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PREFACE.

THIS volume consists chiefly of reprinted articles, on Electro

statics and mathematically allied subjects, which originally

appeared at difl‘erent times during the last thirty years, in the

Cambridge Mathematical Journal, the Cambridge and Dublin

Mathematical Journal, Liouville’s Journal de Mathematiqnes,

the Philosqihical Magazinc, Nichol’s Cyclopwdia, the Reports of

the British Association, the Transactions or Proceedings of the

Royal Societies of London and Edinburgh, the Royal Institution

of Great Britain, and the Philosophical Societies of Manchester

and Glasgow. The remainder, constituting about a quarter of the

whole, is now printed for the first time from manuscript, which,

except a small part about twenty years old, entitled “ Electro

magnets,” has been written for the present publication, to fill

up roughly gaps in the collection. The original dates of the

republished articles, the dates of all new matter appearing as

insertions or notes in the course of those articles, and the dates

of the fresh articles have all been carefully indicated.

The article on Atmospheric Electricity, extracted from

Nichol’s Cyclqmzdia, was originally written at the request of

my late friend and colleague the Editor; and for the permission

to reprint it I am indebted to his son, my colleague, Professor

John Nichol, and to the Messrs. Gritfin, the publishers of the

Cyclopwdia.



vi PREFACE.

The present volume includes as nearly as may be all that I

have hitherto written on electrostatics and magnetism. I have

excluded from it electrical papers in which either thermo

dynamics or the kinetics of electricity is prominent. I intend

that, as soon as possible, it shall be followed by a collected re

print of all my other papers hitherto published.

I take this opportunity of thanking Professors Clerk Max

well and Tait for much valuable assistance ‘which they have

given me in the course of this work.

\VILLIAM THOMSON.

YACHT “ LALLA Rooxn,”

LAMLASH, Oct. 12, 1872.
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V

I.—ON THE UNIFORM MOTION OF HEAT IN HOMOGENEOUS

SOLID BODIES, AND ITS CONNEXION WITH THE

MATHEMATICAL THEORY OF ELECTRICITY.‘

[From Cambridge Mathematical Journal, Feb. 1842. Reprinted Philosophical

Magazine (1854, first half-year).]

[Since the following article was writtenfl' the writer finds

that most of his ideas have been anticipated by M. Chasles

in two Mémoires in the Journal de Mathe'maliqzws; the first,

in vol. 111., on the Determination of the Value of a certain

Definite Integral, and the second, in vol. V., on a new Method

of Determining the Attraction of an Ellipsoid on a Point with

out it. In the latter of these Mémoires, M. Chasles refers to

a paper, by himself, in the twenty-fifth Cahier of the Journal

de Z’Ecole Polytechnique, in which it is probable there are still

further anticipations, though the writer of the present article

‘ [Note added June I854].—This paper first appeared anonymously in the

Cambridge Mathematical Journal in February 1842. The text is reprinted

without alteration or addition. All the footnotes are of the present date

(March 1854). The general conclusions established in it show that the laws

of distribution of electric or magnetic force in any case whatever must be

identical with the laws of distribution of the lines of motion of heat in certain

)erfectly defined circumstances. With developments and applications con

tained in a subsequent paper (II. below) on the Elementary Laws of Statical

Electricity (Cambridge and Dublin lllathemalical Journal, Nov. 1845), they

constitute a full theory of the characteristics of lines of force, which have

been so admirably investigated experimentally by Faraday, and complete the

analogy with the theory of the conduction of heat, of which such terms as “con

ducting power for lines of force” (Exp. Res. 2797-2802) involve the idea.

1' [Note added June 1854].—This preliminary notice was written some

months later than the text which follows, and was communicated to the

editor of the journal to be prefixed to the paper, which had been in his

hands since the month of September 1841. The ideas in which the author

had ascertained he had been anticipated by M. Chasles, were those by which

. he was led to the determination of the attraction of an ellipsoid given in the

latter part of the paper. He found soon afterwards that he was anticipated

by the same author in an enunciation of the general theorems regarding

attraction ; still later he found that both an enuneiation and demonstration

of the same general theorems had been given by Gauss, whose paper ap

is A



2 Uniform Motion of Heat and [1.

has not had access to so late a volume of the latter journal.

Since, however, most of his methods are very different from

those of M. Chasles, which are nearly entirely geometrical, the

following article may be not uninteresting to some readers :—]

1. If an infinite homogeneous solid be submitted to the action

of certain constant sources of heat, the stationary temperature

at any point will vary according to its position; and through

every point there will be a surface, over the whole extent of

which the temperature is constant, which is therefore called an

isothermal surface. In this paper the case will be considered

in which these surfaces are finite, and consequently closed.

2. It is obvious that the temperature of any point without a

given isothermal surface, depends merely on the form and

temperature of the surface, being independent of the actual

sources of heat by which this temperature is produced, pro

vided there are no sources without the surface. The tempera

ture of an external point is consequently the same as if all the

sources were distributed over this surface in such a manner

as to produce the given constant temperature. Hence we may

consider the temperature of any point without the isothermal

surface, as the sum of the temperatures due to certain constant

sources of heat, distributed over that surface.

peared shortly after M. Chasles’ enunciations; and after all, he found that

these theorems had been discovered and published in the most complete and

general manner, with rich applications to the theories of electricity and

magnetism, more than ten years previously, by Green! It was not until

early in 1845 that the author, after having inquired for it in vain for several

years, in consequence of an obscure allusion to it in one of Mnrphy’s papers,

was fortunate enough to meet with a copy of the remarkable paper (“An

Essay on the Application of Mathematical Analysis to the Theories of

Electricity and Magnetism,” by George Green, Nottingham, 1828) in which

this great advance in physical mathematics was first made. It is worth

remarking, that, referring to Green as the originator of the term, Murphy

gives a mistaken definition of “ potential.” It appears highly probable that

he may never have had access to Green’s essay at all, and that this is the

explanation of the fact (of which any other explanation is scarcely conceiv

able), that in his Treatise on Electricity (Murphy’s Electricity, Cambridge,

1833) he makes no allusion whatever to Green's discoveries, and gives a
theory in no respect vpushed beyond what had been done by Poisson. All

the general theorems on attraction which Green and the other writers re

ferred to, demonstrated by various purely mathematical processes, are seen

as axiomatic truths in approaching the subject by the way laid down in the

paper which is now republished. The analogy with the conduction of heat

on which these views are founded, has not, so far as the author is aware,

been noticed by any other Writer.
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3. To find the temperature produced by a single source of

heat, let r be the distance of any point from it, and let 1; be

the temperature at that point. Then, since the temperature is

the same for all points situated at the same distance from the

source, it is readily shown that v is determined by the equation

"— T"&;-=A.

Dividing both members by 1-2, and integrating, we have

A

U: C

Now let us suppose that the natural temperature of the solid,

or the temperature at an infinite distance from the source, is

zero : then We shall have 0': 0, and consequently

A
=- l .v r ( )

4. Hence that part of the temperature of a point without an

isothermal surface which is due to the sources of heat situated

. do: ’ .
on any element, dwl’, of the surface, is R‘ , where r1 is the

1

distance from the element to that point, and p1 a quantity

measuring the intensity of the sources of heat at different

parts of the surface. Hence, the supposition being still made

that there are no sources of heat without the siu'face if 'v be the

temperature at the external point, we have

palm,’ (2),

7'1

the integrals being extended over the whole surface. The

quantity pl must be determined by the condition

7.7 = v, ‘ (3),

for any point in the surface, a, being a given constant tem—

perature.

5. Let us now consider what will be the temperature of a

point within the surface, supposing all the sources of heat by

which the surface is retained at the temperature '01 to be distri—

buted over it. Since there are no sources in the interior of the

surface, it follows that as much heat must flow out from the

interior across the surface as flows into the interior, from the

sources of heat at the surface. Hence the total flux of heat

from the original surface to an adjacent isothermal surface in

1}:
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the interior is nothing. Hence also the flux of heat from this

latter surface to an adjacent isothermal surface in its interior

must be nothing; and so on through the whole of the body

within the original surface. Hence the temperature in the

interior is constant, and equal to 1:1, and therefore, for points at

the surface, or within it, we have

first“

Now, if we suppose the surface to be covered with an attrac

tive medium, whose density at different points is proportional

d p,dm,' . . . . .

to p,, —?v— r1 will be the attraction, in the dlI‘BClZlOl'l of

the axis of as, on a point whose rectangular co-ordinates are

x, y, 2. Hence it follows that the attraction of this medium

on a point within the surface is nothing, and consequently p,

is proportional to the intensity of electricity in a state of equi

librium on the surface, the attraction of electricity in a state

of equilibrium being nothing on an interior point. Since, at

dw ' . .p‘r ‘ is constant, and since, on

I

the surface, the value of

that account, its value Within the surface is constant also, it

follows, that if the attractive force on a point at the surface

is perpendicular to the surface, the attraction on a point within

the surface is nothing. Hence the sole condition of equi

librium of electricity, distributed over the surface of a body,

is, that it must be so distributed that the attraction on a point

at the surface, oppositely electrified, may be perpendicular to

the surface.

6. Since, at any of the isothermal surfaces, 12 is constant, it

follows that —~% 7 where 'n, is the length of a curve which cuts

all the surfaces perpendicularly, measured from a fixed point

to the point attracted, is the total attraction on the latter point;

and that this attraction is in a tangent to the curve n, or in

a normal to the isothermal surface passing through the point.

For the same reason also, if p, represent a flux of heat, and not

an electrical intensity, —% will be the total flux of heat at the

variable extremity of n, and the direction of this flux will be
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along n, or perpendicular to the isothermal surface. Hence, if

a. surface in an infinite solid be retained at a constant tempera.

ture, and if a conducting body, bounded by a similar surface,

be electrified, the flux of heat, at any point, in the first case,

will be proportional to the attraction on an electrical point,

similarly situated, in the second; and the direction of the flux

will correspond to that of the attraction

7. Let —% be the external value of —% at the original

1

surface, or the attraction on a point without it, and indefinitely

near it. Now this attraction is composed of two parts; one the

attraction of the adjacent element of the surface; and the other

the attraction of all the rest of the surface. Hence, calling the

former of these a, and the latter 6, we have

do, __

Now, since the adjacent element of the surface may be taken

as infinitely larger, in its linear dimensions, than the distance

from it of the point attracted, its attraction will be the same as

that of an infinite plane, of the density p1. Hence a is inde

pendent of the distance of the point from the surface, and is

equal to 27rp1. Hence

d

-d_:'l =21rp, +b.

Now, for a point within the surface, the attraction of the adja

cent elernent will be the same, but in a contrary direction, and

the attraction of the rest of the surface will be the same, and

in the same direction. Hence the attraction on a point within

the surface, and indefinitely near it, is — 27rp1 + b; and conse

quently, since this is equal to nothing, we must have b: 2'n'p1,

and therefore d

-d—‘;'l=4-p1 (5)

Hence p, is equal to the total flux of heat, at any point of the

surface, divided by 41r.

8. It also follows that if the attraction of matter spread over

the surface be nothing on an interior point, the attraction on

an exterior point, indefinitely near the surface, is perpendicular

to the surface, and equal to the density of the matter at the

part of the surface adjacent to that point, multiplied by 411-.
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9. If 'v be the temperature at any isothermal surface, and p the

intensity of the sources at any point of this surface, which would

be necessary to sustain the temperature 11, we have, by (5),

_.d3=4,,,,

dn

which equation holds, whatever he the manner in which the.

actual sources of heat are arranged, whether over an isothermal

surface or not; and the temperature produced in an external

point by the former sources, is the same as that produced by

the latter. Also, the total flux of heat across the isothermal

surface, whose temperature is v, is equal to the total flux of

heat from the actual sources. From this, and from what has

been proved above, it follows that if a. surface be described

round a conducting or non-conducting electrified body, so that

the attraction on points situated on this surface may be every

where perpendicular to it, and if the electricity be removed

from the original body, and distributed in equilibrium over

this surface, its intensity at any point will be equal to the

attraction of the original body on that point, divided by 47r,

and its attraction on any point without it will be equal to the

attraction of the original body on the same point."i

If we call E the total expenditure of heat, or the whole flux

across any isothermal surface, we have, obviously,

d
E=—ffd—:1ldw,'.

10. Now this quantity should be equal to the sum of the

expenditures of heat from all the sources. To verify this, we

must, in the first place, find the expenditure of a single source.

Now the temperature produced by a. single source is, by (1),

v : 5g, and hence the expenditure is obviously equal to

' [Note added June 1854].—After having established this remarkable

theorem in the manner shown in the text, the author attempted to prove it

by direct integration, but only succeeded in doing so upwards of a year later,

when he obtained the demonstration published in a paper, “ Propositions in

the Theory of Attraction ” (Comb. rllath. Jour. Nov. 1842), which appeared

almost contemporaneously with a paper by M. Sturm in Lionville's Journal,

containing the same demonstration ; exactly the same demonstration, as the

author afterwards (in 1845) found, had been given fourteen years earlier by

Green]
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—€9 X 4m“, or to 41rd. If A : p1dm12, this becomes
(Ir

471171111012. Hence the total expenditure is f/4'rrp1dw12, or

—ffg?dw12, which agrees with the expression found above.

I

The following is an example of the application of these

principles :—

Uniform Motion of Heat in an Ellipsoid.

11. The principles established above afford an easy method

of determining the isothermal surfaces, and the corresponding

temperatures, in the case in which the original isothermal sur

face is an ellipsoid,

The first step is to find p1, which is proportional to the

quantity of matter at any point in the surface of an ellipsoid,

when the matter is so distributed that the attraction on a point

within the ellipsoid is nothing. Now the attraction of a. shell,

bounded by two concentric similar ellipsoids, on a point within

it, is nothing. If the shell be infinitely thin, its attraction will

be the same as that of matter distributed over the surface of

one of the ellipsoids in such a manner that the quantity on a

given infinitely small area at any point is proportional to the

thickness of the shell at the same point. Let a1, b1, 01 be the

semi-axes of one of the ellipsoids, a1 + 8a,, 121 + 8b,, a, + 801 those

of the other. Let also p, be the perpendicular from the centre

to the tangent plane at any point on the first ellipsoid, and

121 + 3p, the perpendicular from the centre to the tangent plane

at a point similarly situated on the second. Then 810, is the

thickness of the shell, since, the two ellipsoids being similar,

the tangent planes at the points similarly situated on their

surfaces are parallel. Also, on account of their similarity,

8 8 8 .
i=—ro‘5b-‘~=i=A 7 and consequently the thickness of the shell

“1 1 61 P1

is proportional to 121. Hence we have, by (5),

I do,
_E_J1Z=Pi=k1Pi (a);

where k, is a constant, to be determined by the condition a = 11,,

at the surface of the ellipsoid.

12. To find the equation of the isothermal surface at which the

temperature is o, + dol, let — do, : C', in (a). Then we have
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klplaln1 zg-r » or pldn1 :91, where 01 is an infinitely small con

stant quantity; and the required equation will he the equation

of the surface traced by the extremity of the line dnl, drawn

externally perpendicular to the ellipsoid. Let as’, g/, X be the

co-ordinates of any point in that surface, and m, y, z those of

the corresponding point in the ellipsoid. Then, calling a1, [81, 71

the angles which a normal to the ellipsoid at the point whose

co-ordinates are x, y, z makes with these co-ordinates, and

supposing the axes of 2:, y, z to coincide with the axes of the

ellipsoid, 2011, 2121, 201, respectively, we have

vdn '
a,“ l a: .2:

------—_~/ifl+lll+fl =(7Fp,dnl=a-1—,0,.

a1‘ b,‘ c,‘

,01, since 61 is infinitely small, and therefore also

ac’—:c=dn,cosa1=

, Z

OI'IE —.’D:

a1

a’— x; whence

In a similar manner we should find

3/=—Ty, 7 and z=-—Tz, ~

1+_1 1+_‘

bl’ cl“

\ !

But *;il~,+%l;+:—:,=1, and hence we have

13 lg z’!

i I

or as’ _y' 7 z

—a,=+za+bgfiel+cp+wl="

for the equation to the isothermal surface whose temperature

is 121 +01% and which is therefore an ellipsoid described from

the same foci as the original isothermal ellipsoid. In exactly

the same manner it might be shown that the isothermal surface

whose temperature is '01 + rlv1 + (1111', is an ellipsoid having the

same foci as the ellipsoid whose temperature is 'vl+dvl, and

consequently, as the original ellipsoid also. By continuing this
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process it may be proved that all the isothermal surfaces are

ellipsoids, having the same foci as the original one.

13. From the form of the equation found above for the isother

mal ellipsoid whose temperature is '01 + dvl, it follows that 01

or pld'nl is : aldal, where dot1 is the increment of a1, correspond

ing to the increment dn1 of n1. Hence, if a be one of the

semi-axes of an ellipsoid, a+da the corresponding semi-axis

of another ellipsoid having the same foci, dn the thickness at

any point of the shell bounded by the two ellipsoids, and p

the perpendicular from the centre to the plane touching either

ellipsoid at the same point, we have

dn a

25-; G)‘

14. All that remains to be done is to find the temperature at

the surface of any given ellipsoid, having the same foci as the

original ellipsoid. For this purpose, let us first find the value

of —%,n— at any point in the surface of the isothermal ellipsoid

whose semi-axes are a, b, 0. Now we have, from (a),

dv

—a; -- 41rkp,

where k is constant for any point in the surface of the isothermal

ellipsoid under consideration, and determined by the condition

that the whole flux of heat across this surface must be equal

to the whole flux across the smface of the original ellipsoid.

Now the first of these quantities is equal to 41rkf/pdw2 (do;2

being an element of the surface), or to 4vrl%ff51901192, since

%'~=%~ But //8_P(Zw2 is equal to the volume of a shell

bounded by two similar ellipsoids, whose semi-axes are a, b, c,

and a + 8a, b + 5b, 0+ 80, and is therefore readily shown to be

equal to 4vr8—aabc. Hence 47r~§g//8pdw2, or 47rk/fpdw2, is

a

equal to 42'n-2kabc. In a similar manner we have, for the flux

of heat across the original isothermal surface, 4211-2k1a1b1c1, and

therefore 4’1r’lcabc=4'1r‘lc1alb,c,,

. . b IWlllCll gives k: f“ I“ .

aLc
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Hence we have

_3%= ‘in-kl afb‘cc‘ p

15. The value of 1: may be found by integrating this equation.

T0 effect this, since a, b, c are the semi-axes of an ellipsoid

passing through the variable extremity of n, and having the

same foci as the original ellipsoid, whose axes are al, b1, 0,, we

have a'--a,'=b’-b,’=c’ -c,'-,

which gives b’=a’ —f2

c"=a’ —g' (d)

where f’=a,’—b,', g’=ar’—vr'

Hence (0) becomes

do __ a b c p _

'15- “k‘7/<a’—-}'"“3_—l/<a*—g'>

Now, by (b), (in =22, and hence

d ____4 k a,b,c,da _

. " " ‘Tower/‘Two

Integrating this, we have

d
v: —-41rk1a;b1C|/—W(a’_f,)z/(a,_g,)+a (C).

16. The two constants, k, and 0, must be determined by the

conditions '1: = 12, when a = a1, and v = 0 when a : oo ; the

latter of which must be fulfilled, in order that the expression

found for 1) may be equal to ffklp‘

7‘

w,’

1

17. To reduce the expression for 'v to an elliptic fimotion, let

us assume a =fcosec ¢ (f)

a1 =fcosec ¢, ’

which we may do with propriety if f be the greater of the two

quantities f and g, since a is always greater than either of

them, as we see from (d). On this assumption, equation (e)

becomes

——; Je_ ¢_ _41rklalblc‘l I

v_ f f0 N/(1—c"sin’<,b)+ U- f F‘ ¢+C

wh ../=£ _ere f (.9)
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18. Determining from this the values of C and k1 by the

conditions mentioned above, we find C: 0, and

_4_; fv1” , .

k‘ _ 41ra,b,c1F,, ¢, (h) ’

hence the expression for 1; becomes

Font

' Fc’i’l

19. The results which have been obtained may be stated as

follows :—

If, in an infinite solid, the surface of an ellipsoid be retained

at a constant temperature, the temperature of any point in the

solid will be the same as that of any other point in the surface

of an ellipsoid described from the same foci, and passing through

that point; and the flux of heat at any point in the surface of

this ellipsoid will be proportional to the perpendicular from the

centre to a plane touching it at the point, and inversely pro

portional to the volume of the ellipsoid

20. This case of the uniform motion of heat was first solved

by Lamé, in his Mémoire on Isothermal Surfaces, in Liouville’s

Journal de Mathe'matiques, vol. ii. p. 147, by showing that a

series of isothermal surfaces of the second order will satisfy the

equation div div div

agg'i'fi‘l'js—oa

‘0:221

provided they are all described from the same foci. The value

which he finds for v agrees with (e), and he finds, for the flux

of heat at any point, the expression

KA _ .

~/(#’—v’)~/(M’—P')'

or, according to the notation which we have employed,

41rk'1a,b,c1

vie-Were’

where v is the greater real semi-axis of the hyperboloid of

one sheet, and p the real semi~axis of the hyperboloid of two

sheets, described from the same foci as the original ellipsoid,

and passing through the point considered. Hence a2, :12, p2 are

the three roots of the equation

xi "Ii 2!

2+ u- ’ +u-g’

=1,
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01‘

"'—(f’+y’+w’+y’+z’)u'+{f‘y’+(f‘+51%’ +a’y’+f’z'}u—f‘9%’=°

Hence a’v'p’ =f’g’x',

and aev’+a’p*+v’p‘ =f’.q’+(f‘+11%’ +y’y2 +f'2’.

Therefore,

(a:_ v1)(afl_p!)=a4 _axva_agpq_y,pa+2a'yilla

a‘

=a*— {f’y’+(f’+y’)w’+y’y’+f’z'l + 2m‘;

=a‘-(a2—b')(a’—c')—(2a'—b'—c’)a:’—(a“—c’)y2

—-(a'—b’)z’+2(a'—b’) (cf-c’);

=a*-(a’—b")<a"—c*)-<b*+c">x'—(‘v-cw

-— (If-b’ z’+2b’c’ _"£._lz_:

b‘] c‘

=a4_(aa_ba) (aa_ca)___(bn+cs)xa_(aa+ca)ya_(az+b:)z2+2bac|

=asba+aaca+baca _ { (ba+c2)w1+(a2 +62)”: + (a: +b:)z1};

which is readily shown, by substituting for (12b? + use? + 621:2

S I 2 2 9 I

its equal (agb2 + (£202 + 62c?) +€—,+%), to be equal to ‘53,9 .

. d .Hence the expression for ——v , given above, becomes

dn

dv _ alblv1

‘2,; — 41"“ '55?!”

which agrees with (c).

Attraction ofa Homogeneous Ellipsoid on a Point within or

21. If, in (c), we put kl=?, the value of —% at any point

1

will be the attraction on that point of a. shell bounded by two

similar concentric ellipsoids, whose semi-axes are

an “IN/0'1’): aM/(1_e’2)1

and a1+da,, (a1+da,)~/(1—e'), (a1+da,)~/(1—e"),

where a’—b’=¢1l’—b1’=a|’e’ } (I),

and as_c|=a,:_cla=al2e/a

the density of the shell being unity. Now this attmction is in
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a normal drawn through the point attracted to the surface of

the ellipsoid, whose semi-axes are a, b, c. If we call a, B, 'y

the angles which this normal makes with the co-ordinates

m, y, z of the point attracted, we have

2
a‘ par:

008 a: =—— j

r! 3/, Z? a.

/(ad-17+}?and similarly, cos [3:133]- , cos 'y=fi.

bi

Hence, calling dA, dB, d0 the components of the attraction

parallel to the axes of co-ordinates, we have, from (0),

c2

dA=41rxZlZl p"da1 1

dB=411'3/p'da1 (2).

dC=41rz p’dzll

22. The integrals of these expressions, between the limits

a1 = 0 and a1 : all, are the components of the attraction of an

ellipsoid whose semi-axes are (11’, 12,’, c1’, or al’, a1’»\/ (1-02),

a1'1\/(1—e'2), on the point (at, 3/, z). Now, by (1), we may

express each of the quantities b, 0, b1, 01, in terms of a and a1,

and the equation

ml 1 z! xi '1 B

E+'y—,+?=1, 01‘ ?+Zz%z7,+d,*_zemavl,=1 (3):

enables us to express either of the quantities a, a1 in terms of

the other. The simplest way, however, to integrate equations

(2), will be to express each in terms of a third quantity,

_‘Q 4 .
'll,— a ( )

Eliminating a from (3), by means of this quantity, we have

i I
alz=uaxs +u_;7/_ea+ u_az_ela .

Hence a,da,= uw’+~:;lyl, g+.——l:__L2i ,du

(u e ) (u c )

Also, from (4), we have a=%; from which we find, by (1),
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b=qtf~/(l—e2u2), c=%»\/(l—e’2u2). By (1) also, b,=a,»\/(1—e’),

cl = a,»\/ (l —e’2). Making these substitutions in (2), and inte

grating, we have, calling a’ the value of a, when a1 = a1’,

u’du
A=4m/(1-e'>~/ (1-62)]

B=41ry,\/(1-e1)'\/(1—e")[(1%_e,u,)",’:'f_ 8%,), (5).

—, " u I

C=41rz~/(1-=')~/(1—e") J

23. If the point attracted be within the ellipsoid, the attraction

of all the similar concentric shells without the point will be

nothing; and hence the superior limit of u will be the value of

an

I at the surface of an ellipsoid, similar to the given one, and

passing through the point attracted.

Now, in this case, al =a, since a is one of the semi-axes of

an ellipsoid passing through the point attracted, and having

the same foci as another ellipsoid (passing through the same

point) whose corresponding semi-axis is al. Hence, for an

interior point, we have

A=4m,/(1_¢'),/(1-e'-)];~/(1_e,%§‘m

B=4evu—e'>i/o—e">flm.%if_—eqgr <6)

u'du0=4-z~/(1—¢')~/<‘-"’)

24. These are the known expressions for the attraction of an

ellipsoid on a point within it. Equations (5) agree with the

expressions given in the Supplement to Liv. V. of Pontécoulant’s

Théoric Analytique du Systéme du Momle, where they are found

by direct integration, by a method discovered by Poisson.

They may also be readily deduced from equations (6) by Ivory’s

Theorem. Or, on the other hand, by a comparison of them,

after reducing the limits of the integrals to 0 and l, by substi

tuting gm for u, with equation (6), Ivory’s Theorem may be

readily demonstrated.



II. ON THE MATHEMATICAL‘ THEORY OF ELECTRICITY

IN EQUILIBRIUM.

I.—ON THE ELEMENTARY LAWS OF STATICAL ELECTRICITY.*

[From Cambridge and Dublin Mathematical Journal, Nov. 1845. Reprinted

Phihmophioal Magazine, 1854, second half-year, with additional Notes

of date March 1854.]

25. The elementary laws which regulate the distribution of

electricity on conducting bodies have been determined by

means of direct experiments, by Coulomb, and in the form

he has given them, which is independent of any hypothesis,1'

they have long been considered as rigorously established The

problem of the distribution of electricity in equilibrium on a

conductor of any form was thus brought within the province

of mathematical analysis; but the solution, even in the simplest

cases, presented so much difiiculty that Coulomb, after having

investigated it experimentally for bodies of various forms, could

only compare his measurements with the results of his theory

by very rude processes of approximation. Without, however,

giving rigorous solutions in particular cases, he examined the

general problem with great care, and left nothing indefinite in

the conditions to be satisfied, so that it was entirely by analyti

cal difficulties that he was stopped. As an example of the

*' This paper is a translation (with considerable additions) of one which

appeared in Liouville's Journal de lliathématiques, 1845, p. 209.

'l' Coulomb has expressed his theory in such a manner that it can only be

attacked in the way of proving his experimental results to be inaccurate.

This is shown in the following remarkable passage in his sixth memoir,

which follows a short discussion of some of the physical ideas then com

monly held with reference to electricity. “ Je prévierw pour mettre la tlworic

qui va suivre (t l’ab'ri de toute dispute systématique, que dam la supposition dea

deuxflm'dea électriquea, je n’ai d’autre intention que de présenter avec le mains

d’éIéme-rw possible, les resultats du calcul et de t’eacpérience, et non d’imliquer

lee véritablea causes do t’électricité. Je renverrai, a la fin de man travail sur

l’électricité, l’ezamen dos principa-wt systems auzquels lea phéno'ménes électn'quea

tmt dmmé nai~<rsance.”--Histoire do l’Académie, 1788, p. 673.
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success of his theoretical investigations, we may refer to the

well-known demonstration of the theorem (usually attributed

to Laplace) relative to the repulsion exercised by a charged

conductor on a point near its surface.*

The memoirs of Poisson, on the mathematical theory, con~

tain the analytical determination of the distribution of elec

tricity on two conducting spheres placed near one another,

the solution being worked out in numbers in the case of two

equal spheres in contact, which had been investigated experi

mentally by Coulomb (as well as in another case, not examined

by Coulomb, which is given as a specimen of the numerical

results that may be deduced from the formulae). The calcu

lated ratios of the intensities at different points of the surface

he is therefore enabled to compare with Coulomb’s measure

ments, and he finds an agreement which is quite as close as

could be expected, when we consider the excessively difficult

and precarious nature of quantitative experiments in electricity :

but the most remarkable confirmation of the theory from these

researches is the entire agreement of the principal features,

" This theorem may be stated as follows :—Let A be a closed surface of

any form, and let matter, attracting inversely as the square of the distance,

be so distributed over it that the resultant attraction on an interior point is

nothing : the resultant attraction on an exterior point, indefinitely near any

part of the surface, will be perpendicular to the surface and equal to 41171,

if pw be the quantity of matter on an element 0 of the surface in the neigh

bourhood of the point. Coulomb's demonstration of this theorem may be

found in a preceding paper in the Mathematical Journal, vol. iii. p. 74 (above,

I. 7). He gives it himself, in his sixth memoir on Electricity (Hietoire de

t’Académic, 1788, p. 677), in connexion with an investigation of the theory

of the proof plane in which, by an error that is readily rectified, he arrives at

the result that a small insulated conducting disc, put in contact with an elec

tritied conductor at any point, and then removed, carries with it as much elec

tricity as lies on an element of the conductor at that point equal in area to the

two faces of the disc ; the quantity actually removed being only half of this.

