a matter of fact, for dis

turbances of the period of light many good insulators, such as

ebonite, are opaque, even in very thin sheets, and conversely

gold, silver, and platinum are semi-transparent when in very

thin sheets. It must be borne in mind, however, that the

frequency of light oscillations falls between 400 and 700

million-million oscillations per second, or are of the order of

5 x 10u.

We cannot by any of Hertz's methods produce electrical

oscillations so rapid as this. Hence, since conductivity and

insulating power of materials have generally been determined
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with reference either to steady currents or to moderately

great oscillations, we cannot institute a comparison between

these qualities as possessed by any given substance and

opacity or transparency for the much greater frequency of

luminous electro-magnetic waves. It has been shown that

ebonite is very transparent to long waves of dark heat,* and

hence there is no difficulty in understanding that it is trans

parent to the longer waves produced by electrical oscillations

set up in moderately small conductors, whilst it is opaque to

the very short ones of light. Also the transparency of thin

metallic sheets to light is an indication of imperfect conducti-

bility. We have seen that an infinitely perfect conductor is

a perfect magnetic screen, and accordingly we should expect

that the more perfect the conductivity of a metal the greater

would be its opacity even in very thin films. It is well known

that cooling copper increases its conductivity. Wroblewski

showed (Comptes Ilendus, Vol. CI., July, 1885, p. 160) that by

cooling copper to - 200°C, or to the temperature of the

solidification of nitrogen, its conductivity is increased to

about nine times its value at 0°C. These experiments have

been greatly extended by Dewar and Fleming (Phil. May.,

September, 1898), who have shown that perfectly pure metals

have most probably no electrical resistance at the absolute

zero of temperature. It would be interesting to know if the

opacity of a very thin film of copper is increased by cooling to

- 200° to any perceptible extent. With respect to electrolytes

some interesting experiments have been made by Prof. J. J.

Thomson.t In these experiments electrical oscillations of

about 10" per second in frequency were established in a

primary circuit by means of an induction coil. These alter

nating currents were caused to induce secondary oscillations

in a neighbouring parallel circuit of appropriate size. The

secondary circuit oscillations were rendered visible by minute

sparks at a break in that circuit. The interposition of a thin

sheet of tinfoil or of the thinnest sheet of Dutch metal or

* See note on " The Index of Refraction of Ebonite," by Profs. Ayrton

and Perry, Proceedings of the Physical Society, London, Vol. IV., p. 345.

t " On the Resistance of Electrolytes to the Passage of Rapidly Alter

nating Currents," Proceedings of the Physical Society, London, Vol. XLV.,

No. 276, 1889.
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gold-leaf supported on glass at once stopped completely the

secondary sparks. This is a very interesting confirmation of

the theory of magnetic screening laid down on p. 255 of

Chap. IV. We have seen that for moderately rapid alterna

tions the conductivity of tinfoil is not sufficient to make it

opaque to electro-magnetic radiations, but for disturbances of

a frequency equal to about 10s the tinfoil affords a perfect

screening, or, in other words, is opaque.

With regard to the gold-leaf, Prof. Thomson remarks that

he has not been able to get any leaf thin enough to be trans

parent to oscillations of this rate. On inserting a sheet of

ebonite between the primary and secondary circuit, it was

found to produce no effect on the sparking, indicating that

ebonite, although opaque to ordinary light, is transparent to

ether disturbances of the rate here employed. A thin layer of

transparent electrolyte was then used as a screen, and it was

found that whilst a very thin layer produced little or no effect,

a depth of three to four millimetres of dilute sulphuric acid

was sufficient to stop the sparking. Experiment showed that

the conductivity of various electrolytic solutions was about

the same for currents reversed 120 times a second as for

currents reversed 100 million times a second. As, however,

these electrolytes are transparent, they must, according to the

electro-magnetic theory, be insulators for currents reversed

about 10" times per second, and the molecular processes on

which electrolytic conduction depends must occupy a time

between one-hundred millionth and one-thousand billionth of

a second. Space will not permit further reference to this

exceedingly promising department of future research more

than to say that if the electro-magnetic theory of light is true

it will be able to furnish an electrical explanation, not only of

the simpler optical phenomena, but of such complex phenomena

as those embraced in the sciences of spectroscopy and photo

graphy.

§ 13. Propagation of Electro-Magnetic Energy.—In our

exposition of the various electro-magnetic phenomena we have

directed attention to the facts which make it evident that even

in the simple phenomenon of the propagation of an electric

current in a wire we must divest ourselves of the idea that the

II
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so-called flow of current is analogous to the movement of a

material fluid in a pipe. It is true that there are effects in the

case of the electric current which correspond to the inertia and

resistance effects in the case of water flow ; but the progress of

knowledge has indicated that what we are in the habit of calling

the electric current is as much outside the wire as in it, and

that we must release ourselves from the trammels of any ideas

which cause us to concentrate attention exclusively or mainly

on the actions in the conductor. In fact, at the absolute

zero of temperature there would be no dissipation of energy

in the conductor at all, if it were a pure metal, and all the

processes would be confined to the medium. We are indebted

to, amongst others, Prof. Poynting for an enlargement of our

views on the nature of electric current propagation, and in two

valuable memoirs these matters have been discussed by him.*

> He says :—A space containing electric currents may be

regarded as a field where energy is transformed at certain

points into the electric and magnetic form by means of

batteries, dynamos, thermopiles, &c., and in other parts of

the field this energy is being again transformed into heat,

work done by electro-magnetic forces, or any other form

.yielded by currents. Formerly a current was regarded as

something travelling in the conductor, and the energy which

appeared at any part of the circuit was supposed to be

conveyed thither through the conductor by the current. But

the existence of induced currents and electro-magnetic actions

has led us to look on the medium surrounding the conductor

as playing a very important part in the development of the

phenomena. If we believe in the continuity of the motion

of energy, we are forced to conclude that the surrounding

medium is capable of containing energy, and that it is capable

of being transferred from point to point. We are thus led to

consider the problem—how does the energy connected with an

electric current pass from point to point, by what paths does it

•. * " On the Transfer of Energy in the Electro-Magnetic Field," by Prof.

J. H. Poynting, Philosophical Transactions of the Royal Society, 1884,

Part II., Vol. CLXXY., p. 343. Also "On the Connection between Electric

Current and the Electric and Magnetic Inductions in the Surrounding

Field," by Prof. J. H. Poynting, Philosophical Transaction* of the Royal

Society, 1885, Part It, Vol. CLXXVL, p. 277.
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travel, and according to what laws? Let us put a specific

case. Suppose a dynamo at one spot generates an electric

current, which is made to operate an electric motor at a dis

tant place. We have here in the first place an absorption of

energy from the prime motor into the dynamo. We find the

whole space between and around the conducting wires mag

netised and the seat of electro-magnetic energy. We have,

further, a re-transformation of energy in the motor. The

question which presents itself for solution is to decide how the

energy taken up by the dynamo is transmitted to the motor.

Briefly stated, the general tendency of recent views is

that this energy is conveyed through the electro-magnetic

medium, or ether, and that the function of the wire is to

localise the direction or concentrate the flow in a particular

path, and is at the same time also a sink or place in which

energy is dissipated. A consideration of the whole phe

nomenon has enabled Prof. Poynting to formulate an im

portant law, as follows:—At any point in the magnetic field

of conductors conveying currents the energy moves perpendicularly

to the plane containing the lines of electric force and the lines of

magnetic force, and the amount crossing a unit ofarea of this plane

per second is equal to the product of the intensities of the two forces

multiplied by the sine of the angle between them and divided by 4jt.

If E denote the electric force, or force on a very small body

charged with a unit of positive electricity, and H denote the

magnetic force, or force on a unit magnetic pole, and if at any

point in the electro-magnetic field these forces are inclined at

an angle 6, then there is a flow of energy e at this point in a

direction perpendicular to the planes of E and H, and equal

per second to the value of

E H sin 6

" In

line full proof of this law is given in the first of the Papers

mentioned on the preceding page.

Prof. Poynting has here introduced the important notion of

a flow of energy. We may remark in passing that this notion

'does no violence to previous notions of energy. Energy, like

matter, is conserved—that is, it is unalterable in total amount ;

and if in any circumscribed space some form of energy makes

its appearance, then we know that either an equal quantity

ii 2



484 DYNAMICAL THEORY OF INDUCTION.

must have passed into that space from outside, or that ar*

equivalent quantity of some other form already in the-

enclosure must have been transformed. If energy disappears

at one point and reappears at an adjacent point in equal

amount, we can with perfect propriety speak of it as having

been transferred from one point to the other, although we are

unable to identify the respective portions of it as we can in

the case of the movement of matter. Applying this view

to the simple phenomena of a battery producing heat in a-

conducting wire, the notion to be grasped is that the potential

energy of the chemical combinations in the battery causes

energy to be radiated out along certain lines, the mean3

of conveyance being the electro-magnetic medium ; this

energy flows into the wire at all points, and is there-

re-transformed into heat or light. A simple illustration

of Poynting's law is to consider the case of a section of a

straight conductor traversed, as we usually say, by a current.

Let the conductor be a right cylinder, or round wire, of

length I, radius r, and let E be the electric force at any

point in the wire, and H the magnetic force at the surface ;

also let V be the potential difference between the ends, C the

steady current, and R the total ohmio resistance. Consider

the energy flowing in on this section of the wire through its

surface. It is equal per second to the area of the surface,

multiplied by ——, or to - .
4tt 4jt

Now 2n- r H is the line integral of the magnetic force taken'

round the wire following the circular surface, and this, as pre

viously shown (p. 25) is equal to 4tt C. Also we have the

potential difference at the ends of the cylinder equal to the line-

integral of the electric force, or to IE. Since, then, 2irrH

= iir C and E I = V, we get, by substitution in the value of

the energy sent per second into the section of the wire, viz.,.

2,r''mE, the equivalent C V. But by Ohm's law C R = V ;

47t

hence the energy absorbed per second by the conductor is C2R,

and we know by Joule's law that this is the measure of the

energy dissipated per second in the wire as heat. We see,

then, that the energy dissipated in each section of the con

ductor is absorbed into it from the dielectric, and the rate of
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"this supply can be calculated by Poynting's law for each

-element of the surface. None of the energy of a current travels

along the wire, but enters into it from the surrounding non

conductor, and as soon as it enters it begins to be transformed

into heat, the amount crossing successive layers of the wire

decreasing till, by the time the centre, where there is no magnetic

force, is reached, it has all been transformed into heat.

In the Paper another simple case treated is that of a con

denser discharged by a wire. In this case, before the discharge,

'we know that the energy resides in the dielectric between the

plates. If the plates are connected by an external wire, accord

ing to these views the energy is transferred outwards, along the

electrostatic equipotential surfaces, and moves on to the wire,

and is there converted into heat. According to this hypothesis,

'we must suppose the lines or tubes of electrostatic induction

running from plate to plate to move outwards as the dielectric

•strain lessens and, whilst still keeping their ends on the plates,

finally to converge in on the wire and be there broken up and

their energy dissipated as heat. At the same time the wire

acquires transient magnetic qualities. This means that some

part of the energy of the expanding lines of electrostatic induc

tion is converted into magnetic energy. The magnetic energy

is contained in ring-shaped tubes of magnetic force, which

•expand out from between the plates and then contract in upon

some other part of the circuit.

The whole history of the discharge may be divided into

three parts. First, a time when the energy associated with

the system is nearly all electrostatic and is represented by the

•energy of the lines or tubes of electrostatic induction running

from plate to plate ; second, a period when the discharge is at

its maximum, when the energy exists partly as energy asso

ciated with lines of electrostatic induction expanding outwardB,

and partly in the form of closed rings or tubes of magnetic

force expanding from and then contracting back on the wire ;

.and lastly, a period when nearly all the energy has been

absorbed or buried in the wire, and has there been dissipated

in the form of heat, which is radiated out again as energy of

dark or luminous radiation. The function of the discharging

wire is to localise the place of dissipation, and also to localise

the place where the magnetic field shall be most intense ; and
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all that observation is able to tell us about a conductor which

is conveying that which we call an electric current is that it

is a place where heat is being generated, and near which

there is a magnetic field. These conceptions lead us to fresh

views of very familiar phenomena. Suppose we are sending

a current of electricity through a submarine cable by a

battery, say, with zinc to earth, and suppose the sheath is

everywhere at zero potential, then the wire will be everywhere

at a higher potential than the sheath, and the level surfaces

will pass through the insulating material to the points where

they cut the wire. The energy which maintains the current

and which works the receiver at the distant end travels through

the insulating material, the core serving as a means to allow

the energy to get into motion or to be continually propagated..

The energy absorbed by the core is, however, transformed

into heat and radiated again as dark heat.

In the case of an arc or glow-lamp worked by an alter

nating current, we have to consider that the energy which

moves in on the carbon is returned again, with no other

change than that of a shortened wave-length, and the carbon-

filament performs the same kind of change on the electro

magnetic radiation as is performed when we heat a bit of

platinum foil to vivid incandescence in a focus of dark

heat. If we adopt the electro-magnetic theory of light, it

moves out again still as electro-magnetic energy, but in a

different form, with a definite velocity and intermittent

in type. We have, then, in the case of the electric light

this curious result—that energy moves in upon the arc or

filament from the surrounding medium, there to be con

verted into a form in which it is sent out again, and which,

though the same in kind, is now able to affect our senses.

A current passing through a seat of electromotive force is

therefore a place of divergence of energy from the conducting

circuit into the medium, and this energy travels away and is

converged and transformed by the rest of the circuit. From

this aspect the function of the copper conducting wire fades

into insignificance in interest in comparison with the function

of the dielectric. When we see an electric tramcar, or motor,

or lamp, worked from a distant dynamo, these notions invite

us to consider the whole of that energy, even if it be thousands
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of horse-power per hour, as conveyed through the electro

magnetic medium, and the conductor as a kind of exhaust

valve, which permits energy to be continually supplied to the

dielectric.

Consider, for instance, the simple case of an alternating-

current dynamo connected to an incandescent lamp by con

ducting leads. We have in this case a closed conducting loop,

consisting partly of the armature wire, partly of the leads, and

lastly of the lamp filament. The action of the dynamo when

at work consists in alternately inserting into and withdrawing

tubes of magnetic induction from a portion of this enclosed

area or loop The insertion of this induction causes an

electro-magnetic disturbance which travels away through the

enclosed dielectric in the form of an ether displacement in

its most generalised sense. In reaching the surface of the

enclosing conductor this wave begins to soak into it, the

electro-magnetic energy at the same time dissipating itself in

it in the form of heat. By a suitable arrangement of the

resistances and surfaces of various portions of the circuit,

we are able to localise the principal place of transformation,

and to control its rate so as to compel this transformation

of energy to take place at a certain rate in a limited portion

of the conductor. Energy is then sent out again in a

radiant form—-partly in the form of ether waves capable of

exciting the retina of the eye, but very largely in the form

of dark heat. The ether, or electro-magnetic medium, is,

therefore, the vehicle by which the energy is carried to

the lamp and conveyed away from it in an altered form ;

and, whatever be the translating device employed, the ether

is the seat of the hidden operations, which are really the

fundamental ones, and the visible apparatus is only the con

trivance by which the nature of the energy transformation

is determined and its place defined.

These views are the outcome of that half-century of

scientific thought which dates from the period of Faraday's

conception of an electro-magnetic medium. We can with

out hesitation predict that the ideas which have thus

guided to so much discovery are destined to conduct to

further revelations of the nature of the unseen mechanism

which lies behind the apparent actions taking place in the
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electro-magnetic field, and of which these actions are the

result.

§ 14. Propagation of Currents along Conductors.—We

have in a previous section enunciated the modern ideas on

this subject, according to which the propagation of a current

in a conductor depends upon actions taking place in the

dielectric, and various illustrations were given in explanation

of this process. We owe to Hertz, however, an absolute

experimental demonstration of the correctness of the opinions

on this matter, which had previously, from a mathematical

standpoint, been put forward by 0liver Heaviside, Poynting,

and Lodge. Hertz placed on record his experimental

demonstrations in a remarkably interesting Paper which we

shall quote here almost verbatim.*

Dealing with the deductions made by the above writers

from Maxwell's equations Hertz described (loc. cit.) his

experiments in confirmation of their views, and makes the

following remarks :—

" Mathematical investigation points to the conclusion that

the electric force which determines the current is in no wise

propagated in the wire itself, but under all circumstances enters

the wire from without and spreads itself in the metal com

paratively slowly, and according to laws similar to those

governing the changes of temperature in a conductor of heat.

If the forces in the neighbourhood of the wire are continually

altering in direction, the effect of these forces will only enter

to a small depth into the metal ; the more slowly the changes

take place, so much deeper will the effect penetrate ; and if,

finally, the changes follow one another infinitely slowly, the

force has time to fill the whole interior of the wire with uni

form intensity."

The first and most important question with regard to

this theory is, whether it agrees with fact. Since, in the

experiments which Hertz carried out on the propagation

of electric force, he made use of electric waves in wires

which were of extraordinarily short period, it was con-

* This Paper was translated from Wiedemann's Anruden, XXXVII.

p. 395, July, 1839, by Dr. J. L. Howard for the Phil. Mag. of August, 1889*

and by kind permission of the translator is given here.
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venient to prove, by means of these, the accuracy of the

inferences drawn. In fact, the theory was proved by the

experiments which will now be described ; and it will be

found that these few experiments suffice to confirm in the

highest degree the view of Messrs. Heaviside and Poynting.

Analogous experiments, with similar results, but with quite

'different apparatus, had already been made by Dr. 0. J.

Lodge,* chiefly in the interest of the theory of lightning-

conductors. Up to what point the conclusions which were

drawn by Dr. Lodge in this direction from his experiments

are just must depend in the first place on the velocity with

which the alterations of the electrical conditions really follow

each other in the case of lightning. The apparatus and

methods which are here mentioned are those which Hertz

described in full in previous memoirs, t The waves used

were such as had in wires a distance of nearly three metres

between the nodes.

" If a primary conductor acts through space upon a secondary

conductor, it cannot be doubted that the effect penetrates the

latter from without. For it can be regarded as established

that the effect is propagated in space from point to point ; there

fore it will be forced to meet first of all the outer boundary of

the body before it can act upon the interior of it. But a

closed metallic envelope is shown to be quite opaque to this

effect. If we place the secondary conductor having a spark

gap in such a favourable position near the primary one that

we obtain sparks 5mm. to 6mm. long, and surround it with a

closed box made of zinc plate, the smallest trace of sparking

•can no longer be perceived. The sparks similarly vanish if

we entirely surround the primary conductor with a metallic

box. It is well known that, with relatively slow variations of

current, the integral force of induction is in no way altered

by a metallic screen. This is, at the first glance, contradic

tory to the present experiments. However, the contradiction

is only an apparent one, and is explained by considering the

duration of the effects. In a similar manner, a screen which

conducts heat badly protects its interior completely from

* Lodge, Journ. Soo. ofArts, May, 1888 ; Phil. Mag. [51 XXVI., p. 217

'(1888).

t Hertz, Wied. Ann., XXXIV., p. 551 (1888).
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rapid changes of the outside temperature, less from slow

changes, and not at all from a continuous raising or lowering

of the temperature. The thinner the screen is the more rapid

are the variations of the outside temperature which can be

felt in its interior. In this case the electrical action must

plainly penetrate into the interior, if we only diminish suffi

ciently the thickness of the metal—a box covered with tinfoil,

protected completely, and even a box of gilt paper, if care were

taken that the edges of the separate pieces of paper were in

metallic contact. In this instance the thickness of the con

ducting metal was estimated to be barely ^g-mm. Hertz then

fitted the protecting envelope as closely as possible round the

secondary conductor. For this purpose its spark-gap was

widened to about 20mm., and, in order to detect electrical

disturbances in it, an auxiliary spark-gap was added exactly

opposite to the one ordinarily used. The sparks in this latter

were not so long as in the ordinary spark-gap, since the effect

of resonance was now wanting, but they were still very bril

liant. After this preparation the conductor was completely

enclosed in a tubular conducting envelope as thin as possible,

which did not touch it, but was as near it as possible ; and in

the neighbourhood of the auxiliary spark-gap (in order to be

able to use it) the envelope contained a wire-gauze window.

Between the poles of this envelope brilliant sparks were pro

duced, just as previously in the secondary conductor itself ; but

in the enclosed conductor not the slightest electrical move

ment could be recognised. The result of the experiment is not

affected if the envelope touches the conductor at a few points ;

the insulation of the two from each other is not necessary in

order to make the experiment succeed, but only to give it the

force of a proof. Clearly we can imagine the envelope to be

drawn more closely round the conductor than is possible in the

experiment ; indeed, we can make it coincide with the outer

most layer of the conductor. Although, then, the electrical

disturbances on the surface of our conductor are so powerful

that they give sparks 5mm. to 6mm. long, yet at ^mm.

beneath the surface there exists such perfect freedom from dis

turbance that it is not possible to obtain the smallest sparks.

We are brought, therefore, to the conclusion that what we call

an induced current in the secondary conductor is a phenomenon;
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which is the result of actions taking place in the surrounding

dielectric.

" One might grant that this is the state of affairs when the

electric disturbance is conveyed through a dielectric, but main

tain that it is another thing if the disturbance, as one usually

says, has been propagated in a conductor. If we place near

one of the end plates of our primary conductor a conducting-

plate, and fasten to it a long straight wire, we have already

seen in the previous experiments how the effect of the primary

oscillation can be conveyed to great distances by the help of

this wire. The usual theory is that a wave travels along the

wire in this case. But we can show in the following manner

that all the alterations are confined to the space outside and

on the surface of the wire, and that its interior knows nothing

of the wave passing over it. A piece about 4 metres long was

removed from the wire conductor and replaced by two strips

of zinc plate 4 metres long and 10cm. broad, which were laid

flat one above the other, with their ends permanently connected

together. Between the strips along their middle line, and

therefore almost entirely surrounded by their metal, was laid

along the whole 4 metres length a copper wire covered with

gutta-percha. It was immaterial for the experiments whether

the outer ends of this wire were in metallic connection with

or insulated from the strips ; however, the ends were mostly

soldered to the zinc strips. The copper wire was cut through

in the middle, and its ends were carried, twisted round each

other, outside the space between the strips to a fine spark-gap,

which permitted the detection of any electrical disturbance

taking place in the wire. When waves of the greatest possible

intensity were sent through the whole arrangement, there was

nevertheless not the slightest effect observable in the spark-

gap. But if the copper wire was then displaced anywhere a

few decimetres from its position, so that it projected just a

little beyond the space between the strips, sparks immediately

began to pass. The sparks were the more intense according

to the length of copper wire extending beyond the edge of the

zinc strips and the distance it projected. The unfavourable

relation of the resistances was, therefore, not the cause of the

previous absence of sparking, for this relation had not been

changed ; but the wire being in the interior of the conducting
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mass, was at first deprived of the influence coming from

without. Moreover, it is only necessary for us to surround

the projecting part of the wire with a little tinfoil in metallic

communication with the zinc strips in order to immediately

stop the sparking again. By this means we have brought the

copper wire back again into the interior of the conductor. If

we bend another wire into a fairly large arc round the pro

jecting portion of the gutta-percha wire, the sparks will be

likewise weakened ; the second wire takes off from the first a

certain amount of the effect due to the outer medium. Indeed,

it may be said that the edge of the zinc strip itself takes away

in a similar manner the induction from the middle of the strip.

For if we now remove one of the strips, and leave the insulated

wire simply resting on the other one, we certainly obtain

sparks continuously in the wire ; but they are extremely weak

if the wire lies along the middle of the strip, and much

stronger when near its edge. Just as in the case of dis

tribution under electrostatic influence the electricity would

prefer to collect on the sharp edge of the strip, so also here

the current tends to move along the edge. Here, as there, it

may be said that the outermost parts screen the interior from

outside influence."

The following experiments are somewhat neater and equally

convincing. Hertz inserted into the conductor transmitting

the waves a very thick copper wire, 1-5 metre long, whose

ends carried two circular metallic discs of 15cm. diameter.