This result, however, does not at all affect the experimental use which he

makes of the proof plane, which is merely to find the ratios of the intensities

at different points of a charged conductor. As the complete theory of this

valuable instrument has not, so far as I am aware, been given in any English

work, I annex the following remarkably clear account of it, which is ex

tracted from Pouillet’s Traité de Physique:—“ Quand le plan d’épreuve est

tangent a une surface, il 50 confond avec l’élément qn'il touche, i1 prend en

quelque sorte sa place relativement a l’électricité, ou plutot il devient lui

meme l'élément sur lequel la fluide se répand; ainsi, quand on retire ce

plan, on fait la meme chose que si l'on avait découpé sur la surface un

élément de meme épaisseur et de meme étendue que lui, et qu‘on l’efit enlevé

pour le porter dans la. balance sans qu’il perdit rien de l’e'leetricité qui le
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even in some very singular phenomena, of the experimental

results with the theoretical deductions. For a complete ac

count of the experiments we must refer to Coulomb’s fifth

memoir (Histoire de l’Acade'mie, 1787), and for the mathe

matical investigations to the first and second memoirs of

Poisson (Mémoircs de l’Institut, 1811), or to the treatise on

Electricity in the Encyclopwdia Metropolitana, where the sub

stance of Poisson's first memoir is given. '

The mathematical theory received by far the most complete

development which it has hitherto obtained, in Green's Essay

on the Application of Mathematical Analysis to the Thcorics

of Electricity and Magnetism,‘ in which a series of general

theorems were demonstrated, and many interesting applications

made to actual problems-[

Of late years some distinguished experimentalists have begun

to doubt the truth of the laws established by Coulomb, and

have made extensive researches with a view to discover the

laws of certain phenomena which they considered incompatible

with his theory. The most remarkable works of this kind

oeuvre; une fois séparé de la surface, cet éle'ment n’aurait plus dans sea

ditférents points qu’une épaisseur électrique moitié moindre, puisque la

fluide (levrait se répandre pour en couvrir les deux faces. Ce principe pose,

l'expérience n’exige plus que de l’habitudc ct de la dextérité: apres avoir

touché no point de la surface avec le plan d’épreuve, on l’apporte dans la

balance, oh i1 partage son électricité avec le disque de l’aiguille qui lui est

égale, at You observe la force de torsion a une distance eonnue. On répete

la meme experience en touchant un autre point, et le rapport des forces de

torsion est le rapport des repulsions électriques ; on en prend la racine carrée

pour avoir le rapport des épaisseurs. Ainsi le genie de Coulomb a donné en

meme temps aux mathematicians la loi fondamentale suivant laquelle la

matiere électrique s’attire et se repousse; et aux physiciens une balance

nouvelle, et des principes d’éxpérience au moyen desquels ils peuvent en

quelque sorts sonder l'épaisseur de l’éleetricité sur tous les corps, et deter

miner les pressions qu‘elle exerce sur les obstacles qui l’arrétent.”

To this explanation it should be added that, when the proof plane is~still

very near the body to which it has been applied, the effect of mutual influ

ence is such as to make the intensity be insensible at every point of the disc

on the side next the conductor, and at each point of the conductor which

is wider the disc. It is only when the disc is removed to a. considerable

distance that the electricity spreads itself symmetrically on its two faces,

and that the intensity at the point of the conductor to which it was applied,

recovers its original value. It was the omission of this consideration that

caused Coulomb to fall into the error alluded to above.

“ Nottingham, 1828. ~

'I' This memoir of Green’s has been unfortunately very little known,

either in this country or on the Continent. Some of the principal theorems

B
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have been undertaken independently by Mr. Snow Harris and

Mr. Faraday, and in their memoirs, published in the Philo

sophical Transactions, we find detailed accounts of their re

searches. All the experiments, however, which they have

made, having direct reference to the distribution of electricity

in equilibrium, are, I think, in full accordance with the laws

of Coulomb, and must therefore, instead of objections to his

theory, be considered as confirming it. As, however, many

have believed Coulomb’s theory to be overturned by these

investigations, and as others have at least been led to entertain

doubts as to its certainty or accuracy, the following attempt

to explain the apparent difficulties is made the subject of the

first of a series of papers in which various parts of the mathe

matical theory of electricity, and corresponding problems in

the theories of magnetism and heat, will be considered.

26. We may commence by examining some experimental

results published in Mr. Harris’s first memoir On the Elemen

tary Laws of Electricity? After describing the instruments

employed in his researches, Mr. Harris gives the details of

some experiments with reference to the attraction exercised

by an insulated electrified body on an uninsulated conductor

placed in its neighbourhood. The first result which he an

in it have been re-discovered within the last few years, and published in the

following works :—

Comptes Rendus for Feb. 11th, 1839, where part of the series of theorems

is announced without demonstration, by Chasles.

Gauss’s memoir on “General Theorems relating to Attractive and Re

pulsive Forces, varying inversely as the square of the distance,” in the

Resultate an; den Beobachtungcn lles 'magnetischen Vereins im Jahre 1839,

Leipsic, 1840. (Translations of this paper have been published in Taylor-‘a

iS'cienQ/ic Memoirs for April 1842, and in the Numbers of Liouvillc’s Journal

for July and August 1842.)

Mathematical Journal, vol. iii., Feb. 1842, in a paper “ On the Uniform

Motion of Heat, etc." (I. above).

Additions to the Connaisaance (lee Tems for 1845 (published June 1842),

where Chaslos supplies demonstrations of the theorems which he had previ

ously announced.

I should add that it was not till the beginning of the present year (1845)

that I succeeded in meeting with Green’s Essay. The allusion made to his

name with reference to the word “ potential” (Mathematical Journal, vol. iii.

p. 190), was taken from a memoir of Murphy’s, “On definite Integrals with

Physical Applications," in the Cambridge Transactions, where a mistaken

definition of that term, as used by Green, is given.

‘ Philosophical Transactions, 1834.
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nounces is that, when other circumstances remain the same,

the attraction varies as the square of the quantity of electricity

with which the insulated body is charged. It is readily seen,

as was first remarked by Dr. Whewell in his Report on tlw

Theories of Electricity, ctc.,* that this is a rigorous deduction

from the mathematical theory, following from the fact that the

quantity of electricity induced upon the uninsulated body is

proportional to the charge on the electrified body by which it

is attracted.

27. The remaining results have reference to the force of

attraction at different distances, and with bodies of different

forms opposed. As these are generally very irregular (such as

“plane circular areas backed by small cones”), we should not,

according to Ooulomb’s theory, expect any very simple laws,

such as Mr. Harris discovers, to be rigorously true. Accord

ingly, though they are announced by him without restriction,

we must examine whether the experiments from which they

have been deduced are of a sufficiently comprehensive character

to lead to any general conclusions with respect to electrical

action. Now, in the first place, we find that in all of them the

attraction is “independent of the form of the unopposed parts”

of the bodies, which will be the case only when the intensity

of the induced electricity on the unopposed parts of the un

insulated body is insensible. According to the mathematical

theory, and according to Mr. Faraday’s researches “ on induction

in curved lines," which will be referred to below, the intensity)

nmy vanishes at any point of the uninsulated

body: but it is readily seen that in the case of Mr. Harris’s

experiments, it will be so slight on the unopposed portions

that it could not be perceived without experiments of a very

refined nature, such as might be made by the proof plane of

Coulomb, which is in fact, with a slight modification, the

instrument employed by Mr. Faraday in the investigation.

Now to the degree of approximation to which the intensity on

the unopposed parts may be neglected, the laws observed by

Mr. Harris when the opposed surfaces are plane may be readily

deduced from the mathematical theory. Thus let '1: be the

“ British Association Report for 1837.
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potential in the interior of the charged body, A; a quantity

which will depend solely on the state of the interior coating

of the battery with which in Mr. Harris’s experiments A is

connected, and will therefore be sensibly constant for different

positions of A relative to the uninsulated opposed body, B.

Let a he the distance between the plane opposed faces of A and

B, and let S be the area of the opposed parts of these faces,

which will in general be the area of the smaller, if they be

unequal When the distance a is so small that we may en

tirely neglect the intensity on all the unopposed parts of the

bodies, it is readily shown from the mathematical theory that

(since the difi'erence of the potentials at the surfaces of A and

B is 'v) the intensity of the electricity produced by induction at

any point of the portion of the surface of B which is opposed

I)

to A, is m - Hence the attraction on any small element a),

of the portion S of the surface of B, will be in a direction

2

v ) -* Hence
perpendicular to the plane and equal to 2w (4-1";

the whole attraction on B is

0'6’ _

81rd‘I

This formula expresses all the laws stated by Mr. Harris

as results of his experiments in the case when the opposed

surfaces are plane.

28. When the opposed surfaces are curved, for instance when

A and B are equal spheres, we can make no approximation

analogous to that which has led us to so simple an expression

in the case of opposed planes; and we find accordingly that

no such simple law for the attraction in this case has been

announced by Mr. Harris. He has, however, found that it is

expressed with tolerable accuracy by the formula

k

c(c-2a) ’

where c is the distance between the centres of the spheres,

a the radius of each, It a constant, which will depend on a and

on the charge of the battery with which A is in communica

F:

' See vn. below.
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tion. Though, however, this formula may give results which

do not differ very much from observation within a limited

range of distances, it cannot, according to any theory, be con—

sidered as expressing the physical law of the phenomenon.

For, according to it, when the balls are very distant, F ulti

mately varies as Now it is clear that the law of force

must ultimately become the inverse cube of the distance, since

the quantity of electricity induced upon B will be ultimately

in the inverse ratio of the distance, and the attraction between

the balls as the product of the quantities of electricity directly,

and as the square of the distance inversely, and hence the

formula given by Mr. Harris cannot express the law of force

when the balls are very distant. In the experiments by which

his formula is tested, the force of attraction is measured by

means of an ordinary balance and weights: the only com

parison of results which he publishes is transcribed in the

following table :

Dist. of Centres. 1182333?“ Values of 152;? 5J2) .

cl = 2'3 15 1 5

c,=2‘5 825+ 8'28

0;:2'8 4'6 + 4'62

c,=3'0 3‘5 - 3'45

29. From this table we see that the formula is verified in three

cases to the extent of accuracy of the experiments. Comparisons

extended to a much wider range of distances would be required

to establish it, and it would be necessary to take precautions

to prevent the experimental results from being influenced by

disturbing causes. In the experiments made by Mr. Harris,

we find that no precautions have been taken to avoid the dis_

turbing influence of extraneous conductors, which, according

to the descriptions and drawings he gives of his instruments,

seem to exist very abundantly in the neighbourhood of the

bodies operated upon, being partly metal in connexion with

the insulated system with which the body A communicates,

and partly uninsulated metal, in the fixed parts of the electro
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meter, and in the movable parts by which B is supported.

The general efl'ect produced by the presence of such bodies

in disturbing the observed law of force, must be to make it

diminish less rapidly with the distance when A and B are

separated by a considerable interval : and it is probably owing,

at least in part, to such disturbing causes that Mr. Harris’s

results nearly agree, as far as they go, with a formula which

would ultimately give for the law of force the inverse square of

the distance between A and B, instead of the inverse cube.

30. The determination by the mathematical theory of the

attraction or repulsion between two electrified conducting

spheres has not hitherto, so far as I am aware, been attempted,

and would present considerable difiiculty by means of the

formula ordinarily given for such problems. It may, however,

very readily be effected by means of a general theorem on the

attraction between electrified conductors, which will be given

in a subsequent paper."b Thus, if F(c) be the force of attraction,

corresponding to the distance 0 between the centres, in the

particular case when the two spheres‘ are equal (the radius of

each being unity), and the potential in the interior of one of

them is nothing (as will be the case when the body is un

insulated), the potential in the interior of the other being '0,

I have found the following formulae, which express F(c) by a

converging series :—

(A) F(c)= v'c (513+ £:,+%2 +ctc.), where

Q1 =C,_1’

(B), {(2. =(c’—2)Q1-1,

Qm+i=Lc’—2)Qfl+1—Qn

P1 =1,

(0), {E =2e-s,

Pn+2=(c,_2)Pn+1+(Qn+1_Pfl)'

' [Note added March 1854.—The enunciation of the "general theorem”

alluded to, the investigation founded on it, by which the author first arrived

at the conclusion made use of here, and another demonstration of the same

conclusion, founded on the method of electrical images, and strictly synthe

tical in its character, are published, with comprehensive numerical results,

in the Philosophical Magazine for April 1853.]
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31. These formulae enable- us to calculate Q1, Q2, Q3, (2,,

etc., and then P1, P2, P8, P4, etc., successively, by a simple

and uniform arithmetical process, for any particular value of c,

) in five cases, the

first four of which are those examined by Mr. Harris, and have

obtained the following results, each of which is true to five

places of decimals :-~

I have thus calculated the values of

I c. { T’Flcl.

l
' 2'3 0'32926

2'5 017423

2'8 0'09168

3'0 0'06592

4'0 0‘02075

32. To compare these with Mr. Harris’s measurements, we

may calculate the value of the potential in his battery, during

the observations, by means of his first result, and thence find

the attraction for the other three cases by means of the calcu

lated values of 0417(0). Thus we have 1:“2 X 15 = ‘3293, which

gives 1;’: 45'56,

and hence F(2'5) : 7'94,

F(2-s) : 4-18,

111(3) : 3'00.

These numbers difl'er considerably from Mr. Harris’s results,

but in the direction indicated by the considerations mentioned

above.

33. The most important part of the researches of Mr. Harris

is that in which he investigates the insulating power of air of

different densities. The result at which he arrives is, that the

intensity necessary to produce a spark depends solely on the

density of the air, and not otherwise on the pressure or tem

perature. He thus shows that the conducting power of flame,

of heated bodies, and of a vacuum, are due solely to the rare

faction of the air in each case. He also shows that the in

tensities necessary to produce a spark are in the simple ratios

of the densities of the air. -
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34. In a subsequent memoir, by the same author,* we find

additional experiments on the elementary principles of the

theory of electricity. The first series which is described, was

made for the purpose of testing the truth of Coulomb's law,

that the repulsion of two similarly charged points is inversely

as the square of the distance, and directly as the product of

the masses. In experiments of this kind in which accurate

quantitative results are aimed at, many precautions are neces

sary. Thus all conducting bodies, except those operated upon,

must be placed beyond the reach of influence, and the distance

between the repelling bodies must be considerable with refer

ence to their linear dimensions, so that the distribution of

electricity on each may be uninfluenced by the presence of the

other. Also the bodies should be spheres, so that the attrac

tion may be the same as if the whole electricity of each were

collected at its centre; and the distance to be measured will

then be the distance between the centres. These conditions

have been expressly mentioned by Coulomb, and they have

been fulfilled, as far as possible, in his researches, as we see by

the descriptions of the experiments made, which we find in his

memoirs. He has thus arrived by direct measurement at the

law, which we know by a mathematical demonstration,'f' founded

upon independent experiments, to be the rigorous law of nature,

for electrical action. None of these precautions, however, have

been taken in the experiments described in Mr. Harris’s

’ Philosophical Transactions, 1836.

'I‘ See Murphy’s Electricity, p. 41, or Pratt's Mechanics, Art. 154.

[Note added March 1854.—Cavendish demonstrates mathematically that

if the law of force be any other than the inverse square of the distance,

electricity could not rest in equilibrium on the surface of a conductor. But

experiment has shown that electricity does rest at the surface of a conductor.

Hence the law of force must be the inverse square of the distance. Caven

dish considered the second proposition as highly probable, but had not ex

perimental evidence to support this opinion, in his published work (An

attempt to explain the phaanomena of Electricity by means of an Elastic

Fluid). Since his time, the most perfect experimental‘ evidence has been

obtained that electricity resides at the surface of a conductor; in such facts,

for instance, as the perfect equivalence in all electro-statical relations of a

hollow metallic conductor of ever so thin substance, or of a gilt non-con

ductor (possessing a conducting film of not more than of an inch

thick) and a solid conductor of the same external form and dimensions; the

minor premise of his syllogism is thus demonstrated, and the conclusion is

therefore utablishod] .
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memoir, and the results are accordingly unavailable for the

accurate quantitative verification of any law, on account of the

numerous unknown disturbing circumstances by which they

are affected. The phenomena which he observes, however,

afford qualitative illustrations of the mathematical theory of

a very interesting nature, as may be seen from the following

examples of his results :~—

((1.) \Vhen the distance between the bodies is great with

reference to their linear dimensions, the repulsion is inversely

as the square of the distance, and directly as the product of the

masses.

(6.) When the distance is small, the action becomes ap

parently irregular. Thus if the quantities of electricity on the

two bodies be equal, the force, which is always of repulsion,

does not increase so rapidly when the bodies approach, as if it

followed the law of the inverse square of the distance.

(0.) If the charges be unequal, the repulsion ceases at a

certain distance, and at all smaller distances there is attraction

between the bodies.

35. These results are, with all their peculiarities, in full ac

cordance with the theory of Coulomb, which indicates that, if

the quantities of electricity be equal, and the bodies equal and

similar, there will be repulsion in every position : but if there

be any difference, however small, between the charges, the

repulsion will necessarily cease, and attraction commence,

before contact takes place, when one body is made to approach

the other. Unless, however, the difference of the charges be

sufliciently considerable, a spark may pass between the bodies,

and render the charges equal, before attraction commences.

In Mr. Harris’s experiments, in which the bodies seem to have

been nearly oblate spheroids, the attraction is generally sensible

before the distance is small enough to allow a spark to pass, if

the charge on one be double of that on the other.

Mr. Harris next proceeds to investigate the theory of the

proof plane, and to examine whether it can be considered as

indicating with certainty the intensity of electricity at any

part of a charged body, and, principally from an experiment

made on a charged non-conductor (a hollow sphere of glass),

comes to a negative conclusion. It should be remembered,
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however, that, the proof plane having never been applied to

determine the intensity at points of the surface of a charged

non-conductor, such conclusions in no way interfere with

adopted ideas. Since there can be no manner of doubt as to

the theory of this valuable instrument, as we find it explained

by M. Pouillet,* nor as to the experimental use of it made by

Coulomb, it is unnecessary to enter more at length on the

subject here.

36. Mr. Faraday’s researches on electrostatical induction,

which are published in a memoir forming the eleventh series

of his Experimental Researches in Electricity, were under

taken with a view to test an idea which he had long possessed,

that the forces of attraction and repulsion exercised by free

electricity, are not the resultant of actions exercised at a dis

tance, but are propagated by means of molecular action among

the contiguous particles of the insulating medium surrounding

the electrified bodies, which he therefore calls the dielectric.

By this idea he has been led to some very remarkable views

upon induction, or, in fact, upon electrical action in general.

As it is impossible that the phenomena observed by Faraday

can be incompatible with the results of experiment which

constitute Coulomb's theory, it is to be expected that the

difference of his ideas from those of Coulomb must arise solely

from a different method of stating, and interpreting physically,

the same laws: and farther, it may, I think, be shown that

either method of viewing the subject, when carried sufficiently

far, may be made the foundation of a mathematical theory

which would lead to the elementary principles of the other as

consequences. This theory would accordingly be the expres

sion of the ultimate law of the phenomena, independently of

any physical hypothesis we might, from other circumstances,

be led to adopt. That there are necessarily two distinct

elementary ways of viewing the theory of electricity, may

be seen from the following considerations, founded on the

principles developed in a previous paper in this Journalrl'

' See foot-note on § 25.

1' On the Uniform Motion of Heat, and its Connexion with the Mathe

matical Theory of Electricity (1. above).
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37. Corresponding to every problem relative to the distribu

tion of electricity on conductors, or to forces of attraction and

repulsion exercised by electrified bodies, there is a problem in

the uniform motion of heat which presents the same analytical

conditions, and which, therefore, considered mathematically, is

the same problem. Thus, let a conductor A, charged with

a given quantity of electricity, be insulated in a hollow con

ducting shell, B, which we may suppose to be uninsulated.

According to the mathematical theory, an equal quantity of

electricity of the contrary kind will be attracted to the interior

surface of B (or the surface of B, as we may call it to avoid

circumlocution), and the distribution of this charge, and of the

charge on A, will take place so that the resultant attraction at

any point of each surface may be in the direction of the normal.

This condition being satisfied, it will follow that there is no

attraction on any point within A, or without the surface of B,

that is, on any point within either of the conducting bodies.

The most convenient mathematical expression for the condition

of equilibrium, is that the potential at any point P‘ must

have a constant value when P is on the surface of A, and the

value nothing when P is on the surface of B; and it will

follow from this that the potential will have the same constant

value for any point within A, and will be equal to nothing for

any point without the surface of B. -

If A be subject to the influence of any uninsulated con

ductors, we must consider such bodies as belonging to the

shell in which A is contained, and their surfaces as forming

part of the surface of B : in such cases this surface will gene

rally be the interior surface of the walls of the room in which

A is contained, and of all uninsulated conductors in the room.

If, however, we have to consider the case in which A is subject

to no external influence, we must suppose every part of the

surface of B to be very far from A. The most general problem

we can contemplate in electricity (exclusively of the case in

which the insulating medium is heterogeneous, and exercises a

special action, which will be alluded to below), is to determine

" The term used by Green for the sum of the quotients obtained by divid

ing the product of each element of the surfaces of A and B, and its electrical

intensity, by its distance from P.
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the potential at any point when A, instead of being a, single

conductor, is a group of separate insulated conductors charged

to different degrees, and when there are non-conductors elec

trified in a given manner, placed in the insulating medium, in

the neighbourhood. The conditions of equilibrium will still be

that the potential at each surface due to all the free electricity

must be constant, and the theorems stated above will still be

true: thus the attraction will be nothing in the interior of

each portion of A, and without the surface of B; and the

whole quantity of induced electricity on the latter surface will

be the algebraic sum of the charges of all the interior bodies

with its sign changed. When the potential due to such a

system is determined for every point, the component of the

resultant force at any point P, in any direction PL, may be

found by differentiation, being the limit of the difference

between the values of the potential at P, and at a point Q, in

PL, divided by PQ, when Q moves up towards and ultimately

coincides with P, and the direction of the force, on a negative

particle, being that in which the potential increases. By

Coulomb’s theorem, the intensity at any point in one of the

conducting surfaces is equal to the attraction (on a negative

unit) at that point, divided by Mr.

38. Now if we wish to consider the corresponding problem in

the theory of heat, we must suppose the space between A and

B, instead of being filled with a dielectric medium (that is

a non-conductor for electricity), to be occupied by any homo

geneous solid body, and sources of heat or cold to be so dis

tributed over the terminating surfaces, or the interior surface

of B and the surface of A, that the permanent temperature

at the first surface may be zero, and at the second shall have a.

certain constant value, the same as that of the potential in the

case of electricity. If A consist of different isolated portions,

the temperature at the surface of each will have a constant

value, which is not necessarily the same for the different por

tions. The problem of distributing sources of heat, according to

these conditions, is mathematically identical with the problem

of distributing eleetr'lkzity in equilibrimn on the surfaces of A

and B. In the case of heat, the permanent temperature at any

point replaces the potential at the corresponding point in the
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electrical system, and consequently the resultant flux of heat

replaces the resultant attraction of the electrified bodies, in

direction and magnitude. The problem in each case is deter

minate, and we may therefore employ the elementary principles

of one theory, as theorems, relative to the other. Thus, in the

paper in which these considerations are developed, Coulomb's

fundamental theorem relative to electricity is applied to the

theory of heat; and self-evident propositions in the latter

theory are made the foundation of Green's theorems in elec

tricity.’ Now the laws of motion for heat which Fourier lays

down in his The'orrka Analytiqne de la Chaleur, are of that

simple elementary kind which constitute a mathematical theory

properly so called ; and therefore, when we find corresponding

laws to be true for the phenomena presented by electrified

bodies, we may make them the foundation of the mathematical

theory of electricity: and this may be done if we consider

them merely as actual truths, without adopting any physical

hypothesis, although the idea they naturally suggest is that

of the propagation of some effect by means of the mutual

action of contiguous particles; just as Coulomb, although his

laws naturally suggest the idea of material particles attracting

or repelling one another at a distance, most carefully avoids

making this a physical hypothesis, and confines himself to the

consideration of the mechanical effects which he observes and

their necessary consequences‘!

39. All the views which Faraday has brought forward, and

illustrated or demonstrated by experiment, lead to this method

of establishing the mathematical theory, and, as far as the

analysis is concerned, it would, in most general propositions,

be even more simple, if possible, than that of Coulomb. (Of

course the analysis of particular problems would be identical

in the two methods.) It is thus that Faraday arrives at a

knowledge of some of the most important of the general

" It was not until some time after that paper was published, that I was

able to add the direct analytical demonstrations of the theorems, which are

given in the papers on “ General Propositions in the Theory of Attraction,”

Camb. Math. Joun, vol. iii. pp. 189, 201 (XII. below), and which I have since

found are the same as those originally given by Green.

1' See first foot-note on § 25.
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theorems, which, from their nature, seemed destined never

to be perceived except as mathematical truths. Thus, in his

theory, the following proposition is an elementary principle :

Let any portion a of the surface of A be projected on B, by

means of lines (which will be in general curved) possessing the

property that the resultant electrical force at any point of each

of them is in the direction of the tangent: the quantity of

electricity produced by induction on this projection is equal

to the quantity of the opposite kind of electricity on a.‘ The

lines thus defined are what Faraday calls the “ curved lines of )

irgngtiveaapt'ipn” For a detailed account of the experiments

by which these phenomena are investigated, reference must be

made to Mr. Faraday’s own memoirs, published in the Philo

sophical Transactions, and in a separate form in his Experi

mental Researches.

40. The hypothesis adopted by Faraday, of the prqmgation

of inductive action, naturally led him to the idea that its effects

may be in some degree dependent upon the nature of the

insulating medium or dielectric, by which, according to this

view, it is transmitted. In the second part of his memoir he

describes a series of researches instituted to put this to the test

of experiment, and arrives at the following conclusions :—

‘ This theorem may be proved as follows :—

Let S be any closed surface, containing no part of the electrified bodies

within it, which we may conceive to be described between A and B; let P

be the component in the direction of the normal, of the resultant force at

any point of the surface S, and let (ls be an element of the surface at the

same point. Then it may be easily proved (see Camb. Llalh. Joun, vol. iii.

p. 204) that flPds=0 (a),

the integrations being extended over the entire surface. Now let S be

supposed to consist of three parts; the portion a, of the surface of A; its

projection B, on the interior surface of B; and the surface generated by the

curved lines of projection. The value of P at each point of the latter

portion of S will be nothing, since the tangent at any point of a line of pro

jection is the direction of the force. Hence, if [/J‘Pds] and (jTPda) denote

the values of ffPele, for the portions a and B of S, the equation (a) becomes

[f/Paq + (jfPds) = 0.

But if p be the intensity of the distribution on the surface A or B, at any

point, we have, by Coulomb's theorem,

_ Z
_ 4r .

Hence [ff/>118] + (mm) =0.

which is the theorem quoted in the text.
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41. If the dielectric be air, the inductive action is quite inde

pendent of its density or temperature (which, as Mr. Faraday

remarks, agrees perfectly with previous results obtained by

Mr. Harris); and in general, if the dielectric be any gas or

vapour capable of insulating a charge, the inductive action is

invariable. Hence he concludes the. “all gases have the same

power of, or capacity for, sustaining induction through them

(which might have been expected when it was found that no

variation of density or pressure produced any effect).”

When the dielectric is solid, the induction is greater than

through air, and varies according to the nature of the sub

stance. Numbers which measure the “ specific inductive

capacities” of the dielectrics employed (sulphur, shell lac,

glass, etc.) are deduced from the experiments.

42. To express these results in the language of the mathe

matical theory, let us recur to the supposition of a body, A,

charged with a given quantity of electricity, and insulated in the

interior of a closed conducting shell, B. The potential of the

system at the interior surface of B, and at every point without

this surface, will be nothing; at the surface and in the interior of

A it will have a constant value, which will depend on the form,

magnitude, and relative position of the surfaces A and B, on

the quantity of electricity on A, and, according to Faraday’s

discovery, on the dielectric power of the insulating medium which

fills the space between A and B. If this be gaseous, neither

its nature nor its state as to temperature, pressure, or density

will affect the value of the potential in A ; but if it be a solid

substance, such as sulphur or shell lac, the value of the potential

will be less than when the space is occupied by air, and will

vary with the nature of the insulating solid.

43. The result in the case of a gaseous dielectric is what

would follow from Coulomb's theory, if we consider gases to be

quite impermeable to electricity, and to be entirely unaffected

by electrical influence. The phenomena observed with solid

dielectrics, which agree with the circumstance observed by

Nicholson, that the dissimulating power of a Leyden phial

depends on the nature of the glass of which it is made, as

well as on its thickness, have been by some attributed to a

slight degree of conducting power, or of penetrability, pos
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sessed by solid insulators. This explanation, however, seems

to be very insuflicient ; and besides, Faraday has estimated the

nature of the effects of imperfect insulation by independent

experiments, and has established, in what seems to be a very

satisfactory manner, the existence of a peculiar action in the

interior of solid insulators when subjected to electrical influ

ence. As far as can be gathered from the experiments which

have yet been made, it seems probable that a dielectric, sub

jected to electrical influence, becomes excited in such a manner

that every portion of it, however small, possesses polarity

exactly analogous to the magnetic polarity induced in the sub

stance of a piece of soft iron under the influence of a magnet.

By means of a certain hypothesis regarding the nature of mag

netic action,‘ Poisson has investigated the mathematical laws

of the distribution of magnetism, and of magnetic attractions

and repulsions. These laws seem to represent in the most

general manner the state of a body polarized by influence, and

therefore, without adopting any particular mechanical hypo

thesis, we may make use of them to form a mathematical

theory of electrical influence in dielectrics, the truth of which

can only be established by a rigorous comparison of its results

with experiment.

44. Let us therefore consider what would be the effect, accord

ing to this theory, which would be produced by the presence

of a solid dielectric, O’, placed in the space between A and B,

the rest of which is occupied by air. The action of 0, when

excited by the influence of the electricities on A and B, may

(as Poisson has shown for magnetism) be represented, whether

" Faraday adopts the corresponding hypothesis to explain the action of a

solid dielectric, which he states thus :—“ If the space round a charged globe

were filled with a mixture of an insulating dielectric, as oil of turpentine or

air, and small globular conductors, as shot, the latter being at a little dis

tunes from each other, so as to be insulated, then these in their condition

and action exactly resemble what I consider to be the condition and action

of the particles of the insulating dielectric itself. If the globe were charged,

these little conductors would all be polar; if the globe were discharged, they

would all return to their normal state, to be polarized again upon the re

charging of the globe.”—(l$'1pcrimcntal Researches, § 1679.) The results of

the mathematical analysis of such an action are given in the text. It may

be added that the value of the coeflicient k will differ sensibly from unity if

the volume occupied by the small conducting balls bear a finite ratio to that

occupied by the insulating medium.
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on points within or without 6', by a certain distribution of

positive electricity on one portion of the surface of C', and of

an equal quantity of negative electricity on the remainder.