" The wire passed through the centres of the discs ; the planes

of the discs were at right angles to the wire ; each of them

had on its rim 24 holes, at equal distances apart. A spark-

gap was inserted in the wire. When the waves traversed the

wire they gave rise to sparks as much as 6mm. long. A thin

copper wire was then stretched across between two corre

sponding holes of the discs. When this was done the length of

the sparks sank to 3-2mrn. There was no further alteration if

a thick copper wire was put in the place of the thin one, or

if, instead of the single thin wire, twenty-four of them were

taken, provided they were placed near each other through the

same two holes. But it was otherwise if the wires were

distributed over the rim of the discs. If a second wire was

inserted opposite the first one, the spark-length fell to l-2mm.
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When two more wires were added midway between the first

two, the length of the spark sank to 0-5mm. ; the insertion of

four more wires still in the mean positions left sparks of

scarcely O-lmm. long ; and after inserting all the twenty-four

wires at equal distances apart, not a trace of sparking was

perceptible in the interior. The resistance of the inner wire

was nevertheless much smaller than that of all the outside-

wires taken together. We have also a still further proof that

the effect does not depend upon this resistance. If we place

by the side of the partial tube of wires, and in parallel circuit

with them, a conductor in all respects similar to that in the

interior of the tube, we have in the former brilliant sparks,

but none whatever in the latter. The former is unprotected,

the latter is screened by the tube of wires. We have in this

an electro-dynamic analogue of the electrostatio experiment

known as the electric birdcage."

 

Fio. 163.

Hertz again altered the experiment, in the manner depicted'

in Fig. 168.

"The two discs were placed so near together that they

formed, with the wires inserted between them, a cage (A) just

large enough for the reception of the spark-micrometer. 0ne

of the discs, a, remained metallically connected with the central

wire ; the other, /8, was insulated from the wire by means of a

circular hole through its centre, at which it was connected to

a conducting-tube, y, which, insulated from the central wire,

surrounded it completely for a length of 1-5 metre. The free

end of the tube, 8, was then connected with the central wire.

The wire, together with its spark-gap, is once more situated

in a metallically protected space; and it was only to be

expected, from the previous experiments, that not the slightest

electrical disturbance would be detected in the wire in which

ever direction waves were sent through the apparatus. So

far, then, this arrangement showed nothing new, but it had

the advantage over the previous one that we could replace the
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protecting metallic tube, y, by tubes of smaller and smaller

thickness of wall, in order to investigate what thickness is

still sufficient to screen off the outside influence. Very

thin brass tubes—tubes of tinfoil and Dutch metal—proved

to be perfect screens. Glass tubes were taken which had been

silvered by a chemical method, and it was then perfectly easy

to insert tubes of such thinness that, in spite of their pro

tecting power, brilliant sparks occurred in the central wire.

But sparks were only observed when the silver film was no

longer quite opaque to light, and was certainly thinner than

yjijmm. In imagination, although not in reality, we can

conceive the film drawn closer and closer round the wire, and

finally coinciding with its surface ; we should be quite certain

that nothing would be radically altered thereby. However

actively, then, the real waves play round the wire, its interior

remains completely at rest ; and the effect of the waves hardly

penetrates any more deeply into the interior of the wire than

does the light which is reflected from its surface. For the

real seat of these waves, therefore, we ought not to look in the

wire, but rather to assume that they take place in its neigh

bourhood; and, instead of asserting that our waves are

propagated in the wire, we should be more accurate in saying

that they glide along on the wire.

" Instead of placing the apparatus just described in the cir

cuit in which we produced waves indirectly, we can insert it

in one branch of the primary conductor itself. In such

experiments results similar to the previous ones are obtained.

Our primary oscillation, therefore, takes place without any

participation of the conductor in which it is excited, except

at its bounding surface ; and we ought not to look for its

-existence in the interior of the conductor.

" To what has been said above about waves in wires we wish

to add just one remark concerning the method of carrying

out the experiments. If our waves have their seat in the

neighbourhood of the wire, the wave progressing along a

single isolated wire will not be propagated through the air

alone ; but, since its effect extends to a great distance, it will

partly be transmitted by the walls, the ground, &c., and will

thus give rise to a complicated phenomenon. But if we place

opposite each pole of our primary conductor, in exactly the
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same way, two auxiliary plateg, and attach a wire to each of

them, carrying the wires straight and parallel to each other

to equal distances, the effect of the waves makes itself felt

only in the region of space between the two wires. The wave

progresses solely in the space between the wires. We can

thus take precautions to propagate the effect through the air

alone or through another insulator, and the experiments will

be more convenient and free from error by this arrangement.

For the rest, the lengths of the waves are nearly the same in

this case as in isolated wires, so that with the latter the effect

of the disturbing causes is apparently not considerable.

" We can conclude from the above results that rapid electric

oscillations are quite unable to penetrate metallic sheets of

any thickness, and that it is, therefore, impossible by any

means to excite sparks by the aid of such oscillations in the

interior of closed metallic screens. If, then, we see sparks

produced by such oscillations in the interior of metallic con

ductors which are nearly, but not quite, closed, we shall be

obliged to conclude that the electric disturbance has forced

itself in through the existing openings. This view is also

correct, but it contradicts the usual theory in some cases so

completely that one is only induced by special experiments

io give up the old theory in favour of the new one. We

shall choose a prominent case of this kind, and, by assuring

ourselves of the truth of our theory in this case, we shall

demonstrate its probability in all other cases. We again take

the arrangement which we have described in the previous

section and drawn in Fig. 168 ; only we now leave the protect

ing tube insulated from the central wire at S. Let us now

send a series of waves through the apparatus in the direction

from A towards S. We thus obtain brilliant sparks at A;

they are of similar intensity to those obtained when the wire

was inserted without any screen. The sparks do not become

materially smaller, if, without making any other alteration,

we lengthen the tube y considerably, even to 4 metres.

According to the usual theory it would be said that the wave

arriving at A penetrates easily the thin, good-conducting

metal disc a, then it leaps across the spark-gap at A, and

travels on in the Central wire. According to our view, on

the contrary, we must explain the phenomenon in the follow
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ing manner. The wave arriving at A is quite unable to-

penetrate the metallic disc ; it therefore glides along the disc

over the outside of the apparatus and travels as far as the

point 8, 4 metres away. Here it divides : one part, which

does not concern us at present, travels on immediately along

the straight wire, another bends into the interior of the tube

and then runs back in the space between the tube and the

central wire to the spark-gap at A, where it now gives rise

to the sparking. That this view, although more complicated,

is still the correct one, is proved by the following experiments.

Firstly, every trace of sparking at A disappears as soon as

we close the opening at 5, even if it be only by a stopper of

tinfoil. Our waves have only a wave-length of 8 metres;

before their effect has reached the point S the effect at A has

passed through zero and changed sign. What influence, then,

could the closing of the distant end S have upon the spark at

A, if the latter really happened immediately after the passage

of the wave through the metallic wall ? Secondly, the sparks

disappear if we make the central wire terminate inside the

tube y, or at the opening S itself; but they reappear when we

allow the end of the wire to project even 20cm. to 80cm. only

beyond the opening. What influence could this insignificant

lengthening of the wire have upon the sparks in A, unless the

projecting end were just the means by which a part of the

wave breaks off and penetrates through the opening 8 back

into the interior ? Thirdly, we insert in the central wire

between A and 8 a second spark-gap B, which we also com

pletely cover with a gauze cage like that at A. If we make

the distance of the terminals at B so great that sparks can

no longer pass across, it is also no longer possible to obtain

visible sparks at A. But if we hinder in like manner the

passage of the spark at A, this has scarcely any influence on

the sparks in B. Therefore, the passage of the spark at B

determines that at A, but the passage of a spark at A does

not determine that at B. The direction of propagation in the

interior is therefore from B towards A, not from A to B.

"We can moreover give further proofs, which are more

convincing. We may prevent the wave returning from 8 to

A from dissipating its energy in sparks, by making the spark-

gap either vanishingly small or very great. In this case th&
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wave will be reflected at A, and will now return again from

A towards 8. In doing so it must meet the direct waves

from <5 to A, and combine with them to form stationary waves,

thus giving rise to nodes and ventral segments. If we succeed

in proving their existence, there will be no longer any doubt

as to the truth of our theory. For this proof we must give

somewhat different dimensions to our apparatus in order to

be able to introduce electric resonators into its interior. Hertz

therefore led the central wire through the axis of a cylindrical

tube 5 metres long and 30 centimetres diameter. It was not

constructed of solid metal, but of 24 wires arranged parallel to

each other along the generating surface, and resting on seven

equidistant and circular rings of strong wire, as shown in

Fig. 164. He made the requisite resonator in the following

manner:—A closely-wound spiral of 1cm. diameter was

formed from copper wire of 1mm. thickness ; about 125

turns of this spiral wore taken, drawn out a little, and bent

into a circle of 12cm. diameter ; between the free ends an

Fio. 164.

adjustable spark-gap was inserted. Previous experiments

had shown that this circle responded to waves 3 metres long

in the wire, and yet it was small enough in size to admit

of its insertion between the central wire and the surface of

the tube. If now both ends of the tube were open, and the

resonator was then held in the interior in such a way that its

plane included the central wire, and its spark-gap was not

directed exactly inwards or outwards, but was turned towards

one end or the other of the tube, brilliant sparks of Jmm.

to 1mm. length were observed. On now closing both ends

of the tube by four wires arranged crosswise and connected

with the central conductor, not the slightest sparking remained

in the interior, a proof that the network of the tube is a suffi

ciently good screen for our experiments. The end of the tube

on the side /3, that, namely, which was furthest away from the

origin of the waves, was now removed. In the immediate

K K
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neighbourhood of the closed end—that is, at the point a, which

corresponds to the spark-gap A of our previous experiments-

there were now no sparks observable in the resonator. But on

moving away from this position towards fi sparks appeared,

became very brilliant at a distance of 1-5 metre from a, tben

decreased again in intensity, then almost entirely vanished at

3 metres distance from a, and increased again until the end

of the tube was reached. We thus find our theory borne out

by fact. That we obtain a node at the closed end is clear, for

at the metallic contact between the central wire and the

surface of the tube the electric force between the two must

necessarily vanish. It is different when we cut the central

conductor at this point just near the end, and insert a gap of

several centimetres length. In this case the wave will be

reflected in a phase opposite to that of the previous case, and

we should expect a ventral segment at a. As a matter of

fact we find brilliant sparks in the resonator in this case;

they rapidly decrease in strength if we move from a towards

ft, almost entirely vanish at a distance of 1-5 metre, and

become brilliant again at a distance of S metres; moreover

they give a second well-marked node at 4-5 metres distance—

that is, 0-5 metre from the open end. The nodes and loops

which we have described are situated at fixed distances from

the closed end, and alter only with this distance ; they are,

however, quite independent of the occurrences outside the

tube, for example, of the nodes and loops formed there. The

phenomena occur in exactly the same way if we allow the

wave to travel through the apparatus in the direction from

the open to the closed end ; their interest is, however, smaller,

since the mode of transmission of the wave deviates from that

usually conceived less in this case than in the one which has

just been under our consideration. If both ends of the tube

are left open with the central wire undivided, and stationary

waves with nodes and loops are now set up in the whole

system, there is always found for every node outside the tube

a corresponding node in the interior, which proves that the

propagation takes place inside and outside with, at any rate

approximately, the same velocity.

" On looking over the experiments which we have described,

and the interpretation put upon them, as well as the explana
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tions of the physicists referred to in the introduction, a

difference will be noticed between the views here put forward

and the usual theory. According to the latter, conductors are

represented as those bodies which alone take part in the pro

pagation of electric disturbances ; non-conductors are the bodies

which oppose this propagation. According to the modern view,

on the contrary, all transmission of electrical disturbances

is brought about by non-conductors : conductors oppose a

great resistance to any rapid changes in this transmission.

0ne might almost be inclined to maintain that conductors

and non-conductors should, on this theory, have their names

interchanged. However, such a paradox only arises because

one does not specify the kind of conduction or non-conduction

considered. Undoubtedly metals are non-conductors of elec

tric force, and just for this reason they compel it, under certain

circumstances, to remain concentrated instead of becoming

dissipated, and thus they become conductors of the apparent

source of these forces, electricity, to which the usual termi

nology has reference."

§ 15. Experimental Determination of Electromagnetic

Wave Velocity.—Space does not permit us to make further

mention of the important and valuable work which has been

carried out in recent years in confirming and extending this

work of Hertz. We refer the reader specially, however, on

this subject, to Dr. Lodge's monograph on this subject.*

We shall conclude this chapter by presenting an abstract of

an interesting research by Messrs. Trowbridge and Duane on

the "Velocity of Electric Waves "t because it furnishes a

proof, having a high degree of accuracy, that the velocity of

an electromagnetic wave is identical with the velocity of light.

Broadly speaking, the method employed consisted in

establishing stationary waves in a conducting circuit and

determining the period of oscillation by photographing the

oscillating spark in a spark gap, and at the same time

measuring the wave-length of the stationary waves induced in

* " The Work of Hertz and some of his Successors." By Dr. 0. J. Lodge,

published by " The Electrician " Printing and Publishing Co., London,

t Phil. Mag., August, 1895 ; also The Electrician, Vol. XXXV., p. 712.

K k2
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a secondary circuit turned to resonance with the primary. In

the following paragraphs the description of their experiments

is taken from the Paper by Messrs. Trowbridge and Duane.

They say

"The first point in the course of the investigation worth

detailed description is the production of electric waves along

parallel wires in such a manner that they are actually visible

to the eye. The arrangement of the apparatus to accomplish

this was as follows :—

"A primary condenser, AB (Fig. 165), was held with its

plates in vertical planes by means of suitable wooden supports

(not represented in the figure), and was joined in a circuit,

B C, consisting of two wires about 75cm. long, placed 4cm.

apart. In reality this circuit B C should be represented as

perpendicular to the plane of the paper (which is taken as the

horizontal plane passing through the centre of the apparatus).

g k

D O J

T I

H U

Fio. 165.

The plates of the condenser A B were sheets of tinfoil 101 X

40cm., glued to hard rubber sheets, and the dielectric between

them consisted of other similar sheets of hard rubber sufficient

in number and thickness to make the distance between the

condenser plates 4-2cm. 0utside the primary condenser plates,

and separated from them by hard rubber plates (total thickness

O 6cm.), were two secondary plates, E and P, each 40cm. square.

To these plates was attached the secondary circuit E G J H F,

the form of which is represented in the figure. This latter

circuit consisted of copper wire, diameter 0'13cm., and its

total length from E to F was 4,200cm. A spark-gap with

spherical terminals 2-ocm. in diameter was placed at C in the

primary circuit, and another spark-gap with pointed terminals

was sometimes inserted at J in the secondary circuit, although

this latter spark-gap had no effect upon the phenomena to be

A
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described. The primary condenser was charged by means of

a large Ruhmkorff coil excited by five storage cells with a

total voltage of 10 volts. The current from these cells was

made and broken by an automatic interrupter. Every time the

primary condenser was charged a spark passed at C, causing

an oscillatory discharge. A convenient method of forming a

mental picture of the oscillation excited in the secondary circuit

is the conception of Faraday tubes elaborated by J. J. Thomson

in his 'Recent Researches in Electricity and Magnetism.'

The oscillations of the primary acted inductively upon the

secondary and sent out groups of Faraday tubes which travelled

along the secondary circuit, with their ends on the wires, and

lying chiefly in the space between them. At the end J they

reversed their direction and travelled back along the circuit.

The period of oscillation of the primary circuit was altered,

until by trial it was found that groups of returning tubes met

groups of advancing tubes between the points G and H. As

the two sets of moving tubes were oppositely directed they

annulled each other and produced a node. Thus a system of

stationary waves is set up with a node at J, another node

at G H, and a ventral segment at K L. The method of dis

covering when the circuits were in tune and of investigating

the shape of the waves will be described later. The point

to be noticed here is that the vibrations were sufficiently

powerful to cause a luminous discharge on the surface of

the wire where the accumulation of tubes was a maximum,

i.e., at K L, while at the nodal points J and G H the wire

was entirely dark. Still further, the wave formation could be

made apparent to the sense of hearing as well as that of sight ;

for, placing the ear within a few centimetres of the wire and

walking beside it, a distinct crackling sound could be heard at

the points K and L, whereas no such sound could be heard at

G, J and H. By placing bits of glass tubing on the wire the

sound was much intensified at the points K and L, and the

phenomena made more striking. It might be supposed that

by decreasing the capacity of the primary condenser, and

therefore the period of its oscillation, the secondary circuit

could be broken up into a new set of shorter stationary waves,

with nodes at J and at points somewhere near K, L, G and PI,

and ventral segments between them. This was tried with
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perfect success, except that it was not possible to cause the

light at K and L to actually disappear. There was decidedly

less light at these points, however, than on either side of them.

The light, of course, is simply that which always appears

around wires carrying very high-potential currents, the in

teresting point being that it appears in some places on the

circuit and not in others. The experiment showing how the

circuit breaks up in several different ways would form a most

beautiful lecture experiment.

" As a means of ascertaining when the circuits were in

resonance, and of investigating the form of the wave in

the secondary circuit, a bolometer similar to that designed

by Paalzow and Rubens* was used.

"The bolometer as an instrument for measuring electric

waves is so well known, that it is not necessary to state here

more than its fundamental principles. It consists essentially

of a well-balanced Wheatstone bridge, to one of the arms of

which are metallically connected two small conductors. These

conductors are brought near the circuit to be tested, and the

oscillating charges induced in them and sent through the arm

of the Wheatstone bridge develop enough heat to throw the

bridge out of balance. By moving the conductors along the

circuit different deflections are produced according to the

magnitude of the charges on the wire in their neighbourhood,

and thus an excellent estimate of the wave formation can

be obtained. In the present case the conductors that were

brought near the secondary circuit consisted of two pieces

of wire insulated with rubber, bent into circles of about 2cm.

radius, and fastened to a bit of pine-wood by means of a heavy

coating of paraffin. The two wires of the secondary circuit

passed through holes in this bit of wood in such a manner as

to pass through the centres of the two circles. In the early

part of the investigation the bolometer and galvanoscope were

placed at a sufficient distance from the oscillating circuits

to prevent any direct action of one on the other, and the

leads running from the circular conductors to the bolometer

consisted of long fine wires. Later, when longer circuits and

longer waves were experimented with, great inconvenience

* "Anwendung des Bolometriscbeu Princips auf Electrische Messungen,'*

Wied. Ann., XXXVII., p. 529.
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was experienced from the long leads, since their relative

position had considerable effect upon the galvanoscope deflec

tions. In order to obviate this difficulty, short leads of

heavily insulated wire were used, and the bolometer was

placed on wheels and moved along from place to place. A

bolometric study of the circuit just described showed the

character of the oscillation to be that mentioned—namely,

nodes at the points J and G H, and a ventral segment at

KL. A careful run was made from one end of the circuit

to the other, which furnished data from which a very regular

curve was drawn.

" The insertion of a small spark-gap (1mm. to 3mm.) at

the point in the secondary circuit marked J (Fig. 165, p. 500)

had no appreciable effect upon the position of the nodal point

G H, or of the point of maximum accumulation K L. The

form of the wave was slightly altered for a metre on each

side of J, and the bolometer showed a slight accumulation

in the immediate neighbourhood of the spark-gap. This was

probably due to the charging of the spark terminals to a

sufficiently high potential to break through the dielectric.

The fact that the insertion of a spark-gap into a secondary

circuit in the manner described has no effect upon the length

of the waves set up in that circuit was tested for a number

of different cases (in none of which, however, was the length

of the waves greater than in the present case), and found to

be true in each one of them.

" In order to determine the time of vibration, we used a

concave rotating mirror, and the images of the oscillating

sparks were thrown on a sensitive plate. If the mirror

rotated about a horizontal axis the photographs showed

bright horizontal lines, perpendicular to which at their

extremities extended two series of dots. The distance

between successive dots was the distance on the plate

through which the image of the spark-gap moved during

the time of a complete oscillation. Hence, by determining

the speed of the mirror, and measuring the distances from

the mirror to the plate, the time of oscillation could be

calculated. To measure the sparks we used a sharp pointer,

moved at the end of a micrometer screw under a magnifying

glass of low power. The instrument was originally intended
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for microscopic measurements, and was very accurately con

structed. The rotating mirror was driven by an electric

motor by means of a current from a storage battery of

extremely constant voltage. To give great steadiness a heavy

flywheel was attached to the axis of the mirror. The speed

of the mirror was determined to within about one part in

500 by means of an electric chronograph. This apparatus,

requiring great technical skill, was made for us by the

mechanician of the laboratory. The mirror consisted of a

thick piece of glass with a concave surface accurately ground

for this research and silvered by ourselves.

"There are many advantages in photographing the secon

dary spark rather than the primary. In the first place, to

properly photograph a spark it is necessary to use pointed

terminals ; but experiment has shown that the waves excited

in a secondary circuit depend to a large extent upon the

character of the primary spark, and that the most active

sparks are those between metallic spheres with polished sur

faces. It is true that waves can be produced by sparks

between points, but the oscillations are not so powerful or

well marked. In the second place, from the results obtained

by Bjerknes, one would expect the oscillations in the secondary-

circuit to be much less damped than those in the primary.

This expectation has been fully realised. Photographs show

from ten to twelve times as many oscillations in the secondary

as in the primary. The longest secondary spark we counted

indicated 60 complete oscillations. In the third, and by no

means the least important case, the question how close the

resonance is does not affect the accuracy of the results.

By photographing the sparks in the secondary the period

of oscillation is determined, not of a circuit that is altered

until by trial it is found to have as nearly as possible the

same period of vibration as the circuit on which the length

of the wave is measured, but that of the circuit along which

the wave itself is actually travelling ; and hence the con

clusions in regard to the effect of damping reached by

Bjerknes in his admirable Paper on ' Electric Besonance '*

do not affect the accuracy of the results.

* " Uebcr electrische Resouanz," Wied. Ann., LV., p. 121 (1895).
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" The great difficulty to be overcome is the production of

secondary oscillations that will produce sparks sufficiently

bright to photograph. It is comparatively an easy task to

photograph the primary spark, but in order to photograph

the secondary the dimensions of the circuit must be chosen

with great care.

" With a view to increasing the light of the spark, together

with the length of the waves, it seemed desirable to lengthen

the period of oscillation by enlarging the condensers rather

than by increasing the self-induction of the primary circuit.

A castor-oil condenser, therefore, was designed and con

structed on the following plan :—Eight plates (25cm. by

20cm.) were cut out of sheet zinc, and were held in vertical

planes side by side 2cm. apart by a suitable hard-rubber

 

frame. The plates were entirely immersed in castor-oil con

tained in a glass jar. They were connected together in the

manner shown in Fig. 166. The plates marked a, c and e

were fastened to the conductor A B, and formed one armature

of the condenser. Those marked d, f and h were joined to

C D, and formed the other armature. The two ends of the

secondary circuit E, G, J, H, F were fastened to the plates

h and g. The plane of the secondary circuit was 50cm., and

that of the primary 8cm. above the upper edge of the con

denser plate. The total length of the secondary circuit from

one condenser plate through E, G, J, H, F to the other plate

was 6,H88cm. The circuit consisted of copper wire (diameter

0-215cm.) supported at each eud by suitable wooden frames,

and also once in the middle by hard-rubber hooks, fastened

by long pieces of twine to a wooden crossbar above. The
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distances from F to E and from K to L were 80cm., and a

spark-gap with pointed tin terminals was inserted at J. The

primary circuit consisted of copper wire (diameter 0-34cm.).

The distances between the two parts A B and C D were 45cm.

The portion B D contained a spark-gap with platinum-faced

spherical terminals, and was made so as to slide back and

forth, to and from the condenser. The motion of this movable

piece varied the self-induction, and therefore the period of

oscillation of the primary circuit. By this means the circuits

were brought into resonance. With certain arrangements of

the condensers the resonance was very sharp, and the position

of the movable portion could be determined to within 0-25cm.

In the arrangement which was finally adopted the resonance

was not so sharp. Even in this case the distance of the

sliding part from plate a could not have been in error by more

than 2cm. The length 65cm. was finally chosen for its value.

" The automatic current interrupter that worked so beauti

fully in connection with the Hertz vibrator would not operate

well when used to excite the circuits just described. After

trying many devices, we finally adopted an ordinary reed

interrupter with a comparatively large hammer-and -anvil

arrangement, which gave little trouble.

" At first it was found impossible to produce anything but

a complex vibration in the secondary circuit when the spark-

gap was open. Some slight evidence of resonance was

obtained, but nothing of a decided character. When, how

ever, the spark-gap was closed, very good resonance ensued,

and a wave the length of which could be measured to withia

0-4 per cent, was excited. Some photographs were taken

of the spark in the secondary circuit, and they showed

immediately the character of the complex wave formation.