The condition necessary and sufficient for determining this

distribution may (as can be shown from Poisson’s analysis) be

expressed as follows. Let R be the resultant force on a

point P without 0, and R’ on a point P’ within 0', due to

the electrified surfaces A and B, and to the imagined distribu

tion on G. If P and P’ be taken infinitely near one another,

and consequently each infinitely near the surface of‘ O, the

component of R’ in the direction of the normal must bear to

the component of R in the same direction a constant ratio

depending on the capacity for dielectric induction of 'the

matter of O.‘ The components of R and R’ in the tangent

plane will of course be equal and in the same direction, and,

if p be the intensity of the imagined distribution on the surface

of C, in the neighbourhood of P and P’, the difference of the

normal components will be 4-n-p, as is evident from Coulomb's

theorem, referred to above.

45. Let us now suppose C to be a shell surrounding A, and

let S and S’, its interior and exterior surfaces, be surfaces of

equilibrium in the system of forces due to the action of A and

B, and of the polarity of C’. It may be shown that the same

surfaces S, S’, would necessarily be surfaces of equilibrium,

if‘ 0' were removed and the whole space were filled with air;

and consequently, that the whole series of surfaces of equi

“ From this it follows that, in the case of heat, C must be replaced by a

body whose conducting power is 1: times as great as that of the matter oc

cupying the remainder of the space between A and B.

[Note added March 1854.—The same demonstration, of course, is applic

able to the influence of a piece of soft iron, or other “ paramagnetic" (i.c.,

substance of term-magnetic inductive capacity), or to the reverse influence

of a diamagnetic on the magnetic force in any locality near a magnet in which

it can be placed, and shows that the line of magnetic force will be altered

by it precisely as the lines of motion of heat in corresponding thermal circum

stances would be altered by introducing a body of greater or of less conduct

ing power for heat. Hence we see how strict is the foundation for an

analogy on which the conducting power of a magnetic mediumfor lines offorce

may be spoken of, and we have a. perfect explanation of the condensing

action of a paramagnetic, and the repulsive effect of a diamagnetic, upon the

lines of force of a magnetic field, which have been described by Fnraday.—

(Exp. Researcher, 2807, 2808).]

C
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librium, commencing with A and ending with B, will be the

same in the two cases. Hence the resultant force due to the

excitation of the dielectric C (or to the imagined distributions

of electricity on S and S’ which produce it), on points within

S or without S’, must be such as not to alter the distributions

on A and B when the quantity on A is given; and is therefore

nothing. Accordingly, let Q be the total force on a point

indefinitely near S, and within it ; Q’ the total force on a point

without S’, but indefinitely near it. Since the forcesvon points

without S and within S’ indefinitely near the former points

, % and %, it follows‘

that the intensities of the imagined distributions on S and S’,

in the neighbourhood of the points considered, are /

-Z11;(Q-— and %_(Q'—%') .

Hence, if U, U’ be the potentials at S, S’, due to A and B

alone, and v the potential at any point P, it follows that the

potential at P, due to the polarity of the dielectric, is

-<1-%>U+<1-%>U~
1 1 ,

l 1 .

01‘ —(1—-/?) v + (1-?) v, that is, 0,

according as P is within S, within S’ and without S, or without

S’. Hence the total potential will be, according to the position

are, according to the law stated above

of P, 1

v—(1-—)(U— U),
k

or %+(1—%) 0:’,

OT 77.

Hence the sole efi'ect of the dielectric C’, on the state of A

and B, is to diminish the potential in the interior of the former

by the quantity (1_)(U_ U).

" See Green’s Essay, Art. 12; or above, I. § 8.
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If the whole space between A and B be occupied by the solid

dielectric, the surfaces S and A will coincide, as also, S’ and

B, and therefore U: V, U’: 0. Hence the potential in the

interior of A will be V

""!

Ic

or the fraction % of the potential, with the same charge on A,

and with a gaseous dielectric. From this it follows that, when

the dielectric is solid, it would require, to produce a given

potential in the interior of A, k times the charge which would

be necessary to produce the same potential when the dielectric

is gaseous, and therefore the body A in a given state, defined

by the potential in its interior, produces on the interior surface

of B, by induction, through the solid dielectric, a quantity of

electricity le times as great as through a gaseous dielectric. On

this account Faraday calls the property of a dielectric measured

by k, its “specific inductive capacity.”

46. In Faraday’s experiments an apparatus (which is in fact

a Leyden phial, in which any solid or fluid may be substituted

for the glass dielectric of an ordinary Leyden phial) is used,

corresponding to the case we have been considering, in which

A is a conducting sphere (2'33 inches in diameter), and B a

concentric spherical shell surrounding it (the distance between

the surfaces of A and B being '62 of an inch). In the shell B

there is an aperture into which a shell-lac stem is fixed; a

wire, attached to A, passes through the centre of this stem to

the outside of the shell, and supports a ball of metal, M, which

is thus insulated and connected with A. It may be shown

that in such an apparatus the state of the ball A and of the

shell B will approximately be not affected by the aperture in

the latter, or by the wire supporting M, and that the distribu

tion of electricity on M will be approximately the same as if

the wire supporting it and the conductors A and B were re

moved. Hence the sole relation between A and M will be

that the potentials in their interiors are the same; and there

fore the latter, which is accessible, may be taken as an index of

the state of the former.

47. To determine the specific inductive capacity of any dielec

tric, Faraday uses two apparatus of the kind just described, pre



36 On the Mathematical Theory of Electricity. [11.

cisely equal and similar, in one of which the space between

A and B is filled with air, and in the other with the dielectric

to be examined. One of these apparatus is charged, and the

intensity measured : the balls M, M' in the two are then made

to touch and separate again, and the remaining intensity on

the first (which is equal to the intensity imparted to the

second) is measured. If this be found to differ from half the

original intensity, it will follow that the specific inductive

capacity of the substance examined differs from that of air,

which is unity, and its value may be determined by means of

a simple expression from the experimental data. To investi

gate this, let us first suppose each apparatus to be charged, and

let it be required to find the intensity on the balls after they

are made to touch, and then removed from mutual influence;

and let the dielectrics be any two substances, whose inductive

capacities are k, to’. Let p, p’ be the intensities before, and a

the common intensity after contact. Then, denoting by Q, Q’

the quantities of electricity constituting the charges before,

and q, q’ after contact, we shall have, by the principles already

developed, Q_ kp ,_ q ,,._q'

§’—k’p” ‘pi-‘Q’ F'E"

Also Q+ Q’=q+q'.

Hence we deduce ¢r=k"k—i,;c,£ .

In the experiment described, one of the dielectrics is air.

Hence, to obtain the required formula, we may put k’: l, in

this equation, and then resolve for k.

Thus we find k=‘;'.

p-o'

If only one of the apparatus be originally charged, according

as it is the first or the second, we shall have

OI‘ :

48. If the substance examined (the dielectric of the first

apparatus) be any gas, or air in a different state as to pressure

or temperature from the air of the second apparatus, Faraday
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always finds the intensity after contact to be half the original

intensity, and hence for every gaseous body Ic=1.

49. If the dielectric of the first apparatus be solid, the in

tensity after contact is found to be greater than half the original

intensity when the first, and less than half when the second is

the apparatus originally charged Hence for a solid dielectric,

k > 1. For sulphur Faraday finds the value to be rather more

than 2'2 ; for shell-lac, about 2 ; and for flint-glass, greater than

1'76.

50. The commonly received ideas of attraction and repul

sion exercised at a distance, independently of any intervening

medium, are quite consistent with all the phenomena of elec

trical action which have been here adduced. Thus we may

consider the particles of air in the neighbourhood of electrified

bodies to be entirely uninfluenced, and therefore to produce no

effect in the resultant action on any point: but the particles

of a solid non-conductor must be considered as assuming a

polarized state when under the influence of free electricity, so

as to exercise attractions or repulsions on points at a distance,

which, with the action due to the charged surfaces, produce the

resultant force at any point. It is, no doubt, possible that

such forces at a distance may be discovered to be produced

entirely by the action of contiguous particles of some inter

vening medium, and we have an analogy for this in the case

of heat, where certain effects which follow the same laws are

undoubtedly propagated from particle to particle. It might

also be found that magnetic forces are propagated by means of

a second medium, and the force of gravitation by means of a

third. We know nothing, however, of the molecular action by

which such effects could be produced, and in the present state

of physical science it is necessary to admit the known facts in

each theory as the foundation of the ultimate laws of action at

a distance.

Sr. Prrrna’s COLLEGE,

N01). 22, 1845.



III. ON THE ELECTRO-STATICAL CAPACITY OF A LEYDEN

PHIAL AND OF A TELEGRAPH WIRE INSULATED IN

THE AXIS OF A CYLINDRICAL CONDUCTING SHEATH.‘

[From the Philosophical Magazine, 1855, first half-yearn]

51. The principles brought forward in the preceding articles

On the Uniform Motion of Heat, etc, enable us with great case

to investigate the “ capacity ”'1' of a Leyden phial with either air,

or any liquid or solid dielectric, and of other analogous arrange

ments, such as the copper wires in gutta-percha tubes under

water, with which Faraday has recently performed such re

markable experimentsi

52. Thus, for a Leyden phial, let us suppose a portion S of the

surface of a conductor A to be everywhere so near the surface

of a conductor A’, that the distance between them at any point

is a small fraction of the radii of curvature of each surface in

the neighbourhood ; and let 2 be the distance between them at

a particular position, P. Then, by the analogy with heat, it is

clear that if the two surfaces be kept at different electrical

potentials, V and V’, the potentials at equidistant points in

any line across from one to the other will be in arithmetical

V- V’

progression. Hence will be the rate of variation of the
Z

potential perpendicularly across in the position P. If, in the

first place, the dielectric be air, the electric force in the air

* Communicated as an Additional Note to two papers (I. and II. above)

“On the Uniform Motion of Heat in Homogeneous Solid Bodies, and its

connexion with the Mathematical Theory of Electricity,” and “ On the

Mathematical Theory of Electricity in Equilibrium;" only not in time

to be appended to the reprints of those papers which appeared in the

Philosophical Magazine, June and July 1854 (1854, I. and II.)

1' Defined (Philosophical Magazine, June 1853) for any conductor (subject

or not to the influence of other conductors), as the quantity of electricity

which it takes to charge it to unit potential.

I Described in a lecture at the Royal Institution, Jan. 20, 1854, and

subsequently published in the Philosophical Magazine (1854, I. p. 197).
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between the two about the position P will consequently be

V- V’

z 1 and therefore the electrical density (according to the

theorem proved in the first article) on one surface must be

+5; VZV 7 and on the other —%|_ V: V'

eiectricity in the position P, on an area ds of the surface S, is

therefore —1- V_ V

41: z

The quantity of

ds, and therefore the whole quantity on S is

V- V’ ds

I?41r

which is Green’s general expression for the electrification of

either coating of a Leyden phial. If the thickness of the

dielectric be constant and equal to -r, it becomes

V- V’ S
41!‘ 7 I

53. Now if A’ be uninsulated, we have V’: 0; and then,

to charge S to the potential V, it takes the quantity V XHence the “capacity” of S is

S

a; .

If instead of air there be a solid or liquid dielectric of inductive

capacity, 10, occupying the space between the two surfaces, the

quantity of heat conducted across, in the analogous thermal

circumstances, would be is times as great as in the case cor

responding to the air dielectric, with the same difi'erence of

temperatures ; and in the actual electrical arrangement, the

quantity of electricity on each of the conducting surfaces would

be 10 times as great as with air for dielectric and the same dif

ference of potentials. The expression for the capacity of an

actual Leyden phial is therefore

k8

E- 7

k being the inductive capacity of the solid non-conductor of

which it is formed, 1- its thickness, and S the area of it which

is coated on each side.

54. To investigate the capacity of a 'copper wire in the cir

cumstances experimented on by Faraday, let us first consider the

analogous- circumstances regarding the conduction of heat; that

is, let us consider the conduction of heat that would take place
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across the gutta-percha, if the copper wire in its interior were

kept continually at a temperature a little above that of the

water which surrounds it. Here the quantity of heat flowing

outwards from any length of the copper wire, the quantities

flowing across different surfaces surrounding it in the gutta

percha, and the quantity flowing into the water from the same

length of gutta-percha tube, in the same time, must be equal.

But the areas of the same length of different cylindrical surfaces

are proportional to their radii, and therefore the flow of heat

across equal areas of different cylindrical surfaces in the gutta

percha, coaxial with the wire, must be inversely as their radii.

Hence, in the corresponding electrical problem, with air as the

dielectric instead of gutta-percha, if R denote the resultant

electrical force at any point P in the air between an insulated,

electrified, infinitely long cylindrical conductor, and an un

insulated, coaxial, hollow cylindrical conductor surrounding it,

and if a: be the distance of P from the axis, we have

_A
——I

(D

where A denotes a constant. But if 1; be the potential at P;

by the definition of “ potential" we have

dv

a;= _R.

Hence

dv _ A '

a-‘z '

and, by integration,

v =—A logz+ C.

Assigning the constants A and C’ so that the potential may

have the value V at the surface of the wire, and may vanish

at the hollow conducting surface round it, if r and 1" denote the

radii of these cylinders respectively, we have

and --——=R=————;;1:-

55. Taking a:=r, we find by this the electric force in the air
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infinitely near the inner electrified conductor; and dividing the

value found, by 4w (according to the general theorem), we have

1 V

EH0 r’

gr

for the electrical density on the surface of the conductor.

Multiplying this by 21ml, the area of a length l of the surface,

we find Vl

is ,

log I"?

for the whole quantity of electricity on that length. Hence, if

k be the specific inductive capacity of gutta~percha, the electri

city resting on a length l of the wire in the actual circumstances

will amount t0 % kl IV.

log;

Or if S denote the surface of the wire, we have, for the quantity

of electricity which it holds,

V_ kS _

41rr logrr

and therefore its capacity is the same as that of a Leyden

phial with an equal area of coated glass of thickness equal to

érlogg, if I denote the specific inductive capacity of the

glass.

56. In the case experimented on by Mr. Faraday, the diameter

of the wire was 111th of an inch, and the exterior diameter of the

gutta-percha covering was about four times as great. Hence

the thickness of the equivalent Leyden phial must have been

Lilo, ,=£._1_.
k 32 ‘ It 2308

As the surface of the wire amounted to 8300 square feet, we

may infer that if the gutta~percha had only the same induc

tive capacity as glass (and it probably has a little greater), the

insulated wire, when the outer surface of the gutta-percha was

uninsulated, would have had an electrical capacity equal to that

of an ordinary Leyden battery of 8300 square feet of coated

glass y‘gd of an inch thick.

INVERCLOY, Alums, June 1854.



IV. ON THE MATHEMATICAL THEORY OF ELECTRICITY

IN EQUILIBRIUM.

II.-——~A STATEMENT OF THE PRINCIPLES ON WHICH THE MATHE

MATICAL THEORY OF ELECTRICITY IS FOUNDEI).

[Cambridge and Dublin Mathematical Journal, March 1848.]

57. This paper may be regarded as introductory to some

others which will follow, containing various investigations in

the Theory of Electricity. The fundamental mathematical prin

ciples of the phenomena of Electricity in Equilibrium are stated

and explained in as concise'a manner as seems consistent with

clearness. To avoid lengthening the paper and unnecessarily

distracting the attention of the reader, no details are given with

reference to the experiments which have been, or which might

be, made for establishing the various propositions asserted ; and,

for the same reasons, scarcely any allusion is made to the his

tory of the subject. With regard to the nature of the evidence

on which the mathematical theory of electricity rests, the reader

is referred to the preceding paper “On the Elementary Laws

of Statical Electricity,” where, besides some general ex -

planations on the subject, the works containing accounts of the

actual experimental researches of principal importance are

indicated. That paper is marked as the first of a series which

it was my intention to publish in this Journal, and of which

the second now appears. In this series it will not be attempted

to adhere to a systematic course of investigations such as might

constitute a complete treatise on the subject; and my only

reason for publishing this introductory article is for the sake

of reference in other papers, there being no published work in

which the principles are stated in a sufficiently concise and

correct form, independently of any hypothesis, to be altogether

satisfactory in the present state of science.

The Two Kinds of Electricity.

58. If a piece of glass and a piece of resin are rubbed together

and then separated, it is found that they attract one another
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mutually. The term clectricity* has been applied to the agency

developed in this operation ; the excitation of the bodies, to

which the attractive force is due, is called electrical, and the

bodies so excited are said to be electrified, or to be charged with

electricity.

If second pieces of glass and resin be rubbed together and

then separated, and placed in the neighbourhood of the first pair

of electrified bodies, it may be observed- .

(1) That the two pieces of glass repel one another.

(2) That each piece of glass attracts each piece of resin.

(3) That the two pieces of resin repel one another.

Hence it is inferred that the two pieces of glass possess elec

trical properties which differ in their characteristics from those

of the resin; and the two kinds of electricity thus indicated are

called vitreous and resinous, after the substances on which they

are developed. Bodies may in various ways be made electric ;

but the characteristics presented are always those of either

vitreous electricity or resinous electricity.

59. An electrified body exerts no force, whether of attraction

or of repulsion, upon any non-electric matter. When in any case

bodies not previously electrified are observed to be attracted, or

urged in any direction, by an electrical mass, it is because the

bodies have become electrically excited by influence.

60. If a small piece of glass and a small piece of resin, which

have been electrified by mutual friction, be placed successively

in the same position in the neighbourhood of an electrified body,

they will be acted upon by equal forces, in the same line,

but in contrary directions. Hence the two bodies are said to be

equally charged with the two kinds of electricity respectively.

Electrical Quantity.

61. The force between two electrified bodies depends, ca'teris

paribus, on the amounts of their charges, or on the quantities

of electricity which they possess.

If a small piece of glass and a small piece of resin be electrified

by mutual friction to such an extent that, when separated and

placed at a unit of distance, they attract one another with a

unit of force, the quantity of electricity possessed by the former

“ From flxexrpor, amber, on account of such phenomena having been first

observed with amber as one of the substances rubbed together.
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is said to be unity ; the latter possesses what may be called a

unit of resinous electricity.

If m bodies, each possessing a unit of vitreous electricity, be

incorporated together, the single body thus composed is charged

with m units of the same kind of electricity : It is said to pos

sess a quantity of electricity equal to m, or its electrical mass is

m. A similar definition is applicable with reference to the

measurement of resinous electricity.

62. If two bodies possessing equal quantities of vitreous and

resinous electricity be incorporated, the single body thus com

posed will be found either to be non-electric, or to be in such a

state that, without the removal of any electricity of either kind

from it, it may, merely by an alteration in the distribution of

what it already possesses, be deprived of all electrical symptoms.

Thus it appears that a body either vitreously or resinously

electrified, may be deprived of its charge merely by supplying

it with an equal quantity of the other kind of electricity.

In consequence of this fact, we may establish a complete

system of algebraic notation with reference to electrical quantity,

whether of vitreous or resinous electricity, by adopting as

universal the law that the total quantity of electricity possessed

by two bodies, or the quantity possessed by one body made up

of two, is equal to the sum of the quantities with which they

are separately charged. Thus let m be the quantity of elec

tricity with which a vitreously electrified body is charged, and

let m’ be the quantity contained by a body equally charged

with resinous electricity. \Ve must have

m + m’: 0,

and therefore m’ is equal to —m. Now it is usual to regard

vitreous electricity as positive; and we must therefore regard

the other kind as negative; so that a body possessing m units

of resinous electricity is to be considered as charged with a

quantity — m of electricity.

The Superposition of Electrical Forces.

63. If a body, electrified in a given invariable manner, he

placed in the neighbourhood of any number of electrified bodies,

it will experience a force which is the resultant of the forces

that would be separately exerted upon it by the different bodies
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if they were placed in succession in the positions which they

actually occupy, without any alteration in their electrical

conditions.

This law is true even if any number of the bodies considered

be merely different parts of one continuous mass.

COR. 1. The total mechanical action between two electrified

bodies, whether parts of one continuous mass or isolated

bodies, is the resultant of the forces due to the mutual actions

between all parts of either body and all parts of the other,

if we conceive the two bodies to be arbitrarily divided each

into parts in any manner whatever.

COR. 2. We may, in any electrical problem, imagine the

charge possessed by a body to be divided into two or more

parts, each distributed arbitrarily with the sole condition

that the sum of the quantities of electricity in any very small

space of the body due to the different distributions shall be

equal to the given quantity of electricity in that space,

according to the actual distribution of electricity in the body;

and we may consider the force actually exerted upon any other

electrified body as equivalent to the resultant of the forces due

to these partial distributions.

The Law of Force between Electrified Bodies.

64. The force between two small electrified bodies varies

inversely as the square of the distance between them.

COR. If two small bodies be charged respectively with

quantities m and m’ of electricity, they will mutually repel

with a force equal to mm’ _

‘K;- I

(an action which will be really attractive when m and m’ have

unlike signs, as would be the case were the bodies dissimilarly

electrified). For two units, placed at a distance unity, repel

with a force equal to unity, and therefore if placed at a distance

A, they will repel with a force 31;; and the expression for the

repulsion between m units and m’ units is deduced from this,

according to the principle of the superposition of forces, by

multiplying by mm’.
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Definition of the Resultant Electrical Force at a Point.

65. Let a unit of negative electricity be conceived to be con

centrated at a point P in the neighbourhood of an electrified

body or group of bodies, without producing any alteration in

the previously existing electrical distribution. The force exerted

upon this electrical point is what we shall throughout under

stand as the resultant force at P due to the electricity of the

body or bodies considered.

COR. If R be the resultant force at P in any case, then

the force actually exerted upon an electrical mass m, concen

trated at P, will be equal to —mR.

Electrical Equilibrium.

66. When a body held at rest is electrified, and when, being

either subject to electrical action from other bodies, or entirely

isolated, the distribution of its charge remains permanently

unaltered, the electricity upon it is said to be in equilibrium

Electrical equilibrium may be disturbed in various ways.

Thus if a body charged with electricity in equilibrium be

touched, or even approached by another electrified body, the

equilibrium may be broken, and can only be restored after a

different distribution has been effected, by a motion of electricity

through the body or along its surface : or if a body be initially

electrified in any arbitrary manner, whether by friction or other

wise, it may be that, as soon as the exciting cause is removed,

the electricity will either gradually become altered from its

initial distribution, by moving slowly through the body, or will

suddenly assume a certain definite distribution.

The laws which regulate the distribution of electricity in

4 equilibrium on bodies in various circumstances have been the

subject of most important experimental researches; and having

been established with perfect precision by Coulomb, and placed

beyond all doubt by verifications afforded in subsequent ex

periments, they constitute the foundation of an extremely in

teresting branch of the Mathematical Theory of Electricity. In

connexion with these laws, and before stating them, it will be

convenient to explain the nature of the distinction which is

drawn between the two great classes of bodies in nature, called

Conductors of Electricity, and Non-Conductors of Electricity.
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Non-Conductors of Electric-fly.

67. A body which affords such a resistance to the transmis

sion of electricity through it, or along its surface, that, if it be

once electrified in any way, it retains permanently, without

any change of distribution, the charge which it has received, is

called a Non-Conductor of Electricity.

No body exists in nature which fulfils strictly the terms

of this definition; but glass and resin, besides many other

substances, are such that they may, within certain limits and

subject to certain restrictions, be considered as non-conductors.

Conductors of Electricity._

68. A very extensive class of bodies in nature, including all

the metals, many liquids, etc, are foimd to possess the property

that, in all conceivable circumstances of electrical excitation, the

resultant force at any point within their substance vanishes.

Such bodies are called Conductors of Electricity, since they are

destitute of the property, possessed by non-conductors, of

retaining permanently, by a resistance to every change, any

distribution of electricity arbitrarily imposed ; the only kind of

distribution which can exist unchanged for an instant being

such as satisfies the condition that the resultant force must

vanish in the interior.

It is found by experiment that the electricity of a charged

conductor rests entirely on its surface, and that the electrical

circumstances are not at all affected by the nature of the

interior, but depend solely upon the form of the external

conducting siu'face. Thus the electrical properties of a solid

conductor, of a hollow conducting shell, or of a non-conductor

enclosed in an envelop, however thin (the finest gold leaf, for

instance), are identical, provided the external forms be the

same. A hollow conductor never shows symptoms of electricity

on its interior surface, unless an electrified body be insulated

within it; in which case the interior surface will become elec

trified by influence, or by induction, in such a way as to make

the total resultant force at any point in the conducting matter

vanish, by balancing, for any such point, the force due to the

electricity 0f the insulated body.
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It has been frequently assumed that electricity penetrates to

a finite depth below the surface of conductors; and, in accord

ance with certain hypothetical ideas regarding the nature of

electricity, the “ thickness of the stratum” at different points of

the surface of a conductor has been considered as a suitable

term with reference to the varying or uniform distribution of

electricity over the body. All the conclusion with reference to

this delicate subject which can as yet be drawn from experiment,

is that the “thickness,” if it exist at all, must be less than that

of the finest gold leaf ; and in the present state of science we

must regard it as immeasurably small. It may be conceived

that the actual thickness of the excited stratum at the surface

of an electrified conductor is of the same order as the space

through which the physical properties of the pervading matter

change continuously from those of the solids to those which

characterize the surrounding air.

Electrical Density at any Point of a Charged Surface.

69. In this, and in all the papers which will follow, instead

of the expression "the thickness of the stratum,” Coulomb's

far more philosophical term, Electrical Density, will be employed

with reference to the distribution of electricity on the surface

of a body; a term which is to be understood strictly in

accordance to the following definitions, without involving

even the idea of a hypothesis regarding the nature of electricity.

The electrical density of a uniformly charged surface is the

quantity of electricity distributed over a unit of surface.

The electrical density at any point of a surface, whether the

distribution be uniform or not, is the quotient obtained by

dividing the quantity of electricity distributed over an infinitely

small element at this point, by the area of the element

Exclusion of all Non-Conductors except Air.

70. In the present paper, and in some others which will

follow, no bodies will be considered except conductors; and

the air surrounding them, which will be considered as offering

a resistance to the transference of electricity between two

detached conductors, but as otherwise destitute of electrical

properties. A full development of the mathematical theory,

of the internal electrical polarization of solid or liquid non-con
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ductors, subject to the influence of electrified bodies, discovered

by Faraday (in his Experimental Researches on the specific in~

ductive capacities of non-conducting media), must be reserved

for a later communication.*

Insulated Conductors.

71. A conductor separated from the ground, and touched only

by air, is said to be insulated. Insulation may be practi

cally effected by means of solid props of matter, such as glass,

shell-lac, or gutta percha' ;1' and if the props be sufficiently thin,

it is found that their presence does not in any way alter or

afl'ect the electrical circumstances, and that their resisting

power, as non-conductors of electricity, prevents any alteration

in the quantity of electricity possessed by the insulated body ;

so that however the distribution may be affected by the

influence of surrounding bodies, it is only by a temporary

breaking of the insulation that the absolute charge can be in

creased or diminished.

If an insulated uncharged conductor be placed in the

neighbourhood of bodies charged with electricity, it will become

“ electrified by influence,” in such a manner that its resultant

electrical force at every internal point shall counterbalance the

force due to the exterior charged bodies: but, in accordance

with what has been stated in the preceding paragraph, the

total quantity of electricity will remain equal to nothing;

that is to say, the two kinds of electricity produced upon it by

influence will be equal to one another in amount.

Recapz'tulation of the Fundamental Laws.

72. The laws of electricity in equilibrium in relation with

conductors may-ifwe tacitly take into account such principles

4' The results of this Theory were explained briefly in a paper entitled

“ Note sur les Lois Elémentaires de I’Electricité Statique” (published, in

1845, in Liouville’s Journal), and more fully in the first paper of the present

series, on the “ Mathematical Theory of Electricity" (11. above). A similar

view of this subject has been taken by Mossotti, whose investigations are pub

lished in a paper entitled “ Discussione A'nalilica sull’ Influenza che l’Azione

di un Mezzo Dielem'ieo ha sulla Distributione dell’ Elcttricitd alla Superficie di

piu (I'm-pi Electric-i Disseminati in Essa. (Vol. xxrv. of the Mémon'e della

Societd Italiana delle Scienze Residents in Modena, dated 1846.)

'1' It has been recently discovered by Faraday that gutta percha is one of

the best insulators among known substances-.(Phil. 11019., March 1848.)

D
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as the superposition of electrical forces, and the invariableness

of the quantity of electricity on a body, except by addition or

subtraction (in the extended algebraic sense of these terms)—

be considered as fully expressed in the three following pro

positions :—

I. The repulsion between two electrical points is inversely

proportional to the square of their distance.

II. Electricity resides at the boundary of a charged con

ductor.

III. The resultant force at any point in the substance of

a conductor, due to all existing electrified bodies, vanishes.

It has been proved by Green that the second of these laws

is a mathematical consequence of the first and third; and it has

been demonstrated by La Place * that the first law may be in

ferred from the truth, in a certain particular case, of the second

and third. The three laws were, however, first announced by

Coulomb, as the result of his experimental researches on the

subject.

Objects of the Mathematical Theory of Electricity.

73. The varied problems which occur in the mathematical

theory of electricity in equilibrium may be divided into the

two great classes of Synthetical and Analytical investigations.

In problems of the former class, the object is in each case the

determination either of a resultant force or of an aggregate

electrical mass, according to special data regarding distributions

of electricity: in the latter class, inverse problems, such as the

determination of the electrical density at each point of the

surface of a conductor in any circumstances, according to the

laws stated above, are the objects proposed.

It has been proved (by Green and Gauss) that there is a

determinate unique solution of every actual analytical problem

of the Theory of Electricity in relation with conductors. The

demonstration of this with reference to the complete Theory of

Electricity (including the action of solid non-conducting media

discovered by Faraday), as well as with reference to the Theories

of Heat, Magnetism, and Hydrodynamics, may be deduced from

two theorems proved in the Cambridge and Dublin Mathemati

cal Journal for 1847, “Regarding the Solution of certain Partial

' [Originally by Cavendish, as I learned after the first publication of this

paper. See footnote of March 1854 on § 34 above.]



Iv.] Fundamental Laws and Principles. 51

Differential Equations” (XII'I. below, or Thomson and Tait's

Natural Philosophy, App. A.)

The full investigation of any actual case of electrical equi

librium will generally involve both analytical and synthetical

problems; as it may be desirable, besides determining the

distribution, to find the resulting electrical force at points not

in the interior of any conductor, or to find the total mechanical

action due to the attractions or repulsions of the elements of

two conductors, or of two portions of one conductor; and

besides, it is frequently interesting to verify synthetically the

solutions obtained for analytical problems.

Actual Progress in the Mathematical Theory of Electricity.

74. In Poisson’s valuable memoirs on this subject, the dis

tribution of electricity on two electrified spheres, uninfluenced

by other electric matter, is considered; a complete solution of

the analytical problem is arrived at; and various special cases

of interest are examined in detail with great- rigor. In a very

elaborate memoir by Plane,‘ the solution given by Poisson is

worked out much more fully, the excessive mathematical difficul

ties in the way of many actual numerical applications of interest

being such as to render a work of this kind extremely important.

The distribution of electricity on an ellipsoid (including the

extreme cases of elliptic and circular discs,'and of a straight

rod), and the results of consequent synthetical investigations are

well known.