The secondary circuit could and did oscillate in three different

ways, and the ratios of the periods were those of the notes in

an open organ pipe, namely 1;2;3. Usually the lowest or

fundamental oscillation together with one of the overtones

was present; but several sparks were noticed that furnished

unmistakable evidence of the simultaneous existence of all

three. We have observed in a circuit 10,000cm. long the

same peculiarities of oscillation, excited by a primary circuit

that, judging from its dimensions, could not have been in
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resonance with the secondary. It was evident that the oscil

lation having a node between the points marked E and F

(Fig. 166) is that whose period is one third of the fundamental.

" A number of measurements of this period have been made,

and from these values the velocity of the waves has been

calculated. The results appear in the table below. As an

average of five measurements of the wave length, none of

which differed from the mean by more than 20cm., the value

5,888cm. was chosen. The distance from the mirror to the

photographic plate in each case except the last was SOCHcm.

Each of the first five values in the second column of the table

is an average of 30 measurements of distances ranging in the

neighbourhood of 1cm.

" The last line in the table contains the results of measure

ments on photographs of the primary spark instead of the

secondary. In this case the distance from the mirror to the

photographic plate was 311-5cm.

" These results were published as a preliminary record in the

American Journal of Science for April, 1895. Since then the

authors succeeded in producing much better waves and much

more regular sparks, and discovered a phenomenon which

renders a measurement on a photograph over a space where

the dots are obliterated a questionable proceeding. The new

data have given a value for the velocity more in accord with

theory.

Number of revolu

tions of mirror

per second.

Distance between two

successive points on plate.

Centimetres.

Velocity of waves.

Centimetres.

71-2 005608 2-819 x 10'°

7085 - 0 05600 2-810 xl0",

70-7 0-05532 2-835 x 10i»

71-3 005637 2-808 x 10"

70-8 0-05611 2-808 x low

69-2 005340

2-816 x lO"

2-988 x 10w

" Since the waves in the secondary were not well formed

when the spark-gap was inserted, it seemed desirable to try to

find an arrangement that would produce simultaneously a

good wave and a photographable spark. A number of con
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densers with plates of different sizes and shapes and different

substances for the dielectric were tried, and the apparatus to

be described was finally adopted. The difficulties to be over

come were these. Too strong a reaction between the primary

and secondary condensers could not be employed, because the

increase in the damping of the primary duo to the large

amount of energy drawn off by the secondary made good

resonance impossible. The amount of energy in the primary

at full charge must be much greater than that in the secondary.

On the other hand, the capacity of the primary condenser

must not be too great ; for the self-induction of the primary

circuit would have to be proportionately small, and this, too,

means an increase in the damping. The secondary con

denser, too, must have a capacity of less than a certain

magnitude in order that the node may fall on the circuit and

not in the condenser plate. These points seem to indicate

that small condensers are preferable to large ones ; but a
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decrease in the size of the plates means a decrease in the light

of the secondary sparks, and the sparks are at best barely

photographable. Practically, therefore, our choice was much

limited, and the particular arrangement to give the best

results had to be selected by experiment after a long series of

trials. The arrangement and dimensions of the apparatus

finally adopted were as follows :—

" Two metallic plates, a and b (Fig. 167), 30 x 30cm., placed

in vertical planes, formed the primary condenser. The dielec

tric between them consisted of the best French plate glass

obtainable (K = 8 + probably) and was 2cm. thick. Outside

the plates a and b, and separated from them by a hard-rubber

dielectric (K = 2 + about) l-Scm. thick, were the secondary

plates, 26 x 26cm. The primary and secondary circuits were
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joined to the condenser plates as indicated in the figure. The

primary circuit lay in the horizontal plane passing through

the centres of condenser plates, and consisted of copper wires

0-34cm. in diameter. In order to control the period of

oscillation of the primary circuit, the portion B D containing a

spark-gap with spherical terminals was made, as before, so as

to slide along parallel to itself. The distance between the

straight portion;) A B and C D was 40cm., and the lengths of

A B and C D finally chosen for best resonance were 85cm.

Most of the secondary circuit lay in a horizontal plane 16cm.

above that of tbe primary. The lengths G E and H F,

however, were bent down and fastened to the middle points G

and H of the secondary plates. The circuit consisted of

copper wire (diameter 0-215cm.), and its total length from G

through J to H was 5,860cm. At J was a spark-gap with

pointed terminals. With this apparatus we succeeded in

producing a very regular wave formation, as indicated by the

bolometer, even when there was a spark-gap at J. So many

curves have been plotted and published to illustrate the

characteristics of electrical waves that it does not seem worth

while to add to the number here. It will be sufficient to state

that the ratio of the maximum and minimum deflections in

the bolometer was about 15:1, and that there was a node at

J and another about 40cm. to the right of E and F.

"Upon photographing the secondary spark some curious

phenomena were observed. In the first place, the dots usually

appeared in pairs. There would be two black dots followed

by a space where two or three dots either appeared faintly or

were absent altogether ; after that two black dots would

reappear, followed again by a faint space, and so on for six or

seven repetitions. All this, of course, occurred in a single spark.

" The explanation that first presents itself is that the two

black dots are the result of the first two oscillations in the

primary circuit, which, owing to the damping, are much more

powerful than the others. If this were the true reason, the

first of the pair of dots always ought to be blacker than the

second, and every third dot ought to be the first of a pair.

This is not the case, however. On the other hand, the

phenomena cannot be explained as the result of a complex

vibration, for the bolometer readings, taken only a few
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minutes before the photographic plates were exposed, and

with exactly the same arrangement of apparatus, indicated

extremely regular waves. A clue to the mystery was furnished

by several sparks in which the dots made by one spark

terminal had the characteristics just described, whereas those

made by the other were quite regular. Following out this

hint, we found that the particular substances used for the

secondary spark terminals had a large effect upon the charac

teristics of the photographs. We tried spark terminals made

of a number of different metals—tin, aluminium, magnesium,

fuse-metal, &c.—and finally adopted cadmium as productive

of the best sparks. In the case of cadmium the characteristics

described are much less marked, and we have succeeded even

in producing a few sparks in which no difference in blackness

could be detected between one dot and the next. The photo

graphs from cadmium terminals, too, are far more distinct

and far more easily measured than those from terminals of

any other metal that we tried.

"An interesting question arose here as to whether the

distance between two successive dots would depend upon the

period of oscillation of the primary circuit if the secondary

were unaltered. To test this point the circuits were brought

into resonance, and a photograph taken. The self-induction

of the primary circuit was increased by about 20 per cent, of

its value, and a second photograph taken. In the first case

the distances between successive dots were all within 2 or 8

per cent, of the average obtained by measuring over several

dots and dividing by the number of intervening spaces ;

whereas in the second case the measurements of some of

the single spaces were from 8 to 12 per cent, greater than

before, the average from long measurements being the same.

This indicates that the vibrations of the secondary circuit are

not necessarily perfectly regular, and at a distance apart fixed

by the character of the circuit, but are to be looked upon

as a series of pulses started travelling along the circuit and

keeping at a distance from each other that is determined by

the exciter. Owing to the fact that the damping of the

primary is much greater than that of the secondary, the

seventh and eighth pulses started are too weak to obliterate

the first and second, which have travelled the length of the
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circuit and back. We should expect from this that the

bolometer throws, which measure the average length of the

wave, would not indicate a shifting of the node when the

circuits are thrown slightly out of resonance, but that the

minimum throws would be greater than when the circuits are

exactly in resonance. This, as is well known, is what happens.

" The improved sparks which the new arrangement of

apparatus and the use of cadmium as material for the

spark terminals have enabled us to produce, have brought

to light another interesting fact, namely, that even when

the best resonance is obtained and the most regular wave

formation is excited, the distances between the first three or

four dots are slightly greater than the distances between three

or four dots taken farther down the spark. The explanation

we offer for this is the following, and it applies as a criticism

to all cases in which waves are excited in a circuit by a

neighbouring circuit possessing a much larger damping factor:

The fact that the secondary waves last longer than the

primary oscillations means that the last times that the

waves travel over the circuit they do so under different end

conditions from the first few times. The capacity of the

secondary plates is slightly less after the primary spark has

stopped than it was before, and therefore the length of the

wires equivalent to the secondary plates is slightly less, and

it takes a shorter time for the waves to travel along the

circuit and back. Hence the observed decrease in the distance

between the spark points and a certain mixing up of the dots,

which occurs after the sixth or seventh oscillation (see Fig. 166).

The sixth dot in the figure, apparently following its predecessor

after about half an interval, is not a usual characteristic. In

the vast majority of sparks the first few dots are far more

powerful than those that follow them, and only occasionally

do sparks occur that indicate more than five or six good

complete oscillations. Hence these first few oscillations have

the preponderating influence in fixing the length of the waves

as indicated by the bolometer. In examining the sparks,

therefore, we measured from the first oscillation as far down

the spark as we could without passing over a space where dots

were obliterated ; and hence in every case we knew the

number of dots between the points from which measurements
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were taken, and did not have to assume that good oscillations

had occurred without affecting the plate.

"The following table, containing the results of our measure

ments with the improved apparatus, explains itself. The

distance from the mirror to the photographic plate was 302cm.

in each case :—

Number of

revolutions of

mirror per sec.

Distance be

tween successive

points on plate.

Time of

oscillation.

Seconds.

Length

of wave.

Centim.

Velocity of

wave.

Centim. per sec.
Centimetre.

708 005028 1-871 x 107 5,670 3 030 x 10"

73-7 0-05247 1-876 x 107 5,670 3 022x10"

75-2 0-05536 1-940 x 107 5,670 2-923x10'°

695 005002 1-897 x 107 5,690 3 000 x 10"

68 9 004900 1-874 x 107 5.690 3 036 x 10"

690 0-01974 1-899 x 107 5,690 2 996x10"

71-2 0-05075 1-878 x 107 5,660 3 014 x 10"

Average Value of Velocity 3 C03 x 10"

" With the exception of three preliminary trials, which gave

values differing from the mean by 10 per cent, or by 12 per

cent., these are the only determinations we have made. In

some cases the waves in the circuit were just as good with the

spark-gap as without it. In others there was a decided wave

formation when sparks occurred, but the node was not quite

so well marked. For this reason, and since it did not appear

to make any difference in their length, the waves usually

were measured without the spark-gap. As the sparks were

quite regular, the difference in the bolometer readings must

have been due to Faraday tubes that were reflected from the

spark-gap without forming a spark and reversing themselves.

The variation in the number of revolutions of the mirror per

second is due to the fact that different cells were used to drive

the motor on different occasions."

As an example of the data taken to ascertain the position of

the node the authors give the following table. The top line

contains the distances of the bolometer terminals from a pair

of arbitrary fixed points on the circuit :—

"Distances from fixed points 20cm. 40cm. 60cm.

(4-3 ... 4-0 ... 4-3

Bolometer deflections {4 5 ... 41 ... 4-4

(.4-5 ... 40 ... 4-2

Average deflections
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The authors conclude with the following remarks :—

"From these deflections the position of the node was

estimated. It appears from the best results that we have

obtained that the velocity of short electrio waves travelling

along two parallel wires differs from the velocity of light by

less than 0-2 per cent, of its value. It has been shown

theoretically, that the velocity of such waves travelling along

a single wire should be the velocity of light approximately.

Our results, therefore, in a certain sense confirm the theory to

an accuracy within their probable error. Theoretically, too,

the velocity should be approximately equal to the ratio between

the two systems of electrical units. The average of the best

measurements of this ratio is 8 001, which is nearer the

average velocity obtained by us than it is to the velocity of

light."



CHAPTER VL

THE INDUCTION COIL AND TRANSFORMER.

§ 1. General Description of the Action of the Transformer

or Induction (ML—In the previous chapters we have prepared

the way, by a general study of the phenomena of the induction

of electric currents, to enter upon a particular examination

of the structure and action of the induction coil and trans

former. The most logical method of procedure would be to

trace first the historical development of these appliances from

the initial scientific principles and facts accumulated by the

early investigators. It will, however, be more advantageous

to the student to defer this historical survey to a later portion

of this treatise, and to direct attention at present to the actual

electrical and magnetic operations which go on in the induction

coil and transformer.

The induction coil and transformer, or converter as it is

sometimes called, consists essentially of two conducting

circuits which are both linked with a third or magnetic

cirouit, the three circuits being called respectively the

primary circuit, the magnetic circuit, and the secondary

circuit. The magnetic circuit may consist wholly of material

having a magnetic permeability equal to that of air. A core

of this kind may be obtained by winding the primary and

secondary circuits on a ring of wood or on a paper tube, but

whatever may be the exact material used, a transformer

having a core made of a material, the magnetic permeability

of which is equal to that of air, is generally called an air

core transformer. Not very much interest attaches to the

actions of an air-core transformer, for the reason that all

practically-used transformers possess magnetic circuits con
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risting either partly or wholly of iron. If the magnetic

circuit consists wholly of iron, the transformer is called a

closed-circuit transformer ; and if it consists partly of iron

and partly of air, or other material of unit permeability, it is

called an open-circuit transformer. The ordinary induction

coil is of this last type. It has a core formed of a bundle of

iron wires, and the magnetic circuit lies partly through this

core and partly through the air outside it. The two conduct

ing circuits consist generally of copper wires or bands insu

lated in various ways and wound on the core in sections or in

overlying coils. In the chapter devoted to the practical con

struction of the transformer, the various methods of carrying

this into effect will be described ; meanwhile it will suffice to

state that the two circuits, which are called respectively the

primary and the secondary circuits, are well-insulated con

ducting circuits, the several turns of which are insulated from

each other, the two circuits as a whole being also carefully

insulated. The number of convolutions of each circuit may

be, and generally is, very different. These are briefly spoken

of as the primary turns and secondary turns. The iron core

is constructed of laminated iron or iron wire, and the thick

ness or diameter of this is most usually about '01 8 or -014 of

an inch. The object of this lamination is to prevent the pro

duction of local electric currents, called eddy currents, in the

iron, which would represent an energy loss ; but, as previously

explained, this lamination does not, of course, prevent the

hysteresis loss caused by the reversal of the magnetisation of

the core.

The general action of the transformer consists in the pro

duction of a current, called a secondary current, by means

of the variation in the magnetic induction in a magnetic

circuit linked with it, and this induction is produced by

means of another current called a primary current, the

variation of the primary current producing a change of

magnetic induction in a core, or magnetic circuit, which in

turn creates an electromotive force in the secondary circuit

linked with it.

Assuming that periodic currents are employed, it is

evident, also, that the relative number of primary and

secondary turns will be an important factor in determining

LL 2
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the ratio between the mean-square value of the potential

difference across the primary terminals and that across the

secondary terminals of the transformer, and that it is in our

power to increase or diminish this ratio. It is of course

obvious, also, from first principles, that there can be no creation

of energy, but only a transformation, and we can only alter

the potential difference of the terminals of the two circuits at

the expense of a change of corresponding current strength.

The most fundamental and valuable quality of an induction

coil or transformer is, then, that it enables us to increase or

reduce electrical potential difference or current strength in a

definite ratio, and it is this transformation of energy which

gives the apparatus its name. Transformers may therefore

be classified according to the nature of the change in the

character of an electric energy supply they are intended to

produce.

Transformers may be constructed to act as (1) constant-

potential transformers, or (2) constant-current transformers,

and these may furthermore be divided into step-up transformers

or step-doitn transformers, according as they are designed to

increase or diminish in a certain ratio a potential difference

or a current. Thus a transformer may be designed to work

off a circuit of constant potential difference and to reduce

that pressure in a certain ratio, called the transformation

ratio. If it lowers the pressure it would be called a step-

down constant-pressure transformer. In the same way a

transformer may be employed to change a current strength

in a certain ratio, or to convert from constant pressure to

constant current.

The ordinary induction coil is a step-up transformer as

generally used.

It is unnecessary to make any special classification depend

ing on the character of the change of current employed in

varying the induction, but it will be obvious to the reader

that a closed iron-circuit transformer can only be used with

alternating currents, and that for use with interrupted currents,

as in the case of the ordinary induction coil, an open iron

circuit or air core transformer must be employed.

Hence we have the following classification of transformers,

understanding by this term any electrical arrangement con
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sisting of two conducting circuits, both linked with a magnetic

circuit, and in which the variation of current in one circuit

gives rise to a production of electromotive force in the other :—

1. Transformers may be—

(o) Iron core transformers, with core wholly or partly of

iron;

(6) Air core transformers, with core wholly of non

magnetic substance.

Iron core transformers may be—

(c) Closed iron circuit transformers, with core wholly of

iron ;

(d) Open iron circuit transformers, with core partly of

iron.

Transformers may be used—

(e) To transform a potential difference in a constant ratio,

called constant-pressure transformers ;

(/) To transform a current strength in a constant ratio,

called constant-current transformers.

Transformers may be employed—

(y) To raise pressure or current, called then step-up

transformers ;

(It) To lower pressure or current, called then step-down

transformers.

The above is not a complete or exhaustive classification,

but is sufficient to mark out broadly the various forms of

the apparatus.

In whatever form it is used, the primary current must give

rise to a variation of the magnetic induction in the core, and

this in turn gives rise to an electromotive force in the

secondary circuit.

The transformer or induction coil can evidently be operated

either by intermittent, continuous, or by alternating currents.

Whichever mode is adopted, the instrument is, of course,

essentially and merely an energy-translating device. The

current passing through the primary circuit magnetises the

core. The intermittance or reversal of the primary current

causes a variation or reversal of the magnetisation of the

core. The variation or reversal of the magnetic induction

in the core creates an electromotive force in the secondary
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circuit which is linked with it, and this sets up a secondary

current in the secondary circuit if it is closed. The energy

supplied to the primary circuit partly reappears in the secondary

circuit, and the difference is represented by energy losses, called

the copper losses, caused by the resistance of the conducting

circuits, and partly by energy losses in the core, called the

iron losses, and due to the hysteresis and eddy-currents set up

in it.

The complete examination of the transformer involves,

therefore, a knowledge of the manner in which the variation

of the primary current, the magnetic induction in the core,

the secondary current, and the secondary terminal potential

difference is taking place when a certain assigned and varying

primary terminal potential difference is created. It involves,

also, a knowledge of the magnitude of the energy losses above

described, and of the efficiency of transformation or the ratio

between the power given to the external secondary circuit and

the power given to the primary circuit. In addition to this,

the relation of the values of the primary and secondary

currents, and the primary and secondary terminal potential

differences, for various states of the transformer from no load

to full load, has to be ascertained. The following is, then,

a summary of the operations going on in the transformer or

induction coil which must be known before we can consider

the action as fully understood ; and the problem of transformer

construction is to predetermine these variables from certain

data, so as to foretell the result of construction. Given a

potential difference created between the primary terminals

of the transformer following any assigned law of variation,

we shall have the following effects taking place as a conse

quence, and the practical problem is to determine or predeter

mine their mode and magnitude.

(1.) We have a primary current in the primary circuit

following a certain mode of variation in strength, and causing

a definite copper loss in the primary circuit ;

(2.) A magnetic induction in the core following a definite

mode of variation, and having a certain magnitude at every

instant, this magnetic induction causing, by its variation,

iron core losses due to hysteresis and eddy currents in the

iron core ;
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(8.) A secondary current and secondary terminal potential

difference following some definite law of variation and accom

panied by a copper loss in the internal secondary circuit due

to its resistance and a contribution of power to the external

secondary circuit.

The transformer problem in all its completeness would be

solved if we could in all case predetermine the above effects

from the known primary potential difference. This, however,

is not capable of being effected in a perfect manner, for reasons

presently to be stated.

In early discussions of the transformer problem it was

customary to make arbitrary assumptions as to the mode of

the variation of the currents, the induction and potential

differences. These artificial assumptions did not, however,

assist real knowledge. The only useful method is to

endeavour, in the first place, to ascertain what does go on

inside the transformer, and then, on the basis of this analysis,

to construct as far as possible a true working theory of the

transformer. We have accordingly abandoned all discussion

of imaginary transformers with air cores and currents and

inductions, which are simple sine functions of the time and

base, for such theory as we are able to build up on an actual

knowledge of what does take place in the transformer. The

only scientific method of treating the problems involved is,

we repeat, first to endeavour to ascertain what are the actions

really taking place, and to make them the basis for further

reasoning.

§ 2. The Delineation of Periodic Curves of Current and Elec

tromotive Force.—The method which has proved most fertile

in enabling us to understand the operations taking place in

the transformer is that which consists in graphically repre

senting the form and relative position of the curves of periodio

current and electromotive force in the two circuits and

deducing that of the magnetisation of the core. When the

primary electromotive force is an alternating one, derived

from a single alternating-current dynamo which is accessible,

the method of obtaining a graph of the various periodio

quantities required is some modification of the arrangement
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first suggested by Joubert,* in which a circuit is closed for

a very short but assigned period during the phase, and puts

some electrical instrument intermittently into connection

with the circuit, so that it reads, not the mean-square value of

the current or potential difference, but the instantaneous valve

at the assigned instant. The modern method of delineating

transformer curves is as follows :

Let the ordinates of the periodic curve in the Fig. 168

represent the varying potential difference between two con

ductors connected to an alternator, and let a condenser be

connected across the circuit in series with a switch. If the

switch is permanently closed, the condenser has a flow of

current into and out of it, and the potential difference of its

 

Fio. 16a

terminals varies periodically. If, however, the switch is closed

intermittently at intervals which are equal to the periodic time

of the alternator, then the condenser has a series of short con

tacts made with it, and its terminal potential difference is

equal to the instantaneous value of the periodio potential

difference of the circuit corresponding to the instant when the

contact is broken. The difference of the potentials of terminals

of the condenser has then to be determined. Several methods

may be adopted. The condenser plates may be connected to

the terminals of an electrostatic voltmeter, and the potential

difference of the condenser plates thus determined. The con

denser may be discharged through a galvanometer, and the

* Comptcs Hendut of the Academy of Science, France, Vol. XCI., July,

1880, p. 161.
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condenser plate discharge determined by the quantity of the

charge found in the condenser. We can thus charge the

condenser by a series of contacts made with the circuit, for a

very short time, always at the same position during the com

plete cycle or period of the varying potential difference. The

condenser acquires, after a short time, a potential difference

between its terminals which is exactly equal to that of the

instantaneous value of the potential difference of the circuit at

the instant, when the contact is made. If, instead of connect

ing the condenser across the circuit, it is connected to the

extremities of a suitable non-inductive resistance inserted in

any alternating -current circuit, we can obtain from its

terminal potential difference the instantaneous values of the

periodic current.

We have next to consider the various practical details of

the process. If the alternator is accessible, or if a single

alternator is providing the current, then the intermittent

contact may be made by an apparatus fixed on the shaft of

the alternator. If the alternator is not accessible, and if the

primary potential difference is derived from a battery of

alternators running in parallel, then it is necessary to operate

an intermittent contact by means of a synchronous alterna

ting-current motor, driven from that part of the circuit which is

accessible. As this last method is capable of so much more

general application than that of the contact-maker driven off

the shaft of the alternator, we shall describe in some detail the

arrangement of a suitable motor and associated apparatus.

In addition to the early experiments by Joubert above

mentioned, the delineation of periodic curves of current and

electromotive force by means of an intermittent contact on

the shaft of the alternator was suggested and carried out by

Dr. Louis Duncan, and experiments by this method were effec

tively conducted by Messrs. Duncan, Hutchinson and Wilkes,

and also by Prof. Ryan in the United States.* It has also

been largely employed by Dr. J. Hopkinson, M. Blondel, by

* See a Paper by Messrs. Duncan, Hutchinson and Wilkes in the

Electrical World of New York for March, 1888, referred to in The

Electrician, Vol. XXI., p. Ill, June 1, 1888. Also see Prof. Harris J. Hyan

on Transformers in the Transaction* of the American Institute of Elec

trical Engineers, Vol. VII., January, 1890.
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the author, and by many others for alternating current

researches. The general arrangement of the apparatus

required for the complete study of the periodic quantities in

a transformer, under any circumstances, is as follows :—The

principal instrument required is a small alternating-current

synchronous motor. A suitable form has been devised and

used by the author in investigations of this character,* and

a view of it is shown in Fig. 169 on next page.