The analytical problem regarding an ellipsoid subject to the

influence of given electrical masses, has been solved by M.

Liouville, by the aid of a very refined mathematical method

suggested by some investigations of M. Lamé with reference to

corresponding problems in the Theory of Heat.

Green's Essay on Electricity and his other papers on allied

subjects contain, besides the solution of several special problems

of interest, most valuable discoveries with reference to the

general Theory of Attraction, and open the way to much more

extended investigations in the Theory of Electricity than any

that have yet been published.

Gmsoow COLLEGE, March 4, 1848.

* Turin Academy of Sciences, tome vii. Série 11. published separately in a

quarto volume of 333 pages: Turin, 1845.



V. ON THE MATHEMATICAL THEORY OF ELECTRICITY

IN EQUILIBRIUM.

III. -— GEOMETRICAL INVESTIGATIONS WITH REFERENCE TO THE

DISTRIBUTION OF ELECTRICITY ON SPHERICAL CONDUCTORS.‘

[Cambridge and Dublin Mathematical Journal, March, May, and Nov. 1848,

NOV. 1849, Feb. 1850.]

75. There is no branch. of physical science which affords a

surer foundation, or more definite objects for the application of

mathematical reasoning, than the theory of electricity. The

small amount of attention which this most attractive subject

has obtained is no doubt owing to the extreme difiiculty of the

analysis by which even a very limited progress has as yet been

made; and no other circumstance could have totally excluded

from an elementary course of reading, a subject which, besides

its great physical importance, abounds so much in beautiful

illustrations of ordinary mechanical principles. This character

of difiiculty and impracticability is not however inseparable

from the mathematical theory of electricity: by very elemen

tary geometrical investigations we may arrive at the solution

' The investigations given in this paper (§§ 75-127) form the subject of the

first part of a series of lectures on the Mathematical Theory of Electricity given

in the University of Glasgow during the present session [1847-8]. They are

adaptations of certain methods of proof which first occurred to me as appli

cations of the principle of electrical images, made with a view to investigating

the solutions of various problems regarding spherical conductors, without the

explicit use of the differential or integral calculus. The spirit, if not the

notation, of the difl'erential calculus must enter into any investigations with

reference to Green’s theory of the potential, and therefore a more extended

view of the subject‘ is reserved for a second part of the course of lectures‘.

A complete exposition of the principle of electrical images (of which a short

account was read at the late meeting of the British Association at Oxford) has

not yet been published; but an outline of it was communicated by me to

M. Liouville in three letters, of which extracts are published in the Journal dc

Malhématiquee (1845 &. 1847, vols. x., xii.) [See XIV. below.] A full and elegant

exposition of the method indicated, together with some highly interesting

applications to problems in geometry not contemplated by me, are given by

M. Liouville himself, in an article written with reference to those letters,

and published along with the last of them. I cannot neglect the present op

portunity of expressing my thanks for the honour which has thus been con

ferred upon me by so distinguished a mathematician, as well as for the kind

manner in which he received those communications, imperfect as they were,

and for the favourable mention made of them in his own valuable memoir.
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of a great variety of interesting problems with reference to the

distribution of electricity on spherical conductors, including

Poisson's celebrated problem of the two spheres, and others which

might at first sight be regarded as presenting difiiculties of a far

higher order. The object of the following paper is to present,

in as simple a form as possible, some investigations of this kind.

The methods followed, being for the most part synthetical, were

suggested by a knowledge of results founded on a less restricted

.view of the theory of electricity; and it must not be considered

‘either that they constitute the best or the easiest way of

advancing towards a complete knowledge of the subject, or that

they would be suitable as instruments of research in endeavour

.ing to arrive at the solutions of new problems.

Insulated Conducting Sphere subject to no External Influence.

76. We may commence with the simplest possible case, that

‘of a spherical conductor, charged with electricity and insulated

in a position removed from all other bodies which could influence

the distribution of its charge. In this, as in the other cases

which will be considered, the various problems, of the analytical

and synthetical classes, alluded to in a previous paper (1v.

§ 73) will be successively subjects of investigation. Thus let

us first determine the density at any point of the surface, and

then, after verifying the result by showing that the laws (§ 72)

are satisfied, let us investigate the resultant force at an external

point.

Determination of the Distribution.

77. Let a be the radius of the sphere, and E the amount of

the charge.

_ According to Law II., the whole charge will reside on the

surface, and, on account of the symmetry, it must be uniformly

distributed. Hence, if p be the required density at any point,

we have, E

P:41rd! '

Verification of Law III.

78. The well-known theorem, that the resultant force due to a

uniform spherical shell vanishes for any interior point, consti

tutes the verification required in this case. This theorem was
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first given by Newton, and is to be found in the Prineipia ;

but as his demonstration is the foundation of every synthetical

investigation which will be given in this paper, it may not be

superfluous to insert it here; and accordingly the passage of

‘the Principle in which it occurs, translated literally, is given

here.

Newton, First Book, Twelfth Section, Prop. LXX. Theorem XXX.

If the different points of a spherical surface attract equally

with forces varying inversely as the squares of the distances,

a particle placed within the surface is not attracted in any

direction.

Let HIKL be the spherical surface, and P the particle within

it. Let two lines HK, IL, intercepting very small arcs HI,

KL, be drawn through P; then on account

H, of the similar triangles HPI, KPL (Cor.

3, Lemma VII. Newton), those arcs will be

proportional to the distances HP, LP ; and

any small elements of the spherical surface at

HI and KL, each bounded all round by straight

lines passing through P [and very nearly coinciding with HK],

will be in the duplicate ratio of those lines. Hence the forces

exercised by the matter of these elements on the particle P are

equal ; for they are as the quantities of matter directly, and the

squares of the distances, inversely ; and these two ratios com

pounded give that of equality. The attractions therefore, being

equal and opposite, destroy one another: and a similar proof

shows that all the attractions due to the whole spherical sur

face are destroyed by contrary attractions. Hence the particle

P is not urged in any direction by these attractions. Q. E. D.

Digrassion 0n the Division of Surfaces into Elements.

79. The division of a spherical surface into infinitely small

elements will frequently occur in the investigations which

follow: and Newton’s method, described in the preceding de

monstration, in which the division is effected in such a manner

that all the parts may be taken together in pairs of opposite

elements with reference to an internal point ; besides other
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methods deduced from it, suitable to the special problems to be

examined ; will be repeatedly employed. The present digression,

in which some definitions and elementary geometrical pro

positions regarding this subject are laid down, will simplify

the subsequent demonstrations, both by enabling us, through

the use of convenient terms, to avoid circumlocution, and by .

affording us convenient means of reference for elementary

principles, regarding which repeated explanations might other

wise be necessary.

Ezplanations and Definitions regarding Cones.

80. If a straight line which constantly passes through a

fixed point he moved in any manner, it is said to describe, or

generate, a conical surface of which the fixed point is the

vertex.

If the generating line be carried from a given position con

tinuously through any series of positions, no two of which

coincide, till it is brought back to the first, the entire line on the

two sides of the fixed point will generate a complete conical

surface, consisting of two sheets, which are called vertical or

opposite cones. Thus the elements HI and KL, described

in Newton's demonstration given above, may be considered

as being cut from the spherical surface by two opposite cones

having P for their common vertex.

The Solid Angle of a Cone, or of a complete Conical Surface.

81. If any number of spheres be described from the vertex

of a cone as centre, the segments cut from the concentric

spherical surfaces will be similar, and their areas will be as the

squares of the radii. The quotient obtained by dividing the

area of one of these segments by the square of the radius of

the spherical surface from which it is cut, is taken as the

measure of the solid angle of the cone. The segments of the

same spherical surfaces made by the opposite cone, are re

spectively equal and similar to the former. Hence the solid

angles of two vertical or opposite cones ‘are equal : either may

be taken as the solid angle of the complete conical surface, of

which the opposite cones are the two sheets.
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Sum of all the Solid Angles round a Point = 41.

82. Since the area of a spherical surface is equal to the

‘square of its radius multiplied by 411-, it follows that the sum

‘of the solid angles of all the distinct cones which can be de

scribed with a given point as vertex, is equal to 411'.

Sum of the Solid Angles of all the complete Conical Surfaces = 211-.

83. The solid angles of vertical or opposite cones being

equal, we may infer from what precedes that the sum of the

solid angles of all the complete conical surfaces which can be

described without mutual intersection, with a given point as

vertex, is equal to 2m

Solid Angle subtended at a Point by a Terminated Surface.

84. The solid angle subtended at a point by a superficial

area of any kind, is the solid angle of the cone generated by a

straight line passing through the point, and carried entirely

round the boundary of the area.

Orthogonal and Oblique Sections of a Small Gone.

85. A very small cone, that is, a cone such that any two

positions of the generating line contain but a very small angle,

is said to be cut at right angles, or orthogonally, by a spherical

surface described from its vertex as centre, or by any surface,

whether plane or curved, which touches the spherical surface

at the part where the cone is out by it.

A very small cone is said to be out obliquely, when the

section is inclined at any finite angle to an orthogonal section;

and this angle of inclination is called the obliquity of the

section.

The area of an orthogonal section of a very small cone is

equal to the area of an oblique section in the same position,

multiplied by the cosine of the obliquity.

Hence the area of an oblique section of a small cone is equal

to the quotient obtained by dividing the product of the square

of its distance from the vertex, into the solid angle, by the

cosine of the obliquity.

Area of the Segment cutfi'om a Spherical Surface by a Small Gone.

86. Let E denote the area of a very small element of a
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spherical surface at the point B (that is to say, an element

every part of which is very near the point E), let 0) denote

the solid angle subtended by E at any point P, and let PE,

produced if necessary, meet the surface again in E’: then, a

denoting the radius of the spherical surface, we have

2a.w.PE'

=W'

For, the obliquity of the element E, considered as a section
vof the cone of which P is the vertex and the

element E, a section; being the angle between

the given spherical surface and another de—

scribed from P as centre, with PE as radius ;

is equal to the angle between the radii, EP

and E0, of the two spheres. Hence, by con

sidering the isosceles triangle EOE’, we find that the cosine of

§~EE’ EE'
EG , or to —2—a—, and we arrive at

the preceding expression for E’.

E

 

the obliquity is equal to

87. 77w0rem.* The attraction of a uniform spherical surface

on an external point is the same as if the whole mass were

collected at the centre. -

Let P be the external point, 0' the centre of the sphere,

and GAP a straight line cutting the

spherical surface in A. Take I in

UP, so that GP, GA, HI may be

continual proportionals, and let the p

whole spherical surface be divided

into pairs of opposite elements with

reference to the point I.

Let H and H’ denote the magnitudes of a pair of such

‘ This theorem, which is more comprehensive than that of Newton in his

first proposition regarding attraction on an external point (Prop. LXXL), is

fully established as a corollary to a subsequent proposition (Prop. Lxxm.

Cor. 2). If we had considered the proportion of the forces exerted upon two

external points at different distances, instead of, as in the text, investigating

the absolute force on one point, and if besides we had taken together all the

pairs of elements which would constitute two narrow annular portions of the

surface, in planes perpendicular to PC’, the theorem and its demonstration

would have coincided precisely with Prop. non. of the Primipia.
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elements, situated respectively at the extremities of a chord

HH’; and let co denote the magnitude of the solid angle sub

tended by either of these elements at the point I.

\Ve have (§ 85),

wJH’ ,_ wJH"

H=cos CHI’ and H — cos 011'].

Hence, if p denote the density of the surface (§ 69), the attrac

tions of the two elements H and H’ on P are respectively

or IH' __m . IH"

PcosO'HI'PH’ cos 0117 PH”"

Now the two triangles PCH, HCI have a common angle at C,

and, since PC: CH :: CH : CI, the sides about this angle are

proportional. Hence the triangles are similar; so that the

angles CPH and CHI are equal, and

2111-2.
HP_ UP_ CP

In the same way it may be proved, by considering the triangles

PC'H', H'OI, that the angles OPH’ and C'H'I are equal, and

that

a and

Hence the expressions for the attractions of the elements H

and H’ on P become

to a‘ w a‘

pcos CHI- GP‘ cos CH’I ' OP’ ’

which are equal, since the triangle HCH’ is isosceles; and, for

the same reason, the angles C'PH, CPH', which have been

proved to be respectively equal to the angles CHI, CH'I, are

equal. We infer that the resultant of the forces due to the

two elements is in the direction PO, and is equal to

illndp

or"

To find the total force on P, we must take the sum of all

20).’).

* From this we infer that the ratio of 1H to HP is constant, whatever

be the position of H on the spherical surface, a well-known proposition.

(Thomson’s Euclid, v1. Prop. G.)
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the forces along PO’ due to the pairs of opposite elements;

and, since the multiplier of a) is the same for each pair, we

must add all the values of a), and we therefore obtain (§ 83),

for the required resultant,

41rpa'

CP' '

The numerator of this expression; being the product of the

density, into the area of the spherical surface; is equal to the

mass of the entire charge; and therefore the force on P is the

same as if the whole mass were collected at C’. Q. E. D.

COR. The force on an external point, infinitely near the

surface, is equal to 4-rrp, and is in the direction of a. normal at

the point. The force on an internal point, however near the

surface, is, by a preceding proposition, equal to nothing.

. Repulsion on an element of the Electrified Surface.

88. Let a- be the area of an infinitely small element of the

surface at any point P, and at any other point

H of the surface let a small element subtend

ing a. solid angle on, at P, be taken. The area

of this element will be equal to

w.PH'

cos CHP ’

and therefore the repulsion along HP, which it exerts on the

element a- at P, will be equal to

> pupa’ 4»

cos OHP’ or can CHP

Now the total repulsion on the element at P is in the direction

UP; the component in this direction of the repulsion due to

the element H, is

p’o'.

unp'o‘;

and, since all the cones corresponding to the different elements

of the spherical surface lie on the same side of the tangent

plane at P, we deduce, for the resultant repulsion on the

element a,

21rp'1r.

From the corollary to the preceding proposition, it follows that
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this repulsion is half the force which would be exerted on an

external point, possessing the same quantity of electricity as

the element 0', and placed infinitely near the surface.

GLASGOW COLLEGE, March 14, 1848.

INSULATED SPHERE sunqsornn TO THE INFLUENCE or AN

ELECTRICAL Pomr—(§§ 89-95).

89. A conducting sphere placed in the neighbourhood of an

electrified body must necessarily become itself electric, even if

it were previously uncharged; since (Law IIL) the entire resul

tant force at any point within it must vanish, and consequently

there must be a distribution of electricity on its surface which

will for internal points balance the force resulting from the ex

ternal electrified body. If the sphere, being insulated, be pre

viously charged with a given quantity of electricity, the whole

amount will (§ 71) remain unaltered by the electrical influence,

but its distribution cannot be uniform, since in that case, it

would exert no force on an internal point, and there would re

main the unbalanced resultant due to the external body. In

what follows, it will be proved that the conditions are satisfied

by a certain assumed distribution of electricity in each instance;

but the proposition that no other distribution can satisfy the

conditions, which is merely a case of a general theorem referred

to above (§ 73), will not be specially demonstrated with re

ference to the particular problems; although we shall have to

assume its truth when a certain distribution which is proved

synthetically to satisfy the conditions is asserted to be the

unique solution of the problem.

Attraction of a Spherical Surface of which the density varies inversely

as the cube of the distance from a given point.

90. Let us first consider the case in which the given point S

and the attracted point P are separated by the spherical sur

face. The two figures represent the varieties of this case in

which the point S being without the sphere, P is within ; and,

S being within, the attracted point is external. The same de

monstration is applicable literally with reference to the two
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figures ; but, for avoiding the consideration of negative quanti

ties, some of the expressions may be conveniently modified to

suit the second figure. In such instances the two expressions

are given in a double line, the upper being that which is most

convenient for the first figure, and the lower for the second.

Let the radius of the sphere be denoted by a, and let f be the

distance of S from C, the centre of the sphere (not represented

in the figures).

Join SP and take T in this line (or its continuation) so that

(fi - 1-) Y ‘I

(fig-1) SP.TS=a’_;1} (1).

Through T draw any line cutting the spherical surface at K, K'.

Join SK, SK’, and let the lines so drawn out the spherical sur

face again in EE'.

Let the whole spherical surface be divided into pairs of op

posite elements with reference to the point T. Let K and K’

be a pair of such elements situated at the extremities of the

chord KIf, and subtending the solid angle 0 at the~point T;

and let elements E and E’ be taken subtending at S the same

solid angles respectively as the elements K and K’. By this

means we may divide the whole spherical surface into pairs of

conjugate elements, E, E’, since it is easily seen that when we

have taken every pair of elements, K, K’, the whole surface will

' If, in geometrical investigations in which diagrams are referred to, the

distinction of positive and negative quantities be observed, the order of the

letters expressing a straight line will determine the algebraic sign of the

quantity denoted : thus we should have, universally, if A, B be the extremi

ties of a straight line, AB= —BA, each member of this equation being

positive or negative according to the conventional direction in which posi

tive quantities are estimated. In the present instance, lengths measured

along the line SP in the direction from S towards P, or in corresponding

directions in the continuation of this line on either side, are, in both figures,

considered as positive. Hence, in the first figure ST will be positive ;

but when f is less than a, ST must be negative on account of the equation

SP.ST= ‘fa-a2. Hence the second figure represents this case; and, if

we wish to express the circumstances without the use of negative quantities,

we must change the signs of both members of the equation, and substitute

for the positive quantity -—ST its equivalent TS, so that we have SP. TS=a’B

-f*, as the most convenient form of the expression, when reference is made

to the second figure. See above (Symbolical Geometry, § 4), in volume of the

Cambridge and Dublin Mathematical Journal for 1848, where the principles of

interpretation of the sign —- in geometry are laid down by Sir William R.

Hamilton [or Tait’s Quatemions, § 20, 1868].
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have been exhausted, without repetition, by the deduced ele

I

Pro. I. Fro. 2.

ments, E, E’. Hence the attraction on P will be the final re

sultant of the attractions of all the pairs of elements, E E’.

Now if p be the electrical density at E, and if F denote the

attraction of the element E on P, we have

_ PiF._ EP, .

According to the given law of density we shall have

A.

P= SE‘ ’

where 7t is a constant. Again, since SEK is equally inclined

to the spherical surface at the two points of intersection, we

have 85, 86)

E_§_l2 _ __ SE'A 2aw.TK’ _

_SK' _ g’ KK' '

and hence

A SE’ 2aw.TK'

F_ sn- ' s10‘ KK' _, TK’

EP' KK"sE.sK'.EP"“"

Now, by considering the great circle in which the sphere is cut

by a plane through the line SK, we find that

(fig-1.) SK.SE=f’_aI (2)

(fig. 2.) KS.SE=a'-f'} ,

and hence SKSE : SRST, from which we infer that the

triangles KST, PSE are similar; so that TK :SK :: PE:SP.

Hence TX: 1

M‘721E;= s1" ’

and the expression for F becomes

_ 2a 1 3

F‘J'W'sasP' “’ l )'
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Modifying this by (2) we have

2a m

(fig. 1.) F=A.fi;'(jq_:—a'",)SP'SK2a to

(fig. 2.) WIW'KS

Similarly, if F’ denote the attraction of E’ on P, we have

,_ 2a __—w_ . ,

(fig. 1.) F SK,

(fig. 2.) F'=)\ 2“ “’ K’S.
717(7'(a’—f’)SP"

Now in the triangles which have been shown to be similar, the

angles TKS, EPS are equal ; and the same may be‘ proved of

the angles TK’S, E’PS. Hence the two sides SK, SK’ of the

triangle KSK’ are inclined to the third at the same angles as

those between the line PS and directions PE, PE’ of the two

forces on the point P; and the sides SK, SK’ are to one

another as the forces, F, F’, in the directions PE, PE". It

follows, by “the triangle of forces,” that the resultant of F and

F’ is along PS, and that it bears to the component forces the

same ratios as the side KK’ of the triangle bears to the other

two sides. Hence the resultant force due to the two elements

E and E’, on the point P, is towards S, and is equal to

2a m , , h.2a.w
)t._K_KT,.(f,_~W.IiK, OI‘W.

The total resultant force will consequently be towards S;

and we find, by summation (§ 83) for its magnitude,

)L41ra

“0*~aosP' '

Hence we infer that the resultant force at any point P,

separated from S by the spherical surface, is the same as if

a quantity of matter equal to f'fa, were concentrated at the

point S. f a

91. To find the attraction when S and P are either both

without or both within the spherical surface. _

Take in CS (fig. 3.), or in CS produced through S (fig. 4.), a

point S1, such that

C'S.C'IS'l = a’.
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Then, by a well-known geometrical theorem (see note on § 87),

if E be any point on the spherical surface, we have

SE _£ .

S‘E — a

A z\.

Hence we have SE. = T551?‘ .

Hence, p being the electrical density at E, we have

if A.=A ~

Hence, by the investigation in the preceding paragraph, the

attraction on P is towards S1, and is the same as if a quantity

i’ \

I 3
FIG. 3. F10. 4.

;‘,l'4’;_‘: were concentrated at that point; f1

1 ~

being taken to denote OS]. If for f1 and 7x1 we substitute their

a‘ la‘ . .

values, — and — 7 we have the modified expression

f f‘

of matter equal to

for the quantity of matter which we must conceive to be

collected at S1.

92. PROP. If a spherical surface be electrified in such a way

that the electrical density varies inversely as the cube of the

distance from an internal point S (fig. 4), or from the corre

sponding external point 8,, it will attract any external point,

as if its whole mass were concentrated at S, and any internal
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point as if a quantity of matter greater than the whole mass in

the ratio of a to f were concentrated at 8,.

Let the density at E be denoted, as before, by Then,

if we consider two opposite elements at E and E’ which sub~

tend a solid angle at at the point S, the areas of these elements

being (§ 96) and %qlj, the quantity of elec

tricity which they possess will be

X.2a.m X.2a.w1 1

E’E EJ‘F'LT' °r sEJs's'

Now SE.E'S is constant (Euc. In. 35), and its value is a2

Hence, by summation, we find for the total quantity of elec

tricity on the spherical surface

)L41ra

a: _f! '

Hence, if this be denoted by m, the expressions in the preced

ing paragraphs, for the quantities of electricity which we must

suppose to be concentrated at the point S or 8,, according as P

is without or within the spherical surface, become respectively

a
m, and _m. Q. n. 1).

Application of the preceding Theorems to the Problem of Electrical

Influence. '

93. PROB. To find the electrical density at-any point of an

insulated conducting sphere (radius a) charged with a quantity

Q (either positive, or negative, or zero) of electricity, and placed

with its centre at a given distance f from an electrical point M

possessing m units of electricity.

If the expression for the electrical density at any point E of

the surface be ),

p=ME.+k (a),

X and It being constants; the force exerted by the electrified

surface on any internal point will be the same as if the con-'

stant distribution k, which (§ 78) exerts no force on an

internal point, were removed; and therefore (§ 90) will be

E
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the same as if a quantity of matter equal to fii'frzi were

collected at the point M. Hence, if the condition

AA
FIZz=-'m (b)

be satisfied, the total attraction on an internal point, due to

the electrified surface and to the influencing point, will vanish.

Hence this distribution satisfies the

condition of equilibrium (§ 72); and

to complete the solution of the pro

M posed problem it only remains to de

termine the quantity k, so that the

total quantity of electricity on the

surface may have the given value Q. Now (§ 92) the total

Mtg. in the

expression for the density, since M is an external point, is

equal to a A.41ra

7 'f-ia"
Hence, adding ‘in-ails, the quantity depending on the constant

term k, we obtain the entire quantity, which must be equal to

Q ; and we therefore have the equation

mass of the distribution, depending on the term

%'f>;'ir:,+41ra’lc= (2 (c).

From equations (b) and (a) we deduce

(f“—a')m ‘Him
)~=———— and 7c: -

41ra 41m’

Hence, by substituting in (a), we have

-____._<f-—a'>m 1 Li" (A)
P_ 41m .ME'+ 41m‘ ,

as the expression of the required distribution of electricity.

This agrees with the result obtained by Poisson, by means

of an investigation in which the analysis known as that of

“ Laplace’s coefficients," is employed.

94. To find the'attraction exerted by the electrified conductor

on any external point.
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We may consider separately the distributions corresponding

to the constant and the variable term in the expression for the

electrical density at any point of the surface. The attraction

of the first of these on an external point is (§ 87) the same

as if its whole mass were collected at the centre of the sphere :

the attraction of the second on an external point is (§ 92)

the same as if its whole mass were collected at an interior

point I, taken in MC so that MLMG: a’. Hence, according

to the investigation in the preceding paragraph, we infer that

the conductor attracts any external point with the same force

as would be produced by quantities Q+;—m, and —%m of

electricity, concentrated atthe points 0 and I respectively.

COB. The resultant force at an external point infinitely near

the surface is in the direction of the normal, and is equal to

41rp, if p be the electrical density of the surface, in the neigh

bourhood.

95. To find the mutual attraction or repulsion between the

influencing point, M, and the conducting sphere.

According to what precedes, the required attraction or repul

sion will be the entire force exerted upon m units of electricity

at the point M, by Q+%m at C‘ and ---;—

taken in GM, at a distance a?‘ from 6'. Hence, if the required

attraction be denoted by F (a quantity which will be negative

if the actual force be of repulsion), we have

m at a point I,

F:___f__+ f (B),

=a{f*-<f-—a->'w-nr-a-ram,

row-r

_ '(2f‘- ') ‘—f(f'- ‘)‘Qmor F~a——g7_|n(}’_ai)i—a (0).

00R. 1. If Q be zero or negative, the value of F is neces

sarily positive, since f must be greater than a; and therefore

there is a force of attraction between the influencing point
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and the conducting sphere, whatever be the distance between

them.

COR. 2. If Q be positive, then for sufficiently large values of

f, F is negative, while for values nearly equal to a, F is

positive. Hence if an electrical point be brought into the

neighbourhood of a. similarly charged insulated sphere, and

if it be held at a great distance, the mutual action will be

repulsive; if it then be gradually moved towards the sphere,

the repulsion, which will at first increase, will, after attaining

a maximum value, begin to diminish till the electrical point

is moved up to a certain distance where there will be no force

either of attraction or repulsion; if it be brought still nearer

to the conductor, the action will become attractive and will

continually augment as the distance is diminished.

If the value of Q be positive, and sufficiently great, a spark

will be produced between the nearest part of the conductor

and the influencing point, before the force becomes changed

from repulsion to attraction.

ST. Pn'rER’s COLLEGE,

July 7, 1848.

EFFECTS OF ELECTRICAL INFLUENCE ON INTERNAL SPHERICAL,

AND ON PLANE CONDUCTING SURFACES.

96. In the preceding articles of this series certain, problems

with reference to conductors bounded externally by spherical

surfaces have been considered. It is now proposed to exhibit

the solutions of similar problems with reference to the dis

tribution of electricity on concave spherical surfaces, and on

planes.

The object of the following short digression is to define and

explain the precise signification of certain technical terms and

expressions which will be used in this and in subsequent papers

on the Mathematical Theory of Electricity.

External and Internal Conducting Surfaces.

97. DEF. l. A closed surface separating conducting matter
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within it from air‘ without it, is called an external conducting

surface. ' '

DEF. 2. A closed surface separating air within it from conduct

ing matter without it is called an internal conducting surface.

Thus, according to these definitions, a solid conductor has

only one “ conducting surface,” and that “ an external conduct

ing surface.”

A conductor containing within it one or more hollow spaces

filled with air, possesses two or more “conducting surfaces;”

namely, one “external conducting surface,” and one or more

“internal conducting surfaces.”

A complex arrangement, consisting of a hollow conductor

and other conductors insulated within it, presents several

external and internal conducting surfaces ; namely, an “ external

conducting surface” for each individual conductor, and as many

"internal conducting surfaces” as there are hollow spaces in

the different conductors.

98. In any arrangement such as this, there are different

masses of air which are completely separated from one another

by conducting matter. Now among the General Theorems

alluded to in § 73, it will be proved that the bounding sur

face or surfaces of any such mass of air cannot experience

any electrical influence from the surfaces of the other masses

of air, or from any electrified bodies within them Hence any

statical phenomena of electricity which may be produced in a

hollow space surrounded continuously by conducting matter,

whether this conducting envelope be a sheet even as thin as

gold leaf, or a massive conductor of any external form and

dimensions,—will depend solely on the form of the internal

conducting surface.

99. PROP. An internal conducting surface cannot receive a

charge of electricity independently of the influence of electrified

bodies within it.

100. The demonstration of this proposition depends on what

precedes, and on one of the General Theorems, already alluded

to (§ 73), by which it appears that it is impossible to distribute

a charge of electricity on a closed surface in such a manner that

' See § 70, excluding all non-conductors except air, or gases.
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there may be no resultant force exerted on external points, and

consequently impossible, with merely a distribution of electricity

on an internal conducting surface, to'satisfy the condition of

electrical equilibrium with reference to the conducting matter

which surrounds it.

The preceding proposition (§ 99) is fully confirmed by ex

periment (Faraday’s Experimental Researches, 1173, 1174).

In fact, the certainty with which its truth has been practically

demonstrated in a vast variety of cases, by all electrical

experimenters, may be regarded as a very strong part of the

evidence on which the Elementary Laws as stated above

(§ 72) rest.

10]. It might be further stated that the total quantity of

electricity produced by influence on an internal conducting

surface is necessarily equal in every case to the total quantity

of electricity on the influencing electrified bodies insulated

within it. This will also be demonstrated among the General

Theorems ; but its truth in the special case which we are now

to consider, will, as we shall see, he established by a special

demonstration.

Electrical Influence on an Internal Spherical Conducting Surface.

102. In investigating the effects of electrical influence upon

an external, or convex, spherical conducting surface (§§ 93,

94, 95), we have considered the conductor to be insulated and

initially charged with a given amount of electricity. In the

present investigation no such considerations are necessary,

since, according to the statements in the preceding paragraphs,

it is of no consequence, in the case now contemplated, whether

the conductor containing the internal conducting surface be

insulated or not; and it is impossible to charge this internal

surface initially, or to charge it at all, independently of the

influence of electrified bodies within it. With the modifications

and omissions necessary on this account, the preceding investi

gations are applicable to the case now to be considered.

103. PROB. To find the electrical density at any point of an

internal spherical conducting surface with an electrical point

insulated within it.
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Let m denote the quantity of electricity in the electrical

point M; f its distance from O the

centre of the sphere, and a the radius

of the sphere.

If the expression for the electrical

 

density at any point B of the internal '1

surface be

A ~1

'’=ME' ’

(7t a constant); the force exerted by the electrified spherical

surface on any point without it will (§ 90) be the same as if

a quantity of matter equal to (if; were collected at the point

M. Hence if we take 7t such that

)tA-rra

a: _fi= _m)

the total resultant force, due to the given electrical point and

to the electrified surface, will vanish at every point external to

the spherical surface, and consequently at every point within

the substance of the conductor ; so that the condition of electrical

equilibrium 72), in the prescribed circumstances, is satisfied.