The general details of the machine are as follows:—The

motor, as constructed by the author, consists of two sets of

field magnets, MM, which are secured to two cast-iron discs.

Between these field magnets revolves a small armature, A, the

iron core of which is formed of a strip of very thin transformer

iron, wound up into a ring, the armature coils being wound

upon this ring. The armature coils are joined up in series

with one another, so as to give a series of contrary polarities

round the iron ring. The diameter of this armature is about

6in. The field magnets have eight poles, and the armature

eight coils. The field-magnet cores are bobbins about 2in.

long and ljin. in diameter, and when joined up in series

in the proper manner the field magnets take a current of about

4 amperes to give them the proper amount of saturation.

The armature is carried upon a hard wood boss fixed to a

steel shaft. This steel shaft is carried through small ball

bearings like bicycle bearings, the shaft being borne upon

seven or eight balls carried in gun-metal cells. In order

to prevent any side shake of the armature, there are at the

opposite ends of the base cast iron pillars with a gun-metal

screw at each end, against which the rounded end of the

shaft bears. The shaft can thus be adjusted with great nicety,

and runs with great freedom from friction. The ends of the

armature coils are brought to two small insulated collars,

fixed on the shaft, against which press two light brass brushes,

marked B B, kept gently against the collars by means of an

expanding steel wire, W. 0n the armature shaft is an ebonite

disc, which carries a transverse steel slip let into it. Two

insulated springs, S S, are carried upon a rocking arm, H ;

the rocking arm can be traversed over through half a

* See The Electrician, Vol. XXXIV., p. 460, February 15, 1895, " 0n the

Delineation of Alternating Current Curves."
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circumference, and is centred upon the gun-metal end screw,

which prevents side shake in the shaft. A pointer and

 

graduated scale, G, enables the exact angular position of the

contact springs, S S, to be determined.
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One of the springs, S, is carried on a small adjusting screw,

so that one spring can be given a little lead over the other, and

in this manner the duration of the contact made when the

steel transverse piece passes underneath and electrically con

nects the springs S S is determined. By means of a set screw

the springs can be lifted off from the ebonite disc, and their

pressure also adjusted. This little synchronising motor with

its attached contact-breaker forms the apparatus for determin

ing the form of the current and electromotive-force curves.

The motor is started in step with the alternating current

flowing through the armature coils by passing round the end

of the steel shaft which projects at the end opposite to the

contact-breaker a tape or thin leather strap sprinkled with

rosin. To start the motor the following arrangements are

made :—The field magnets are excited by current obtained

from a small secondary battery, or from any other constant

source of continuous current. The armature circuit requires

about 2 amperes to make it run properly. Let us assume that

the potential difference curve is to be taken from two 100 volt

alterxating-current mains which come into a building. The

armature of the motor is joined across these mains in series

with two or tbree incandescent lamps placed in parallel. The

field magnets being excited in the proper direction by a con

tinuous current from a few secondary cells, the operator passes

the strap or tape half round the shaft, and by pulling on one

side of the tape the motor can gradually be set in rotation

with an increasing speed. If the frequency of the alternating

current is, say, 100 ou , then the 8-pole motor has to be brought

up to run at something approaching to 1,500 revolutions per

minute before it will drop into step ; but at a certain speed

the incandescent lamps in series with the armature begin

to blink, and by a little skill in adjusting the speed by

suitable pulls on the tape the motor will drop into step

and continue to run in synchronism with the circuits. If

the springs are then put down gently upon the revolving

contact piece, a contact is made from one spring to the other

at an assigned position during the phase of electromotive

force, depending on the position of the rocking arm. If the

maximum electromotive force to be read does not exceed 160

volts, then by far the most convenient instrument to employ
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for reading the electromotive force, and the one which has been

constantly employed in these tests, is Lord Kelvin's vertical

or horizontal pattern multicellular voltmeter. As these volt

meters only begin to read at about 60 or 80 volts, it is

necessary to add a constant electromotive force in series with

them, and this is done by employing a set of small secondary

cells. About fifty cells in one tray form a convenient arrange

ment, provided they have contacts at every cell, so as to take

off any required electromotive force. The battery is joined up

in series with the electrostatic voltmeter, and the terminals of

the voltmeter are short-circuited by a condenser having a

capacity of about half a microfarad. This arrangement of volt

meter and battery is then connected across the two points

between which the potential is to be determined through the

two springs S S. The motor being started, the needle of the

voltmeter takes a certain deflection, which is due to the electro

motive force of the cells, plus the value of the difference of

potential between the mains at an instant depending upon the

position of the rocking handle. By blocking up the voltmeter

in this way, and using more or less cells as required, so as to add

a known amount to the electromotive force to be measured, the

electrostatic voltmeter can be employed to measure potential

differences over the whole range varying from zero to 160

volts in either direction. These observations are taken at

equal short intervals as the rocking arm H is swept over

through a quarter of a circle. It is possible to thus measure

the instantaneous values of the alternating potential difference

between the two points at equi-distant instants throughout

the phase. It has been found by experiment that this small

alternating-current motor, when working on the circuits of

any alternator of a size such as would be used in a generating

station, does not sensibly affect the form of the curve of electro

motive force. The motor is only used as a means of making

the contact with a voltmeter at an assigned instant during the

phase. The current which passes through its armature is not

in any way measured or taken account of ; the motor simply

acts as a synchronising arrangement, which connects the

contact-breaker electrically to the distant alternator.

The synchronising motor can, therefore, be set to run in

step with any alternating-current circuit, and to make a
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contact or close a circuit for a short instant during every

period at an assigned instant in the phase, which depends

on the position of the rocking arm carrying the contact-

making springs.

This apparatus may be employed to determine any of the

curves of current or potential of a transformer, as follows :—

Let us suppose the transformer is one intended to be operated

with a primary terminal potential difference of 2,000 volts,

and that the secondary terminal potential difference is 100

volts. Across the primary terminals of the transformer a non-

inductive resistance is connected, which is divided into two

sections in the ratio of 1 to 19, and in series with the primary

circuit of the transformer is placed another non-inductive

resistance having such a magnitude that, when traversed by

the primary current of the transformer, it will create a fall

of potential of about 100 volts. The synchronising motor is

then suitably arranged to be operated from the same circuit

which supplies the primary current for the transformer, and

the armature circuit of the motor may be fed through a step-

down transformer, which reduces this circuit pressure to a

convenient magnitude.

The motor contacts are then arranged to close the circuit of a

voltmeter, which is placed across one or other of the resistances.

It is found necessary to connect a condenser across the termi

nals of the voltmeter to increase its capacity, or else the

leakage of the voltmeter in the intervals between the moments

when the contact is made causes irregularity and uncertain

deflections of the instrument. The process of getting the

complete set of curves of current and electromotive force of a

transformer is then as follows : The curve of primary potential

difference is obtained by connecting the voltmeter through the

motor contacts across the smaller section of the divided resis

tance which bridges over the primary terminals. The motor

being started, the voltmeter will read a potential difference,

which is one-twentieth of the whole primary potential diffe

rence, and if the rocking arm of the motor is moved over step-

by-step the indications of the voltmeter will successively give

the values of this fraction of the primary potential differ

ence corresponding to the different intervals of the whole

period.
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In the same way the curve of primary current can be

obtained by connecting the voltmeter circuit across the termi

nals of the resistance inserted iu series with the primary

circuit of the transformer. The curves of secondary potential

difference and secondary current, if necessary, can be obtained

by connecting the contact-maker and voltmeter across the

secondary terminals of the transformer when closed by a

known non-inductive resistance.

The curves of current and potential thus obtained can be

set down in a chart, the horizontal abscissas in which repfe-

3000
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Fio. 170.—Primary Current, Primary Terminal, Potential Difference,

2nd Induction Curves of Qanz 10 H.P. Transformer taken off a Kapp

Alternator by the Alternating-current Curve Tracer.

sent fractions of the complete periodic time, and the vertical

ordinates represent the instantaneous values of the potential

differences or currents.

In Fig. 170 is shown a set of curves taken from a Ganz

transformer connected to a Kapp alternator. The dotted curve

marked volt curve is the curve of primary electromotive force,

/" or THE
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or difference of potential at the primary terminals of the

transformer. The dotted carve marked current curve is the

curve of primary current, and the dots show the actual posi

tion of the observations. The figures on the horizontal line

indicate degrees of phase. The scale on the left-hand side is

the scale of volts, and that on the right-hand side the scale

of current. From the curves of current and potential differ

ence we can obtain the curve of magnetic induction in the

core as follows :—Let b be the induction density in the

iron core—that is, the number of lines or unit tubes of induc

tion per square centimetre of cross-section of the core. This

induction density will not in general be the same in all

parts of the core or the same at full load as at no load. If,

in the first place, we consiJer the case of the transformer

when the secondary oircuit is open, we have a definite relation

between the current and the primary circuit, the magnetic

induction in the core, and the primary terminal potential

difference or electromotive force at any instant. Let i be the

instantaneous value of the current in the primary circuit, «

the instantaneous value of the primary potential difference,

and b the induction density in the core. If Nj is the number

of turns of the primary circuit, R the resistance of the primary

circuit, and S the area of cross-section of the core, then from

the ordinary current equation for inductive circuits we have

the relation

dt

, f«-Ei ,,
i =JW"

In most cases of closed iron circuit transformers, the second

term or integral on the right-hand side of the last equation is

a very small quantity compared with the first term, and may

be neglected. Hence when ft dt is small we can obtain the

value of b by integrating the primary E.M.F. curve, or by

finding the value of fe d ( between proper limits. Take, for
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instance, the case of the Ganz transformer, the carves of

which are given in Fig. 170. The resistance of the primary

circuit K is 2-5 ohms and the maximum value of the primary

current i is nearly 0"84 amperes. Hence the value of Ei

never exceeds 0"85 of a volt. The value of e, the primary

electromotive force, varies from 0 to nearly 8,000 volts,

and hence at any instant, except very near the moment

when e is zero, the value of R i is quite negligible compared

with that of e.

In order to obtain the induction curve we have to integrate

the curve of primary electromotive force, and to do this

properly the following procedure must be followed. The

whole area included by the primary E.M.F. curve must be

obtained, and the integration of the curve must be started

from that point on the horizontal axis which corresponds

with the bisection of the area of the E.M.F. curve. Starting

from this point the area of the E.M.F. curve is obtained by

successive increments, and corresponding to the limit of each

increment an ordinate is set up whose length on some scale

is proportional to the whole area of the E.M.F. curve measured

from the abcissa corresponding to the semi-area of the curve

to the limit considered. This ordinate will then be an

ordinate of the curve of induction. In making this integra

tion the area of the E.M.F. curve below the time axis must

be reckoned as negative. To obtain the absolute value of the

induction at any point, the area of the E.M.F. curve must be

reckoned out in volt-seconds and then divided by the value of

Ni S, S being measured in square centimetres. The result

must be multiplied by 10* to reduce to C.G.S. measure and

give the induction density in C.G.S. units.

In this manner the firm line curve which is marked induc

tion curve in Fig. 170 was obtained. If the curve of secondary

terminal potential difference has been obtained, we can, by

a similar integration of this curve, obtain another induction

curve which is generally practically identical with that obtained

from the primary E.M.F. curve if the transformer secondary

circuit is unloaded, but which does not agree with it if the

secondary circuit is closed and a secondary current is being

produced therein. Into the causes of this we shall enter

later. The full set of transformer curves for the currents,
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potential differences and induction constitutes what may be

called the indicator diagram of the transformer, and shows us

all that is going on inside. The quick description of these

curves becomes, therefore, an important matter. Many investi

gators have devised methods for expediting this process. 0ne

effective method was described by M. A. Blondel* in 1891.

M. Blondel employs a rotating contact-maker with two brushes,

and the contacts are so arranged that a condenser is periodically

charged at a certain moment during the complete phase of

the potential and then immediately afterwards is discharged

through a galvanometer. The two brushes are fixed to an

arm movable about an axis co-axial with that of the revolving

motor or alternator, and this brush holder is revolved by

clockwork at a regular rate. Hence the galvanometer indicates

a current whioh is varied as the brush holder rotates. If the

brush holder is held at rest, the galvanometer has a series of

rapid charges from the condenser sent through it, and takes

a steady deflection. If the brush holder rotates, this deflection

varies from moment to moment, but at any instant is pro

portional to the instantaneous potential at which the condenser

is being charged. If a mirror d'Arsonval galvanometer is

employed, and the image of an illuminated opening thrown

on a photographic scale which is moved transversely to the

motion of the spot of light, a photographic trace of the alter

nating-current curve can be obtained. By using a pair of

contact-makers and two galvanometers the current and E.M.F.

curves can be delineated at the same time. Such a photo

graphic record of the current and E.M.F. curve for an

alternating-current arc lamp worked off a Meritens alternator

is shown in Fig. 171.

A very similar arrangement has been described by Messrs.

Barr, Burnie and Rodgers.f These investigators employ a

revolving contact-maker of a particular kind. It is thus

described by them : The shaft of the alternator or motor is

fitted with a contact-making disc, and the contact brush is

moved slowly and continuously through its successive angular

positions. Contact is thus made each time at a slightly

* See La Lumiire Elcctrique, September 12, 1891, and September 16,

1893 ; also sec The Electrician, Vol. XXVII., p. 603.

+ See The Electrieian, September 27, 1895.
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different position of the armature. Thus the potential

difference at each contact differs slightly from that at the

preceding contact. This potential difference is used to charge

a condenser across the terminals of which is connected either

a reflecting electrometer or a high-resistance galvanometer.

The deflection of the instrument so used follows the value

of the potential difference of the wave form to be determined,

and accurately follows it, for the mean rate of variation of the

potential differences between the terminals of the condenser is

exceedingly small in comparison with the rate of change of the

electromotive force to be investigated.

 

Fio. 171.—Photographic Trace of Current Curve 1 and Electromagnetic

Force Curve E of an Alternating Current Arc Lamp.

Fig. 172 shows the arrangement of the contact diso and

accessories, a galvanometer being used, but for which an

electrometer might be substituted. In this diagram, for the

sake of clearness, the vulcanite foundation work is omitted and

the brass only shown. Dj is the contact disc, with knife edge

and contact brush, which is rigidly fixed to the shaft of the

dynamo or motor. The rings D2 and De, and the rods and

brushes B, and B4, are mounted on a vulcanite sleeve loose

m m 2
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upon the shaft, and are revolved slowly. The brush B, is

joined to the ring D2, with which the brush B, is in permanent

connection, so that when the brush B, makes contact with

the knife edges the condenser C is charged to the potential

difference between the terminals T„ Ts. The condenser is

throughout the whole revolution of the disc D, discharging

through the galvanometer G by way of B„ Bt, Bs, and the

resistance R.

As the brushes Bi and B, are moved slowly round, a suc

cession of charges passes through the galvanometer, the value

of each of which is proportional to the potential of the con

denser—that is, to the potential difference of the points T„ T,.

This contact apparatus, in fact, performs the operation of

 

Fia. 172.

oharging a condenser at a definite instant during the period

at the terminals Tt and T„ which are the terminals of the

alternating-current oircuit under investigation, and then

immediately afterwards discharges this condenser through a

galvanometer. The galvanometer, therefore, gives a steady

deflection which is proportional to the instantaneous potential

difference between the points Tt and T, at the instant

corresponding to the moment when the contact with the

condenser is broken.

The rapidity with which the curves of instantaneous

potential can be determined depends to a large extent upon

the perfection of the insulation of the condenser and voltmeter.
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If these leak to any sensible degree they lose charge in the

intervals between the contacts, and the resulting permanent

deflection is too small, and the time required for the volt

meter to take its full steady deflection when the place of

contact is changed is greatly increased. Hence it is necessary

to examine this question of leakage carefully before placing

implicit reliance on the voltmeter and condenser actually

used.

The value of the instantaneous potential may also bo

determined by balancing it against some point on a slide wire

down which a known fall of potential is created by a battery.

The arrangement known as a potentiometer consists of a uni

form fine wire stretched over a scale down which a uniform

fall of potential is created by a cell or two of a secondary battery-

attached to its extremities. If a sliding contact moves over

this wire, we can insert between one end of the potentio

meter wire and this slider any source of electromotive force,

and, by moving the slider, balance the fall of potential down

any length of the slide wire against this other potential

difference. If the revolving contact-maker, connected in series

with a condenser, is placed across a proper section of a

divided resistance, which resistance is across the terminals of

the transformer, the contact-maker will close the circuit of the

condenser at equal periodic intervals and give it a potential

which depends upon the position of the contact of the contact-

maker. The potential of this condenser can then be measured

on the slide wire, and, knowing the value of the two sections

of the divided resistance, we are able to determine the value

of the instantaneous potential difference between the terminals

of the transformer.

A revolving contact-maker for determining alternating-

current and potential curves has also been devised by Prof.

Hicks.* In this instrument the same principle is adopted as

in the one just described. A revolving contact-maker connects

a condenser intermittently, but at definite instants in the period,

to a source of alternating potential, and then in between these

contacts discharges the condenser through a galvanometer.

The shifting of the brush contacts varies the galvanometer

deflection, but so that it is always proportional to the instan-

* Su2 The iVectnW«ii, Vol. XXXIV., 1695, p. 698.
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taneous value of the potential charging the condenser. Many

other forms of apparatus have been described, but the

principles are practically the same as those above referred to.

In all cases a condenser is charged through a contact-maker,

and the potential of the condenser determined by either a

galvanometer or voltmeter. A few practical suggestions

in connection with the construction of such contact-makers

may be useful. In the first place, if a condenser and

electrostatic voltmeter are used, care must be taken to see

that both are very highly insulated. The use of the

condenser is to act as a reservoir and supply the electrical

leakage of the voltmeter. If a condenser of large capacity

is employed, then the contact must be suitably prolonged, or

else the condenser will not be charged completely during

the contact. The contact springs sometimes give trouble by

making imperfect contact with the disc, and too much pressure

must not be applied to the brushes, or else they create a trail

of metallic deposit on the insulating disc. The author has

found a material called stabiiit a very suitable insulating

material for the construction of the insulating disc of the

contact-maker, and the contact piece may be a transverse slip

of steel or hard brass let into it. The contact springs are best

made of steel, tempered and well cleaned at the contact

surfaces. The contact-maker is best constructed by attaching

a circular disc of stabiiit or ebonite to the shaft of the motor

or alternator and turning it up very accurately on the shaft.

The metal contact slip is then let into the disc and a pair of

insulated springs are carried on a rocking arm which moves

round an axis co-axial with that of the motor or alternator.

As the disc revolves the contact slip passes under the springs,

and connects them together for an instant. These springs are

connected to the circuit of the voltmeter and condenser, so

that when the contact is made between the springs the con

denser and voltmeter in parallel with it are connected to the

alternating circuit under test for a short instant. The instant

during the period when the contact is made can be varied by

rocking over the arm carrying the springs.

Prof. Ryan has suggested and employed a jet of salt water

as a means of making an electric contact. Through this jet a

steel needle passes at an assigned instant during the revolution.
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With care and proper construction the steel spring contact-

maker works very well, and is much more convenient to use

than a contact in which a liquid jet is employed.

M. Blondel has described several forms of instrument, which

he calls oscillographs, for the direct representation by optical

means of the form of alternating-current curves, enabling us

to project on to a screen a luminous line having the form of

the alternating current curve. For a description of these we

must refer the reader to his Paper in the Comptes Rendus,

Vol. CXVI., No. 10, March 6, 1898, p. 502, and to The

Electrician, Vol. XXX., March 17, 1898, p. 571.

§ 3. Discussion of Transformer Diagrams.—The methods,

some of which have been described in the previous section

 

Fig. 173.—Curve of Electromotive Force of Thomson-Houston Alternator

on Open Circuit.*

enable us, as it were, to look inside the transformer and observe

the nature and order of the electrical operations taking place

in it. We shall proceed to discuss some of the experimental

results which have been thus obtained. In the first place, it

must be noted that the curve of primary potential difference,

or as it is generally called, the curve of primary E.M.P.,

* In Figs. 173, 174, 175, the dots represent the actual position of

observations.
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depends upon the construction of the alternator producing the

electromotive force, and also upon the nature of the circuit,

whether inductive or non-inductive, which that alternator is

supplying. Any assumption that the curve of primary

potential difference is always a simple sine curve is very far

from true. The form of the curve of primary electromotive

force is not even a fixed and independent attribute of the

alternator. The form of the E.M.F. curve of the alternator

may be quite different when taken on open circuit to that

which it is when taken at the terminals of the alternator

when this last is loaded with an inductive or non-inductive load

of transformers. In Fig. 173 is shown the curve of electro-

 

Fio. 174.—Curve of Electromotive Force of Thomson-Houston Alternator

working on an Inductive Circuit.

motive force of a Thomson-Houston alternator at no load or

on open circuit, and in Fig. 174 the E.M.F. curve of the

same machine when actuating a load of transformers, the

secondary circuits of which are lightly loaded. It will be

seen that the second curve is quite different to the first,

and that neither of them is even approximately a simple

periodic curve. In Fig. 175 is shown the E.M.F. curve of

a Mordey alternator at full load on a water resistance. It is,

then, clear that no assumption must be made as to the con
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stancy of the form of the curve of electromotive force of any

alternator, but that the form of the curve of primary terminal

potential difference of the transformer under test must always

be determined.

MOM■t
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Fio. 175.—Curve of Electromotive Force of Mordey Alternator on

Water-Resistance Load.
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Fio. 176.—Primary E.M.F. and Primary Current Curves of . Mordey

Transformer, on 0pen Secondary Circuit, supphed off Mordey Alternator,

with no other load.

We have, in the next place, to consider the case of the

transformer when the secondary circuit is open or unloaded,

and to inquire what under those circumstances is the form and
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relative position of the primary terminal potential difference

curve and the primary-current curve. A number of examples of

such curves are given in the diagrams on pages 537 to 541.

In Figs. 176 to 183 are shown the primary-current curves

and primary E.M.F. curves for transformers on open secondary-

circuit made by the Brush Electrical Engineering Company
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FlO. 177.—Primary E.M.F. and Primary Current Curves of Mordey

Transformer, on Open Secondary Circuit, supplied off Mordey Alternator,

furnishing Current also to other transformers lightly loaded.
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Fio. 178.—Primary E.M.F. and Primary Current Curves of Thomson-

Houston Transformer, on Open Secondary Circuit, supplied off Mordey

Alternator, with no other load.

and the Thomson-Houston Company, the electromotive force

being supplied by Mordey or Thomson-Houston alternators

in various states of load. The Mordey-Bruah transformers
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are 50 kilowatt size and the Thomson-Houston are 30 kilowatt

size.

It will be seen that the primary current under these

conditions always lags behind the curve of primary E.M.F.

or primary terminal potential difference. The primary current,

when the secondary circuit of the transformer is open, is called
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Fio. 179.—Primary E.M.F. and Primary Current Curves of Thomson-

Houston Transformer, on 0pen Secondary Circuit, supplied off Mordey

Alternator, furnishing Current also to other Transformers lightly loaded.
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Fio. 180.—Primary E.M.F. and Primary Current Curves of Mordey

Transformer, on 0pen Secondary Circuit, supplied off Thomson-Houston

Alternator, with no other load.

the magnetising current of the transformer. Even if the

curve of primary potential difference is nearly a true sine

curve, the curve of primary current is not of a similar

character, but is always more irregular. The form of the

primary current curve depends not merely upon the form of



540 THE INDUCTION COIL AND TRANSFORMER.

the primary E.M.F. curve, but upon the nature of the iron

used in the iron core and upon the structure of the trans

former generally, so that the primary-current curves of two

transformers by different makers will have different forms of

 

Degrees of Phase.

Fio. 181.—Primary E.M.F. and Primary Current Curves of

Transformer, on 0pen Secondary Circuit, supplied off Thomson-

Alternator, furnishing Current also to other Transformers lightly

M\>rdey

Houston

loaded.
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Fio. 182.—Primary E.M.F. and Primary Current Curves of Thomson-

Houston Transformer on 0pen Secondary Circuit supplied off Thomson-

Houston Alternator with no other load.

magnetising current curve, even if worked off the same

alternator. This is well shown in the curves in Figs. 176 and

178, in which a Brush and Thomson-Houston transformer are
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worked off the same Mordey alternator. The curve of primary

E.M.F. is the same in each case, but the curve of primary

current is of a quite different form. This is brought about by

differences in the reluctance of the iron circuit producing

small differences in the form of the curve of magnetic

induction in the core.