We conclude, therefore,’that the required density at any point

E, of the internal spherical surface is given by the equation

This solution of the problem is complete, since it satisfies

all the conditions that can possibly be prescribed, and it is

unique, as follows from the general Theorem referred to in § 73.1‘

' We cannot here, as in (a) of § 93, annex a constant term, since in this

case there would result a force due to a corresponding quantity of electricity,

concentrated at the centre of the sphere on all points of the conducting mass.

1' For if there were two distinct solutions there would be two different dis

tributions on the spherical surface, each balancing on external points the

action of the internal influencing body, and therefore each producing the same

force at external points. Hence a distribution, in which the electrical

density at each point is equal to the difference of the electrical densities in

those two, would produce no force at external points. But, by the theorem

alluded to, no distribution on a closed surface of any form can have the

property of producing no force on external points ; and therefore the

hypothesis that there are two distinct solutions is impossible.

The theorem made use of in this reasoning is susceptible of special analytical
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COR- The total quantity of electricity produced by the in

fluence of an electrical point within an internal spherical con—

ducting surface is equal, but of the opposite kind to that of

the influencing point.

This follows at once from the investigation of § 92; from

which we also deduce the conclusion stated below in the next

section.

104. The entire electrical force, which vanishes for all points

external to the conducting surface, may, for points within it, be

found by compounding the force due to the given influencing

point M (charged, by hypothesis, with a quantity m of elec

tricity) with that due to an imaginary point I, taken in CM

produced, at such a distance from C that OM.C'I=a’, and

charged with a quantity of electricity equal to —£m.

f

COR. The resultant force at an internal point infinitely near

the surface, is in the direction of the normal, and is equal to

47p, if p be the electrical density of the surface in the neigh

bourhood.

105. The mutual attraction between the influencing point

M, and the surface inductively electrified will be found as in

§ 95, provided the uniform supplementary distribution which was

there introduced be omitted. Hence, omitting the term of (B)

which depends on this supplementary distribution; or simply,

without reference to (B), considering the mutual force between

a

f

as the two electrical points M and I possess opposite kinds of

electricity; we obtain

m at M and — m at I, a force which is necessarily attractive

l .m ,

as the expression for the required attraction.

demonstration (with the aid of the method in which “ Laplace’s coefi'icients "

are employed) for the case of a spherical surface; but such an investigation

would be inconsistent with the synthetical character of the present series of

papers, and I therefore do no more at present than allude to the general

theorem.
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Electrical Influence on a Plane Conducting Surface of infinite

extent.

106. If, in either the case of an external or the case of an

internal spherical conducting surface, the radius of the sphere

be taken infinitely great, the results will be applicable to the

present case of an infinite plane; and it is clear that from either

we may deduce the complete solution of the problem of deter~

mining the distribution of electricity, produced upon a conduct

ing plane, by the influence of an electrical point. The

“supplementary distribution,” which, in the case of a convex

spherical conducting surface, must in general be taken into

account, will, in the case of a sphere of infinite radius, be

a finite quantity of electricity uniformly distributed over a

surface of infinite extent, and will therefore produce no effect;

and the same results will be obtained whether we deduce

them from the case of an external or of an internal spherical

surface.

107. Let M be an electrical point possessing a quantity m of

electricity placed in the neighbourhood of a conductor bounded

on the side next M by a plane LL’

which we must conceive to be indefi

nitely extended in every direction; it

is required to determine the electrical

density at any point E of the conduct

ing surface.

Draw MA perpendicular to the

plane, and let its length be denoted

by 10. We may, in the first place,

conceive that instead of the plane sur

face we have a spherical conducting

surface entirely enclosing the air in

which M is insulated; and, suppos

ing the shortest line from M to the

spherical surface to be equal to p, we should have, according to

the notation of § 103, f=a_p_

Hence the expression (A) becomes

__2_‘}P;P’. m __ _P__P' m
P— 41m run-- 21:- 4% ME"
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In this, let a be supposed to be infinitely great; the second

term within the vinculum will vanish, and we shall have simply

p: _ 213;}? (A)

for the required electrical density at the point E of the in

finite plane electrified inductively through the influence of the

point M.

00B. The total amount of the electricity produced by in

duction is equal in quantity, but opposite in kind, to that of

the influencing point M. \Ve have seen already that the same

proposition is true in general for internal spherical surfaces

inductively electrified; but it does not hold for an external

spherical surface, even if we neglect the “ supplementary

distribution,” as it appears from the demonstration of § 92,

that the amount of the distribution expressed by the first

term (that which varies inversely as the cube of the distance

from the influencing point) of the value of p in equation (A)

of§ 93, is equal to —%

have seen, be regarded as an extreme case of either an external

or an internal spherical surface; and the proposition which is

in general true for internal, but not true for external spherical

surfaces, holds in this limiting intermediate case.

108. To determine the resultant force at any point in the air,

before the conducting plane, it will be only necessary, as in

§ 104, to compound the action of the given electrical point with

that of an imaginary point I.

To find this point, we must produce MA beyond A to a

distance AI, determined by the equation 0114.01: a’; which,

if we denote AI by 1/, becomes (a —p) (a +10’) :a’.

From this we deduce

m. The infinite plane may, as we

'_-__"L-_-_L ,
P a_p __

a

and thence, in the case of a = a0 , we deduce

p'=p

Again, for the quantity of electricity to be concentrated at I,

we have the expression

m’-.=- _a_m, or, when a = 00, m’=— m.

a—p -



v.] Geometrical Investigations regarding Spherical Comluetors. 75

Hence the force at any point before the plane will be ob

tained by compounding that due to the given electrical point

M, with a force due to an imaginary point I, possessing an

equal quantity of the other hand of electricity, and placed at

an equal distance behind the plane in the perpendicular MA

produced.

109. If reference be made to the general demonstration (§ 90)

. on which all the special conclusions with reference to the effects

of electrical influence on convex, concave, or plane conducting

surfaces depend, we see that the geometrical construction em

ployed fails in the case of a sphere of infinite radius, becoming

nugatory in almost every step : we have however deduced

conclusims which are not nugatory, but, on the contrary, assume

a remarkably simple form for this case; and we may regard as

rigorously established the solution of the problem of electrical

influence on an infinite plane which has been thus obtained.

110. It is interesting to examine the nugatory forms which

occur in attempting to apply the demonstrations of 90 and

92, to the case of an infinite plane; and it is not difficult to

derive a special demonstration, free from all nugatory steps, of

the following proposition.

Let LL’ be an infinite "material plane,” of which the

“ density ” in different positions varies in

versely as the cube of the distance from a

point S, or from an equidistant point S1, on

the other side of the plane. The resultant

force at any point P is the same as if the

whole matter of the plane were concentrated

at S; and the resultant force at any point

P1, on the other side of the plane, is the

same as if the whole matter were collected

at 8,.

111. In the course of the demonstration

(in that part which corresponds to the in

vestigation in § 93) it would appear that, if the density at any

point E of the plane is given by the expression

A
P=sa= ’
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the entire quantity of matter distributed over the infinite ex

tent of the plane is given by the expression

21r1\

__m=__ .

P

This proposition and that which precedes it* contain the

simplest expression of the mathematical truths on which the

solution of the problem of electrical influence on an infinite

plane depends, and we might at once obtain from them the

results given above. For an isolated investigation of this case

of electrical equilibrium, this would be a better form of solu

tion: but I have preferred the method given above, since the

solution of the more general problem, of which it is a particular

case, had been previously given.

112. The case of electrical influence which has been considered

' The two propositions may be analytically expressed as follows :—

Let 0, the point in which SS, cuts the plane, be origin of co-ordinates, and

let this line he axis of 2. Then, taking OX, OY in the plane, let the co

ordinates of P be (:0, y, 2). Let also those of E be (5, 1], 0) ; so that we have

R

of matter distributed over the infinite extent of the plane is equal to

p
_ (2’ + 1;’ +9’)i

Hence the proposition stated in the text (§ 111)I that the entire quantity

2P2, is thus expressed :

no 1: Med," =LA

inlet <e+e+p')* P

This equation may be very easily verified, and so an extremely simple ana

lytical demonstration of one of the theorems enunciated above is obtained.

Again, the proposition with reference to the attraction of the plane may,

according to the well-known method, be expressed most simply by means of

the potential. This must, in virtue of the enunciation in § 110, be equal to

the potential due to the same quantity of matter, collected at the point S, or

the point 8,, according as the attracted point is separated from the former

or from the latter by the plane. Hence we must have

2th

a [D Mlfdn = ,

f-w _s(P+v’+11’)i{(z—£)’+(s/—v)’+z‘}‘ {ewe/‘Misfit’?

the positive or negative sign being attached to z in the denominator of the

second member, according as 2 is given with a positive or negative value.

This equation (of which a geometrical demonstration is included in 107 and

108, in connexion with 90) is included in a result (the evaluation of a

certain multiple integral), of which three different analytical demonstrations

were given in a paper On certain Definite Integrals suggested by Problems in

the Theory of Electricity, published in March 1847 in this Journal, vol. ii.

p. 109 (rx. below).
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might at first sight appear to be of a singularly unpractical

nature, since a conductor presenting on one side a plane surface

of infinite extent in every direction would be required for fully

realizing the prescribed circumstances. If, however, we have

a plane table of conducting matter, or covered with a sheet of

tinfoil, or if we have a wall presenting an uninterrupted plane

surface of some extent, the imagined circumstances are, as we

readily see, awroximately realized with reference to the in

fluence of any electrical point in the neighbourhood of such a

conducting plane, provided the distance of the influencing point

from the plane be small compared with its distance from the

nearest part where the continuity of the plane surface is in any

way broken.

Foe-manna, Bsums'r, Oct. 17, 1849.

INSULATED SPHERE SUBJECT TO THE INFLUENCE OF A BODY OF ANY

FORM ELECTRIFIED IN ANY GIVEN MANNER.

113. The problem of determining the distribution of elec

tricity upon a sphere, or upon internal or plane spherical

conducting surfaces, under the influence of an electrical point,

was fully solved in 89...112 of this series of papers. On

the principle of the superposition of electrical forces (§ 63)

we may apply the same method to the solution of correspond

ing problems with reference to the influence of any number of

given electrical points.

114. Thus let M, M', M" be any number of electrical points

possessing respectively m, m’, m” units of electricity, at dis

tances f, f’, f' from C the centre of a

sphere insulated and charged with a

quantity Q of electricity. The actual

distribution of electricity on the spheri

cal surface must be such that the force

due to it at any internal point shall

be equal and opposite to the force due to the electricity at

M, M', M”. Now if there were a distribution of electricity on

the spherical surface such that the density at any point E

A

 

ME‘

would be 1 the force due to this at any internal point
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)tArra

fs__as
would (§ 90) be the same as that due to a quantity

concentrated at the point M ; and therefore if we take

i=__fl"_“')_m

41m ’

the force at internal points due to this distribution would be

equal and opposite to the force due to the actual electricity

of M. We might similarly express distributions which would

respectively balance the actions of M', M", etc., upon points

within the sphere; and thence, by supposing all those distri

butions to coexist on the surface, we infer that a single dis—

. tribution such that the density at E is equal to

_{(f‘—a')m_1_+(f’—a')m' ;+(f"—a’)m” 1 }

41m 51E8 41m M'E' 41m W

would balance the joint action of all the electrical points

M, M’, M", on points within the sphere. Again, from § 92,

we infer that the total quantity of electricity in such a dis

tribution is

seaeo- ,
Hence, unless the data chance to be such that Q is equal to

this quantity, a supplementary distribution will be necessary

to constitute the actual distribution which it is required to

find. The amount of this supplementary distribution will be

o+§m+§nv+fit

which must be so distributed as to produce no force on internal

points.

115. Taking then the distribution found above, which

balances the action of the electricity at M, M’, etc., on points

within the sphere, and a. uniform supplementary distribution;

and superimposing one on the other, we obtain a resultant

electrical distribution in which the density at any point E of

the surface of the sphere is given by the equation

’--a’ m 1 "-a’ 1'’=— {(f-T)W+(f41ra )M'E-+“"°—}

Q+;_-m+g-,m'+etc. ‘

—_.L_ .
+ 41rd‘ (1) ’

and we draw the following conclusions :—

I!

m i



V.] Geometrical Investigations regarding Spherical Conductors. 79

(1.). The total force at any internal point, due to this distri

bution and to the electricity of M, M’, etc., vanishes.

(2.) 'The entire quantity of electricity on the spherical sur

face is equal to Q.

Hence this distribution of the given charge on the sphere

satisfies the condition of electrical equilibrium under the in

fluence of the given electrical points M, M’, etc. ; and (§ 73)

it is therefore the distribution which actually exists upon the

spherical conductor in the prescribed circumstances.

116. The resultant force at any external point may be found

as in the particular case treated in § 94. Thus, if we join

MC’, M'C, M"C', and take in the lines so drawn, points I, I’, I"

respectively, at distances from C such that

C'LC'M: CI'.OM'= C1”.O'M"=a',

the resultant action due to the actual electricity of the spherical

surface will, at any external point, be the same as if the sphere

were removed, and electrical points I, I’, etc., substituted in its

stead, besides (except in the case when the supplementary dis

tribution vanishes) an electrical point at C: and the quantities

of electricity which must be conceived for this representation,

to be concentrated at these points, are respectively

a

-7m, at I;

a I /

_?m, at I ,and Q+-;—.+%+etc., at C. J

117. By means of these imaginary electrical points we may

give another form to the expression for the distribution on the

spherical surface, which in many important cases, especially

that of two mutually influencing spherical surfaces, is extremely

convenient. For (as in § 94, Cor.) it is readily seen that the

first term, in the expression for p multiplied by 412', or

(f'—a')"1 1

_a—ME‘ ’

is the resultant force at E, due to M and I, and that this force

is in the direction of a normal to the spherical surface through‘
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E; and that similar conclusions hold with reference to the

other similar terms of (2). Again, the last term,

Q+—;¢m+f£,m'+etc. '

41m‘

is the expression for the force at E, due to the imaginary

electric point 0', divided by 411'; and this force also is in the

direction of the normal. Hence, with reference to the total

resultant action at E, due to M, M’, etc., and the spherical

surface, or the imaginary electrical points within it, we infer

(1.) That this force is in the direction of the normal;

(2.) That if R be its magnitude considered as positive or

negative according as it is from or towards the centre of the

sphere, and p the electrical density at E, we have

1

p=4T_R (3).

These two propositions constitute the expression, for the

case of a spherical conductor subject to any electric influence,

of Coulomb's Theorem.’

118. The total action exerted by the given electrical points,

and by the sphere with its electricity disturbed by their influ-‘

ence upon a given electrified body placed anywhere in their

neighbourhood, might, as we have seen, be found by substi~

tuting in place of the sphere the group of electrical points

which represents its external action, provided there were no

disturbance produced by the influence of this electrified body.

This hypothesis, however, cannot be true unless the sphere,

after experiencing as a conductor the influence of M, M’, etc,

were to become a non-conductor so as to preserve with rigidity

the distribution of its electricity when the new electrified body

is brought into its neighbourhood : and consequently, when it

is asserted that the resultant force at any external point P is

due to the group of electrical points determined in the preced

ing paragraphs, we must remember that the disturbing influence

that would be actually exerted upon the distribution on the

' For a general demonstration of this theorem, virtually the same as the

original demonstration given by Coulomb himself, see Cambridge Mathe

matical Journal (1842) vol. iii. p. 75 (or § 7, 8, above).
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spherical surface by a unit of electricity at the point P, is

excluded in the definition (§ 65) of the expression “the re

sultant electrical force at a point.”

119. The actual force exerted upon any one, M, of the influ

encing points may be determined by investigating the resultant

force at M, due to all the others and to the conductor, and

multiplying it by the quantity of electricity, m, situated at this

point, since in this case the influence of the body on which the

force is required has been actually taken into account.

120. It follows that the entire mutual action between all the

given electrical points and the sphere under their influence

is the same as the mutual action between the two systems of

electrical points,

m atM -%m v atI

m’ at M’ —:g m at I’

and

J Q+%m+}'5,m’+em., at 0'.

This action may be fully determined with any assigned data,

by the elementary principles of statics.

121. There is a remarkable characteristic of this resultant

action which ought not to be passed over, as it is related to a

very important physical principle of symmetry, of which many

other illustrations occur in the theories of electricity and mag

netism. It is expressed in the following proposition :—

The mutual action between a spherical conductor and any given

electrified body consists of a single force in a line through the

centre of the sphere.

Let us conceive the given electrified body either to consist

of a group of electrical points, or to be divided into infinitely

small parts, each of which may be regarded as an electrical

point. The mutual action between the given body and the

conducting sphere under its influence is therefore to be found

by compounding all the forces between the points M, M’, etc,

of the given body, and the points I, 1’, etc... . . and C’, of the

imaginary system within the sphere determined by the con

F
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struction and formulae of the preceding paragraphs. Of these,

the forces between M and 0, between M’ and C’, etc; and

again, between M and I, between M’ and I’, etc., are actually

in lines passing through 0'; and, therefore, if there were no

other forces to be taken into account the proposition would be

proved. But we have also a set of forces between M and I’,

between M and I", etc, none of which, except in particular

cases, are in lines through 0, and, therefore, it remains for us

to determine the nature of the resultant action of all these

forces. For this purpose let us consider

any two points M, M’ of the given in

fluencing body and the corresponding

imaginary points I, I’; and let us take

the force between M and I’, and along

with it the force between I and M’.

These two forces lie in the plane MOM’, since, by the con—

struction given above, I and I’ are respectively in the lines

CM and CM’; and hence they have a single resultant. Now

the force in MI’ is due to m units of electricity at M, and

—/—‘i m’ units at I’; and (§ 64) it is therefore a force of re

I

 

pulsion equal to

.._£,m',m imhm

‘9?, or a force of attraction equal to ‘IT-fil- -

a I

7711.7"

we find T

for the attraction between M and I. Now since, by construc

tion, GMCI: CM’.CI’, the triangles I’M0', IM’C', which have

a common angle at O, are similar. Hence

al

I'M’_ CI’.CM_ 7 ‘f
IHM’§_C'I.CM’_ a‘ ’

7'1”

from which we deduce

;m'.m —;-m.m'

, T'F'f= 7.71?!’

Now if we multiply the first member of this equation by

sin CMI’, we obtain the moment round 0 of the force between
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I’ and M; and similarly, by multiplying the second member

by sin CM’I, we find the moment of the force between M’ and

I; and, since the angle at M is equal to the angle at M’, we

infer that the moments of the two forces round 0 are equal.

From this it follows that the resultant of the forces in MI’ and

M’I is a force in a line passing through 6'. Now the entire

group of forces between points of the given body and non

coweqamuient imaginary points, consists of pairs such as that

which we have just been considering; and therefore the mutual

action is the resultant of a number of forces in lines passing

through 0'. This, compounded with the forces between M, M’,

etc, and the corresponding imaginary points, and the forces

between M, M’, etc, and the imaginary electrical point at 0',

gives for the total mutual action a final resultant in a line

passing through 0.122. It follows from this theorem that if a spherical con-i

ductor be supported in such a manner as to be able to turn

freely round its centre, or round any axis passing through its

centre, it will remain in equilibrium when subjected to the

influence of any external electrified body or bodies. We may

arrive at the same conclusion by merely considering the perfect

symmetry of the sphere, round its centre or round any line

through its centre, without assuming any specific results with

reference to the distribution of. electricity on spherical con

ductors. For if there were a tendency to turn round any

diameter through the influence of external electrified bodies,

the sphere would, on account of its symmetry, experience the

same tendency when turned into any other position, its centre

and the influencing bodies remaining fixed; and there would

therefore result a continually accelerated motion of rotation.

This being a physical impossibility, we conclude that the

sphere can have no tendency to move when its centre is fixed,

whatever be the electrical influence to which it is subjected.

123. It is very interesting to trace the different actions

which, according to the synthetical solution of the problem of

electrical influence investigated above, must balance to produce

this equilibrium round the centre of a spherical conductor

subjected to the influence of a group of electrical points. Let

us, for example, consider the case of two influencing points.

For fixing the ideas, let us conceive the sphere to be capable
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of turning round a vertical axis, and let the influencing points

be situated in the horizontal plane of its centre, 0. If at first

there be only one electrical point, M, which we may suppose

to be positive, the sphere under its influence will be electrified

with a distribution symmetrical round the line MC’, but with

more negative, or, as the case may be, less positive, electricity,

on the hemisphere of the surface next M than on the remote

hemisphere. If another positive electrical point, M’, be brought

into the neighbourhood of the sphere, on a level with its centre,

and on one side or the other of MC’, and if for a moment we

conceive the sphere to be a. perfect non-conductor of electricity;

this second point, acting on the electricity as distributed under

the influence of the first, will make the sphere tend to turn

round its vertical axis. Thus if AAI be a diameter of the

sphere in the line MACA1, the sphere would tend to turn from

its primitive position so as to bring the point A of its urface

nearer M’. If now the sphere be supposed to become a perfect

conductor, the distribution of its electricity will be altered so

as to be no longer symmetrical round AA}. This alteration

we may conceive to consist of the superposition of a distribu

tion of equal quantities of positive and negative electricities

symmetrically distributed round the line M’O, with the nega

tive electricity preponderating on the hemisphere nearest to

M’. To obtain the total action of the two points on the elec

trified sphere, it will now be necessary to compound the action

of M’, and the action of M, on this superimposed distribution

with the action previously considered. Of these the former

consists of a simple force of attraction in the line M’0' ; but

the latter, if referred to 0 the centre of the sphere, will give,

besides a simple force, a couple round a vertical axis, tending

to turn the sphere in such a direction as to bring the point A’

of its surface nearer M. Now, as we know a priori that there

can be no resultant tendency to turn arising from the entire

action upon the sphere, it follows that the moment of this

couple must be equal to the moment of the contrary couple,

which, as we have seen previously, results from the action of

M’ on the sphere as primitively electrified under the influence

of M. This is precisely the proposition of which a synthetical

demonstration was given in § 121, and we accordingly see that

that demonstration is merely the verification of a proposition
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of which the truth is rendered certain by a reasoning

founded on general physical principles.

124. When the influencing body, instead of being, as we

have hitherto conceived it, a finite group of isolated electrical

points, is a continuous mass continuously electrified, we must

imagine it to be divided into an infinite number of electrical

points; and then, by means of the integral calculus, the ex

pressions investigated above may be modified so as to be

applicable to any conceivable case.

125. It appears from the considerations adduced in 99, 100,

that it is impossible to have an internal spherical conducting

surface, or an infinite plane conducting surface, insulated and

charged with a given amount of electricity; and that conse

quently, there being no “ uniform supplementary distributions”

to be taken into account, the solutions of ordinary problems

with reference to such surfaces are somewhat simpler than

those in which it may be proposed to consider an insulated

conducting sphere possessing initially a given electrical charge.

All the investigations of the present article, except those which

have reference to the “ supplementary distribution ” and which

are not required, are at once applicable to cases of internal or

of plane conducting surfaces.

126. The importance of considering the imaginary electrical

points I, 1’, etc. (and C, the centre of the sphere in the case of

an external spherical surface), whether for solving problems

with reference to the mutual forces called into action by the

electrical excitation, or for determining the distribution of

electricity on the spherical surface, has been shown in what

precedes. Hence it will be useful, before going further in the

subject, to examine the nature of such groups of imaginary

points, when the influencing bodies are either finite groups of

electrical points, or continuously electrified bodies. [See )HV.

below, or Thomson and Tait’s Natural Philosophy, 512...518.]

127. The term Electrical Images, which will be applied to

the imaginary electrical points or groups of electrical points,

is suggested by the received language of Optics; and the close

analogy of optical images will, it is hoped, be considered as

a sufficient justification for the introduction of a new and

extremely convenient mode of expression into the Theory of

Electricity.

S'rocxnom, September ‘20, 1849.



VI. ON THE MUTUAL ATTRACTION OR REPULSION BETWEEN

TWO ELECTRIFIED SPHERICAL CONDUCTORS.

[Philosophical Magazine, April and August 1853.]

128. In a communication made to the British Association at

Cambridge in 1845, I indicated a solution adapted for numerical

calculation, of the problem of determining the mutual attraction

between two electrified spherical conductors. A paper (II. above)

published in November of the same year in the first Number of

the Cambridge and Dublin jllathematical Journal contains a

formula actually expressing the complete solution for the case of

an insulated sphere and a non-insulated sphere of equal radius

(§ 30, above), and numerical results calculated for four different

distances for the sake of comparison with experimental results

which had been published by Mr. Snow Harris. The in

vestigation by which I had arrived at this solution, which was

equally applicable to the general problem of finding the

attraction between any two electrified spherical conductors,

has not hitherto been published ; but it was communicated in

July 1849 to M. Liouville, along with another very different

method by which I had just suceeded in arriving at the same

result, in a letter the substance of which constitutes the present

communication. Formulae marked (8) . . . . (18) in that letter

expressed the details of the solution according to the two

methods. They are reproduced here in terms of the same nota

tion, and with the same numbers aflixed. The first-mentioned

method is expressed by the formulae (16), (17), (18), and the

other by (8) . . . . (15). The formulae marked with letters

(a), (b), etc, in the present paper, express details of which I

had not preserved exact memoranda.

129. Let A and B designate the two spherical conductors;

let a and b be their radii, respectively; and let 0 be the dis

tance between their centres. Let them be charged with such

quantities of electricity, that, when no other conductors and no
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excited electrics are near them, the values of the potential*

within them may be u and a respectively.

130. The distribution of electricity on each surface may be

determined with great facility by applying the “ principle

of successive influences” suggested by Murphy (Murphy’s

Electricity, Cambridge, 1833, p. 93), and determining the effect

of each influence by the method of “electrical images,” given

in a paper entitled “ Geometrical Investigations regarding

Spherical Conductorsf’i- The following statement shows as

much as is required of the results of this investigation for our

present purpose.

131. Let us imagine an electrical point containing a quantity

of electricity equal to ua to be placed at the centre of A, and

another 721) at the centre of B. The image of the former in B

will be —%-ua, at a point in the line joining the centres, and

distant by b?’ from the centre of B. The image of this in A will

a fl-i'aa, in the same line, at a distance a

b c b’

c__

be from the

c_..__

C C

centre of A; the image of this point in B will be —i,

C- b,

0-

0

2

‘ZN-gala, at a distance 6 ,—

6 a

C—-;- c_ bl

c_.__

C

from the centre of B; and

so on: and in a similar manner we may derive a series of

imaginary points from ob at the centre of B. To specify com—

pletely these two series of imaginary points, let 19,, 1%,, p2, 1012,

1),, P's, etc, denote the masses of the series of which the first

is at the centre of A; and let f,, f',, f2, f’2, etc., denote the

distances of these points from the centres of A and B alter

' The potential at any point in the neighbourhood of, or within, an

electrified body, is the quantity of work that would be required to bring a

unit of positive electricity from an infinite distance to that point, if the given

distribution of electricity were maintained unaltered. Since the electrical

force vanishes at every point within a conductor, the potential is constant

throughout its interior. ‘

1' Cambridge and Dublin Mathematical Journal, Feb. 1850 (v. above, § 127)



88 On the )[utual Attraction or Repulsion [VL

nately; and, again, let (1,, (1'1, g2, 9'2, ..., denote the masses, and

gl, 4,, g2, g'2, ..., the distances of the successive points of the

other series from the centres of B and A alternately. These

quantities are determined by using the following equations, and

giving n successively the values 1, 2, 3, :—

f,=0, pl=ua g,=0, ql=vb

, b. 1 [n I a’ ! g,"

fn=c_fl" P»=—-P»T ,qn=c_g"i qn=_qn a' a be I n

fn+1=c: ,n: Pn+1=-'I”nf:l+1 9n+1=c_g/"> qn+l=_qngb+l

The two series of imaginary electrical points thus specified,

would, if they existed, produce the same action in all space

external to the spherical surfaces as the actual distributions of

electricity do, those (p,, g’,, p2, 9'2, etc.) which lie within the

surface A producing the effect of the distribution on A, and

the others (ql, p'1, q._,, p'2, etc), all within the surface B, the

effect of the actual distribution on B. Hence the resultant

force between the two partial groups is the same as the re

sultant force due to the mutual action between the actual

distributions of electricity on the two conductors; and if this

force, considered as positive or negative according as repulsion

or attraction preponderates, be denoted by F, we have

_ ’=°° ‘=°° pm p’sq’i pm’: 989’:
LEM Eel (¢—f;—9¢)’+(c—f,—9'¢)‘+(¢—fi—f"i)’+(0-n-9’0' i‘ (9)’

where 22' denotes a double summation, with reference to all

integral values of s and t. The following process reduces this

double series to the form of a single infinite series, of which the

successive terms may be successively calculated numerically in

any particular case with great ease.

132. First, taking from (8) expressions for p, and j; in terms

of inferior order, and for g, and g, in terms of higher order, and

continuing the reduction successively, we have

I a . '1
ll‘.___ p8—1c_fR—-! gig’! _ P’s—1q,t

c_j;_g‘_ a’ a‘ _°—f's-1—y'z

c_c—f,l—l— 6-‘;

b b

9H1 _ F's-1 9H1
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and therefore

pig! : pI-l qH-l : [Is-192+: P1qt+s—1 : _uqr‘+l_l

c"‘f|_.9l c—fi-1—y:+1 c—fs-s—.9t+: ¢—fi—.9¢+,-1

and "4

Similarly, we find

PsP’t : Ps—_1_P_,t_+1_ =fl______P1P’t+s-i =_uP‘

bin-ft c_j;+1—f’t+1 c_.f’l+8—l H’ '

and ($t=_'Uq¢+3.

Now Pu" = Q1)" ; and ’-:-"-' and 95 are each independent of u and

1); hence the following notation may be adopted conveniently :

p, _ u q, __ 'U

n-'_ v ’ n—_—_
‘5" S" (13).

ll 1)

"=7? “a
Then, taking n to denote t + s in the preceding equations, we

have

Pn-zqz : P'”-t-1q'¢ = "v _

c _f;l—l_gf c—f'n-t-1-y’: Sn-l ’ I (14)

pn-ip'e ___'_‘1_ . ‘In-l9" =_i'_ S .

c_'fn—t_flt_ Pn , c'_gn—t‘_gt an

Hence we have

_p_"'fi1_q£_=('f1’)' 1 =21) a.
(°—fn-:+1—gi)’ S, p,,_,+,q, SI” n-Hr H

from which we conclude that

l=ao ‘=ao pgqt _ n=cnfl l=n P .

28:1 1:1 (c-f,—g¢)’_ “=1 1S‘,I z=1( 'JMQ‘) ’

and, by using this and transformations similarly obtained for

the other parts of the expression for F, we obtain

"=00

F=2,=, ‘1%[ZZZ(Pa-Hill)+2::_1(S,,_¢S,):|

—1'5” [EZTYRHSQJYQ‘ [ZZZ-‘(c.4801 } (15).