By comparing Figs. 176 and 181 it will be seen that the form

of the curve of primary current is also dependent upon the

form of the curve of primary E.M.F., and for the same-

transformer the curves of current may be considerably altered

by supplying it off a different alternator, or off the same
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Fio. 183.—Primary E.M.F. and Primary Current Curves of Thomson-

Houston Transformer, on 0pen Secondary Circuit, supplied off Thomson-

Houston Alternator, furnishing Current also to other Transformers lightly

loaded.

alternator in different states of load. In some alternators,

such as the Mordey alternator, the armature reaction is very

small and the form of the curve of electromotive force given

by the machine is not very different whether the machine

is worked on open circuit or on full load, on water resistance

or on an inductive load. In the case of a machine with large

armature reaction, the form of the curve of electromotive

force will, under these various conditions, be greatly altered,

and hence the form of the primary-current wave of trans
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formers on open secondary circuit connected to it will be

quite different also.

We pass on next to consider the form and position of the

curve of secondary terminal potential difference or secondary

E.M.F. when the transformer secondary circuit is open.

 

Fio. 184.— The Primary E.M.F. Curve (firm line) and Secondary E.M.F.

Curve (dotted line) of a Thoinson-HouBton Transformer taken off a

Thomson-Houston Alternator. The Secondary Curve is drawn to a scale

which makes its Maximum Ordinate equal to that of the Primary Curve,

and the Curves are seen to be identical in form.
 

Fig. 185.- The same Primary and Secondary E.M.F. Curves, delineated

in Fig. 184, are here drawn with the Secondary Curve (dotted) reversed

and superposed on the Primary Curve to show its exact coincidence with

the Primary Curve.

It is found that this ourve of secondary electromotive force

is, under these conditions, an exact copy on a reduced scale of

the curve of primary E.M.F., and that it is in exact opposition

to it in phase. In Fig. 184 are shown the curves of primary

and secondary terminal potential difference of a Thomson
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Houston transformer at no load. The primary terminal

potential difference curve or primary E.M.F. curve is repre

sented in Fig. 184 by a firm line, and the secondary E.M.F.

curve by a dotted line. The secondary curve has been drawn

to such a scale that the ordinates of the secondary curve are

equal to those of the primary curve. In Fig. 185 the curve

of secondary E.M.F., represented by a dotted line, haB been

reversed and drawn over the primary to show the exact coinci

dence of the two curves.

1600 I 1 i 1 1 1 I I 1 1-6
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Fig. 186.—Primary E.M.F. Curve (I), Primary Current Curve (II) and

Secondary E.M.F. Curve (III) of 10-light Westinghouse Transformer on

Open Secondary Circuit

This constitutes one of the most valuable properties of the

transformer, viz., that it copies varying or periodic potential

difference exactly to a reduced or increased scale. Hence, if

we have a pair of terminals between which there is a periodi

cally-varying potential difference having a s/mean-square

value of, say, 2,000 volts, and we attach the primary circuit

of a suitably-wound transformer to these terminals, we can

produce a periodically-varying potential difference of lower
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or higher value, and the curve of which is an exact copy to

a reduced or increased rcale of the original. We shall see

later on that useful applications can be made of this fact.

If the secondary circuit of the transformer is closed by a

non-inductive resistance, such as incandescence lamps, then the

curve of secondary terminal potential difference or secondary

electromotive force undergoes a displacement and is brought

forward or lags behind the curve of primary electromotive

force. The reason for this is to be found in the magnetic
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Fig. 187.—Primary E.M.F. Curve (I;, Primary Current Curve (II) ant!

Secondary E.M.F. Curve (III) ol 10-light Westinghouse Transformer, loaded

to one-tenth of full load.

leakage across the magnetic circuit which then takes place,

and which will be discussed in a later section. The act of

closing the secondary circuit of the transformer and produc

ing a secondary current also effects a displacement in the

position of the primary- current curve. As the transformer

is loaded up the primary-current curve is displaced backwards,

so that the lag in phase between the primary current and

primary electromotive force is decreased. At full load the
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primary current and secondary electromotive force are nearly

in opposition of phase. This is seen to be the case by

examining the series of curves in Figs. 186 to 189, which

were taken by Prof. Ryan from a small Westinghouse trans

former, in which magnetic leakage is not by any means

absent.

We have next to consider the position of the curve of

magnetic induction. The curve of induction is obtained,

as already described, by integrating one or other of the
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Fio. 188.—Primary E.M.F. Curve (li, Primary Current Curve (II) and

Secondary E.M.F. Curve (III) of 10-light Westinghouse Transformer loaded

to half load.

curves of electromotive foroe. The process of obtaining a

second curve, by taking as ordinates the area up to successive

abscissa? of a first curve and plotting these areas as new

ordinates to the limiting abscissae, is a process which always

has the effect of smoothing out irregularities in the original

curve, so that if the first curve is one not far removed in form

from a simple sine ourve the second or integration ourve will

be more nearly still a simple sine curve.

NN
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An analytical proof of this is as follows : If the ordinate y

of a periodic ourve is represented by a Fourier series, as it

can always be if periodic and single valued, then y may

be expressed by the series

y = A sin j, t + B cos p t + C sin 2 t + D cos 2 p t + &c,

where A, B, 0, &c., are constants. Hence,
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Fig. 189.—Primary E.M.F. Curve (I), Primary Current Curve (II) and

Secondary E.M.F. Curve (III) of 10-light Westinghouee Transformer at

full load.

It will be seen that the result of the integration has been to

effect a change of phase of all the components and to weaken

the higher harmonics by diminishing the coefficients which

denote their amplitudes. Hence the process of forming a new

periodic curve by taking as ordinates the area of a first
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periodic curve tip to successive abscissic always has the effect

of wiping out irregularities of form of the primary curve, and

yielding a curve more nearly a simple sine curve. It follows,

therefore, that the curve of magnetic induction is always less

irregular than the curve of primary or secondary electromotive

force from which it is derived. From what has been already

said, it will be seen that the curve of magnetic induction in

the core has its maximum value at the moment when the

electromotive force curve from which it is derived has its

zero value. We may, then, sum up the general facts about

transformer indicator diagrams by saying that when a trans

former is at work we have—

1st. A varying potential difference between the primary

terminals which follows a certain wave form depending—

(a) On the nature of the alternator;

(1) On the state of the load of that alternator, whether

full or light, inductive or non-inductive ;

(c) On the nature and construction of the transformer

connected to the alternator.

No assumptions must be made as to the form of this curve,

but in every case its true form at the terminals of the trans

former under test must be determined. The curve of primary

electromotive force has widely different forms in the cases met

with in practice.

2nd. If the transformer has its secondary circuit open, we

have a primary current flowing into its primary circuit which

is called the magnetising current, and which lags in phase

behind the curve of primary electromotive force. As the trans

former secondary circuit is loaded up this curve of primary

current is brought more into step with the primary electro

motive force under the conditions that the load on the

secondary circuit is a non-inductive load.

The curve of primary current is an irregular periodic curve

the form of which is affected by the form of the curve of

primary electromotive force and by the nature of the trans

former, and may have very different forms as these two

operating causes are changed.

3rd. We have a curve of secondary terminal potential

difference whicn is in exact opposition to the curve of

primary terminal potential difference when the transformer

.v x !5
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is on open secondary circuit, and which is an exact copy

of the curve of primary potential difference to a reduced scale-

This curve of secondary potential difference may be shifted

forward in phase as the transformer secondary is loaded up,

so as to come more nearly into opposition with the curve of

primary current.

4th. We have a curve of magnetic induction, and this

induction is not the same in different parts of the core, or the

same on open secondary circuit as at full load. The form of

the curve is always more nearly a simple periodic curve than

is the form of the curves of primary and secondary terminal

potential difference.

Each of these curves being a periodic single-valued curve,

can be expressed by a Fourier series and analysed into con

stituent harmonics. Thus the ordinate et of the curve of

primary potential difference corresponding to any instant t

reckoned from the beginning of the phase can be expressed by

the series

«, = Ei sinp t + Fi cos;; t + E„ sin 8 p t + F2 cos 3 p t

+ E5 sin 5/> t + F5 cos 5p t + &c.

The constant or first term of the Fourier series is zero,

because the curve is always symmetrical above and below the

axis of time. Moreover, only the odd harmonic constituents

are present, viz., the harmonics whose wave lengths are one-

third, one-fifth, &c., of the fundamental wave length, and if by

any form of harmonograph we mechanically resolve any of these

transformer curves, we find that they can be quite adequately

represented by the first three odd terms of the Fourier series—

that is to say, we can build up any transformer curve by

adding together the ordinates of three simple periodic curves

the wave lengths of which are in the ratio of 1;3:5, the

amplitudes and relative positions being suitably chosen. The

reason for the absence of the even harmonic constituents—viz.,

those whose wave lengths are i, J that of the fundamental—is

to be found in the peculiar symmetry of these transformer

curves. 0n looking at any transformer curve it will be seen

that it is of such a character that, if the portion below the time

ixis be considered to be reversed, we should get a repetition

of the same form. Thus, a curve of electromotive force
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in Fig. 190, when so treated, becomes rectified into that

in Fig. 191.

On considering, then, the form of any curve, it will be seen

that the harmonic constituents must be such that if we move

iorward 180deg. along the time axis the value of the ordinate

becomes negative but remains the same in magnitude.

If « represents the ordinate of any curve at any point

ijorresponding to an instant t, and if p as usual is 2jt n, where

 

•Fig. 190.—A Transformer Curve showing the typical symmetry of all

transformer curves.
 

Fio. 191.—The same Transformer Curve shown in Fig. 190, but with the

second half of the wave rectified to show the typical symmetry of the

» is the frequency, then we can represent the value of e by

;the series

«=Ej sin pt + Fi cos p« + E2sin 2 /jt + Fscos 2pt

+ E, sin 8 p t + F, cos 8 pt + &o.

The harmonic constituents must be such that if we put

( p t + tt) lor pt the value of e becomes — e.

It is easily seen that, since sin (pt + ir)= — sin pt and

,tin {8 (pt +ir)} = — sin 8 p t, &c., whereas sin {2 (pt + ir)\

• sin 2 pt, the essential condition is that only the odd
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harmonics must be present. Hence the expansion of the

ordinate of the real transformer curve can only contain the

1st, 8rd, 5th, &c, terms. As a matter of experience it is

found that any transformer curve met with in practice can very

 

Fio. 192.—The Harmonic Analysis of the Curve of E.M.F. of a Thomson-

Houston Alternator at no Load. The thick Curve C is the Curve of

E.M.F., and the Curves marked Hi, H2, H„ are the Harmonic Constituents

with Wave Lengths in the ratio of 1, 3, 5.

 

FlO. 193.—The Harmonic Analysis of the Curve C of E.M.F. of a.

Thomson-Houston Alternator partly loaded up on water resistance. The

Harmonic Constituents of the Curve ore represented by the Curves m2rked

Hi, H2, H5.

nearly be represented by the first three odd terms of the series,

and hence any observed transformer curve can be very quickly

analysed into its constituents by the arithmetical process

explained on page 92.

By the use of mechanical harmonographs or analysers thia

can, of course, be very easily done, and an illustration ia
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given in Figs. 192, 193 and 194 of the E.M.F. curve of a

Thomson-Houston alternator so analysed. The curves given

in Figs. 192, 193 and 194 were analysed for the author by

Mr. G. U. Yule, with his mechanical harmonograph. It

will be noticed that when the ourve C is symmetrical, the

harmonic constituents start from the same point, and have no

lag relatively to one another.

 

Fio. 194.—The Harmonic Analysis of the Curve C of E.M.F. of a

Thomson-Houston Alternator, partly loaded up on Inductive Resistance.

The Harmonic Constituents of the Curve are represented by the Curves

marked Hi, H8, H,, with wave lengths in the ratio of 1, 3, 6.

§ 4. Derivation of Curves of Power and Hysteresis.—

From the curves of current, electromotive force, and induction

obtained as above described we can construct two other curves

which give us the variation of the total power supplied to the

transformer, and the total loss in the iron core per cycle.

These curves are obtained as follows :—Let us assume that a

set of transformer curves has been taken when the trans

former is on open secondary circuit. Taking the curves of

primary current and primary terminal potential difference,

we multiply together (as explained on page 158, § 23, of

Chapter III.), the corresponding ordinates of the two curves

for abscissas taken at equidistant points on the time axis,

and set up a new ordinate representing the value of the

product ei, where e is the primary potential difference and

i the primary current at the same instant. This product set

off as an ordinate defines another curve called the power curve,

and the true mean ordinate of this power curve gives us the
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mean power taken up in the transformer at no load. To

obtain the true mean ordinate of the power curve we have to

integrate the whole area included between the power curve

and the time axis, and to reckon those areas which lie above

the time axis as positive and those which lie below as negative.

The total area of the positive and negative parts algebraically

added, and divided by the length of the axis representing one

complete period, gives us the true mean ordinate of the power

curve. Hence, we can, from the transformer diagram taken on

open secondary circuit, determine the mean power taken up in

the transformer. The amount dissipated in heat in the copper

of the primary circuit is generally an exceedingly small

fraction of the total loss, and hence the mean power obtained

as above is practically the value of the power taken up in the

iron core.

The analytical expression of this fact is as follows : Taking

the fundamental equation for the transformer on open

secondary circuit, viz.,

a t

we multiply the equation all through by i, and obtain

«1t1 = Rt1!1+SN1i1li?>

a t

or eli1dt = B,i,2 d t+SH1ildb.

If this last equation is integrated between the limits 0 to

T
— , where T is the complete periodic time, and each integral

2

2
multiplied by ^ , we obtain an expression for the mean power

given to the transformer during one half-period. Thus,

The first term on the left hand side represents the true

mean power given to the transformer in one half-period. The

second term represents the power dissipated as heat in the

primary circuit in one half-period, and the third term repre

sents the power dissipated on eddy currents and hysteresis in
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the core in the same time. If a horizontal line is taken, and

from an origin distances are set off right and left to represent

the varying values of the primary current i during the period,

and vertical ordinates corresponding to these abscissa? taken

to represent the values of the induction density b in the core

at the same instant, then a curve will be denned which will be

a cyclic curve, and will give us the total core loss per cycle

when the numerical value of its area is multiplied by the

factor Nj S. If the iron core is well laminated, eddy current

loss will be practically absent ; and the value of this area,

therefore, will give us the true hysteresis loss in the iron.
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Pio. 195.—Hysteresis Curve of a Ganz Transformer.

Hence, such a curve is called the hysteresis curve of the core.

In Fig. 195 is shown the hysteresis curve of the Ganz trans

former, so obtained from the current and induction curves of

the same transformer as given in Fig. 170.

In order to obtain the correct numerical value of the

hysteresis loss per cycle it must be noted that if all the quan

tities S, i and b are measured in C.G.S. measure, the value of

the integral S N,j idb will give us, when taken round one

complete cycle, the value of the core loss in ergs during one
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complete period. And this value has to be divided by 107 to

reduce it to joules. Since the integral SN^idA can be

written J(N i) d (S b), we see that the core loss per cycle in

joules can at once be obtained by taking the area of a loop

curve, the horizontal ordinates of which represent the periodic

values of the primary ampere-turns, and the vertical ordinates

the corresponding total core induction during one complete

period, taken in a unit equal to 10" G.G.S. units of magnetic

induction.

If the frequency is n, then n times the above integral gives

the loss in the core per second ; and this should have the same

numerical value as the mean ordinate of the power curve

which measures the same quantity. The practical rule,

therefore, for obtaining the core loss in the transformer due to

the hysteresis and eddy current loss which may be present

is as follows : Draw two axes at right angles ; on the hori

zontal axis set off right and left from the origin distances

which represent the primary ampere-turns for the different

instants during one complete period. At these points set up ordi

nates which represent the total induction in the core measured

in units each equal to 10s G.G.S. units of magnetic induction,

and complete the looped curve defined by these ordinates.

The area of this curve, measured in terms of the area of

a rectangle one side of which is the length taken to represent

one ampere-turn and the other side is the length taken to

represent 109 C.G.S. units of induction, will give the value

of the core loss per cycle in joules, and multiplication of

this value by the frequency n will give the mean loss of

power in the core in watt*. The number so obtained will

agree closely with the value of the mean ordinate of the

power curve in those cases in which the copper loss in the

primary circuit when the transformer is not loaded can be

neglected.

The form of this hysteresis loop will depend upon the manner

in which the magnetic induction in the core varies with the

magnetising force, and, as we shall see presently, the area

of this hysteresis loop depends, amongst other things, upon

the form of the curve of primary impressed electromotive

force.
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§ 5. The Efficiency of Transformers.—If the secondary

circuit of the transformer is closed through a resistance, and

the transformer is therefore loaded up, the power given to the

primary circuit in part reappears in a transformed form in the

external secondary circuit. As by far the most frequently

presented case in practice is that in which the resistance

which closes the secondary circuit consists of incandescence

lamps or other practically non-inductive resistances, we shall,

therefore, in the first instance assume that the external

secondary circuit is an inductionless resistance. Under these

conditions the secondary current is, to a close approximation,

in step or synchronism with the secondary electromotive force,

and the mean power given to the external secondary circuit is

measured by the product of the mean-square value of the

secondary current strength and the mean-square value of the

potential difference of the secondary terminals. If we denote

by P2 the power thus given up to the external secondary

circuit, and similarly by Pj the power given up to the primary

circuit, the ratio of P2 to Pt is called the efficiency of the trans

former. This efficiency is generally expressed as a percentage,

and will be denoted by the symbol c. Hence

.-loog.

The difference between Pj and P, is represented by the

power lost in the core and dissipated in the copper circuits of

the transformer. If the symbol C, stands for the mean-square

value ( Vmean2) of the primary current, and Ca for that of the

secondary currents at any time, and if Bj and R2 are the resis

tances of these circuits when warm and at that time, then the

power wasted in the primary and secondary circuits respec

tively is G,2 R2 and C22 R2, and if H is the core loss, viz., the

hysteresis and eddy-current loss, then

P1-Pt-C,,B+cVR,+H>

on the assumption that there are no eddy-current losses or

energy dissipations in the copper circuits, or in the iron case

or framework of the transformer.

One of the most important measurements, therefore, which

it is necessary to make in connection with transformers is the
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measurement of the power given to the primary circuit. We

shall defer to a later chapter on transformer testing a full

discussion of the various methods which can be employed for

determining either the magnitude of the quantity Pi or of the

difference Pi - Ps in the case of a transformer at any load. It

may suffice to state at present that one way in which this

measurement can be made is by means of a properly con

structed wattmeter, which measures directly the power P,

given to the primary circuit. The objection to this method is

that any error made in evaluating Pi appears to the same

extent and percentage in the ratio of P, to P1, and therefore in

the efficiency. Hence other methods have been devised for

measuring directly the difference Pi - P2. However the value

of the efficiency may be determined, the results are best set

down in the form of an efficiency curve as follows: Each

transformer is constructed to give safely a certain output of

power to the secondary external circuit, which is called its

full load, and is stated generally in watts or kilowatts. The

load on the secondary circuit in any other cases can be

expressed as a fraction of the full load. To draw an efficiency

curve for any transformer, a horizontal line is taken, on

which are marked off the decimal fractions of the full load,

and at these points are set up ordinates which represent the

P
percentage efficiencies at these loads, viz., the value of 100

Pi

where Pi is the power given to the primary circuit and P2 is

the power given to the external secondary circuit. The ex

tremities of these ordinates delineate the efficiency curve.

In Figs. 196 and 197 are shown the efficiency curves of

various transformers. It will be seen that the chief difference

is that the more modern transformer has a higher efficiency

at the low loads. A good transformer of any moderate size

should have at least 80 per cent, efficiency at one-tenth load.

And larger transformers of 15 and 20-kilowatt size and

upwards will reach to 90 per cent, efficiency or more at one-

tenth of full load.

Another method of delineating the efficiency is to plot the

difference Pi - P2 in terms of P2 ; in other words, to plot a

curve the abscissas of which represent the secondary output

P2, and the ordinates of which represent the total loss of
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•2 -3 -4 -5 '6 -7 .8

Fraction* of Full Secondary Load.

Fio. 196.—Efficiency Curves of Transformers.

1-0

100

20

f

'is

1

1 -2 -3 -4 -5 -fl -7 -8

Fractions of Full Secondary Load.

Fio. 197.—Efficiency Curves of Transformers.

1-0

In the above diagrams, horizontal distances represent the decimal

fractions of full secondary load, and vertical ordinate.-; the percentage

efficiency corresponding thereto. The numbers against the curves refer

to the following transformers :—

No. 9. 5 horse-power Ferrauti Transformer

ii 12. 5 „ „ „

20. 15

23. 15

27.

31.

35.

39.

45.

16.

20

6 kilowatt

4-5 „

4

3

6-5 „

Mordey Transformer . . .

Thomson-Houston Transformer ...

Kapp Transformer

" Hedgehog" (Swinburne) Transformer

Westinghouse Transformer

1885 type.

1885 type

rewound.

1892 type.

1892 type

rewound.

1892 type.

1892 type.

1892 type.

1892 type.

1892 type.

1892 type-
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IS

power in the transformer, viz.,

P, - P2. In Fig. 198 is shown

such a curve drawn for a

6,500 - watt Westinghouse

transformer. The ordinates

of the upper curve give the

value of I?i — P2 corresponding

to the secondary output P2.

One important question

which arises in this connec

tion is whether the true iron

core loss by hysteresis remains

constant at all loads of the

transformer. This was at one

time denied. It has, how

ever, been shown by careful

experiments that the hys

teresis loss in the iron core

is sensibly constant at all

loads.*

The proof of this was

obtained by careful measure

ments made of the total

energy loss P — P2 for various

transformers. This value was

plotted down, as in Fig. 198,

in terms of the secondary out

put P2. On the same diagram

was drawn a curve represent

ing the total copper loss or

OR loss for the primary

* The reader may be referred to

a Paper by the author in the Pro

ceedings of the Institution of Elec

trical Engineers, VoL XXI., 1892,

entitled " Experimental Researches

on Alternate - Current Transfor

mers," for full information on the

experimental methods by which this

question has been settled. See

also The Electrician, Vol. XXX.,

pp. 97, 120, 162, 446.

SiiVM ISO!
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and secondary circuits taken together. These two curves

are found to be sensibly parallel to each other through

out their whole range, and hence the true iron core loss or

hysteresis loss is a constant quantity at all loads. This is

a necessary consequence of the fact that in constant potential

transformers as designed for ordinary electric lighting work

the induction in the core is constant at all loads, and this in

turn is a consequence of the fact that the resultant mag

netising force in the core is constant for all loads. Generally

speaking, we may state that for all fairly well designed closed

iron circuit constant-potential transformers the iron core loss is

constant for all loads. This enables us to determine the

efficiency curve for any transformer of this description by three

measurements. If we measure the total power loss in the

transformer at no load we have the quantity which is constant

at all loads. Call this loss in watts w. If, then, we measure

the resistances of the primary and secondary circuits and

correct these values so as to obtain the true resistances Ri

and R2 of the copper circuits at the final temperature reached

by the transformer when working, we can calculate the copper

losses Ci'R, and C22R2 lor various values of the output of the

transformer. We can determine the value of the primary

current C, corresponding to any value of the secondary current

C2 to a sufficient approximation for this purpose by taking it as

N
equal to C2 —-, where Ni and N2 are the number of turns of

N,

the primary and secondary circuits respectively. Hence, the

total copper loss in the transformer is very approximately

equal to

<y{(|)B,+R,},

and the total power Pi given to the primary circuit conse

quently corresponding to any secondary output C2 V2, where

V2 is the secondary terminal potential difference, is given

by the equation

P!=«> + C22 j(g?y R.+R.j

and P2=C2V2.

Hence the ratio of P2 to P„ or the efficiency at various
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loads, can be calculated. This is a convenient and fairly

accurate method to adopt in the case where we are testing

large transformers. It is sometimes very difficult or impos

sible then to obtain the necessary non-inductive load in the

form of incandescence lamps for very large loads such as 40

or 50 kilowatts, and in that case the above procedure may be

followed. The table on page 560 gives the results of a large

number of transformer efficiency measurements made by the

author in 1892, employing many forms of transformers then

in use.