133. The quantities P,,, Q,,, 8,, which occur in this expression,

may be determined successively for successive values of n in the

following manner :—By substituting, in (8), for p,,, p',,, q,,. 9’,

their values by (13), and eliminating f,,, f’,,, g,,, g’,,, we’ find
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cP,,=aS,,_,+bS,,, cQm=bS __1 +aS,,, }

cSn—1=bPn—1+aPn=aQn-1+bQn

from which we derive

(a);

__b’

Pfl+l=

1_

c Pn_Pn-1 1

i

Qm+!=c _

c’

'——':EQn_ Qn-r___—"'basn_ SIM

By giving n the values 1 and 2 in (13) and (8), we find

1

gfi-gnsg‘i

Sn+1=

P1:

P,=

_a' 1

c’—b' c'—a'—b'

ab

1

a’b 12+?’

By these equations we have directly the values of the first two

terms of each of the sets of quantities P1, P2, P8, etc, Q1, Q2, Q3,

etc., and S1, S2, 8,, etc. ; and the others may be calculated suc

cessively by the preceding equations.

134. The polynomials which constitute the numerators of the

successive terms of the second member of (15) may also be

calculated successively, by means of equations obtained in the

following manner. \Ve have by (c), (b), and (a),

l i I

P1c,.+P.Q,._,+P,a,._.+ew.=%a..+($a+%)afl_l

+(i:a_’:_b:P2_-P1)Qm—s+etc

ab -

c’-—a"‘—b2
=a'gbSn-1-t-TU’rQm-i'i‘paQm-d'i'etc-)—(PiQn—:+PaQn-a+ 0130.);

and similarly we find

81811-1 + S2Sn—z 'i'SsSn-s +9“?

02 —a’ —b’=ac_b_qsfl_l + ___——ab(SIS"_, +S,Sn_;+0t0.> —(S1Sn_3+SgSn_‘ +0tc.) ; ‘

i
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SIP —1+SsP -:+S|Pa—a+etc

=fiPfl_l-l—%bi(sip -a+S1Pn—a+etc-)_(S1Pn—l+S:Pn-|+etc-)i

and

S1 Q's-1 +S|Qn-a ‘l'sa Qn-s ‘l'etc

=£QH"LWwIQPfiSMMaHw-Pman_a+s,on_.+ew->

Hence, if we put

(Pmat)+§:"(s.n_,s,)=2s’,, ‘\

z:'l'"l<Pn_tst)=P'm (e),

and 2:i:—1<Qn-tSL)= Q» J

in terms of which notation the expression (15) for F becomes

F=2uv(£1423 + §;’+etc.>

S ‘ S.’ S ‘ (f)'
PI PI. P! Q! FL I

_. { u'(P—,‘1+Pi-|-F;:+etc.)+ v’ (ii-623+ a,’ +etc.)}

we have .

S’wH =(%ESI1V_ (Sin-i _a_casn)

P,n+1=t:%_—bnPIn_(P,n—1_a£bPn) <9)’

QIn+I =cfl%;._bga'n_ (Q’n-lAlso we have directly from (0) and (c),

S,1=%alb’ s'l=%3cg—afb’a_—ba

P’, =0, P',=aS-b (h).

QI1=07 ala=é

135. These equations enable us to calculate successively the

values of 8'1, 8'2, 8'3, etc., F1, F2, F3, etc., and Q1, Q2, Q's,

etc., after the values of S1, S2, etc, P1, P2, etc., and Q1, Q2,

etc, have been found.

136. The solution of (b) as equations of finite differences with
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reference to n, and the determination of the arbitrary constants

of integration by (0), leads to general expressions for S,,, P",

and Q"; and by using these in (g), integrating the equations

so obtained, and determining the arbitrary constants by means

of (h), general expressions for S',,, P',,, and Q’, are obtained.

The expression for F may therefore be put in the form of an

infinite series, with a finite expression for the general term.

Further, the value of this series may be expressed, by means of

analysis similar to that which Poisson has used for similar

purposes, in terms of a definite integral. I do not, however,

in the present communication give any of this analysis, except

for the case of two spheres in contact which is discussed below,

because, except for cases in which the spheres are very near

one another, the series for F is rapidly convergent, and the

terms of it may be successively calculated with great ease, by

regular arithmetical processes, for any set of values of c, a, and

b, by using first the equations (0), to calculate S1, 8,, P1, P2,

Q1, Q2 ; then (b) with the values 2, 3, etc, successively substi

tuted for n, to calculate S3, 3,, etc, and P3, P4, etc., and Q3, Q4,

etc. ; then (It) and (g) to calculate by a similar succession of

processes, the values of S’1, 3'2, 5",, etc., F1, F2, F3, etc, and

Q’l; Q’2I Q's: etc:

137. The following is the method, alluded to above, by which

I first arrived at the solution of this problem in the year 1845.

138. The “ mechanical value ” of a distribution of electricity

on a group of insulated conductors, may be easily shown to be

equal to half the sum of the products obtained by multiplying

the quantity of electricity on each conductor into the potential

within it.* Hence, if D and E denote the quantities of elec

tricity on the two spheres in the present case, and if W denote

the mechanical value of the distribution of electricity on them,

we have W=%(Du+Ev).

* This proposition occurred to me in thinking over the demonstration

which Gauss gave of the theorem that a given quantity of matter may be dis

tributed in one and only one way over a given surface so as to produce a given

potential at every point of the surface, and considering the mechanical signifi

cation of the function on the rendering of which a minimum that demonstra

tion is founded. It was published, I believe, by Helmholtz in 1847, in his

treatise Ueber die Erhaltung der Kraft, by the translation of which, in the

last number of the New Scientific Memoirs, a great benefit has been conferred

on the British scientific public.
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Now if the two spheres, kept insulated, be pushed towards one

another, so as to diminish the distance between their centres

from c to 0- do, the quantity of work that will have to be spent

will be F.dc, since F denotes the repulsive force against which

this relative motion is affected. But the mechanical value of

the distribution in the altered circumstances must be increased

by an amount equal to the work spent in producing no other

effect but this alteration. Hence F.0lc = —dW, and therefore

d(Du+Ev)

T (16>,

where u and o are to be considered as varying with c, and D

and E as constants. Now, according to the notation expressed

in (13), we have

(-I1Tl+1lJ;+etc.) u — (%l+%z+etc.) v=D

F=—%

17.

__1_+-1_+etc)u+(-1-+-]—+etc)v=E ( )

s, s, ' Q. Q. '

Determining % and gel by the differentiation of these equa

tions, and using the results in (16), we find

aa! 1 1 d 1 1
F=§{ u E(Fl+-P—‘+etc.)v—2uvzlz(g+i+etc.)

+v'dic<—1—l-+L,+ete.> } (18)

This expression agrees perfectly with (f), given above; since,

by differentiating the equations (12) and (c) with reference to c,

we find that the quantities denoted above by 8'1, 8'2, 8'3, etc,

F1, F2, F3, etc., Q1, Q2, Q8, etc, and expressed by the

equations (g) and (h), are equal respectively to

gigs!) (25;!) 5'???’ etc, i‘%, @7600.’

do 1 dc

%%! ‘15:’, %d—;:-') etc.

139. The series (f) or (18) for F becomes divergent for the

case of two spheres in contact, but the doubly infinite series

from which this was derived in the first of the two investiga

tions given above, is convergent when the terms are properly

grouped together; and its sum may be expressed by means of a

definite integral in the following manner 2
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1 40. Since the two spheres are in contact, the potentials within

them must be equal, that is, we must have a = v. For the sake

of simplicity, let us suppose the radii of the two spheres to be

equal, and let each be taken as unity. Then we shall have

a = b = l, and c = 2 ; and the terms of doubly infinite series

(9) in this case are easily expressed,* in very simple forms, by

equations (8). Thus we find

F=v’>< I 2l2_1§-‘2_+}4'T3_.15'_f+17§-etc.

_23'_:+%?_%g+2-G';—etc.

+i'_21_%+%g—ctc.

_i': +46'—i2—et0.

+é6lal-etc.

If we add the terms in the vertical columns, we find

1.2.3 2.8.4 3.4.5
F=vex%( 2, _ 8, + 4. —etc.),

which is a diverging series, and is the same as we should have

found by using the form (f) or (18). But if we add the terms

in the horizontal lines, we find the following convergent series

for F:—

‘log; are 1log%-0’d9 110g%-0=d0

F=v' [fir-2f —,—+3f —T——-etc.

0 (1+6) 0 (1+0) 0 (1+0)

* From equations (8) we find, in this case,

271-]. 21l-—2
I — —--’*A7 ' = :

‘ff-g,"- 2n ’ ‘fi' 9'' 2n- 1

‘l1 1)

P’.=q’,=—§;’; p.=q..=2n_l

Hem aq. =(2s—1)(2¢—1>

(c—f.—a.)2 {2a+a~2}’

p’,q/, _ 20.2t

(c-f.—.</.)"{2<8+¢>}’

171p’: (11¢: 2‘ (28 _ 1)

(,,_f'_ /|)2=(¢—g,— 513).: _{2(s+t) - 1}”

and then, by (9), we obtain the expression for F in this particular case, given

in the text.
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Hence, since (1 + 0)‘2 =1-- 20 + 302- etc, we have

1

log—- 0d0
1 9 _

F: U'joW I

or, by actual integration,

1

log
= , 0 30'+0‘ 0 1

F 1’ (1+ 6? 6 +ll°g(1+0>_l(1+0)':i0

=v'.% X (log2—}) = 125% X ('69315— '25)

=1)1 X

‘The quantity of electricity on each sphere being equal to the

sum of the masses of the imaginary series of points within it,

is, according to the formulae for 12,, q’1, p2, q’2, etc.,

o(1—%+?;—§+etc.), or olog2.

Hence we have the following expression for the repulsion be

tween the two spheres, in terms of Q the quantity of electricity

on each,

_ 1 t><(l°g2—%)_
F- a

141. If ac denote the distance at which two electrical points,

containing quantities_equal to the quantities on the two spheres,

must be placed so as to repel one another with a force equal to

the actual force of repulsion between the spheres, we have

(u . log 2)‘
x,—=F.

Using the value for F found above, we obtain

w_ log2

_~/{t>< (108 2—i)}

If the electrical distribution on each surface were uniform, this

distance would be equal to 2, the distance between the centres

of the spheres; but it exceeds this amount, to the extent shown

by the preceding result, because in reality the electrical density

on each conductor increases gradually from the point of contact

to the remotest points of the two surfaces.

.P.S.—-Tl1e calculation by the method shown in the preceding

paper, of the various quantities required for determining the

force between two spheres of equal radii (each unity), insulated

=2'550.
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with their centres at distances 2'1, 2'2, 2'3, etc, up to 4, has

been undertaken, and is now nearly complete.

Gmsoow Common, March 21, 1853.

142. The following numerical results have been calculated (by

means of the formulae established above) for application to the

theory of a new electrometer which I have recently had con

structed to determine electrical potentials in absolute measure,

from the repulsions of uninsulated balls in the interior of a

hollow insulated and electrified conductor, by means of a bifilar

or torsion balance bearing a vertical shaft which passes through

a small aperture to the outside of the conductor :—

 

 
 

 

 

 

 

 

  

 

 

 

TABLE I.—Showing the Quantities of Electricity on two equal Spheri

cal Conductors, of radius r, and the mutual force between them,

when charged to potentials u and v respectively.

Col. 1 Coin. 4 and 5. Col. 6.

galtio qlfthizlpotem

my F am _i th _sw en ereia

mm” For determining the quantities or e migrgg, e mum“ neiilolieifeahtlfihlion

from of electricity, p '

centre F:ZBuv-A(u9+1fl) ; _B B: g

08:1“, being repulsion when positive, P___ __l)

and attraction when negative.

‘073858
2-0 J+'693147 1o A+§>< 013358 1-~/ A

2-1 1'58396 ‘88175 113814 111439 113251

2-2 1-43131 12313 ‘52852 ‘56350 ‘69637

2-3 1-34s21 -63395 32911 ‘36357 -63553

2-4 129316 51202 23159 ‘26464 53915

2-5 125324 -52531 11432 20630 55388

2-6 122213 ‘48819 ‘13696 ‘16787 ‘51699

2-1 1-19155 ‘45746 ‘11082 14090 ‘47805

2-3 111138 -43140 09114 -1 2013 ‘46049

2-9 116056 '40886 -01120 10526 ‘43667

3-0 1 ‘14629 '38908 ‘06592 09299 ‘41567

3-1 1-13404 -31151 ‘05693 08304 '39672

3-2 112340 '35511 '04963 -014s1 31941

3-3 111410 34150 04363 '06791 36316

3-4 110583 -32s52 -03363 -06203 34939

3-5 1-09359 31663 03441 05691 331615

3-6 1-09203 '30569 113034 -05251 232413

3-1 1 '08623 29551 -02115 -04s12 ‘31263

as 1-03095 23611 02509 -04531 -3021 1

3-9 101611 21142 -02213 04229 29233

4-0 1-01 182 -02015 -0395s 2831s
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TABLE II.—Showing the Potentials in two equal Spherical Conductors,

and the mutualforce between them, when charged with quantities

D and E of electricity respectively.

Col. 1. Cols. 2 and 8. Gals. 4 and 5. CoL 6,

For determining the mutual

Dis- For determining the potentials, ‘ force’ 1 Ratio of the quan~

fig-1310: I J l F=1 2BDE—¢(D’+E‘) }; v titieflwhetn there is

u: r_l _ D+___ , E _ ncit er a traction

centre (IL-7'‘ 11-4’ ) T when’ 1101' repulsion

ceii‘irc v=(l I , .E+p_;fi - G=A(F‘JI“2T_QIZIELI :L . ,

:m L" " _B(I‘1+J’)—2AIJ l-Je

5“ (1=-;fi,%— '
  

___ 0.

1 1 ‘153726

2-0 “693147 ix ‘mm a.) a+§X ‘153726 1 ~~/»a—

2-1 191432 ‘50926 15315 '22668 c9102

2-2 oases ‘47467 ‘08263 15251 29435

2-3 -95220 -447s2 c5444 ‘12186 ~235s0

2-4 ‘96142 -4252s -03955 10309 19944

2-5 ‘96829 40599 ~02991 -o9o3s ‘16908

2-6 was; asses -02342 ‘08078 @4476

2-1 -97771 ems ‘01849 c1341 ‘12786

28 ‘98105 asses c1500 ‘06710 ‘11318

2-9 seam ‘34658 -01222 '06186 c9911

a-o ‘98598 -334s7 ~01010 -057a1 ‘08877

31 -9s7s2 ‘32361 were cases -07944

32 ‘98934 e132? -oo10s -049s1 ones

as ‘99067 '30366 -00599 '04666 ‘06442

34 ‘99178 ‘29462 c0510 ‘04382 oases

a-s 119212 28612 c0437 ‘04126 ~0529s

3'6 -99351 ‘27810 nos-1s -oas91 ‘04868

3-7 -99423 21054 ‘00326 c3019 04349

as new; cases -002s3 -o34s4 04061

21-9 199537 ‘25659 c0247 c3305 '03736

4-0 ‘99583 25015 '00216 c3139 c3444



VII. ON THE ATTRACTIONS OF CONDUCTING AND

NON-CONDUCTING ELECTRIFIED BODIES.

[From the Cambridge Mathematical Journal, May 1843.]

144. In measuring the action exerted upon an electrified

body, by a quantity of free electricity distributed in any manner

over another body, the methods followed in the cases in which

the attracted body is conducting and non-conducting are

different. Now, the only difference between the state of a

conducting body and that of a non-conducting body is, that

the electricity is held upon a conducting body by the pressure

of the atmosphere (to a certain extent at least), while on a non

conducting body it is held by the friction of the particles of

the body.

145. To find the attraction of an electrical mass E, on a non

conducting electrified body A, the obvious way is to proceed

as in ordinary cases of attraction, considering the electricity

on A as the attracted mass.

In finding the action on a conducting body A, the method

followed is to consider its electricity as exerting no pressure

upon the particles of the body, but disturbing its equilibrium,

by making the pressure of the air unequal at difl'erent parts

of its surface. These two methods of measuring the action

of E on A should obviously lead to the same result, since the

action must be the same, whether A be conducting or non

conducting, the distribution remaining the same. It is tli‘e

object of the following paper to show that they do lead to the

same result.

146. We must first find the pressure of an element of the

electricity of A, on the atmosphere.

Let ds be the area of the element, and pds its electrical mass.

Let ds form part of another element 0-, indefinitely larger than

ds in every direction, but so small that it may be considered

as plane. Now, if pa- be a material plane, it can exercise no

attraction on pds, in a direction perpendicular to the plane, and



VIL] Conducting and Non-conducting Electrified Bodies. 99

it may be readily shown that this is also true if po- be a plate

of matter of different densities, arranged in parallel planes, the

thickness being either finite or indefinitely small, and the law

of density being any whatever.

147. Hence, the force acting on pds is due to the repulsion

of all the electrical mass, except 0'; and, since the electricity

on A is in equilibrium under the influence of E, the repulsion

acts along the normal through ds, and is in magnitude 27rp2ds

(see I. above, § 7), which is therefore the pressure of ds on the

air. Hence, ifp be the barometric pressure of the atmosphere,

the pressure on ds, perpendicular to the surface, is

( p—21rp')ds.

Hence, if X be the whole pressure on A, resolved along a fixed

line X’X, and if v be the angle which the normal through ds

makes with this line, we have

If: —f/(p—21rp')cosvds,

the integrals being extended over the surface of A. Now,

fl'pcos vds‘=O,

since the pressure of the atmosphere does not disturb the

equilibrium of A. Hence, we have

X=21rjfp' cos vds (a),

which is the expression for the attraction on a conducting body

A, either separate from the body on which E is distributed,

or connected with it.

148. To show that this is identical with the expression for

the attraction of E on the electricity of A, let Rpds and R'pds

be the components of the repulsion on pds, which are due to E,

and to the electricity of A ; and let a, a,’ be the angles which

their directions make with XX’. Then we shall have

21rpcosv=Rcosa+R'cosa’;

therefore X=_/f(Rcos a-i-R' cos a’) (18.

Now, f/R'cos a'ds is the attraction of the electricity of A on

itself in the direction XX’, and is therefore :0. Hence,

X=jfRcosads

But this expression for X is the attraction of E on the elec

tricity of A: [also, the moment round OX is the same for the

diminution of air pressure as for the attraction of E on the

electricity of A :] and hence the two methods of measuring the

action lead to the same result.



VIII. DEMONSTRATION OF A FUNDAMENTAL PROPOSITION

IN THE MECHANICAL THEORY OF ELECTRICITY.

[From the Cambridge Mathematical Journal, Feb. 1845.]

149. If a material point he in a position of equilibrium when

under the influence of any number of masses attracting it or

repelling it with forces which are inversely proportional to the

square of the distance, the equilibrium will be unstable.‘

The first thing to be proved is, that if the material point

receive a slight displacement, there will in general be a moving

force called into action.

150. Let 0 be the position of equilibrium; P any adjacent

point ; V the potential of the influencing masses, p, at P, which

point we suppose not to be contained within any portion of p;

U the value of Vat 0. Now it is shown by Gauss, in his

Mémoire on General Theorems in Attraction, that V cannot

have the constant value U through any finite volume, however

small, adjacent to 0, without having it for every point external

to ‘11.. But this is impossible, as may be shown in the follow-

ing manner.

Let 0' be a closed surface containing within it a quantity of

matter, #1, consisting of any number of detached portions of a,

or of the whole of p, if p. be a continuous mass. Let do- be an

element of 0', and P the force due to the total action of ,a,

resolved in a direction perpendicular to do‘, which may be con

sidered positive when directed towards the space within 0-.

Then, by a theorem demonstrated in this Journal (see XII.

below, § 200), we have f/Pd¢=4fl-F,

the integrations being extended over the whole of 0'. Hence

P cannot be=0 for every point of the surface 0', and therefore

V cannot be constant for all the space exterior to a

' This theorem was first given by Mr. Earnshaw, in his Memoir on Mole

cular Forces, read at the Cambridge Philosophical Society, March 18, 1839.

See vol. VII. of the Transactions.
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Hence Vcannot have the constant value U for every point

of any finite volume, however small, adjacent to O.

151. Now let a sphere S be described round 0 as centre, with

any radius a, sufficiently small that no portion of a shall be

included, and let P be any point of the surface S, and £18 an

element of the surface at P.

In the equations (3) and (4) of the article already referred to

(XII. below,§ 199), let the sphere S be the surface there con

sidered; let 1:: V, and v1 : %, if OPzr.

1 .

Hence 12-, and '01:? at every point of S;
a

m=,a, m,=1, flfvdm,=U.

Also //v,pd8=%jj‘Pds=0,

andjffiildm : 0, since S does not contain any of the matter a.

We have therefore, by comparing (3) and (4) of § 199,

0=41rU—%_[/‘Vds.

Therefore JfV‘18=41"? U,

which shows that the mean value for the surface of a sphere,

of the potential of any external masses, is equal to the value

at the centre. Let V: U+u. '

Therefore ffud8=0

152. Now, as has already been shown, it cannot be : 0 for

every point P adjacent to O, and therefore if the sphere pass

through a point P’where u is negative, there must also be a point

P" in the surface, for which it is positive. But if we assume the

potential of an attracting particle to be positive, the direction

of the resultant force, resolved along any straight line, will be

that in which V increases. Hence there will be a force towards

O, for points displaced along OP’, and from O, for points dis

placed along OP". Hence if M, the material point in equili

brium at 0, be displaced along OP", the moving force generated

will tend to remove it further from O, which is therefore an

unstable position.

153. As an application of this theorem, let us consider the

case of any number of material points repelling one another ac
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cording to the inverse square of the distance, and contained in

the interior of a rigid closed envelope. Let the system be in

equilibrium when acted upon by attracting or repelling masses

distributed in any manner without the envelope.

It will generally be possible that there may be a position or

positions of equilibrium, in which at least some of the particles

are not in contact with the surface. If new we suppose all

the particles fixed except one, not in contact with the surface,

the equilibrium of this particle is, as has been shown, unstable.

Hence, generally, the equilibrium of the system is unstable if

any of the particles be not in contact with the surface, and

therefore in nature the particles cannot remain in such a posi

tion. There must, however, be some stable position or positions

in which the particles can rest, but in such, all the particles

must be in contact with the surface of the envelope. The sole

condition of equilibrium in this case will be that the resultant

force on each particle shall be in the direction of a normal to

the surface, and directed towards the exterior space. If the

number of particles be infinite, and there be one position in

which the whole surface is covered, there can be no other in

which this is the case, as is shown in the paper in this Journal

already quoted (XII. below, § 204); and it is also readily seen

that this position will be stable, and that no other in which the

surface is not entirely covered can be stable. In this case the

particles will be distributed according to the law of the intensity

of electricity on the surface, the space within being conducting

matter, and the masses without being any electrified bodies.

If a mechanical theory be adopted, electricity will actually be

a number of material points without weight, which repel one

another according to the inverse square of the distance. Thus

the result we have arrived at is, that there can be permanently

no free electricity in the interior of a conducting body under

any circumstances whatever.

154. If, as may happen through the influence of the exterior

masses, there cannot be a position of equilibrium of the par

ticles covering the whole surface, there will be a permanent

distribution, in which part of the surface is uncovered. This,

however, is never the case with electricity, as acertain quantity

of latent electricity is than decomposed, so that the whole
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surface is covered with electricity, either positive or negative.

All the above reasoning would still apply, if we considered the

masses of some points to be negative, and of some positive, and

the force between any two to be a repulsion equal to the pro

duct of their masses divided by the square of their distance.

155. Since every particle is onthe surface, the whole medium

(if it can be properly so called), will be an indefinitely thin

stratum, the thickness being in fact the ultimate breadth of an

atom or material point. If we suppose these atoms to be merely

centres of force, the thickness will therefore be absolutely

nothing, and thus the fluid will be absolutely compressible and

inelastic. Any thickness which the stratiun can have must

depend on a force of elasticity, or on a force generated by the

contact of material points, and in either case will therefore

require “ an ultimate law of repulsion more intense than that of

the inverse square-I‘ when the distance is very small, and we

therefore conclude that this cannot be the ultimate law of

repulsion in any elastic fluid. As, however, all experiments

yet made serve to confirm the fact that there is no electricity

in the interior of conducting bodies, or that the stratum has

absolutely no thickness, we conclude that there is no elasticity

in the assumed electric fluid, and thus the law of force, deduced

independently by direct experiments, is confirmed.

Sr. Pmn’s Contact, Jan. 16, 1845.

‘ [Note added Jan. 1869.—This was written without knowledge of Davy's

“ repulsive motion,” and without the slightest idea that elasticity of every

kind is most probably a result of motion. The conclusions of the text are,

however, not affected by these views.]

1' This agrees with a result of Mr. Earnshaw.



IX. NOTE ON INDUCED MAGNETISM IN A PLATE.

[From the Cambridge and Dublin Mathematical Journal, Nov. 1845.]

156. If a plate of soft iron be submitted to the action of a

magnet of any kind, it immediately becomes magnetized “by

induction ;” and the effects of this are exhibited in the attrac

tion or repulsion it exercises upon small magnetic bodies in its

neighbourhood. The determination of these effects, from the

elementary laws of magnetic induction, is a problem of con

siderable practical interest. In the case of a plate bounded by

infinite parallel planes, I have succeeded in obtaining a com

plete solution of a very simple nature, by means of a principle

which will be developed in a future paper (see above, 127,

107, 108, 44). The object of the present note is to compare

this solution with a formula given by Green in his Essay on

Electricity and Magnetism, as an approximate result, but which

appears to be inadmissible.

157. Let the influencing magnet, which may be of any form

and size, and magnetized in any manner, be denoted by Q; and

let us suppose it to be held behind the plate of soft iron. The

solution which I have obtained enables us to find the total

magnetic action on a point, P, situated in any position, either

.within or without the plate; but at present I shall only state

the result when P is bq'ore the plate. In this case the actual

magnetic effect on P may be produced by supposing Q and the

plate to be removed, and a certain imaginary series of magnets

Q’, Q1, Q2, etc., to be substituted, the system being constructed

thus. Each of the imaginary magnets is equal and similar to

Q, and similarly magnetized; Q’ occupies the place of Q, and

the others are similarly placed behind it, along a line perpen

dicular to the plate, the distance between corresponding points

of each consecutive pair being equal to twice the thickness of

the plate. The intensities of the successive magnets decrease

in a geometrical progression, of which the common ratio is m2 (a
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quantity measuring 45) the inductive capacity for magnetism

of the plate), commencing with that of Q’, which is equal to

1-m’, if the intensity of Q be unity. It is hardly necessary

to point out the analogy between this and the corresponding

result in optics, in which the illumination produced through a

plate of glass, by a candle, is found to be due to the candle

itself, with diminished brightness, and to a row of images

behind it, with intensities decreasing in a geometrical progres

sion, which arise from successive internal reflections.

158. If the iron plate be infinitely thin, all the images, Q1, Q2,

etc., will coincide with Q’; and, since the sum of their intensities

is unity, the total effect will be the same as that of Q, which

will therefore be unaffected by the interposition of the screen.

The same will be the case if the distance of Q be infinitely

great, and the thickness of the screen finite ; but in this case,

at least as far as the present result can show us, the dimensions

of the planes which bound the plate must be infinitely great

compared with the distance of Q.

159. The result which I have stated is applicable also to

the imaginary casein which, instead of being a magnet, Q is

a mass of positive or negative magnetism.‘ Thus, let Q be a

unit of positive magnetism collected in a point, which case

is investigated by Green. To express the action analytically,

let Q be taken as origin of co-ordinates, a line perpendicular

to the plate as axis of x, and the plane through this line, and

P, as plane of (w, y). Then denoting by a the thickness of the

plate, and considering Q as a positive unit of matter, we shall

have, for the total potential at P, due to Q and the plate,

__ , 1 m‘ m‘
F_.(1-m)~{ , ,),+{(z+2a),+y,},+{(z+4aj,+y,},+ew. }(1).

160. For all magnetic bodies m is between 0 and 1, the

former limit being its value when the inductive capacity for

* This expression does not imply any hypothesis of a magnetic' matter or

of a fiuid or fluids, but it is merely used for brevity in consequence of the'

principle established by Coulomb, Poisson, and Ampere, that the action of a

magnetized body of any kind, or of a collection of electric "closed currents,"

may always be represented by an imaginary positive and negative distribu

tion of matter, of which the whole mass is algebraically nothing. By an

element of positive or negative magnitude, we merely mean a portion of this

imagined matter.
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magnetism is nothing, and the latter being never attained, though

it is approached in such bodies as iron, of which the inductive

capacity is great. In the extreme case of m=1, the laws of

induction in a magnetic body degenerate into those of electrical

equilibrium on the surface of a conductor of electricity. If in

the expression for F we put m: 1, one of the factors vanishes

and the other becomes infinite, but the ultimate value of the

product is nothing, which shows that the effect of the plate is

to destroy all action behind it. This we know to be the case

when an infinite conducting screen of any form is placed before

an electrified body.

161. In the case when the plate is of iron, the value of m is

nearly unity. Hence, as the series is multiplied by 1——m2, it

might be imagined that, if we “neglect small quantities of the

order (1 —g) compared with those which are retained,” (1-g

being, in Green's notation, a quantity of the same order as

1-m), an approximate result would be obtained by putting

m=1 in the successive terms of the series within the vin

culum. And it is thus that Green, having, in the investiga

tion, neglected quantities multiplied by (l —g)“, arrives at the

result,

_.4 (1— ) + 1 —_1— )
F- 3 '9 {(x'+_y|)4+W-|'{(x+4a),+y,},+etc. I

As, however, this series has an infinite sum, it is clear that no

value of m can be sufficiently near to unity to render the

approximation admissible. If instead of Q we were to sub

stitute a magnet, or any collection of positive and negative

particles, such that the sum of the masses is zero, the series

for the potential, deduced from Green’s expression, would con

verge: and the same remark is applicable to the series which

would be found for the attraction of the system on a point

beyond the screen, even when Q is a positive point, by difi'er

entiating the expression for F. Notwithstanding this, the

approximation is still inadmissible; since, if we expand the

rigorous expression in either case in ascending powers (1 --m),

we find that, though the first term is. finite, the co-efiicients of

all the terms which follow it are infinite.

162. Although the method by which I obtained the rigorous
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solution is quite distinct from that followed by Green, being

independent of any mathematical process, it may be satis~

factory to show that the result can be deduced from his own

analysis, and even with greater ease than his solution is ob

tained after making unnecessary approximation.

By a very remarkable investigation, in which he extends

Laplace’s well-known analysis for spherical co-ordinates to the

case when the radius of the sphere becomes infinite, Green

arrives (Essay on Electricity, p. 64) at the following expression

for the total potential at P, due to the positive unit of matter

Q, and to the interposed plate, before making any approxima

tion :—

F=§<1—g> (1+2g>f(,+ l(—,%,.c<>s(flw>

39
Let m:2+g- Then we have, by expansion, and by

changing the order of the integration,

F=%“""')i (123?‘

f;°d7.¢—w(1+m'e-'r+m~~M+et¢>cos<Bw>

2 , 1 dB
=;(l—m )[0 (“F_B,)§

m’(:c+2a) m‘(.r+4a)1!

imaflwiawmiw W“ l

l1 m“'.r,¥l0

f0 z,-“+_1/‘ sin’6

=2- (1-—m’)E , where a:¢=:c+2ia,

1T .

=(1_m')2 m“
(3.‘: +311)! 7

which agrees with the expression given above.

Sr. Pma’s Common, Oct. 14th, 1845.



x SUR UNE PROPRIÉTÉ DE LA COUCHE ÉLECTRIQUE EN

ÉQUILIBRE A LA SURFACE D’UN CORPS CONDUCTEUR

Par M. J. LIoUvrLLn.

[From the Cambridge and Dublin Mathematical Journal, Nov. 1846.]

163. La. méthode la plus générale que l'on connaisse pour

former des couches électriques, en équilibre à la. surface de

corps conducteurs, consiste à considérer une masse M; et le

potentiel, f(æ', y’, z’) dæ'dy'dz'

de cette masse, par rapport à un point quelconque (æ, y, z),

dont la ‘distance au point (æ', y’, z’), ou à. l'élément

f(x'1y'1 zl)dzldyldzla

est désignée par A. Prenons ensuite une surface de niveau ou

d'équilibre relativement à l'attraction de la masse M, et qui

entoure cette masse, c'est à dire prenons une surface fermée

(A), contenant la masse M dans son intérieur, et pour tous les

points de laquelle Vconserve une valeur constante. En fin

soit gds la variation infiniment petite que V éprouve lorsqu'on

passe d'un point de cette surface à un point extérieur infini

ment voisin situé sur la. normale à une distance ds. C'est la

dérivée g, multipliée si l'on vent par une constante, qui

réglera la loi des densités de l'électricité en équilibre sur un

corps conducteur terminé par la surface (A). Plusieurs géo

mètres sont parvenus, chacun de leur côté, à ce beau théorème ;

mais c'est George Green qui l'a, je crois, donné le premier dans

un excellent mémoire publié en 1828, sous ce titre : An Essay

on tlw Application of Mathematù‘al Analysis to the maries of

Electricity and Magnetism. Je me propose de montrer que la

couche électrique en équilibre ainsi obtenue a précisément le

même centre de gravité que la masse M.

164. Plaçons l'origine des coordonnées ac, y, z, au centre de
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gravité de la masse M; et désignons par x1 une quelconque

des coordonnées du centre de gravité de la couche électrique,

laquelle sera fournie par la formule

où les intégrations s’appliquent à la surface (A) dont l'élément

est représenté par (la). Il s'agit de prouver que :01 = 0.

D'après l’expression de V, on a

d’V d'V d'V
dz, =—'4”f(œ)y, 2): ou :0!

suivant que le point (se, 7, z) appartient ou non à la masse M.

Pour plus de simplicité, écrivons toujours

d’V d‘V d'V
dz; =—4"f(~'v,y,Z),

en regardant la fonction f(æ, y, 2) comme nulle hors de la

masse M ; et combinons cette équation avec cette autre de

forme analogue

(1' U d‘U d’ U

dz" + dy‘ +Eï=°’

où nous supposons que U est une fonction de w, y, z, qui reste

finie et continue ainsi que ses dérivées dans tout l'espace

intérieur à. Nous aurons

(1’ U cl’ V d’ U (1’ V d’U d’ V
Va?- Udac' + Vdy’ _ Udy' + Vdz' _ Udz‘ .=.4’'Uf(’’’ ”’ 4'

Multiplions par dxdy dz, et intégrons dans tout l'espace

intérieur à. (A). En conservant à ds et à du) la même signifi

cation que ci-dessus, on trouve, après des transformations bien

connues :

//V%Udw_ /U%dw=4r_[//Uf(x, y, z)dædydz.

Mais l’équation en U est satisfaite par Uzw; nous avons

donc :

dx
_/]‘VÎdw—_/fz%dw— 47rj/‘frf(æ, y, z)dxdydz.

L’intégrale triple du second membre, divisée par M, donne

l’abscisse du centre de gravité de la masse M. Ce centre étant

à. l’origine des coordonnées, l’iutégrale dont nous parlons est
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nulle. Je vais prouver que l'intégrale ff17% de: l'est aussi.

D'abord on peut faire sortir V du signe f, puisque, sur la

dx

surface (A), Vest constant. Observons ensuite que B; a. pour

valeur le cosinus de l'angle a que la normale ds fait avec l'axe

des 2e. Notre intégrale deviendra donc: Vf/cosadæ. Or

l'intégrale ffcosadm est nulle, d'après un théorème connu,

comme composée d’éléments deux à deux égaux et de signes

contraires. Ainsi f]Vîîdm=0. Il reste donc finalement

dV
[[378 dw=0,

et l’on en conclut x1 : 0, ce qu'il fallait démontrer.

Town, 4 Juillet 1846.

NOTE ON THE PRECEDING PAPER.

By WILLIAM Tnomsox.

[Extractedfrom a Letter to M. LIOUVILLK]

165. “...The demonstration which you have given has led me

to this other theorem, that the mass M, and the shell surround

ing it, have the same principal axes, through any point.

To demonstrate this, let U: yz in the formula which you

have given. Then, since, if we denote by K the constant

value of V at the shell, we have

dU dU

=0,*

we find

fl‘yz_—'dîzdw= 41rfify'zflæ, y, z)dœdydz (1),

which proves the proposition enunciated.

If we take U: «:2, we find

d U V d U d’V d U d’V«1;! ‘Udî;=‘+Vd;' "Udy' +Vd;* —Udz‘ =2V+4”"f(”")‘
V

‘ See X11’. below, 5 200, (8).
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from which, observing that

dU dU dU
m/(Hdy dz-l-Ejdzdz:+Edrdy)=Km(

=2Kjjfdz'dydz ;

d'U d'U d'U

dz‘ + dy’ + dz‘
)dxdydz

we deduce

41;[/19‘ZVat: 21_1rf//( V-K)dmdydz+ffwe, 3/, z)d.rdydz.

Let A, B, 6' be the moments of inertia of the mass M round

the axes of co-ordinates, and A1, B1, 01 those of the shell,

round the same axes, it being supposed that the quantity of

matter of the shell is the same as that of M ;* the preceding

equation, and the two others which correspond relatively to

the axes of y and z, are with this notation,

AI=Q+A1BI=Q+B7 CQ=Q+C (2);:

where ,=2l1rf/_/( V—K)¢Z1cd_qdz,

is a quantity which is independent of the position of the

origin.

From equations (2), we have

B-o=B,-c,, G-A=C',—A,, A-B=A,-B,. (a).

A demonstration of your theorem and of the theorems ex

pressed by the equations (1) and (3) may he arrived at by

comparing the expressions for the equal potentials’; produced

by the mass M, and the shell at very distant points." I]

S'r. Pimm's Common, July 15, 1846.

' In this case the “density” of the distribution at any point of the shell

. l —d V
will be equal to G d‘

+ If the origin be taken at the centre of gravity, and the axes of co-ordi

nates principal axes of M (and therefore of the shell, according to the pro

position enunciated above), these equations show that the “ central ellipsoid ”

(see note to p. 202 of Cambridge and Dublin Mathematical Journal, 1846) for

the shell is confocal with that for the body M.

I A shell constructed round the mass A’, in the manner described by

M. Liouville, with a quantity of matter equal to M, exerts the same force upon

points without the shell, as was proved first by Green (see also 1. above,

§ 9) ; and since the potential of each vanishes at an infinite distance, it

follows that the two bodies produce equal potentials at every point without

the shell.

ll [See Thomson and Tait’s Natural Philosophy, § 539.]

' See 1. above, § 7.



XI. ON CERTAIN DEFINITE INTEGRALS SUGGESTED BY

PROBLEMS IN THE THEORY OF ELECTRICITY.

[From the Cambridge and Dublin Mathematical Journal, March 1847.]

166. It follows from the solution of the problem of the dis

tribution of electricity on an infinite plane,* subject to the

influence of an electrical point, that the value of the double

integral,

I °° I °° zdédn

s s cease-new-:<s—w'r+<n-y'>'+z'a*’

21r

{(w-x')’+<y—y')"+<z+z'>*}*'

A direct analytical verification of this result is therefore in

teresting in connexion with the physical problem. In the

following paper the multiple integral

is

e e ud§,d£,...dE, i

L0[43 °"{ (5, -—:::,)'+ (g, -¢,)¢+Fu=}*<'+" {(5. - x,')‘+ (5. —x,')'+ +u"}“‘:”

is considered, and its value is shown to be

71-10744) 1

PMs-F1) {(351 —x1’).+ hrs-‘1702+--~+(u+u')2i§(8_l) ,

a result of which the one mentioned above is a particular case.

Several distinct demonstrations of this theorem are given, and

some other formulae, which have occurred to me in connexion

with it, are added.

167. The first part of the following paper, which is a transla

tion, with slight alterations, of a memoir in Liouville’s Journakl‘

contains a demonstration suggested to me by a method followed

by Green in proving the remarkable theorem in Art. (5) of his

Essay on Electricity. In the second part some formula: are

given which, in the case of two variables, are such as would

* See above, § 111, footnote.

1' 1845, p. 137, “Demonstration d'un Théoreme d‘Analyse" (April 1845).
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occur in the analysis of problems in heat and electricity, with

reference to a body bounded in one direction by an infinite

plane, if the methods indicated by Fourier were followed; and

from them the value of the multiple integral mentioned above

is deduced. In § III. the evaluation is effected by a direct

process of reduction, suggested by geometrical considerations.‘

PART I.

168. Let the value of the multiple integral, which, if we

use a very convenient notation analogous to that of factorials,

may be written thus,

UT W a
a. {Bus-aw“arenas-er+u"}*<~-*>

be denoted by U.

Let u + u’ = a, it being understood that u and u’ are taken

as positive. Then, if we assume '

1 1
R1E(seam-a"a<s-x>-+<2._v>-t<~-., <1),

'-—_1_
R _{2(€--'v')'+(a—-v)'}W—1) <2).

-2 (s- l)uU=[filllt'sfgwflfi when u: u.

It is easily seen that the second member of this equation

vanishes when '0: 5: co, and that it does not become infinite,

even when one of the values 0, 2a, or a is assigned to u.

Hence the preceding equation may be written

-2(n-1)uU=f/ (if;€€+R§§> [dfl'da

But we have

tmeawauaae
. [Sagas-[111’R‘iff'vfl‘dv

When we take the integral with respect to a between the

* See “ Extrait d’une lettre a M. Liouville, etc." Liouville’s Journal, 1845,

p. 364 (XIV. § 210, below).

H
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limits —uo and a, the first term vanishes, since at each limit

R= 0. Thus the preceding equation is reduced to

—2(s—1)uU=j[:°:l'(R’%—Ri;§)[d§]’dv.

d'R’ d’B'

a» +2ag—-=

for all values of E1, 52..., provided 12 be not equal to a. Hence

this equation is satisfied for all the values of the variables

between the limits of the integration in the preceding ex

d’R'

do’ '

169. Now we have 0,

pression, and we may therefore employ it to eliminate

we thus obtain

—2(s-1)uU=ICJKR§§+R2§§> [dgyda

Taking one of the terms of the second member, and integrating

by parts, we have

ILELZIRaii-W

ans-‘<1;=—/;U_:r<

=ILUZTR’ZZEW
since the integrated parts vanish at each limit. By applying

a similar process to each term under the sign 2', we find

—2(s— l)uU.=ff:°:\lR'(§f+ 2 is?) [dfl’da

But, if we denote by Q and Q’ the two parts of R, in equation

(1), so that R: Q- Q’, we have

d’Q' d’Q'

(121' + 2 d5’

for all values of the variables '11, {11, etc., within the limits of

integration; hence there remains

—2(n— 1)uU=f_Z]’R'(‘5v9 + >3 5%?) [dfl‘d-v.

To determine the value of this expression it may be remarked

=0
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that the quantity under the integral signs vanishes for all

values of the variables which differ sensibly from those ex

pressed by

11:0, 51:33, §,=x,, etc.,

and moreover, that if we consider separately the terms of the

second member, each is found to be a converging integral: it

follows that, if we denote by P the value which R’ receives

when the variables have these values assigned, we have

_§(3-1)uU=Pfff...(§g+ 2 %Z)dvd§,d§,...d§, (3),

where the'limits of integration must be such as to include

the values 0, x1, x2, etc., but are otherwise entirely arbitrary.

By considering separately the different terms of this expres

sion, and integrating each with respect to the variable to which

it is related, without yet assigning the limits of the integra~

tion, we find

—-2(s—1)uU=P(f ...%*ag,ag, ...+ %dvd§,+etc.) (4).
l

170. Let us now assume

_ §,=v,+ac,, é,=v,+z,, etc.,

and _ v"+v1’+---+v.’=r‘,

from which we have

1 dQ_ 8-1 dQ, s--1
Q "— __,-l+xvr d_£-;=_r¥+l=1_,_,; d— 2),, etc.

The integrations in equation (3) may be extended to all the

values of the variables which satisfy the condition

v’+l’1’+va.+---+v-:'€a.;

and the limits in (4) will then be such as to include all the

values which satisfy the equation '

v'+v,’+v,'+...+v,'=a’, or r"=a', etc.

If in the integrations we only take the positive values of the

variables 'v, '01, 122, etc., which satisfy the limiting condition, we

must multiply each integral by 2‘+1 ; and we may then simply

take, in the successive terms the second member of (4),

dQ_ s-—1 do_ 8-1
w-“zfir'e ¢E—_a‘+‘

Thus we have

v1, etc.
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uU= (ff. . .vdv|dv,.. .dv,+_/f.. .v,dvdv,...dv,+etc.) *

_2‘(s+1)P
asfififf- - -(a'-v,’ —v,’— . . . — v,’)§dv,dv,. . .dv,

=(s+1)P_/f...(1—l,—I,...— gill-Hf!“.l,-§dl,dl,...dl,;

in which last expression the limits include all positive values

satisfying the condition

l,+l,+...+l,§1.

Hence, by Liouville’s theorem,1

I‘( 1 _ 150M)
uU=(s+1)Pi_,—(g; 00-min!‘ ldh=mfl

which gives the required value of the integral U.

171. If we denote by U’ any integral corresponding to U,

in which the system of variables u, 201, m2 and u’, :01, x;are inverted, we shall have uU : u’ U’, since P is a function

symmetrical with respect to the two systems; and we there

fore deduce from the preceding result,

l W ‘ <5)

», {firs-x >'+u ‘Pawns-ow“- w-w

1,4(I+1) 1

=1‘1}(s+1) {Z(:v—.z:')’+(u+u’)'}i('—1) -

172. I shall add another demonstration of this theorem, as an

application of some remarkable analysis given.by Mr. Green

in his memoir “ On the determination of the exterior and

interior attractions of ellipsoids of variable densities”:

_ °° ' u d§]'_____

Let V‘UJ {E<§-w>'+u'}*<*+1>{E<e-w')'+u"}*<'-*> (6)’

an integral which may also be expressed thus:

1 i f” a we }
_n——1 du a {E(§—z)'+u'}i('—1){E(£_x’)’+u *po-o ‘

From this latter form, we see that the equation

d’V d'V

aa- +2 dxi=o (7)

* [By putting, in this, v=fdv; v,=fdv,; etc., we have

u U=:|+P1(s+l)f/f...dvdv,dv,...:

whence immediately, by a simpler case of Liouville’s theorem than in the

text, or by Green’s transformation (see § 186), the same result]

+ See Gregory's Examples (Ed. 1841), p. 469.

I Read at the Cambridge Phil. 800., May 6, 1833. See Trans. of that date.
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is satisfied, provided to does not vanish. Hence V is a function

which satisfies this equation for all values of :01, x2 and for

all the values of u between 0 and 00. At these limits the

value of Vmay be easily determined, and the general value

inferred in the following manner :—

173. When u: 0, the quantity under the signs of integration

in the expression for V vanishes for all the values of E1, E2 ..

which are not equal to x1, x, respectively. Hence it follows

that, when u = 0,

___1— "H “we
V-{E<w—¢'>'+~"}*<'-I>Us] {uwrwom

_ 1 [ °° ‘ dzldzrudz,

waist-WW0 [4,](f+zl’+zt’+ii+il’lw+‘)

_ 1 f7“ ash-Luanda...

'———{>3(w—w’)’+u"}*“"’ 0_ 1 1s: °° hi‘rldh

"_——_{z<x-w'>'+uw<=—l>m1e<s+1> 1

=Pas+o {E(w—w'>'+u"}*<"-*>'

Also, when u : co , the value of V is nothiiig.

1 74. Thus we see that Vhas the samevalue as the expression

1r}(8+1) 1

when u = 0, and when u = so ; which enables us to infer that

V__ ,rmu) - 1

—rg,(8+1) {Z(:c—x’)’+(u+u’)'}i(‘_1),

for all positive values of u, provided u’ be taken as positive;

for the second member of this equation satisfies equation (7)

for all positive values of u, and for any values of the other

variables, and at the limits u: 0 and u: 00 has the same

value as V, and therefore, by a theorem of Green's,‘ in the

memoir referred to, must be equal to V for all positive values

of u.

175. From what has been proved above we may deduce the

solution of the following problem :—

Having given for all values of E], E, ..., the value of the

multiple integral

* [Included in Theorem 2. of x111. beluw.]
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S_____P'_de£d_x-L_ (a)

{(101-€1)'+(w-'—£-)‘+.--+(x;—£.)’+u"}i<:-1> »

where u’ and p’ are any unknown functions of 2:1, :0; :0‘, let it

be required to find the value of

p'dr,'da:,'...dr,' (b)

S {(Zl’_zl),+(zl "'13). ' -+(xs _xI).+(u 'l'uylbafl) ’

where m1, 2:, x, are any given quantities, and u a given

positive quantity.

Denoting the expression (a) by 45, and the expression (b) by

qb, we have, from the theorem established above,

¢='_‘%S_:I'l;)_1) S p'dx,'¢iw:,'. . .dr,'.

I, an , dg]: '(1 ‘'11 Phil"

_ul‘§(s+1)°r “b-WWU (°)'

But, by hypothesis, d5 is given for all values of {11, E2 E,;

and therefore this equation expresses the solution of the

problem. We may also deduce from the theorem (5) the ex

pression

_ Ft<s+l> "’ - ‘PM?
qb-‘o-nwenUsl{EeETWW-H 0”’

by means of which ¢ may be determined when the value, ‘SF,

of 5% corresponding to u: 0 is given.

176. For the particular case of u’ = 0, the theorem (d) is in

cluded in a theorem given by Green, in which the number n in

the exponent of the denominator may differ from the number s

of variables, the sole condition being that n- s + 1 must be

positive; but it is only in the case of n :8 that a general

theorem such as (d), by means of which the general value of ¢

11¢
is obtained from the value a when u = 0, can be established.

177. Let us now apply these formulas to the case of s = 2 :
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we may in this case conveniently replace .121, $2, a by x, y, z,

and E1, 5,, by f, 1,. Equations (0) and (d) become

=i °° "° _fln__
l z’JJ-w“Paws-awn (8”

—-i °° ” _‘P_dsdv__ ,
and 4" will“,{<é—w>-+a_y>-+z-}i (ft

where "F denotes the value of a? when x=f, 31:17, z=0.

l78. The first of these theorems may be deduced from a very

general theorem given by Green in his essay on Electricity and

Magnetism [§ (5.) eq. (6)]. The second may be demonstrated

in the following manner :—

Let x’, y’, 2’ be considered as the co-ordinates of a point P’,

where there is situated a quantity of matter p’ dz’ dy’ dz’, in

the volume dx’ dy’ dz’. Then 1; will be the potential on a

point P (ac, y, 2), above the plane of x, y which we may regard

as horizontal, due to a quantity of matter,

M,(=fffP'dr'd!/'d1')

situated below this plane. Now it follows from a theorem,

first, so far as I am aware, given by Gauss, for a surface of any

form, that there is a determinate distribution of matter upon

the plane (any) which will produce this same potential on points

above the plane. Let k be the density of this distribution at a

point 11 (E, 1]) of the plane, so that

= Q m .- _kd$i—

l’ la/i{(e—w>'+o—yr+z'a

which gives

d_¢=_ °° °° lcd§d17 _ _
d‘ zf-wf-w {(€—x)’+('l-.'/)'+Z'}'

Let 2:0 ; then denoting by k and (25)‘) the values of k and

% at the point (x, y, 0), we find

Q): —k w w _ud£d_nL__A

(dz 0 {<s—w)'+(n—yr+z'}=’

=—k.21r,

since the value of the integral in the second member is
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211-, whatever be the value of z. Hence we conclude that

k: —2l1r. ‘P’, and equation (f) is established.

1 79. It should be remarked that the total quantity of matter

distributed over the plane my must be equal to the mass M,

which it represents: this is readily verified from the preced

ing formulae. _

180. The same formulae admit of an interesting application in

the theory of heat. Thus let qb be the permanent temperature of

a point P in an infinite homogeneous solid, heated by constant

sources distributed below the plane (my), (the case in which

some of the sources are in this plane being of course included).

If the temperature 45 at any point II in the plane (my) be

a given, the formula (e) enables us to find the temperature at

any point above the plane.

181. As an example, let us suppose that the sources of heat

are such that the temperature of a portion A of the plane (my),

between two lines parallel to OY and at equal distances, a, on

its two sides, has a constant value c, and the temperature of

the remainder of the plane zero. In this case the formula (0)

will give, for the temperature at a point (z, y, 2) above the

plane,

¢=%flfl
=£(tan-1x+a—-tan'1x_a)

1r z z

c 2am

=7?“

From this we conclude that the isothermal surfaces which

correspond to this case are circular cylinders, which intersect

the plane (my) in the two parallel lines bounding A.

The application to this example, and all others in which the

isothermal surfaces are cylindrical, may be made directly by

putting s: 1 in the general formulae.

PART II.

182. I now proceed to find the values, which will be denoted

by V and W, of the integrals

Hi:i
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°‘' -(2m')‘u

and [/fifljtdm?[cos1n:e]“€(—$-m,)‘i ,

where the symbols [cosmE]’, [cosmafl’ denote the products

cos m,§, . cos 712,8, . . cos n.5,,

cosrmx, . cos 121,50, . . cos m,x,;

and the notation is in other respects the same as before.

By means of the formula

[cosmé-i-sin m5. J (—1)]‘=c0s(2m§) +sin(Em§).~/(—1),

it is easily shown that

V= f355593395551? (">

Hence, by a suitable linear transformation, in which one of the

assumptions is Zm§:q(Sm’)*, we have [if ,1. denote (Sm2)§]

17:1}....d.,.[/;]Hfi,§1;§),,_,, a.

Now, by means of Liouville’s theorem,‘ we find

Um:l_1-_[d§l”" .= "W" “L 25115-9" .

l. (u’+n'+E§’)*('“‘) Paw) o <e’+r+"')*"">

_41|-§(v-1) °° °° 8400s .dfd

Hence V_i‘}(s—-1)f, l, isififitfigj (a)

Differentiating with respect to a, by which the further reduc- '

tion of the integral will be facilitated, we have

dV_ _ 7741M“) °° °° u.§""cos;m.d§d17

'a-l‘ “lewd. /. swam» (dl'

Now

[a £g_ld£ =fw g-gdg =l/w‘d5!

owewwaofl'ei o 1+r+wH+1 2 0 {1+(v'+“')¢}*"+"

dV_ 41r§(“1) “9 u cospxqd'q

Hence 0 na+dr @

' See Cambridge Mathematical Journal, Feb. 1841, p. 221 [or Gregory’s

Examples, Ed. 1841, p. 469].
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From this, by integration with respect to u, we deduce the

value of V: thus we have the result

U” l—L—["il'Wei _ 2e2r1e-_<"’>‘“ (V)
as - (2£'+“’)“"‘)—Pt(8-1) (2111'? '

183. To evaluate the integral Wwe may in the first place

reduce it to a double integral by a process similar to that indi

cated above, for obtaining the expression (a) ; and we thus find

W___ _41r§('-') f” f” dmdn.m"’cos(nr).s-(”"+"')‘" (a)

—r%(3_1) 0 0 (mi'l'n‘)l .

where r denotes (i‘wi’fi. If we take m=pcos B, nzpsinfi,

this becomes

41rl("'1) “0

“urge-1) 0

Now we have

d’ d’ f .

(@q+ d—r,-) c0s(rp 81D S)e-P"=p’fcosVS. cos(rp cos8)¢-W (0).

Considering first the case where s is even, letf: §s—-1 ; we

thus find

' d. d!

p‘-2 005843 cos (rp cosS)¢-w=(__+

[k dadpp'" 008"’3'008 (rpsin3)e"'“ (b)

0

12-1 _

) cos (rpslnS)erPu,

du’ Jr;

and, by substitution in (b), we have

4"‘-“"" m h d’ d' 48-1 . _
W=1‘%(s_1)/0 f0 d3dP-(T,+Z;;) 005(rp51n8); pu,

41rl(Y—1) d: d; h-l °° h. . _ u

=Fi(8—1)<l_1?+3F) f0 [0 d$dP¢°B(rpsmS)< p

Mus-w d’ d’ W h “as

=§(8_—1)(T:+JF> , "writes

‘ms-1) a‘ d’ 98-1 gr

=P§(S-1)(¢W+F) new‘);

4140-1) 1'.3'...(:-1)' 1
=mm=2s_lfla_nré(s-l)mm (a).

In the second case, when a is odd, let f: “8-1) in (c);

then, making use of the result in (b), we have

4160-1) d‘: d: ‘(B-1) °° h _

W=PHS_I)(W+T,) f0 f0 (ISdppc083'.c0s(rpsln$)¢-F"

_41r5("-‘) a2 d’ w-u °° mop)
_r%(s_l)(d—ua+d—ri) f0 dp- r c-Pu

47146-1) d1 d2 10-1) 1 _ _ l

=I‘1ko-1)((T=+¢F) raw-2' 1"” 1)Pi(s_1)(u'+'r'>'“'-_'>7'
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Hence, whether s be odd or even, we conclude that

l
[[000 ]l[dm][oos mx]'752:3‘: 2'-11r§('-1)l"§(s- 1 (

184. The investigation which we have just gone through, of

the integrals (V), (W) constitutes the verification of “ Fourier’s

theorem " in a particular case. For, by this theorem, we have,

if F(a:1, a:,...) be a function which remains the- same when the

signs of any of the variables are changed,

2'1r'F(a:1, x,...)=

[[ljtdmf[cosmxffl [cos m£]_'1l‘(§,, 5,. . (e) :

and if we take

1

F(§n£|"')=(?I,Z1T(T-i)'

the result of the integrations with respect to E1, 52..., is given

by (V), and the second member thus becomes a multiple

integral with respect to m,, m,..., which is shown by (W) to

be equal to the first member. Conversely, if we assume

Fourier’s theorem, we may deduce the value W, by means of

it, from that of V. The integrals V and W are also con

nected by means of another case of Fourier’s theorem, found

by taking, in (c),

F(€1,£:---)=€Z%);—u

In this way, after the value of Whas been found, that of V

may be deduced.

185. The formulae (V) and (W) may be applied to evaluate

the multiple integral u, and we shall thus obtain the result of

the investigation in § I. in a different manner.

By means of the equation obtained by differentiating (W)

with respect to u, we find

u 1

{E(€—w)’+u‘}*“+‘)=2”"(8—1)1r*"-‘>1‘t(s—1)

[jijldmlflcos m(£._. r)]le_(z"fl)lu ;

Making this substitution, for one of the factors of the expres—

sion under the integral signs U, we have
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" [do
U“=2*-1(s-1)1¥*<1T1’>Pie—smiles-wow“ 'w-n

1 [fl][dm]’[c<>sm(£—w)]'r“"">‘"

1

=2~—1(','_—1)1a<~—'orfl- 1 )

Ull[d”‘1‘[°°$m<e—gnu-FewU

=W’

[fl][dm]‘[cosm(z—w’)]‘e-(Em/'Mfi a)‘ , by (V),

27r§(3+l) 1

=(8-1)i‘,5(s-1) {E(;c-x’)!+(u+u’)1}§(s-1)) by (W),

which agrees with the value obtained above.

PART III.

186. The value of the integral U may also be obtained by a

direct process of reduction, as follows :-—

By a suitable linear transformation, in which assumptions

such as §,-w,=2a{

are made, we find

a’ d

U=[L,:|(36’+u’)*<'+'>(gl’i];f§i+f‘+u”)*<‘-') (00'

where f’=Z(a:— 22')‘.

Let us now assume

{,=pcos¢, §,=psin¢cos6,, {,=psin¢sint9,cos0,... ,

§,_, =psin qbsin 0, sin 0, .... ..eos 0,-”

{,=psin¢sin0,sin6, .... ..sin0,_,,

from which we deduce‘

[cz7£]'=p‘-1sin'-’¢>sin"-’t91 aim‘-4 9, .... . .sin 0s_,[d0]‘-'d¢dp ;

a transformation given first by Green. Equation (a) is thus

reduced to

_ °° " P““‘Bi11‘_’¢d¢>dP
U-HH/O lo (b)

where HM denotes the product

* See Cambridge Mathematical Journal, Nov. 1843, p. 24, First Series;

[01' Green, “Attraction of Ellipsoids," § 6, (lamb. Phil. Trana, May 1833.]
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[isms-‘0010.1’ sins-‘Geld.... nfhda.

o o0

Let pzutanéfi; we thus get

Uu=§H,_, ["f'
o

0 sin'-1Ssin“'¢d¢dS

{2(j1 +u" +u’) +2(f’+u” -u’)cos$--4ufsinS-cos¢}i('-‘)

and we may now conveniently assume

2(f’+u"+u')=h'+lc',

2(f’+u" —u')cosS-4ufsin8cos¢

=2{ (f'+u'-u”)'+4u'f' }§cos9==2hkcos0,

and sin 45 sing: sin q> sin 0,

from which we deduce

h’=(u’+u)’+f’, k'=<u'-u>'+r*.

sinsdzbd$=sin 6d<pd0;

the expression for U becomes

Uu=§H flf'j" sin*_‘6sin‘-’q>dq>d0

o 0
at'matnaimW-n

sinkl 0d0

=1” "1 0 (Finite-8'0?how-1)

Let hsin(¢— 0)=lcsin¢;

by means of this transformation, observing that h> k, we

readily find

H8
Uu=?g—_1

71404-1) 1

I‘é(8+1){2(w—¢v’)‘+(u+u’)’}*<’-‘> '

which is the same as the result previously obtained.

or Uu=

Sr. Psrzu’s COLLEGE, Oct. 3, I846.