The table shows particularly what a great advance was

made in transformer manufacture in the course of the seven

years between 1886 and 1892.

In the case of larger transformers the efficiency curves can

be made still more square-shouldered, and efficiencies of

over 90 per cent, obtained at one-tenth load.

Since the core loss at no load is an important factor in

determining the efficiency of the transformer, it is obvious

that no transformer can have a high efficiency at light loads

unless the core loss is small. The iron core loss or no-load

loss in the case of transformers of 80 kilowatt size and

upwards can now be made to be less than 1 per cent, of

the full secondary output. That is to say, it is possible to

make the iron core loss of a 50-kilowatt transformer not

more than 400 watts. In the case of smaller transformers,

from 1 to 15 kilowatts, the core loss will in general be from 8

to 1-3 per cent, of the full secondary output. Thus, a 1-kilo-

watt transformer, or one capable of giving out 1,000 watts in its

external secondary circuit, is a fairly good one if it has a core

loss of not more than 80 watts, or 3 per cent, of its full load ;

a 6-kilowatt transformer if it has a core loss of not more than

120 watts, or 2 per cent. ; and a 15-kilowatt transformer is

good if its core loss does not exceed 225 watts, or 1*5 per

cent. These figures will be a guide to the reader to know what

the core loss may be expected to be found in various cases.

We shall consider presently the causes which affect the

magnitude of the core losses.

§ 6. Current Diagram of a Transformer.—Let a horizontal

line be taken on which are set off distances proportional to

oo
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the power output on the external secondary circuit, that is, to

the secondary load of a transformer, and let ordinates at these

points be drawn to any scale representing the magnitudes of

the primary and secondary currents, the scale of the primary

current ordinates being taken so tbat if one unit of length

represents one ampere of primary current, and the scale of the

N
secondary current so that one unit of length represents ^

times the corresponding secondary current, then we shall

•delineate the lines called the current curves. For any closed

-circuit transformer of constant potential type these current

are nearly two lines running nearly parallel to each other as

shown in Fig. 199. If Cj stands for the mean-square value

of the primary current, and C2 for that of the secondary

current, and if Nt and N0 are the numbers of the primary and

secondary turns respectively, then experiment shows that a

good type of closed magnetic circuit constant potential trans-

* N
former Cj - C0 is a nearly constant quantity, and that this

•difference is practically the same as the mean-square value of

the primary current when the transformer is not loaded. Let

this last be called cj. Then

or Cj Wj = Cj Nj - C2 N,.

In other words, the difference of the primary and secondary

ampere-turns at all loads is a constant quantity, and is equal

to the ampere-turns at no load. This is merely the expression

of the fact that the magnetomotive force acting on this

magnetic circuit is a constant quantity, and that therefore the

induction is constant as well. This is, however, not the case

for open-circuit transformers. In Fig. 200 is shown the

current curves for a Swinburne "Hedgehog" transformer, and

it will be seen that the difference of the primary and secondary

ampere-turns is not constant, but increases as the load dimi

nishes. This is a consequence of the fact that in the open

circuit transformer the difference of phase between the primary

and secondary currents is considerable at light loads, but

.becomes less as the transformer is loaded up, and that there

oo 2
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Table A—Test of a Westinghouse Transformer.

Power, 6,500 watts. Secondary volts, 100.

Frequency used, 82 5 periods per second.

Average final temperature of transformer, 96°F.

Volts on primary circuit (Vi) =2,400 (kept constant).

Primary circuit resistance = 5'95 ohms at 96 F.

Secondary circuit resistance = 0-0108 ohm at 66°F.

Seco idary Circ lit.

Power

Volts. Amperes.
taken out
in watts,

W2.

101-0 0 0

1009 1-00 101

1008 1-98 200

1008 294 296

100-7 3-87 390

100-7 4-79 482

100-7 800 806

100-4 10-15 1,019

100-3 1307 1,311

1001 18-00 1,802

100-1 19-90 1,992

1000 21-93 2,193

1000 24-74 2,474

1000 29-66 2,966

998 37-20 3,713

995 4200 4,179

99-3 46-65 4,633

99-2 £0-40 5,000

990 5216 5,164

98-9 55-60 5,499

98-8 57-68 5,700

989 59-32 5,867

987 61-32 6,053

988 6216 6,142

£8-7 63-00 6,218

98 7 64-00 6,317

986 64-74 6,384

Primary Circuit.

2,400

Volts. Amperes.

0-C50

0100

0140

0180

0218

0-250

0382

0472

0-580

0-800

0880

0-960

1080

1-285

1-610

1-810

2-0C2

2-160

2-240

2-383

2-478

2-550

2633

2-672

2-700

2-750

2-775

Power
given in
watts
= W,.

95

205

306

401

493

597

920

1,139

1,440

1,930

2,118

2,330

2,609

3,066

3,870

4,324

4,792

5,174

5,422

5,702

5,885

6,041

6,271

6,344

6,426

6,522

6,598

2 U

* = .*- A

m

3-9 2

95

104

106

105

103

115

114

120

129

128

126

127

135

130

157

145

150

174

258

203

135

174

218

202

208

205

214

fore there must be an increase in mean-square or maximum

value of the primary current, so that its greater value at light

loads is a compensation for the greater difference of phase

between the primary and the secondary current. This is on

the assumption that the secondary circuit is a practically non-

inductive circuit. If the carefully-drawn current diagram ot
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Table B.—Test of a Swinburne "Hedgehog " Transformer.

Power, 3,000 watts. Secondary volts, 100.

Frequency used, 81"1 periods per second.

Average final temperature of transformer, 145°F.

Volts on primary circuit (Vi) = 2,400 (kept constant).

Primary circuit resistance = 24'00 ohms at 145°F.

Secondary circuit resistance = 0'051 ohm at 145°F.

Secondary Circuit.
C u

Primary Circuit. <y v
*a .

Power
taken "Ut
In watts,

Power
given in
watts W,

Uk i " 1Volts. Amperes.

w2.

Volts. Amperes
« c

101-8 0 0 2,400 0-7f6 121 121 0

1017 1 CO 102 ii 0-761 213 111 47-9

1015 2-97 301 l) 0786 414 113 72 7

101-3 4 84 490 T) 0-811 608 118 806

101-3 600 (07 fi 0-829 730 193 831

101-2 800 810 )l 0862 943 133 85-9

1010 1020 1,0.-0 ,i 0-915 1,161 131 88 6

100-9 12-00 1,211 '' 0 960 1,361 150 89 0

100-6 1400 1,408 ') 1-013 1,551 143 90-8

100-3 15-87 1,5-2 '' 1066 1,750 158 91-1

1000 17-83 1,189 'f 1-133 1,951 162 91-7

100-0 1980 J.S80 1197 2,129 149 930

999 21 -r 2 2,180 '' 1,260 2,344 164 930

99-7 2366 2,359 » 1-321 2,525 166 93-3

995 25 46 2,534 1-397 2.732 168 92-8

993 26-46 2,628 '' 1-430 2,823 195 93-2

991 27-42 2,718 1-465 2.914 196 93-4

990 2828 2.8C0 11 1-500 2,988 188 93-7

98-9 2926 2,896 '' 1-532 3,103 207 9V3

990 30-20 2,9:0 '' 1-566 3,185 195 940

any closed-circuit transformer of constant-potential type are

examined, it will be seen that the difference between the ordi-

nates of the primary and secondary current curves or lines

increases slightly very near the origin, and as we shall see pre

sently this is an indication of the fact that the primary current

is for all loads, except very small ones, practically in exact

opposition, as regards phase, to the secondary current. As an

example of the measurements of a complete test of a closed

circuit and open circuit transformer, we give on page 564

and above, in Tables A and B, the figures obtained for a

Westinghouse and Swinburne transformer respectively.
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§ 7. The Power Factor of Transformers.—If under any

conditions of load on the secondary circuit we measure the

true power Pi being taken up by the primary circuit, and also

the mean-square ( Vmean2) value A of the primary current

and the mean-square value V of the primary terminal potential

difference, the ratio of P, to the product A V is called the

power factor of the transformer at that load. The product

A V is often called the apparent power or apparent watts given

to the transformer, and the value of P, is the true power

or true watts given to the transformer. Hence the power

factor (F) is defined thus :—

Power fac-\ — True power in watts given to the transformer

tor (F) / Apparent powerin watts given to the transformer

The above relation may be symbolically expressed by

writing

F=A or P1 = (FA)V.

This last mode of writing it exposes the appropriateness of

the term " power factor" ; since we see that it is a factor by

which the value of the total mean-square value of the current

must be multiplied to obtain that current which, when multi

plied by the mean-square value of the potential difference

V, will give the true mean power being taken up in the

circuit. Thus, if the power factor is denoted by F, this

signifies that the portion F A of the current A is effective in

conveying power, and the remainder (1 - F) A is ineffective,

or, as it is sometimes called, is the wattless component of the

current. Hence, we may, in imagination, divide the apparent

power AV into two portions: a part FAV, which is a measure

of the true power given to the circuit ; and a part (1 - F) AV,

which is the wattless or powerless portion.

The true power P, is obtained from the correct wattmeter

reading, and the apparent power AV is the value of the product

of the readings of an electrostatic voltmeter used to measure

the mean-square value of the potential difference and that of

an alternating-current ammeter used to measure the mean-

square value of the current. A very important constant with

respect to any transformer is its power factor at no load or on

open secondary circuit, and the Table on pago 567 gives the
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values of the no-load power factor for various types of trans

formers taken on certain alternators.

Generally speaking, it is found that the power factor of

most closed iron circuit transformers has a value lying between

0*5 and 0-8, but that for induction coils on open-circuit

transformers, such as the "Hedgehog" transformer, the power

factor is about one-tenth of the value for closed iron circuit

transformers.

It must not be supposed, however, that the power factor of

an induction coil or transformer has a constant and fixed

value for any particular transformer. The value of the power

factor is affected to a very considerable degree by the form of

the curve of primary terminal potential difference, and may

vary within wide limits according as the curve is varied in

form.

Power Factors of Transformers taken off different Alternators at

the same Primary Voltage.

Power Factor.
Magnetising Currents

in Amperes.

Transformer.
Size in

Kilow'tts
On

Thomson-

Houston

Alternator

On

Mordey

Alternator

On

Thomson-

Houston

Alternator

On

Mordey

Alternator

Mordey-Brush ...

Thomson-Houston

Mordey-Brush ...

50

30

18

0-609

0-49J

0 685

0-704

0-536

0-751

0668

0-562

0-326

0623

0-569

0332

In the Table above are given the power factors at no

load of three transformers taken off a Mordey alternator

having an E.M.F. curve similar to that shown in Fig. 175,

and a Thomson-Houston alternator having an E.M.F. curve

of the kind shown in Fig. 174, and it will be seen that the

power factors and magnetising currents of the transformers

are quite different in the two cases.

We must not, therefore, regard the power factor as an

absolute constant for the transformer, but as a function to

some degree of the form of the primary E.M.F. curve, although

at the same time dependent essentially upon the nature of

the magnetic circuit of the transformer.
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If the primary E.M.F. curve and current curve were both

rsimple periodic or sine curves, then the power factor would be

simply the cosine of the angle of lag of the current behind the

-electromotive force. If the transformer has its secondary

circuit loaded up, the power factor approximates to unity as

this loading takes place.

In the case of most closed-circuit transformers a very little

loading-up of the secondary circuit causes the power factor to

become unity, but in the case of an open-circuit transformer,

whilst the loading-up of the transformer increases the power

factor, it never actually reaches unity.

Table C.—Test of a Westinghouse Transformer.

Primary volte, 2,400 (kept constant).

Secondary volu at no load = 101 '0.

.s

g
Copper Losses In Watts. Primary Watts.

PrimaryCurr

I..

Secondar) Currmt,I.

Is

Secondary,

Jj»x0-0_08.

Total.

TotalSecond Dropinvol
TruePower

=\V.

Apparent
Power=Wj.

Ift

0-050 0 0 0 0 0 0 95 120 0-79

o-ioo 1-00 0-042 0 0 0 o-i 205 240 0-85

0-140 1-98 0-083 01 0 0 0-2 306 336 0-91

0180 2-94 0122 02 0 1 0 0-2 401 432 0-93

0-218 387 0161 0-3 0-2 0 0-3 493 523 0-94

0250 479 0-199 0-4 0 2 1 0-3 597 600 0-99

0-382 8-00 0-333 0 9 0-7 2 0-3 920 917 100

0-472 10-15 0-423 1-3 1-1 2 0-6 1,139 1,133 1-00

0-580 1307 0545 2 0 1-8 4 0-7 1,440 1,392 103

0-800 18-00 0-750 3 8 3-5 7 0-9 1,930 1,920 100

0-880 19-90 0-8J0 4-6 4-3 9 0-9 2,118 2,112 100

0-960 21-93 0914 5-5 5-2 11 10 2,330 2,304 1-01

1-080 24-74 1031 6-9 6-6 14 1-0 2,609 2,592 101

1-285 2966 1-238 9 8 9-5 19 1-0 3,096 3,085 1-00

1-610 37-20 1-550 15-4 14-9 30 1-2 3,870 3,864 1 00

1-810 4200 1-750 19 5 19-0 39 1-5 4,324 4,344 0 99

2-002 46-65 1-945 23-5 23-5 47 1-7 4,792 4,805 1 00

2-160 50-40 2-100 23-7 27-5 55 1-8 5,174 5,184 100

2-240 5216 2171 29-8 29-5 59 20 5,422 5,376 1-01

2-383 5560 2-320 33-9 33-5 67 21 5,702 5,719 100

2-478 57-68 2-404 36-5 36-0 73 2-2 5,885 5,947 0-99

2-550 59-32 2-474 387 38-1 77 2-1 6,041 6,120 0-99

2-633 61-32 2-560 41-2 40 6 82 2-3 6,271 6,319 0 99

2-672 62-16 ! 2 594 42-5 41-8 84 2-2 6,344 6,413 0-99

2-700 6300 2-623 43-3 42-9 86 2-3 6,426 6,480 0-99

2-750 64 00 2-665 46 0 44 2 89 2-3 6,522 6,600 0-99

£-775 64-74 2-700 45-8 45 3 91 2-4 6,598 6,660 100
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This may best be illustrated by giving the figures of test of

two transformers, one of the closed-circuit type (Westinghouse)

and one of the open-circuit type (Swinburne) (see Tables C

and D). It will be seen that a very small loading of the

closed-circuit type suffices to bring the power factor up to

unity.

Hence it follows that for closed-circuit transformers the

apparent power given to the transformer is equal to the real

power at and beyond about one-tenth of full load. In Fig. 201

are shown three curves illustrating the gradual rise of the

power factor towards unity in the case of three types of

transformer. In the case of an open- circuit transformer at

no stage of the load is the true power taken up by the

transformer identical in value with the apparent power given

to the transformer.

Table D.—Test of a Swinburne " Hedgehog " Transformer.

Primary volts, 2,400 (kept constant).

Secondary volts at no load = 102'00.

a
Copper Losses in W2tts. Primary Watts.

I-
IS

£ p
i

o>

1-5

h

*
E II

B °
as * *

s
.= X c X a u

a*
1

2E
«&

«n

s<=>

3
U
i-

0-756 0 0 w, 0 14 0 121 1,816 007

0761 102 0-042 14-0 01 14 o-i 228 1,829 0-13

0-786 2-98 0-124 14-9 0-5 15 0-2 4i0 1,886 0-22

0-811 4-84 0202 15-8 1-2 17 0-4 621 1,948 032

0829 600 0-250 16 5 18 18 0-6 730 1,988 0-37

0-862 8O0 0333 17-8 33 21 08 943 2,067 0 46

0911 10-00 0-417 199 5-1 25 1-0 1,152 2,188 0-53

0-960 12-00 0500 22-6 7 3 30 1-2 1,353 2,301 0-59

1-013 14-00 0-584 24-7 10 -c 35 1-3 1,538 2,432 0-63

1-066 15-88 0663 27-2 12-9 40 1.5 1,746 2,559 0-68

1-133 17-89 0-746 30-9 16 3 47 1-7 1,932 2,720 0-71

1-197 19-80 0-825 34-5 20-0 55 1-9 2,129 2,873 0-74

1-260 21-63 0-902 38-2 24 0 62 21 2,320 3,022 0-77

1-321 23-E8 0-983 42-0 28 3 70 2-4 2,510 3,172 0-79

1-395 25-46 1-C60 46-6 23 1 80 2-7 2,706 3,350 0-81

1-426 26-38 1-098 48 9 35-4 84 2-9 2,829 3,422 0-83

1-460 27-28 1-136 51-2 38 0 89 3-0 2,890 3,501 0-83

1-498 28-21 1-175 54-0 408 95 3-0 2,993 3,596 0-83

1-529 J 29-19 1-215 56 1 43-5 100 3-2 3,042 3,666 083

1-567 | 30-33 1-262 59 0 46-9 106 3-3 3,163 | 3,761 0-84
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In Fig. 201 the three curves show the progress of increase

of the power-factor as the load on the secondary circuit is

progressively increased. The upper curve represents the

growth of power factor (F) for a 6,500-watt Westinghouse

transformer. Beginning at 0-8, it rises up to unity at about

one-tenth of full load. Hence at and after this load the

apparent watts are the same as the true watts, and the

real power taken up in the transformer is quite accurately

given by the product of the primary terminal pressure and the

primary current, mean-square ( Jwean*) values being under-

o

/

*

>

'/ •

*

Fio. 201.— Relation of Power Factor to Secondary 0utput.

stood. For an open magnetic circuit transformer like the

"Hedgehog" the case is quite different. The power factor

begins at a value of 0-08 or 0-06, and it never rises up

above 0-8. Hence at no stage of the load is the real power

taken up by the transformer equal to the " apparent watts."

A transformer like the 1,000-watt Kapp appears to occupy an

intermediate position, and although it has a medium power

factor to start with, its power factor rises up to unity at

about half-load. The importance of this fact in alternate-

current station working is very great. It shows us, if we

have a station wholly supplied with transformers of the type

of Mordey, Westinghouse, Thomson-Houston, Ferranti, &c.,

that the apparent power supplied to the transformers is equal

to the real power at any hour when all the transformers are

more than one- tenth loaded.



572 THE INDUCTION COIL AND TRANSFORMER.

The reciprocal of the power factor of a transformer on open

secondary circuit is a measure of the reluctance of the mag

netic circuit of the transformer. In the case of a transformer

with an air-iron magnetic circuit (open-circuit type) the reluc

tance of the iron circuit is large and the reciprocal of the power

factor large also, and may be a number approximating to

16 or 17. In the case of a closed iron circuit transformer like

the Mordey transformer, with very short magnetic circuit and

very small reluctance, the reciprocal of the power factor is

very small, and will be a number approximating to 1-2 to 1*4.

The introduction of any bad magnetic joint into the iron

oircuit, or the employment of iron of small permeability, im

mediately decreases the magnitude of the power factor of that

transformer. Any joint or break in the magnetic circuit

accordingly increases the value of the reciprocal of the power

factor, and although this alone will not affect the total core

loss in the transformer, it is an indication of the increased

reluctance of the magnetic circuit. The advantage of a large

power factor is that it involves a small value of the magnetising

current of the transformer. In the case of an alternating

current station large magnetising current involves additional

waste of power in the passage of this current through the

distributing mains. This point will be discussed at greater

length in connection with the subject of alternating current

distribution.

§ 8. Magnetic Leakage and Secondary Drop.—If a trans

former has the mean-square value of the potential difference

of its primary terminals kept perfectly constant, whilst at

the same time secondary currents of various magnitudes are

taken from its secondary coil by altering the resistance of the

external secondary circuit, we find that the mean-square value

of the potential difference between the secondary terminals of

the transformer changes with every change in the secondary

load.

The secondary terminal potential difference (S.P.D.) becomes

less as the secondary current and load increases. The diffe

rence between the secondary terminal potential difference at

no load and at any load is called the secondary drop of the

transformer due to that load.
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We may represent the variation of secondary drop with

secondary load by a diagram as follows : Let a horizontal line

be taken on which are set off distances representing the

fractions of the full secondary load, and let vertical ordinates

set up at these points represent the value of the secondary

potential differences at these loads. For convenience sake

we may make these ordinates represent the magnitude of the

secondary terminal potential difference diminished by a certain

constant amount which is less than the least difference found,

with full load. For instance, suppose the secondary terminal

potential difference at no load is 100 volts and at full load is

97 volts, we may make the vertical ordinates represent the

terminal potential difference minus 90 volts. The curve

 

940 660 1300 I960 2600 3260 3900 4660 6200 6860 6600'

Output in Secondary Watts.

ab Is the horizontal line thro"sh <2 ; Curve ac Is the Curve of Drop due to
secondary ri s stance ; Curve a d, that due to primary resistance ; and Curve a e Is

the Curve of total Drop.

Fio. 202.—Secondary Drop Curves of 6,500-watt We2tinghouse Transformer.

defined, as in Fig. 202, by the extremities of these ordinates

is called the secondary terminal volt curve, and it shows

in a graphical manner the gradually diminishing secondary

terminal potential difference as the transformer is loaded

up. This " secondary drop " arises from two causes. The

first is the loss of potential due to resistance, and the

second is the loss of secondary potential due to magnetic

leakage. Let the resistance of the secondary coil of the

transformer be represented by B,, and the secondary current

(mean-square value) be represented by (I2). Then E2 (I2)

is the loss of voltage due to secondary resistance. If the

primary terminal potential difference is kept constant, then,
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over and above the loss of secondary voltage due to the

resistance of the internal secondary circuit, there is a portion

of the secondary drop which is due to loss of voltage by the

resistance of the primary circuit, and, in addition to this,

the loss above mentioned, which is due to magnetic leakage.

^Furthermore, the secondary drop is to a considerable extent

dependent, as will be explained presently, upon the form of

the curve of primary terminal potential difference. Hence

the difference between the potential difference of the secondary

terminals of the transformer at no load and full load, primary

potential difference being constant, is dependent on four

things, viz., upon—

(1) The resistance of the primary circuit ;

(2) The resistance of the secondary circuit ;

(3) The magnetic leakage of the transformer as affected by,

(a) Its construction.

(6) The form of the curve of primary terminal poten

tial difference.

The effect called the magnetic leakage in a transformer

may be generally described as follows : The primary current

^creates in the iron core a certain total induction, or in usual

language creates a certain number of lines of induction in the

.core which are linked with the primary circuit. The mag

netising effect of the secondary current is at any instant

opposed to that of the primary, and hence creates an induction

in the core in an opposite direction. The resultant, or actual

induction in the core at any place is due to the difference of

the opposed magnetising forces acting on the core. When

the transformer has its secondary circuit open the magnetic

induction in the core is that due to the primary current only,

which is then generally called the magnetising current. When

the secondary circuit is closed and a secondary current produced,

the rise of induction in that part of the core enveloped by the

secondary circuit is delayed, and its maximum value is

reduced. The simplest way in which the effect of increasing

the secondary current of the transformer can be regarded is as

follows : Let us denote by the letter Zi the maximum value

of the total magnetic induction in the core which would be

produced by the primary current if it acted alone, and by Z,

the same due to the secondary current, these values being

the inductions just within that part of the core enveloped by
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the primary and secondary coils respectively. The whole of

the induction Z, which is linked with the primary coil turns

is not, however, linked with the secondary. Let a fraction, say

/8 Z„ of this primary induction escape linkage with the secon

dary coil, and a similar fraction, say f3 Z2, of the secondary

induction will escape linkage with the primary coil. Then the

total induction linked with the primary coil is 7ii - Z2 (1 - f3),

because the induction caused by the primary current is opposed

in direction to the induction caused by the secondary current,

and the inductions, like the two currents, are opposite in phase

and reach their maxima nearly coincidently. Also, for the

same reasons, the total induction linked with the secondary

circuit is

Z,(l-0)-Zt.

/8 is called the coefficient of leakage.

The value of the total induction linked with the primary

circuit is therefore the product of the number of primary

turns N2 and the resultant induction Zi - Z2 (1 - and,

similarly, the value of th3 total induction linked with the

secondary circuit is given by the product of the number of

secondary turns N2 and the resultant induction Zi (1 - /?) - Z2.

Hence we have the relation,

The total linkageof primary circuit"

and induction traversing it — N, {Z, - Z2(l -/3)} =,p

The total linkage of secondary' (1 -(3) - Z2}

circuit and induction traversing it J

It will be shown presently that this fraction T represents

the ratio of the mean-square value of the primary terminal

potential difference to that of the secondary terminal potential

difference.

This ratio, which is denoted by T, is called the transforma

tion ratio of the transformer. Since the difference between

Z, and Z2 remains nearly constant as Zt and Z2 increase, it is

easily seen that the transformation ratio increases as Zt and Z2

increase, subject to the condition that Zi— Z2is nearly constant

at all loads.

Hence, if the mean-square value of the primary electro

motive force is kept constant, that of the secondary potential
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difference decreases as the currents, and therefore the

inductions, in the core increase, and this effect is called the*

" secondary drop."

The predetermination of the magnetic leakage of a trans

former is a matter of some difficulty, and can only be antici

pated in certain limited cases. We can obtain the relation

between the leakage drop, the resistance drop, and the

total drop if we assume an approximately simple periodic

variation of the electromotive forces, currents and inductions,

as follows :—

Let Rj be the true resistance of the primary circuit and

R, that of the secondary circuit of the transformer, and let S-

be the cross-section of the magnetic circuit or core. Let N,

be the number of primary turns, N2 the number of secondary

turns, and o stand for the ratio of Nj to N2. Let 6, be at any

instant the induction density in that part of the core enveloped

by the primary coil, and b.t that part enveloped by the secon

dary coil; the difference between these inductions may be

called the density of the leakage of induction, and be denoted

by b. Hence

b = b1- i2.

In other words, if S is the cross-section of the core, then

S b = S 6, - S £»2 and S b represents that part of the induction

linked with the primary coil which is not linked with the

secondary coil. If ej is the primary terminal potential diffe

rence at any instant, and e2 that of the secondary terminal at

the same instant, and i, and i2 the currents at the same

moment, then, by fundamental equations, we have

e^R^ +SN^ (146)

ana O^R^+ ^+SN2^l . . . (147)

ill t

N
Let us write —-1 = a and b = b1-b2;

we have by elimination from the fundamental equations tho

result

fL + ^ + B.s-B^-SN.l*. . . (148)

a a at
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If «i varies in a simple periodic manner so that ei = E, sin p t,

then, since e2 is always opposite in phase and similar in form

to vv we must have

eg= - E2 sin pt.

Moreover, when the transformer is fully loaded, the currents

t, and i2 are in step with the electromotive forces ^ and

but ti differs 180deg. in phase from

Hence *i = i, sin p t

t, = - 12 sin p t.

We can also write 6 = - B sinp t, because the leakage b is deter

mined by, and is in step very nearly with, the secondary

current. Hence, by substitution of the above values in the

equation (148) we arrive at the equation

(^L - E2 - Ri Ii - E^1) sin p t - - S N2p B cos pt.

The quantity S N2p B cos is the instantaneous value of the

potential difference of the secondary circuit lost by leakage—

that is to say, it is the measure of the amount by which the

secondary terminal potential difference would be increased if

there were no leakage. Hence the left-hand side of the above

equation represents the same thing. The factors which mul

tiply the sin pt and cospt respectively in the above equation

give, therefore, the maximum value of the " leakage," and there

fore, when divided by V2, represent the mean-square value.

Hence the quantity (^i -E2-R2I2— Rl?l^-l^, or, which

comes to the same thing, the quantity

(1 EL- E2-R I2 1 I,\

represents the mean-square ( ^mean2) value of the loss of

potential difference of the secondary circuit due to magnetic

leakage when the potential difference is measured in volts.

mu • • E, E, I, L
The quantities —j^ —j^ —j= represent the magnitude

of the currents and potentials as read in alternating-current

p p
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ammeters and voltmeters. We may denote these mean^square

values by the symbols (Ei), (E2), (Ii), (I2), and the values

•which these mean-square potential differences and currents

have at full and at no secondary load by the symbols (Ei),,

(E2)„ (E,),, (E2)0, &c.

The total loss of secondary terminal voltage between full

and no secondary load will be given by the difference between

the values of the expressions

|1 (E^-^V-R, (I,),-1-!^),)

and \l (EJo - (E2)0 - R2 (I2)0 - 1 (I,)0} .

la a I

The value of (!,)„ is, of course, zero.

If the primary terminal potential difference is the same at

no load as at full load, we have for the secondary drop due to

magnetic leakage the expression

(E,)0 - (E2)r - (R2 (I2), + - R, (I,)/ - - Ri (Ii)0) • (149)

V a a )

The secondary terminal volts at full load being denoted by

(Ei)/, and that at no load by (E2)„, we see that the quantity

(E2)0— (E,), represents the total secondary drop due to all

causes. The quantity

{R1(I2)/+iR1(I])/-!R1(I1)0} . . (150)

therefore represents that part of the drop due to the resistance

of the primary and secondary circuits.

Hence we have the following rule for determining the drop

due to magnetic leakage :—Add together the product of the

secondary resistance and secondary current and - multiplied

a

into the product of primary resistance and primary current,

after deducting from the last value the primary current at no

load. Subtract this sum from the total observed drop, and

the remainder is the secondary potential difference due to

magnetic leakage.

Testing in this way a number of transformers, the author

found that where the primary and secondary circuits were
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intermixed, the magnetic-leakage drop was small, but that

where the primary and secondary circuits were separated, and

in each consisting of one coil only, the magnetic leakage drop

was large.

In the diagram in Fig. 202 are shown three curves, by which

the three sources of secondary drop have been distinguished,

the lines ac, ad showing the curves of drop due respec

tively to the primary and secondary resistance, and the curve

a e showing the total drop.

In designing a transformer, it is not permissible to purchase

small core loss at the expense of large secondary drop. In a

proper specification for a transformer a limitation should be

put upon the amount of secondary drop allowed, and it is

usual to express it as a percentage of the normal potential

difference or voltage of the secondary circuit when the trans

former is unloaded.

It is advantageous to so arrange the winding of the

secondary circuit that if the drop is, say, 2 per cent., and

the secondary-circuit voltage is 100, that the transformer shall

give 101 volts terminal pressure at no load, and 99 volts at full

load. In this way the full drop is divided and is not felt so

much in working on 100 volt lamps as if the transformer were

wound to give 100 volts at no load and 98 at full load.

§ 9. Effect of the Form of the Curve of Primary Electro

motive Force in the Transformer Efficiency and Currents.—It

has generally been assumed by many of those who have written

on the subject of the alternate-current transformer that the

efficiency, power factor and secondary drop were characteristics

of the transformer only. It has already, in previous sections,

been suggested that the form of the curve of primary potential

difference or primary electromotive force had a considerable

effect in modifying the value of these quantities, and it will

now be necessary to examine the matter a little more in detail.

We will consider in the first place the effect of the form of

primary terminal potential difference upon the form of the

current curves and magnitude of the mean-square value of the

currents.

The widely-different forms which the primary current of a

transformer on open secondary circuit may have is shown in

pp 2
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the diagrams in Figs. 203 and 204. Fig. 203 shows the

primary-current curve of a small transformer taken off a Ganz

alternator having a peaked curve of electromotive force. The

curves in Fig. 204 show the primary electromotive force and

primary-current curves of the same transformer taken from a
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Flo. 204.—Primary Current Curve II and Primary Electromotive Force

Curve I of the same Transformer taken off Wechsler Alternator.

Wechsler alternator. These and the following curves are

from an interesting Paper by Dr. G. Roessler.*

* " Das Verhalten von Transformatoren unter den Einflusse von.

Wechselstromen Verschiedenen Periodischen Verlaufs." A Paper read at

the third annual meeting of the Verband Deutscher Electrotechniker,

Munich, July 6, 1895. See also The Electrician, Vol. XXXVI., 1895, p. 150.
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Not only do the forms of the current curves differ when

taken with different-shaped electromotive force curves, but if

the primary electromotive force is kept at the same mean-

square value, and if the transformer is gradually loaded up, the

mean-square values of the primary current corresponding to

given secondary currents will differ if the curves of primary elec

tromotive force have different forms. This is shown in Fig. 205,

where the ordinates represent the mean-square values of the

secondary and primary currents of one and the same trans

former, taken off a Ganz and Wechsler machine respectively.
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Fia. 205.—Current Diagram of a certain Transformer. Curve I, Primary

Current taken with Ganz Alternator. Curve II, Primary Current taken

with Wechsler Alternator. Curve III, twice value of Secondary Current.

Transformation ratio of Transformer=2:l.

It is thus seen that the peaked electromotive force curve gives

a primary current with smaller mean-square value than a

rounded curve.

The most important fact, however, is that the iron core loss

in the transformer, and therefore its efficiency, is sensibly

affected by the form of the curve and primary electromotive

force. In Fig. 206 are shown two curves, the ordinates of

which represent the total power given to a transformer for

.certain values of the secondary output represented by the
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absciss®, the transformer being tested in the two cases on

the Ganz and Wechsler alternators.

There is between the two power lines a nearly constant

difference of ordinate, showing that the cause is to be sought

in the difference between the iron core losses in the two cases.
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Fio. 206.—Energy Diagram of Transformer. Curve I, Ganz Alternator.

Curve II, Wechsler Alte nator.
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Flo. 207.—Efficiency Curve of Transformer. Curve I taken on Ganz

Alternator. Curve II taken on Wechsler Alternator.

It follows that both the efficiency curves and power-factor

curves of the transformer plotted in terms of the secondary

output will differ if the form of the primary electromotive

force curve is varied.

In Figs. 207 and 208 are shown the forms of the efficiency

and power-factor curves of the same transformer when taken

off the Ganz machine with peaked electromotive force curve

and the Wechsler machine with a rounded curve.

We find also that the secondary drop is considerably affected

by the form of the primary electromotive force curve. In
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Fig. 209 are shown the secondary drop curves of the same

transformer taken on the above-mentioned alternators, the

primary electromotive force having in each case the same

constant mean-square value.

It is clear, therefore, that a peaked electromotive force carve

of the type given by the Ganz alternator causes a less iron

core loss but a greater magnetic leakage than does a curve of

a more rounded form similar to that of the Wechsler machine.

Numerous tests and experiments made by the author with the

Mordey and Thomson-Houston alternators had established this

fact prior to the appearance of the Paper by Dr. G. Koessler,
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Flo. 208.—Power Factor Curves of a Transformer. Curve I takeu on

Ganz Alternator. Curve II taken on Wechsler Alternator.
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Fiu. 209.—Curve of Secondary Drop of Transformer. Curve I taken on

Ganz Alternator. Curve II taken on Wechsler Alternator.

from which the above transformer diagrams, taken off the Ganz

and Wechsler alternators, are copied. It is generally true that

a sharp-peaked electromotive force curve gives a less hysteresis

loss in the iron than does a rounded or sine electromotive

force curve having the same mean-square value.

§ 10- The Form Factor and Amplitude Factor of a Periodic

Curve.—The above differences are closely connected with the

magnitude of the formfactor of the curve of primary electro

motive force. This quantity is denned as the ratio of the
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square root of the mean of the squares of the equispaced

ordinates of a curve to the true mean value of the equispaced

ordinates. If we denote the first function, viz., the mean-

square value, by the letters R.M.S. (root mean square), and

the second function by the letters T.M. (true mean), then the

form factor of any single-valued periodic curve is defined as

follows:—

The form factor _ The R.M.S. value ofequispaced ordinates _ ,

The T.M. value of equispaced ordinates

Take, for instance, in the case of a simple sine curve, the

R.M.S. value of the equispaced ordinates is equal to the value

of the maximum ordinate divided by JZ. The T.M. value

of the equispaced ordinates is equal to the value of the maxi-

2
mum ordinate multiplied by —

Since _L= 0-707 and? =0-687,

'v/2 9

the ratio of the R.M.S. value to the T.M. value for a simple

. 0-707 , ,
Bine curve is ^—= 1-1.

For several other simple forms of curve the form factor,

R.M.S. value, and T.M. value are as below, the maximum

ordinate in each case being taken as unity :—

T.M. value of K.M.S. value

Curve. ordinate as of ordinate as Form factor

fraction of max. fraction of max. /•

ordinate. ordinate.

0637 0707 11

0-7854 0-835 1-063

0-5 0-58 116

1-0 1-0 1-0

Parabola with axis

0785 0816 1-039

Two semi - parabolas

0666 0-730 1-096

meeting at a cusp.. 0-33 0447 1-35

The form factor of any curve can easily be obtained geome

trically as follows : On one side of a straight line (see Fig. 210)

plot a wave diagram of the curve, and on the other side of the
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dine plot a polar diagram of the same curve, with its pole on

the line of reference. Then, by the proposition on page 198,

the radius of the semicircle, so drawn that its area is equal to

the area of the polar curve, is the R.M.S. value of the

ordinates, and the height of the rectangle described on the

base line, so that its area is equal to that of the wave curve,

gives the T.M. value of the ordinates. Hence the ratio of the

radius of the semi-circle to the height of the rectangle is the

form factor of the curve, which is represented by the wave or

polar diagram.

 

Fio. 210.

This form factor is an important quantity in the design of

alternators, and by suitably proportioning the width of arma

ture coils and field poles the form factor can be varied within

wide limits.

It is evident that for the same R.M.S. value the form

factor will be greater if the curve is a sharp-peaked curve

than if it is a rounded curve like a semicircle or sine curve.

If some of the ordinates of any curve are increased so as

to form a peak, this operation, geometrically considered,

increases the R.M.S. value faster than it increases the T.M.

•value, and so increases the form factor of the curve.
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The amplitude factor of a periodic curve is defined as the

ratio between the root mean-square (R.M.S.) value of the

ordinates and the value of the maximum ordinate, or

The amplitude) _ R.M.S. value of equispaced ordinates _

factor ) Value of maximum ordinate ^'

For the same R.M.S. value the amplitude factor is less for a

sharp-peaked curve than for a rounded or fiat curve.

These two factors—the form factor / and the amplitude

factor g—are important quantities in the case of periodic curves.

§ 11. General Analytical Theory of the Transformer and

Induction Coil.—It remains, then, to indicate the manner in

which the various periodic and fixed quantities concerned in

the action of the transformer are connected and how they can

be determined.

For convenience we may collect together the symbols

employed to represent the various quantities with which

we are concerned.

«! = The value of the primary terminal potential dif

ference or primary E.M.F. at any instant.

Ej = The maximum value of the same.

mej = The true mean (T.M.) value of ej during the

period.

J m e22 = The root-mean-square (R.M.S.) value of ej during

the period.

are the same quantities for the secondary terminal

potential difference.

Rj = The resistance of the primary circuit.

R2 = The resistance of the secondary circuit.

Nj = The number of turns on the primary coil.

N2 = The number of turns on the secondary coil.

6j = The density of magnetic induction in the core

inside primary coil.

Bj = The maximum value of induction density bv

Zj = The total induction produced in the core due to

primary coil.

62, B2, Z2 are the same quantities for the secondary circuit.
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i, = Primary current at same instant that the primary

terminal potential difference is ev

Ii = Maximum value of tv

m . ii = True mean value of i, during the period.

JmiJ = Root-mean-square value of ii during the period.

t2, 12, m i2, Jm it are the same quantities for the secondary

circuit.

/ii = Magnetic force due to the primary current iv

Hi = Maximum value of hv

/i., = Magnetic force due to the secondary current.

H2 = Maximum value of hr

X = Total power loss in watts in the iron core.

Y = Hysteresis loss in watts in the iron core per cubic

centimetre.

U = Eddy-current loss in watts in the core per cubio

centimetre.

V = Total volume of the iron core.

S = Cross-sectional area of iron core.

I — Mean length of magnetic circuit.

/"=The form factor = R.M.S-5-T.M. value.

,</ = The amplitude factor = R.M.S.t- maximum value.

n — The frequency.

P = 2ir n = the angular velocity.

T = periodic time - n-1.

Then the fundamental equations are as follows :—

When the secondary circuit is open and the transformer,

therefore, at no load, we have

e,=R1i1 + SN14^ (151)

at

The above equation holds good also when the transformer

is loaded up, provided we then interpret by to mean the

resultant induction density in the iron core as affected by the

current in the secondary coil.

In all good modern closed iron circuit transformers the

value of Ri »i is so small at all times during the period, when

compared with ev that we may without sensible error write

Hence eldt = &Xldbl . . , . . (152)



588 TEE INDUCTION COIL AND TRANSFORMER.

If we integrate this last equation throughout one-quarter

period we have already seen that

T

SNlB^peldt = m.e1 ?,

but T--.

n

Hence 4SN1B1« = m.«1 (158)

But if/ is the form factor of the curve of primary potential

difference, then

/=-^3 (154)

i/i . ei

Therefore, from equations (158) and (154), we have

^T^*= 4/nN18B1, . . . (155)

which gives us the R.M.S. value of the primary potential

difference in terms of the maximum value of the induction

density in the core within the primary coil.

If the secondary circuit of the transformer is closed, and a

secondary current is being taken from the transformer, then

the currents, inductions and potentials are determined by the

two equations,

e^R^ii + N, Sli^t (156)

and 0 = R2t2 + ^2rN2S^ (157)

If the secondary circuit is open, and hence R2 i2 equal to zero,

and Ri ii practically negligible in comparison with N(S ^t, we

may write (156) and (157) 1

and e„ = -f-N, S —1,

at

and, therefore, as already shown,

m.«1 = 4«N1SB1, . . . . (158)

and m .c2 = 4hN2SB2 (159)
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In the previous section we have shown that the total

induction SBj linked with the Nj primary turns may be

expressed as (Zj - Z2 + Z2 B), where Zj is the maximum value

of the total induction due to the primary current alone, and

Z2 that due to the secondary current alone.

Hence, as before, writing Z1 - Z2 + Z2 B for S B1, and

Zj - Z2— Zj B for S B2, we have, by substitution in equations

(158) and (159), the results

m.e1 = inii1 (Z^Z2 + Z.,0),

and «i.«2 = 4nN2(Z1-Z2-Z1/8).

It is an experimental fact that the curve of secondary

potential is an exact copy of the curve of primary potential at

no load, and very nearly also at any load ; hence the form

factors of the curves of primary and secondary potentials are

the same. Writing/ for this form factor we have

Jm.e-f =/m . ej

and Jm . e22=fm . ev

Hence the transformation ratio of the transformer T is given

by the equation

T_ V^_N2(Z1-Z2-Z1^) .

N^Zi-Zg + Z2/S)- ' * K '

Accordingly we see that the transformation ratio of the

transformer is never exactly equal to the ratio of the turns

unless the leakage coefficient B is zero, and that the trans

formation ratio diminishes as Z1 and Z2 increase with load,

because their difference Zj—Z2 always remains approximately

constant at all loads, and is the mean core induction.

The leakage coefficient B is a function of the form factor/,

such that B is greater as / is greater. Thus, peaked primary

potential curves give greater secondary drop than rounded

potential curves, even if they have the same R.M.S. value.

From equation (155) we see that the maximum value of the

core induction B, either within the primary or secondary coil,

is smaller in proportion as the form faotor / is greater, if the

R.M.S. value of the primary potential remains constant.
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Hence the maximum value B of this core induction is less

for pointed or peaked primary electromotive force curves than

for rounded or flat curves, the R.M.S. value of the primary

-terminal potential difference being constant.

This has been experimentally proved by Dr. Itoessler in his

researches on the influence of the form of the potential and

'current curves on transformer action.

In Fig. 211 are shown three curves. The curve marked I

is the magnetisation curve of a small transformer measured

with the ballistic galvanometer in the ordinary way. The curve

marked II is the curve of induction as obtained with alter

nating currents, using a Wechsler alternator, and the curve

marked III that obtained in the same way, bat by the use of

16,000

14,000

 

8 IS 16 SO

Magnetising Force.

Fio. 211.

fl, Ganz alternator. The values of the maximum induction

B for the alternating currents are obtained from the primary

. electromotive force curves, as already described.

It is seen that the curves of induction as obtained by the

alternating-current machines lie below that obtained by the

continuous currents and ballistic galvanometer.

In other words, for a given induction, the magnetising force

required is greater with alternating than with continuous

currents. There are two reasons for this : first, the existence

of eddy currents in the core, which, acting like smaller closed
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secondary currents, increase the primary current, and, second,

the existence of magnetic leakage when alternating currents

are used. The curves show, however, that when the peaked

form of primary electromotive force curve given by the Ganz

machine is used, the induction corresponding to a given mag

netising force is less than when the Wechsler machine with

rounded electromotive force curve is employed, the sameR.M.S.

values of the primary electromotive force being employed.

The root-mean-square values of the primary and secondary

currents, viz., . if and Jm . if, are connected with the

maximum values of these variables by the equations

Jm.i\=g I,

and Jin . if = g I2,

where y is the quantity already called the amplitude factor.

It has been shown that for peaked or pointed curves the

amplitude factor is smaller than for fiat or rounded curves.

Hence for the same root mean-square value of the primary

and secondary currents the maximum values of these quantities

are greater for peaked current curves than for rounded or flat

curves. Hence the inductions created by these currents

respectively are greater—that is, Zt and Z2 will be greater for

peaked current and potential curves than for fiat or rounded

curves.

Accordingly, whilst the respective primary and secondary

inductions Z1 and Z2 are greater for electromotive force curves

with large form factors, their difference, Zl - Z„ which is the

resultant core induction B, is less. Hence we see that the

secondary drop, or increase of transformation ratio produced

by loading up the transformer must be greater when the

primary electromotive force curve is peaked than when it is

rounded, the same mean-square value of this last being

preserved constant.

We have, then, to discuss the form of the curves of primary

current under variations of form factor of the electromotive

force curve.

If /i, is the instantaneous value of the magnetising force due

to the primary current iv then
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and on open secondary circuit we have ^

1 11 1 dt

Hence «1 = R1i1 + N1 S,!^! .^1,

1 11 1 1 d /«! dt

. . <m

This last equation is true for all forms of primary electro

motive force curves.

If the permeability of the iron was constant, the value of

^1 would be constant and equal to /*, but in practice it is not

dhi . db.

found to be constant. We see, however, that is the slope

of the geometrical tangent to the hysteresis curve at the

instant considered—that is, it is the trigonometrical tangent

of the angle which the geometrical tangent to the hysteresis-

curve makes with the positive direction of the axis of time,

and this is not found to be a constant quantity as we travel

round the hysteresis curve. The value of ^3, however, is not

a/ii

greatly affected by the form of the curve of e^. Hence, for

curves of primary electromotive force which have a peaked

form, and therefore a large maximum value, the value of

or the slope of the current curve, will be greater than for

d t

flatter curves of electromotive force. This is seen to be the

case by reference to Pigs. 208 and 204, which show the no-

load primary-current curves and primary electromotive force

ourves of the same transformer tested by Dr. Roessler on the

Ganz and the Wechsler alternator.

The exact predetermination of the form of the primary

ourrent at no load from the curve of primary electromotive

force is, at any rate as yet, an impossible matter. It would

be an easy thing to predetermine if the hysteresis curve

always had the same form, but as this last is affected to

a considerable extent by variations in the quality of the

iron and of the reluctance of the magnetic circuit, it is
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not of much use to make assumptions which are not justified

in practice.

A knowledge of the power factor of transformers of any

particular type will always enable us to make an approximation

to the value of the magnetising current if the total power

taken up in the core is known and the mean-square value of

the primary electromotive force. For if X is the total power

taken up in the core at no load, and ef, if are the

E.M.S. values of the primary electromotive force and current,

and F is the power factor, then F = .—— , from

which Jm . if can be obtained.

It is seen, however, that the primary current curve at no>

load is always a more irregular curve than the curve of

primary electromotive force, and that for the same R.M.S-

value of the primary electromotive force the R.M.S. value of

the primary current at no load (the magnetising current) is

less for pointed or peaked potential curves than for fiat

curves.

§ 12. Iron Core Loss in Transformers and Induction Coils.—

It has already been explained that two distinct causes of

energy dissipation exist in the iron cores of transformers and

induction coils—viz., the magnetic hysteresis loss and the

eddy-current loss. The former of these is not affected or

diminished by any amount of lamination of the core, but

the latter can be reduced to a very small percentage of the

total loss by constructing the core of iron plates of thickness

not greater than 0"014 inch, the plates being separated from

each other by very thin paper, or a layer of paint or varnish.

In the chapter in the Second Volume of this Treatise devoted

to the Construction of the Transformer, the various practical

details connected with the core construction, and the pre

determination of the core loss for plates or wires of given size

are considered.

Supposing, however, that the core is properly laminated,

and in planes parallel to the lines of induction in the core,

there will still be a certain dissipation of energy, by reason of

eddy electric currents set up in the iron as the induction

changes its direction. If we consider a small circuit described

QQ
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anywhere in the iron plate, in a plane perpendicular to the

lines of induction, then, if e is at any instant the electromotive

force set up in this circuit by reason of the variation of the

induction through it, the mean rate at which energy is being

dissipated in this circuit must be equal to some constant,

multiplied by the value of the mean of the square of e. But

we have seen that if B is the maximum value of the induction

in the core, then the B.M.S. value of the electromotive force

of induction induced in the primary circuit is equal to the

value of the expression 4/Ni .n S B, where/ is the form factor

of the curve of electromotive force.

Hence the mean-square value (m.e2) of the electromotive

force of induction must be numerically proportional to/! k2 B2;

also the same holds good for the eddy-current electromotive

force and rate of energy dissipation, and the eddy current loss

per unit of volume in the core measured in watts must be

proportional to the product of some constant £ and the

quantity f-n- B2. In other words, the eddy-current loss will

be equal to £/2 m2 B2 watts per unit of volume of the core,

where / is the form factor of the curve of primary electro

motive force, n the frequency, and B the maximum value of

the induction.

Mr. Steinmetz has shown that the hysteresis loss in iron

cores can be represented by an arbitrary formula, expressing

the fact that the hysteresis loss per unit of volume of the

core is proportional to the product of a constant, the frequency,

and the maximum value of the induction raised to a power

very near to 1-6. Hence, if H is the hysteresis loss in the

core per unit of volume,

H = r, u B1*,

where 17 is called the hysteretic constant of the iron.

This law, although only an empirical one, deduced entirely

from observation, yet appears to be sufficiently exact to guide

practice within the limits of the range of induction density

employed in transformers.

Hence the total loss T in a transformer core of volume V

is given by the expression

T = V(i?nB10 + £jiV2B*). . . . (162)
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The eddy-current loss varies as the square of the maximum

value of the induction, and the hysteresis loss as the l-6th

power of the same.

Since the R.M.S. value ( J^TTf) of the primary electro

motive force has been shown to be related to B by the

equation

we can substitute for B, in equation (162), its value in terms

of v'iiie^i and we arrive at the equation

This last equation shows us that the eddy-current loss i.s

not affected by the form factor of the curve of primary electro-

 

MaxlInum Value of Core Induction.

Fio. 212.—Curve I taken with Ganz Machine. Curve II taken with

Wechsler Machine.

motive force, but that the hysteresis loss is affected by it,

because the form factor / appears in the hysteresis term of

the expression for T but not in the eddy current term.

Hence variation in the form factor of the curve of primary

electromotive force will alter the total core loss in the trans

former, and make it less in proportion as the form factor is

greater. This has been pointed out both by the author and

by Dr. G. Roessler, and is amply confirmed by experiment.

Hence the total core loss in a transformer is not an

absolute and fixed quantity, but depends upon the form of

the wave of primary electromotive force to a not inconsiderable

degree.

QQ2
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This dependence of the core loss upon the form factor of

the curve of electromotive force is shown by the results of

Dr. Roessler's experiments embodied in the diagrams in

Figs. 206 and 212. From Fig. 212 it will be seen that at

a given induction the core loss is greater when the trans

former is worked off the Ganz alternator than off the

Wechsler alternator ; and from Fig. 206 it is shown that for

the same B.M.S. value of the primary potential difference

the core loss is greater with the Wechsler than with the

Ganz alternator.

Broadly speaking, pointed or peaked potential curves give

rise to greater core loss than rounded or flat primary potential

curves.

In the Second Volume of this Treatise, we return to the

discussion of these matters, and enter into more details as

to the practical considerations to which they lead in the

Construction of the Induction Coil and Transformer.

End of Volumb L
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Note A. (See page 19.)

The Magnetic Force at any Point in the Plane of a Circular

Current.—The magnetio force at any point in the plane of a

circular conductor conveying a current may be found by an

elegant geometrical method due to Mr. A. Russell (see T/te

Electrician, Vol. XXXI., p. 284).

 

Fio. L

Let P be any point in the plane of a circular current, and

let F be the magnetic force at P due to a current of strength

i in the wire. Let d s be an element of length of the circle,

and let OR be the radius of the circle. Take any point R

on the circumference of the circle (see Fig. 1), draw the

diameter through 0 P, and at R draw a tangent to the circle.

Then draw the radius 0 R, and through P draw P N perpen

dicular to the tangent. Join PR. Let OP=-a, OR = R,

P R=r, P N and the angle R P N = <f,.
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Then, by Ampere's law, the magnetic force F at P due to the

element d s of the circuit at K is equal to — . Hence

J r* r

But }ids=iad <f>,

Jo r '
hence

and, since r = V R2 - a2 sin2 <\> - a cos 4>,

therefore,
1 v'R2- a2 sin2 <f> + a cos <f>

r R--a2

Hence, F-. * ?/ V'R2 - o2 sin* <f> d 4> + b^-j [ cos^rf^.

The second integral, taken between the assigned limits, is

zero. The first integral, f v'R2-a2sin2</>c£<£, is called an

' 0

elliptic integral of the second order, and represents the length

of the circumference of an ellipse which has 0 for its centre,

P for one of its foci and 2 R for its major axis.

Hence, if we describe an ellipse on the diameter of the

circle, with 0 as its centre and P as its focus, the magnetic

force F at the point P due to a current i in the circle is equal

to the value of gj t x the length of the circumference of this

ellipse.

In practice we can easily describe this ellipse by means of

two pins and a thread, and then measure the length of its

circumference with a measuring-wheel, such as is used for

measuring distances upon a map, or by laying a thread round

the ellipse and measuring its length.

In this way a practical measurement can be made of the

magnetic force due to a circular current at any point in its

plane.

Up to the limit of n =0-8 R, the length I of the circum

ference of the ellipse can be calculated approximately from the

formula—
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Note B. (See page 35.)

The Total Induction in a Circular Solenoid.—If we consider

a circular-sectioned ring to be closely wound over with turns

of wire, we obtain a circular solenoid.

Let a be the mean radius of the circular cross-section of

the solenoid, and let R be the radius of the circular axis of

the solenoid. The whole solenoid may be considered to be

resolved into elementary solenoids. Let d S be the cross-

section of one of these, and let x be the radius of the circular

axis of the circular elementary solenoid.

Let N be the total number of turns of wire on the ring.

unit of length.

The magnetic force in the interior of the elementary solenoid

is H, and H-4^NI—2NI

2tt x x

where I is the current in the solenoid.

Hence, if the medium is non-magnetic, the surface integral

of magnetic force is the measure of the induction. Hence the

magnetic induction in the interior of the elementary solenoid is

2 N I

—— d S. Hence the whole induction Q through the whole

solenoid is obtained by integrating this last expression over

the area of the solenoid, viz., ira2. Therefore between proper

limits , , r,
Q = 2Nirb.

J x

/d S
— taken over the circular cross-section can

be shown to be equal to 2w {R - VW - cr}>

and hence Q = 4w N I {R - VW^a*}.

This, then, is the expression which should be employed for

the total induction over the circular cross-section of the ring,

if the mean radius of cross-section a is not very small

compared with the radius of the circular axis R.

If £ is a small quantity, then, since

, 1 D /V , 1 a* , 1 a" , , \
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we have R - V'E'-a^sn nearly when - is small, and hence

i it a

or 47r times the current turns per unit of length of solenoid

multiplied by the area of cross-section of the solenoid ; and

for a very large thin circular solenoid the magnetic force in

the centre is 4it times the current turns per unit of length.

Note C. (See page 52. )

The Calibration of the Ballistic Galvanometer.—A galvano

meter consists generally of two parts—a magnet and a coil

of wire. . The magnet may be fixed and the coil suspended

and movable; or the magnet suspended and movable and

the coil fixed. If the arrangements are such that the movable

system when disturbed is brought to rest without vibration,

or with very few vibrations, the galvanometer is called a

damped or aperiodic galvanometer. If, however, the resistance

to motion is so small that the movable part, when disturbed

or made to oscillate, continues for a long time to oscillate with

very slowly decreasing amplitude of vibration, the galvano

meter is called a ballistic galvanometer.

If a body is suspended so as to vibrate about a vertical axis,

and if when given an angular displacement about that axis

it returns when released to its original position, and oscillates

about it, the body will in general execute vibrations of

decreasing amplitude. If I is the moment of inertia of the

body about that axis, and if p is the torque or couple which

tends to restore the body to its original position if displaced

round the axis by a unit angle, then, if at any instant the

angular velocity of the oscillating body is to, the equation of

motion, neglecting for the moment resistance to motion, is

dt r

where 6 is the angle of displacement at the instant when the

angular velocity is w.

d 6
Since u> = —, we have as the equation of motion,

dt
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and the time t of one complete vibration of the body will be

t=%!\/\.

This gives us the periodic time .of oscillation of the body,

assuming that the resistance to motion due to friction is nothing.

If there iB any small resistance to the motion, such as air

resistance or other causes of energy dissipation,' the amplitude

of the swings of the vibrating body will gradually decrease.

If the experiment is tried of setting the needle or coil of a

ballirtic galvanometer in motion, and observing the amplitudes

Xi, a.1,, #2, &c., of successive swings to the right and left, it

will be found that xv a-0, &c., form a descending geometrical

progression, and that the values of log xu log x2, log x3, &c.,

form a descending arithmetic progression.

If the difference of the logarithms of the amplitudes of two

successive swings, one to the right and one to the left, is

taken, this difference, denoted by A, is called the logarithmic

decrement of the galvanometer, and it will be found that this

difference is approximately constant for any two successive

swings right and left during the progress of the decay of the

excursions. That is, log xj - log x = A, also log x2 - log xs = A,

&c. Hence, if the logarithm of the amplitude falls off or

decreases by an amount A in the course of the passage of the

needle or coil of the galvanometer from the extremity of one

swing to the right to the extremity of one swing to the left, it

may fairly be assumed that, if the coil or needle is started from

rest by a sudden blow, the excursion Xa it would make if there

were no resistance is related to the excursion x, it does actually

make with the actual resistance existing by the relation

log ^-lOg*,-^,

or logw?<, = _,

a, 2

or ?°=ia7.

If the base of the logarithms is 10. or the logarithms are

-ordinary ones, then by the exponential theorem we have

10"=1+MH2r£3+&c-'
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where M is the modulus 2-803, or the multiplier for converting

ordinary logarithms into Napierian logarithms. M is the

logarithm of 10 to the base e, the base of Napierian logarithms.

A . A8
If - is small, we may neglect — and higher powers in com-

2 4

parison with -, and write

- A
102 =1+M , nearly.2 J

x A
Hence = 1 + M nearly,

x, 2

or x0 = z1(l + M nearly.

In other words, we can find what the excursion x0 would be

if there were no air resistance by multiplying the actual first

excursion x, by a factor ^1 + M called the correcting factor.

Hence, if the movable system of a ballistic galvanometer

receives a sudden blow or impulse when at rest, and if it then

makes an excursion the angular magnitude of which is xit and

if such excursion is slightly resisted by air friction, we can

eliminate the results of this and correct for the frictional resist

ance by multiplying ar, by the correcting factor ^1 +M^.

If the logarithmic decrement is measured directly in

Napierian logarithms, then the correcting factor is simply

K)

where A equals the Napierian logarithmic decrement, or the

logarithm of the ratio of one swing to the next.

Returning to the equation of motion of the needle or coil,

since we have at any moment

T <iii) a

let us consider a small magnetic needle of magnetic length /

hanging in the centre of a coil so wound that when a current

flows through the coil there is a uniform magnetic field due

to the current in all the region within which the needle lies.

Let the normal position of the needle when at rest be such
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that the magnetic axis of the needle is at right angles to

the direction of the field due to the current in the coil.

Then let M be the magnetic moment of the needle, H the

strength of the controlling field, the direction of H being at

right angles to the field due to the current in the coil.

Let the needle be set oscillating by a sudden impulsive

couple acting upon it when at rest. Let 6 be the angular

displacement of the magnetic axis of the needle at any

instant t.

The restoring couple acting on this needle at that instant

is M H sin 6, and, by the equation of motion,

Idci^MHsintftfe;

d t

liH. = MH sin 6.

d t

Hence,

de
but = 61.

dt

Hence Iwc/u» = MHsin0rf0.

Integrate the above equation from the instant when the

needle leaves its position of rest with a finite angular velocity

Q until it reaches a displacement 6 and has a zero angular

velocity. We have

lj° G,dm = ME.j°sindde,

or £Ifl' = MH(l-cos0),

= 2 M H sin2 6 '
9. '

therefore

 

If the impulse which starts the needle from rest with a

finite velocity is that due to the flow of a quantity of electricity

through the coil surrounding the needle, which flow is all over

before the needle has had time to move sensibly from rest, we

can obtain a relation between the quantity of electricity so

sent through and the excursion of the needle.

For let * be the current in the coil at any instant, and let

G be a constant depending upon the form of the galvanometer
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coils, such that 6 i is the magnetic field due to the current.

Then, since M is the moment of the needle, M G i is the whole

couple acting on needle, and the impulse of this couple is

M G f d t in a time d t. If the whole impulse is over before

the needle has had time to move, then the whole impulse of

the couple must be equal to the total gain of angular momen

tum I d <a taking place in the time d t.

Hence MGirft = Ida>;

but if dq is the quantity of electricity which has flowed

through the galvanometer coils in the time d t, we have

i=dq

> • dt

and M G * d t = M G d q = I d w.

But since the whole impulse is over before the needle has time

to leave its position of rest, we have, by integrating from w = 0

to w = fi, the equation

MGQ = Ifi,

where J2 is the angular velocity with which the needle leaves

its position of rest. But by equation (1),

9. = 2V sin - ;v I 2

therefore Q = VJ*? sin t

or Q = k sin -.

Hence we see that, when a quantity Q of electricity is dis

charged suddenly through the coils of a ballistic galvanometer,

the whole discharge being over in a very short time compared

with the period of free vibration of the needle, the quantity

of electricity is proportional to a constant, k, called the ballistic

constant, multiplied by the sine of half the angle of excursion

of the needle.

If the galvanometer has a logarithmic decrement X, which

is moderately small, say not more than 10 per cent., then to a

close approximation

Q = *sin£(l + *>
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To determine /; for any galvanometer, the easiest way is to

charge a condenser having a capacity of c microfarads to a

potential of v volts by placing it in contact with a battery of

known voltage, and then discharging this quantity c v micro-

coulombs through the ballistic galvanometer. If this quantity

c v gives a throw " 6, we have

Hence k is determined.

Such a calibrated ballistic galvanometer can immediately

be employed to measure a magnetic field. For if a loop of

wire having N turns is placed in a field of induction so that

the induction is linked with the circuit, and if the loop is

connected with the ballistic galvanometer, then on suddenly

withdrawing the loop from the field we shall get a " throw "

of the galvanometer which can be interpreted to mean so

much quantity in microcoulombs passing through the galvano

meter. Then, by the principles explained on page 81, the

total change in induction linked with the circuit is equal to

the product of the resistance of the circuit and the quantity

set flowing through it, or

Induction x linkages = resistance x quantity.

If induction is measured in microwebers—one weber being

108 C.G.S. lines or units of induction, and one microweber

therefore 100 C.G.S. units—we have the rule—

Microwebers x linkages = microcoulombs x ohms ;

and if one microweber of induction passing through the loop

linked once with this circuit, is suppressed, it will cause one

microcoulomb of electric quantity to flow through the circuit

if its resistance is one ohm.

In employing the ballistic galvanometer to measure mag

netic induction, it must be observed that the condition of

application of the above principles is that the whole change of

induction must be completed in a very short time compared

with the periodic time of the needle of the galvanometer.

To suggest, as is sometimes done, that the induction in the

field magnets of a dynamo can be measured by surrounding

e v 
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them with a loop of wire connected to a ballistic galvanometer,

and then short-circuiting or breaking the field circuit, is to

presuppose a most unlikely event, viz., that the time during

which such change of induction takes place is small compared

with the periodic time of an ordinary ballistic galvanometer.

If the galvanometer is one with a movable coil of the

d'Arsonval type, then it is better to standardize the galvano

meter by means of a coil of known length, turns and

resistance, placed in the axis of a long cylindrical coil, the

turns per unit of length of which are known. The reason

for this is that if the galvanometer circuit is always closed the

movement of the coil in the strong magnetic field induces

currents in the galvanometer which resist its motion. Hence

a powerful damping action comes into play from this cause

alone. To ascertain what induction change caused a given

galvanometer throw we proceed thus: —The standardizing

secondary coil should be joined up in series with the galvano

meter coil and with the secondary or exploring coil, and it

should be placed in the axis of a long coil, of which the

field can be calculated. If, then, under the influence of

an unknown induction linked or unlinked with the exploring

coil we obtain a galvanometer throw 6, we can find out

what, was the induction causing this throw by interrupting

or reversing a known current in the long standard field coil,

and thus linking or unlinking a known induction with the

standard secondary coil. If the current through the standard

field coil is altered until it gives a similar throw 6 on being

interrupted or reversed, we know at once that the value of

the unknown induction finked or unlinked with the secondary

or exploring coil which gives an equal throw, must be the

same as that calculable induction linked with' the standardizing

secondary coil.
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Magnetic Induction, Unit of, 30

Magnetic Leakage, 328, 572

Magnetic Leakage, Calculation of, 576

Magnetic Leakage, Causes of, 674

Magnetic Leakage, Rule for. 578

Magnetic Permeability, 27, 39

Magnetic l'ermealiility, Determination of.

52

Magnetic Potential, 24

Magnetic Reluctance, 40

Magnetic Researches, 56

Magnetic Resistance, 33

Magnetic Resistance, Definition of, 34

Magnetic Resistance, Specific, 34

Magnetic Saturation. 57

Magnetic Screening, 255

Magnetic Screening, Faraday's Experi

ments, 257

Magnetic Screeuiug, Henry's Experiments

on, 268

Magnetic Screening, Theory of, 270

Magnetisation. Curves of, 51

Magnetisation, Intensity of, 42

Magneto-electric Induction, 6

Magnetomotive Force, 24

Mathematical Sketch of Fourier's Theorem,

89

Maxwell's Mode of shewing Inductance, 116

Maxwell's Theory of the Electromagnetic

Medium, 344

Maxwell's Theory of Molecular Vortices,

339

Mean - Square and Maximum Value of

Periodic Current, Relation of, 137

Mean-Square Value of Ordinate to Curve,

103

Mechanical and Electrical (Juautities,

Analogies of, 126

Mechanical Illustrations of the Properties

of the Electromagnetic Medium, 342

Molecular Vortices, 339

Mordey's Alternator, Curve of E.M.F. of,

537

Multiple-valued Function, 82

Mutual and Self Induction, 207

Mutual Induction between Telephone Cir

cuits, 216

Mutual Induction of two Circuits, 173

Mutuil Induction of two Circuits, Theory

of, 232

Non-Inductive Circuit, 110

0pen Circuit Transformer, 515

0pen Magnetic Circuit, 38

0scillations of Leyden Jar, 375

0scillatory and Non-oseillatory Discharge,

379

0scillatory Discharge Experimentally In

vestigated, 381

Periodic Currents, 79

Periodic Currents, Graphic Representation

of, 139

Permeability, Curves of, 55

Permeability Magnetic, 27, 39

Permeability, Magnetic, at Differeut

Temperatures, 56

Permeability, Magnetic, corresponding to

various Magnetic Forces, 54

Polar Diagram for Periodic Currents. 190

Polar Diagram, Important Use of, 193

Power Curves, 150

Power Curves for Induction and Xon-

Inductive Circuits, 152

Power Factor, 206

Power Factor of Transformers, 566

Power Factor, Relation of, to Secondary

0utput, 571

Power Factors, Influence of the Form of

Curve of Electromotive Force on, 568

Power Factors of Various Types of Trans

formers, 567

Power of Periodic Current, Mean Value of,

147

Poynting's Theorem, 483

Propagation of Alternating Currents

through Conductors, 292

Propagation of Currents along Conductors,

488

Propagation of Electromagnetic Energy,

481

Ratio of Electromagnetic to Electrostatic

Units, 355

Rayleigh, Lord, Induction Bridge devised

by, 298

Rayleigh, Lord, Investigations on Induc

tion by, 289

Reactance, 146

Reaction of Closed Secondary Ciivuit on

the Primary. 271

Relation of Power Factor to Secondary

0utput, 571

Reluctance, Magnetic, 40

Repulsion, Electromagnetic, 307
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Resistance, Magnetic, 33

Resonance Phenomenon. 428

Rise of Current in Circuit, 132

Roessler's Experiments on Transformers.

580

Routing Coil, Electromotive Force of, 76

Rowland's Experiments on a Rotating

Electrified Disc, 357

Screening, Magnetic, 266

Secondary Drop, 572

Secondary Drop Curves of Transformer,

573

Self Induction, 207

Shunted Condenser in Series with Induc

tive Resistance, 187

Shunted Condenser, Theory of, 396

Side Flashing, 407

Simple Periodic Currents and Electro

motive Forces, 93

Simple Periodic Currents, Theory of, 79

Simple Periodic Curve, 83

Sine Curve, 88

Sine Curve, Mean-Square Ordinate of, 101

Sine Curve, Value of Mean Ordinate of, 98

Single-varied Function, 82

Slow and Quick Cycle Hysteresis, 65

Solenoid, Magnetic Force in Interior of, 20

Sonometer. 276

Specific Inductive Capacity, 350

Specific Magnetic Resistance, 31

Straight Conductor, Magnetic Forces near

a, 15

Strength of Magnetic Field, 15

Strength of Magnetic Pole, 14

Surface Integral of Induction, 28

Symmetry of Current and Induction, 329

Symmetry of Transformer Diagrams, 549

Table of Efficiencies of Various Trans

formers, 560

Tables of Specific Inductive Capacity, 351

Telegraphing to Moving Trains, 217

Telephonic Induction, 216

Temperature Effect on Hysteresis, 68

Test of Swinbourne Hedgehog Trans

former, 565

Test of a Westinghouse Transformer, 564

Theory of Air-Core Induction Coil, 174

Theory of Experiments on Alternative

Path, 413

Theory of Hertz's Experiments, 435

Theory of Induction Balance, 285

Theory of the Transformer, 586

Thomson-Houston Alternator, Curve of

B.M.F. of, 536

Time-Constant of Circuit, 131

Time-Con uant of Condenser, 184

Time of Quickest Discharge of Condenser,

366

Transformation Ratio of Transformer, 576

Transformer, Analytical Theory of, 586

Transformer Curves of Current and Elec

tromotive Force. 538, 539, 540

Transformer, Current Diagram of, 561

Transformer Diagrams, 543.

Transformer Diagrams, Description of, 535

Transformer, General Action of, 514

Transformer, General Analytical Theory

of, 586

Transformers, Classification of, 517

Transformers, Efficiency Curves of, 557

Transformers, Efficiency of, 555

Transformers, Power Factor of, 566

Transmission of Alternating Current*

through Conductors, 281

Trigonometrical Lemma. 161

Trowbridge's Experiments on Electro

magnetic Waves, 500

Trowbridge's Experiments on the Propaga

tion of Electrical Oscillations, 431

True Power given to Inductive Circuit, 157

Tube of Magnetic Induction, 43

Unit of Inductance, 122

Unit of Magnetic Induction, 30

Value of .Mean Ordinate Sine Curve, 98

Value of Mean-Square Ordinate of Sin*

Curve, 101

Variable and Steady Flow, 79

Variation of Hysteresis with Temperature,

70

Vector Potential, Explanation of, 363

Vector Quantities, 27

Velocity of Light. 358

Velocity of Propagation of Electromagnetic

Disturbances, 354

Velocity of Propagation of Electromagnetic

Waves experimentally determined, 511

Velocity of Propagation of Vector Poten

tial, 368

Wattmeter, Correcting Factor of, 168

Wattmeter .Measurement of Periodic Power,

166

Wattmeter, Theory of. 157

Wave Diagram for Periodic Currents, 192

Waves in Rectilinear Wires, 458

Westinghouse Transformer, Current Dia

gram of, 562

Westinghouse Transformer, Diagrams of,

544, 545

Willoughby Smith's Experiments on

Magnetic Screening, 262
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