XII. PROPOSITIONS IN THE THEORY OF ATTRACTION.

[From the Comb. Math. Joan, Nov. 1842 and Feb. 1843.]

187. Let x, y, 2 be the co-ordinates of any point P in an

attracting or repelling body M; let dm be an element of the

mass, at the point P, which will be positive or negative accord

ing as it is attractive or repulsive; let ac’, y’, 2’ be the co-ordin

ates of an attracted point P’; let

A={(x’—r)'+(y’—y)’+(5-1)’?;

and let v’= ’% ,

the integral including the whole of M. This expression has

been called by Green the potential‘ of the body M, on the

point P’, and the same name has been employed by Gauss

(in a Mémoire on “General Theorems relating to Attractive

and Repulsive Forces, in the Resultate aus den Beobachtungen

des magnetisclwn Vercins im Jahre 1839, Leipsic 1840, edited

by M. Gauss and Weber).1' By a known theorem, the com

ponents of the attraction of M on P’, in the directions of

x, 3/, z, are do’ do’ do’

—d—x’7 _d'—"yl’ Z27’

and if dry’ be the element of any line, straight or curved,

which passes through P’, the attraction in the direction of this

element is - Hence it follows that if a surface be drawn

through any point P’ for every point of which the potential

has the same value, the attraction on every point in the surface

is wholly in the direction of the normal. Surfaces for which

the potential is constant are therefore called, by Gauss, surfaces

of equilibrium. It has been shown in a former paper (I. above),

* [“ This I found in a reference to his memoirs, in Murphy’ first memoir

“ on definite integrals. Ever since I have been trying to see Green’s memoir,

“ but could not hear of it from anybody till to-day, when I have got a copy

“ from Mr. Hopkins. Jan. 25, 1845.” (Private note which I find written on

p. 190 of vol. iii. of my copy of the Camb. Math. Jour.)]

+ Translations of this paper have been published in Taylor's Scientific

Menufirs for April 1842, and in the Numbers of Liouville’s Journal for July

and August 1842.
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that if M, instead of an attractive mass, were a group of sources

of heat or cold in the interior of an infinite homogeneous solid,

'0’ would be the permanent temperature produced by them at

P’. In that case, the surfaces of equilibrium would be iso

thermal surfaces.

188. When the attraction of (positive or negative) matter,

as for instance electricity, spread over a surface is considered,

the density of the matter at any point is measured by the

quantity of matter on an element of the surface, divided by

that element.

The principal object of this paper is to prove the following

theorems :—

If upon E, one of the surfaces of equilibrium enclosing an

attracting mass, its matter be distributed in such a manner

that its density at any point P is equal to the attraction of M

on P; then—

(1.) The attraction of the matter spread over E, on an external

point, is'equal to the attraction of M on the same point multi

plied by Mr.

(2.) The attraction of the matter on E, on an internal point,

is nothing. .

189. These theorems were proved in a previous paper (I. §

5, 9), from considerations relative to the uniform motion of heat;

but in the following they are proved by direct integration :—

Let u be the potential of M, on the point P, (xyz) in E.

The components of the attraction of M on P, in the directions

of w, y, z, are du du du

_—, __, -—-—;

dz: dy dz

and hence, if a, B, 7 be the angles which a normal to E at P

makes with these directions, the total attraction on P is

—(-Z—:-cos a+ggcosfi+idzti cos y) or —-j%,

if dn be an element of the normal through P.

This is therefore the expression for the density at P of the

matter we have supposed to be spread over E. Let (18 be an

element of E at P; let 1;’ be the potential of E, on a point P’,

(m’y'z’), either within or without E ; and let A be the distance

from P to P’. Then
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££cosa+j—;cos/3+%cos7 ds 2d,,

5'5,- } (a),

the brackets enclosing the integrals denoting that the integra

tions are to be extended over the whole surface E. Now for

ds, we may choose any one of the expressions,

JW, dméséz, dm‘fls.

cosa. cosfl cosy

Hence any integral of the form

{/(Acos a+BcosB+Ccos-y)ds}

may be transformed into the sum of the three integrals,

(ffAdydZ), (ffBird’), (ffcdwdy),

by using the first, second, and third of the expressions for ds

in the first, second, and third terms of the integral respectively.

Hence, if :52 ‘t, B=§yé it, G=€$ ‘P,

(lg'itds) or {f(%cos a+£$cosfl+iicosy>¢ds },

= { ff¢(%dydz+%$dmdz+%drdy)} (b),

the limits of the integrations relative to y and z, a: and z,

a and y, being so chosen as to include the whole of the surface

considered.

190. Making use of this transformation in (a) we have

,_ du dydz du dxdz du dxdy ,
v_—{ff(fid.z:—A—+Fy__-A— HdZT)} (al'

d’u 1 du d 1
NW H—d..*x'=//dydz/d”(—aa K 15x3)

d’ d d 1
=///d”dyd’(d—; iatfi T Z)‘

191. Hence, if the integrals in the second member include

every point in the space contained between E, and another

surface of equilibrium, E,, without E, and which we shall sup

pose to be also without P’, we have

{1 H§£i%}=fff(2’—;%+%e%)eee
the accent denoting that, in the term accented, the integrals are
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to be extended over the surface E,. Modifying in a similar

manner the second and third terms of a’, we have

Ed, figds did,

dn d dn ,{I A H Tlorfi A }+”

d’u d'u d’u dud 1 dudl u

-H/(J;+a?+fi+a;as'n am‘?

Now, for all points without M,

d'u d'u d'u

(ii-Wyn» =

by a known theorem; and such points only are included in the

integrals in the second member of (0).

Also, by integration by parts,

du d 1 d l d‘ 1
[IlaEKdmdydz-ffua;Kdydz—fffu(Ez-dxdydz

d 1 d 1 da 1

= { ffuggzdydz }l— { flag; Kdydz } —fffud?zdrdydz.

Modifying similarly the two remaining terms of the second

member of (c), we have

du

0,

_-¢a

{ 2%} +,,'= {Hu(%£_dydz+%%dxdz+g;%ardy)}

_ { Zdydz+%%dxdz+%%dwdy)}

wee-erased: e
Now, since E and E, are surfaces of equilibrium, u is con

stant for each. Again,

d‘ 1 d’ 1 d’ 1

a? 2+‘? 3+? 5:0’

except when P coincides with P’, at which point it has the

value u’. Hence, the value of the integrals,

dI l d‘ 1 d‘I 1

NHL?Tray K’Ffi K>dxdydz

is only affected by these elements, for which uzu', and hence

it may be taken without the integral sign, as being constant

and equal to u’. If, therefore, for brevity, we put

I
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dHi5? idydz+$ ilgdwdz-i-gg gee/Fol) or o), (4).

according as the integrals refer to E, or to El, and

d ’ 1 d’ 1 d’ 1
HKH? xiii, K a; K>dacdydz=k (e),

the integrations including every point between E and E"; equa

tion (0) becomes

5% ds

+v'=<u),<h),—<u)o>-u'k e")

Now it is obvious that, at a great distance from M, the

surfaces of equilibrium are very nearly spherical. Let E’ be

taken so far off that it may be considered as spherical, without

sensible error, and let 7 be the distance of any point in E’ from

the centre, a. fixed point in M, or, which is the same, the radius

du du

of the sphere. Then —5 2 or —E; , is the attraction of M,

on a point in E’, and is therefore equal to g- 1 and therefore,

by the known expression for the potential of a uniform spherical

shell, on an interior point,

d-“ds

we},
It now only remains to determine the integrals (h), (72,)’, and k.

By putting, in (b), 1r: 1, ¢=71S, we find the following

transformation, for (h),

di
,4] A ,,,__ 51A is.
— dn — dn A’

Now let the point (w'yz) be referred to the polar co-ordinates,

7, 0, 4a. Then, if P’ be pole, 7 = A. Also, if 1]» be the angle

angle between A and dn, the expression for ds is

A’ sin 0d9d¢ . _ dA

d3=--—CW—- , or, 811106 cos 11-75 ,

A’ sin 0d0d4>

d8: dA '

F1?

Hence h=—ffsin 0d0d4>.
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If P’ be within the surface to which the integrals refer, the

limits for 0 are 0 and 'n', and for ¢, 0 and 271-, and in that case,

it = — 41r ; therefore, since P’ is always within E’,

(h),= — 41f (g).

If P’ be without the surface considered, then, for each value

of 0, we must take the sum of the expressions

-sin 9d9d¢, and —sin0(—d0)d¢,

and, therefore, each element of the integral is destroyed by

another equal to it, but with a contrary sign, and the value of

the complete integral is therefore zero.

Hence, according as P’ is without or within E,

(h)=0, or (h)=—41r

Again, to find the value of k, we have, by dividing it into

three terms, and integrating each once,

d -1 d 1 a 1
k_ { Eaten-a? Kdxdz-k-d; Kdxdy)

d l d 1 d 1

- { IKE -A—dydz+fizdwdz+—z— Kdxdy)}

=(h)I-(h)=--41r—0, or =—41r+41r;

and, therefore, according as P’ is without or within E,

k=—-41r, or lc=0 (k).

Hence, making use of (f), (g), (h), (k), in (0"), we have

v'=41ru', when P’ is without E. (1),

v'=41r(u), when P’ is within E

From the first of these equations it follows that the attrac

tion of E, on a point without it, is the same as that of M,

multiplied by ‘in; and since the second shows that the

potential of E on internal points is constant, we infer that

the attraction of E on internal points is nothing.

These theorems, along with some others which were also

proved in the previous paper in this Journal, already referred

to, had, I have since found, been given previously by Gauss.

One of the most important of these is the following :—If a mass

M be wholly within or wholly without a surface, an equal mass

may be distributed over this surface [in the former case, or a

certain less mass may be distributed over it in the latter case]

in such a manner that its attraction, in the former case on

external points, and in the latter on internal, will be equal to
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the attraction of M on the same points. This theorem, which

was proved from physical considerations in the paper On the

Uniform Motion of Heat, etc, is proved analytically in Gauss’s

Me'moire, but the same method is used in both to infer from it

the truth of propositions (l) and

From Prop. (2) it follows that, if E be the surface of an

electrified conducting body, the intensity of the electricity at

any point will be proportional to the attraction of M on the

point. Hence we have the means of finding an infinite number

of forms for conducting bodies, on which the distribution of

electricity can be determined.

Thus, if M consists of a group of material points, m1, m2, etc,

whose co-ordinates are x1, y1, z,; x2, y2, e2, etc.: the general

equation to the surfaces of equilibrium is

mr _ K _ p 7":

{e-wi>'+<y—y.r+<z—z.>'}*+{<x—x.>-+o-y.>'+(z—

and the intensity of electricity at any point of a solid body,

bounded by one of them, will be the value of

dk ' dA ' dA ’ ‘

itlxl+tal+tal l’
at the point.

To take a simple case :—Let there be only two material

points, of equal intensity. The surface will then he a surface

of revolution, and will be symmetrical with regard to a plane

perpendicular, through its point of bisection, to the line joining

the two points, and would probably very easily be constructed

in practice. We should thus have a simple method of verify

ing numerically the mathematical theory of electricity.

PART II.

[From the Cambridge Mathematical Journal, February 1843.]

199. I shall now prove a general theorem, which comprehends

the propositions demonstrated in Part 1., along with several

others of importance in the theories of electricity and heat.

Let M and M, be two bodies, or groups or attracting or re

pelling points; and let '0 and 121 be their potentials on acyz;

let R and R1 be their total attractions on the same point ; and

let 0 be the angle between the directions of R and R1, and

z‘); 3}" + etc.
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(167, afilyl, the angles which they make with myz. Let S

be a closed surface, ds an element, corresponding to the

co-ordinates xyz; and P and P1 the components of R, R1, in

a direction perpendicular to the surface at ds. Then we have

Rcosa. =—g, RcosB =_%;7 R cosy =—%,

R,c0ia,=—%, R,cosfl,=—’%, R,cosy,=—% 7

cos 0=cos acos art-cost? cosfi,+cos 7005 7,;

hence, g;- %+%;- '57.‘; 5g- ’fl—vz‘=RR,cos0.

Hence,

d d d d d d
_[/fRR,0da:dydz=-[ff gtg a; 7'; dead, (a),

where we shall suppose the integrals to include every point in

the interior of S. Now, by integration by parts, the second

member may be put under the form,

He, (fgdydz +%dxdz+‘f,—:dwdy)

—fHvi(-g+%,’+%’)drdydz (b);

where the double integrals are extended over the surface S,

and the triple integrals, as before, over every point in its

interior. If we transform the first term of this by (1)), Part I.,

and observe that — g: : P, it becomes

—f/'v,Pds.

Again, d'v d,” d,” (c),

T,+d—y,+Ei=0

except when wyz is a point of the attracting mass.

If this be the case, and if k be the density of the matter at

the point, we have

d'v d'v d'v

any"?

d’ dI d’

(7':+#+‘Tf)dxdydz+41rdm=0

Hence (a) is transformed into

fl'RR,cos0dzdydz=41rjflmdm—_/]'v,Pds (3);

+41rlc=0

. (‘1’)

therefore (
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similarly, by performing the integration in (a), on the terms

do do do . do dv do

Ha ~33}: E1 lnstead of a‘, ~35‘, -d_;-,

we should have found

‘fl/RR;00B0d'l‘dydz=47rmvdm1_fl‘vPlds

200. If the triple integrals in (a) were extended over all the

space without S, or over every point between S, and another

surface, S,, enclosing it, at an infinite distance, it may be

shown, as in Part 1., that the superior values of the double in

tegrals in (b), corresponding to SI, vanish. Hence, the inferior

values being those which correspond to S, we have, instead of

<3) and (a
fl/‘RR,cosadxdydz=41rflfvldm+ffmPds (5)

fj'j'RR, cos 0dxdydz=41rjfl'vdm, +jfvPlds (6).

It is obvious that o and 'v, in these equations may be any

functions, each of which satisfy equations (0) and (d), whether

we consider them as potentials or temperatures, or as mere

analytical functions with the restriction that, in (5) and (6), 'u

and 1:, must be such as to make ffolPds and ffvPlds vanish

at S, [and (a condition the necessity for which has been dis

covered by Helmholtz"), that, in (3) and (4), if S be multiply

continuous, v and a, must be single-valued functions through

out it]. If each of them satisfy (0) for all-the points within the

limits of the triple integrals considered, dm and dm1 will each

vanish; but if there be any points within the limits, for which

either '0 or '01 does not satisfy (a), the value of dm or d'm1 at

those points will be found from (d).

201. Thus let o, : 1, for every point. Then we must have

dm,=0. Also R,=0, P1:O.

Hence (3) becomes

_/_‘/Pds=41r_[[/dm=41rm (7),

if m be the part of M within S. This expression is indepen

dent of the quantity of matter without S, and if m: 0 it

becomes ffPds = 0 (8).

* [See Helmholtz; Crelle’s Journal, 1858 (Wirbelbewegung), translated

by Tait, Phil. lllag. 1867, l. (Vortex‘Motion); or Thomson (Vortex-Motion,

§ 54...58), Trans. Royal Society of Edinburgh, 1868.]
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If M be a group of sources of heat in a solid body, P

will be the flux across a unit of surface, at the point asyz.

Hence the total flux of heat across S is equal to the sum of the -

expenditures from all the sources in the interior; and if there

be no sources in the interior, the whole flux is nothing. Both

these results, though our physical ideas of heat would readily

lead us to anticipate them, are by no means axiomatic when

considered analytically. In exactly a similar manner, Poisson‘

proves that the total flux of heat out of a body during an

instant of time is equal to the sum of the diminutions of heat

' of each particle of the body, during the same time. This

follows at once from (7). For if we suppose there to be no

sources of heat within S, but the temperature of interior points

to vary with the time, on account of a non—uniform initial

distribution of heat, we have

d'v d'v 11'!) do

when???‘

Hence, by (d), we must use --£%’dxdydz, instead of 4-n-dm,

and therefore (7) becomes

Unis = fffilttivdzdydz.

It was the analysis used by Poisson, in the demonstration

of this theorem, that suggested the demonstrations given in

Part L, of propositions (1) and (2).

202. As another example of the application of the theorem

expressed by (3) and (4), let v, be the potential of a unit of

mass, concentrated at a fixed point, w'y'z'. Hence, M, : 1 and

11ml: 0, except when xyz, at which dm1 is supposed to be

situated, coincides with x’y'z'; and, if A be the distance of

, I! 1

:oyzfromzyz, 121:3

Hence, according as x'y'z is without or within S,

‘[[/vdm,=0, or ffvdm1=v:[[/dm,=v' ' (e),

the triple integrals being extended over the space within S.

Now let us suppose M to be such, that '0 has a constant value

(1:) at S. Then f/oP1ds:(v)f/P1ds, which, by (7), is = 0, or

* See Théorie de la Chaleur, p. 177.
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to 4'rr(v), according as :c'y’z' is without or within S. Hence, by

comparing (3) and (4), we have, in the two cases,

4’rf/flTm_U€A§=°’ °' ffi§=4wfffdwm=w (9),

and 41rfff‘iim_ffllgf=_4,r(v)+4nl;

therefore II131-8 =4n-(v) (10).

These are the two propositions (1) and (2) proved in Part 1.,

which are therefore, as we see, particular cases of the general

theorem expressed by (3) and (4).‘

203. If 0:121, and if both arise from sources situated with

out S, (3) becomes

j_'/]R’dxdydz=jfvPds (11),

a proposition given by Gauss. If u have a constant value ('0)

over S, we have

fl’vPds=(v)_/]‘Pds=0, by (8),

hence f/fR'dxdydz=O.

Therefore R = 0 and 'v = (o) for interior points. Hence,

if the potential produced by any number of sources have the

same value over every point of a surface which contains none

of them, it will have the same value for every interior point

also. If we consider the sources to be spread over S, it follows

that o: (v) at the surface is a condition which implies that the

attraction on an interior point will be nothing. Hence the

sole condition for the distribution of electricity over a conduct

ing surface, is that its attraction shall be everywhere perpen

dicular to the surface, a proposition which was proved from

indirect considerations, relative to heat, in a former paperfif'

204. In exactly a similar manner, if none of the sources be

without S, by means of (5) and (7), it may be shown that

11/ ’dzdydz=41rM(v) (12);

i’ It may be here proper to state that these theorems, which were first

demonstrated by Gauss, are the subject of a Mémoire by M. Chasles, in the

Additions to the Oonnazlssance das Temps for 1845, published in June 1842.

In this Mémoire he refers to an announcement of them, without a demonstra

tion, in the Complex Rendus (lee Seances de Z‘Académie des Sciences, Feb. 11,

1839, a date earlier than that of M. Gauss‘s Mémoire, which was read at the

Royal Society of Gottingen in March 1840.

1‘ See 1. above, § 5.
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the triple integrals being extended over all the space without

S. Hence a quantity of matter p, can only be distributed in

one way on S, so as to make (a) be constant. For if there

were two distributions of '11., each making (v) constant, there

would be a third, corresponding to their difference, which

would also make (1:) constant. The whole mass in the third

case would be nothing. Hence, by (1 2), we must have

fffR2dxdg/dz: 0, and therefore R: 0 for external points;

and, since (a) is constant at the surface, R must be : 0 for in

terior points also. Now this cannot be the case unless the

density at each point of the surface be nothing, on account of

the theorem of Laplace, that, if p be the density at any point

of a stratum which exerts no attraction on interior points, its

attraction on an interior point close to the surface will be 4117).

This important theorem, which shows that there is only one

distribution of electricity on a body that satisfies the condition

of equilibrium, was first given by Gauss. It may be readily

extended, as has been done by Liouville,* to the case of any

number of electrified bodies, influencing one another, by sup

posing S to consist of a number of isolated portions, which will

obviously not affect the truth of (5) and (6).

Then, if we suppose 'v to have the constant values, (a), (12)’,

etc., at the different surfaces, and the quantities of matter on

these surfaces to be M, M', etc., we should have, instead of (11),

jZ/R'dxdydz=41r{M(v)+M'(v)'+etc.} (13),

and from this it may be shown, as above, that there is only

one distribution of the same quantities of matter, M, M’, etc,

which satisfies the conditions of equilibrium.

205. If both M and M1 be wholly within S, by comparing (5)

and (6), or if both be without 8', by comparing (3) and (4), we

have _//Pv,ds=_/fP,vds (14).

Now let S be a sphere, and let 10¢ be the polar co-ordi

nates, from the centre as pole, of any point in the surface to

which the potentials In and v1 correspond. Then we shall have

' See Note to M. Chasles’ Mémoire in the Connaisaancc dea Temps for

1845.
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P: -—Z—:, P,: -—g% 7 and we may assume ds=r”sin0d6d¢.

Hence (14) becomes

1" ' d . ' d .
f0 0 v,Fgs1n0d9d¢=f0Kv£sm0d0d¢ (15).

This equation leads at once to the fundamental property of

Laplace’s coeflicients. For if v and 'v, be of the forms Y,,,r"‘,

Ynr", m and n being any positive or negative integers, zero

included, and Y,“ and Y" being independent of r, we have, by

substitution in (15),

inf/h my, sin 0d0d¢=n]”f"r, Y, sin Meat.

0 0 0 0

If m be not = n, this cannot be satisfied unless

f:/7'Y,,Y,,sin9d0d¢=0 (1s).
0

This is the ' fundamental property of Laplace’s coeflicients.

There are some other applications of the general theorem

which has been established, especially to the Theory of Elec

tricity, which must, however, be left for a. future opportimity.

4" [For a justification of this use of the definite article, see Murphy’s Elec

tricity, Chap. 1. Props. 1. and IL, Cambridge 1833.]



XIII. THEOREMS WITH REFERENCE TO THE SOLUTION OF

CERTAIN PARTIAL DIFFERENTIAL EQUATIONS.

[From the Cambridge and Dublin Mathematical Journal, Jan. 1848.]

206. Theorem I. It is possible to find a function V, of w, y, z,‘

which shall satisfy, for all real values of these variables, the'

differential equation

d dV d

@AEE) dough 4 (A)

a dy JFT" "P ’

a being any real continuous or discontinuous function of a, y, z,

and p a function which vanishes for all values of at, y, z,

exceeding certain finite limits ‘(such as may be represented

geometrically by a finite closed surface), within which its value

is finite, but entirely arbitrary.

Theorem 2. There cannot be two different solutions of equa

tion (A) for all real values of the variables.

1. (Demonstration).—Let U be a function of :c, y, z, given by.

the equation -

_ p'dw'dy'dz'U—fff——'*——{<x-x>-+t-r>-+<z-z'>-i+ W)’

the integrations in the second member including all the space

for which p’ is finite; so that, if we please, we may conceive

the limits of each integration to be - co and + co , as thus

all the values of the variables for which p’ is finite will be

included, and the amount of the integral will not be affected

by those values of the variables for which p’ vanishes, being

included. Again, V being any real function of w, y, z, let

" The case of three variables, which includes the applications to physical

problems, is alone considered here ; although the analysis is equally appli

cable whatever be the number of variables.
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°°°°°° dVld’ dVldU'

Q=LLL i (“FIE +(“a-I 2;)
l

+(a%?——i—% }dxdydz (b).

It is obvious that, although V may be assigned so as to

make Q as great as we please, it is impossible to make the

value of Q less than a certain limit, since we see at once that

it cannot be negative. Hence Q, considered as depending on

the arbitrary function V, is susceptible of a minimum value;

and the calculus of variations will lead us to the assigning of

V according to this condition.

Thus we have

_ av 1d d8V dV ldU d8V
“Willi ( Fm ‘Ed a"?El“?

dV 1 d (18V

+(
a-_-_._ _dz ads ‘as:

Hence, by the ordinary process of integration by parts, the

integrated terms vanishing at each limit,‘ we deduce
d dV d I d dV d

-*8Q-l.l/8Vi a(“'fighaffa'a'

d dV d
+E(q,,E_E } da'dydz.

But by a well-known theorem (proved in Pratt’s Mechanics,

and in the treatise on Attraction in Earnshaw’s Dynamics), we

have d'U d'U d'U

dx‘ + dy' + dz‘ __4”rp'

} dtdydz.

Hence the precediflg expression becomes

smalls-{tea ate

+%(a' +41rp }dxdydz. -

We have, therefore, for the condition that Q may be a maximum

or minimum, the equation,

d d d d d dV

fliffiglwffa Witch-4””

to be satisfied for all values of the variables.

" All the functions of a, y, 2 contemplated in this paper are supposed to

vanish for infinite values of the variables.
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Now it is possible to assign V so that Q may be a minimum,

and therefore there exists a function, V, which satisfies equa

tion

2. (Denwnstratzkm).—Let V be a solution of (A), and let V,

be any different function of x, y, z, that is to say, any function

such that V,— V, which we may denote by ¢, does not vanish

for all values of w, y, z. Let us consider the integral Q1,

obtained by substituting V1 for Vin the expression for Q.

Since

dV,1dU'_ dV 1d ' av ldU d4> d¢=

(“ a '1; %) -(“a_:a “("7":am”?

wehave

_ dV 1d (14> dV ldU d¢

Q'-Q+2///{ (“HE-Ia WWW-Kata .

d1? 1d d¢ ,
+(a.—d—z—;- 3590.71; }d.rd_2/d.

+ffja.‘ <€£é+$+€3dxdyda

Now, by integration by parts, we find

°° °° °° dV ldU d¢
iiltlvriaha'dwdyd”

=-1/1¢-a¢-%-%>W1
the integrated term vanishing at each limit. Applying this

and similar processes with reference to y and 2, we find an

expression for the second term of Q1, which, on account of

equation (A), vanishes. Hence

1 I I .

Q,=Q+/ffa.' (%:+Z—;+(%SI )dmdydz (c),

which shows that Ql is greater than Q. Now the only pecu

liarity of Q is, that V, from which it is obtained, satisfies the

equation (A), and therefore V1 cannot be a solution of (A).

Hence no function different from V can be a solution of (A).

The analysis given above, especially when interpreted in

various cases of abrupt variations in the value of a, and of

infinite or evanescent values, through finite spaces, possesses

very important applications in the theories of heat, electricity,

magnetism, and hydrodynamics, which may form the subject of

future communications.

EDINBARNET, Drmnmrorrsmrm, Oct. 9, 1847.



142 Theorems with reference to the Solution of [XIIL

ADDITION TO A FRENCH TRANSLATION OF THE

PRECEDING.

[From Liouville’s Journal de Mathématique, 1847.]

207. Dans les applications qui présentent le plus d'intérêt, il

faut considérer des transitions subites dans la valeur de a. Par

exemple, si a a une valeur constante dans tout l'espace ex

térieur à une surface fermée S, dans l'intérieur de laquelle a

est infinie, notre analyse convient au cas d'un corps conducteur S

soumis à l'influence d'une masse électrique donnée (fffpdwdydz),

et cette application ne présente aucune difliculté. On en tire,

en effet, les démonstrations données par Green, que la solution

analytique du problème de la distribution d'électricité dans ces

circonstances est possible et qu'elle est unique.

Dans une application à l'hydrodynamique, ou à un certain

problème de magnétisme, il faut considérer un espace dans

lequel la valeur de a soit zéro. L'interprétation du résultat ne

présente aucune difficulté, mais il est plus diificile de bien

comprendre comment la démonstration telle que je l'ai donnée

plus haut se prête à. ce cas. En essayant de l'expliquer

nettement, j'ai trouvé une démonstration directe du théorème

suivant, qui renferme le résultat dont il s'agit:

“ I1 est possible de trouver une fonction V qui s'évanouisse

pour les valeurs infiniment grandes des Variables x, y, z, et

satisfasse à l'équation

' d’V d’V d'V

WWW?“

pour tous les points extérieurs à une surface fermée S, avec

cette condition

dV_

E! _.

dans laquelle F est une fonction arbitraire des coordonnées

d'un point sur la surface S, et dn est l'élément d'une normale

extérieure à. la surface en ce point.”

Pour le démontrer, considérons l'intégrale

Wü‘îTî)’+(g)'+(«g)']dædyd,=Q

F,
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relative à l'espace extérieur à S. Parmi toutes les fonctions V

qui vérifient la condition

j/VFdS = A,

où A est une quantité quelconque, il y en a une pour laquelle

l'intégrale Q est un minimum. Une fonction V, ainsi déter

minée, satisfait aux équations

d’V d’V d'V

zany-+3? =0’

(où a est une constante), comme on s'en assure par le calcul

des variations. Suivant les Valeurs de A, 0 aura des valeurs

proportionnelles; on peut prendre A telle que 0::1. De là. on

conclut le théorème énoncé. Il serait facile d’ajouter une

démonstration, que la solution du problème de la détermination

de V sous ces conditions est unique."l

* [Provided S is a. simply continuous surface. If S be a multiply con

tinuous surface, as, for instance, the inner boundary of an endless tube (a

finite tube with its ends united, so as to constitute a circuit), we may add

to V the velocity-potential of a liquid moving through it irrotationally

(Thomson and Tait’s Natural Phibaophy, §§ 184...190 ; Thomson, Vorta

Motion, §§ 54...58) without violating the conditions prelcribed in the text

Compare above, 5 200, footnote.]



XIV. ELECTRIC IMAGES.

EXTRAIT D'UNE LETTRE DE M. WILLIAM THOMSON

A M. LIOUVILLE.

[From Liouville‘s Journal de Mathématiques, 1845.]

"CAMBRIDGE, 8 Octobre I845.

208. “. . . Pendant mon séjour à. Paris, je vous ai parlé du

principe des images pour la solution de quelques problèmes

relatifs à. la distribution de l’électricité. Il y a une foule de

problèmes auxquels je ne pensais pas alors, et où j’ai trouvé

plus tard qu'on peut l’appliquer. Par exemple, on parvient

ainsi à. exprimer algébriquement la distribution d'électricité

sur deux 1ans conducteurs ui se cou ent sous un an le
P E

3,1 , quand un point électrique est posé dans l'espace entre les

I

deux plans. (L'idée est analogue à. celle du kalet'dosctme de

Brewster.) Quand il y a trois plans qui se coupent perpen

diculairement, ou quand il y a un plan qui coupe perpendicu

1l‘

lairement deux plans qui se coupent sous un angle 7.-, on peut

également trouver la distribution sous l'influence d’un point

électrique donné. On peut aussi exprimer très-facilement la

distribution sur les parois intérieures d'un parallélipipède rect

angulaire creux, soumis à l’infiuence d’un point électrique posé

en dedans, en se servant des intégrales définies.

“ Soient C le centre d'une sphère S ; Q, Q’ deux points

pris sur un même rayon CA et sur son prolongement, de telle

manière que Caca/:0142;

et P un point quelconque sur la surface S. On a, comme on

sait, PQ, _ AQ

P62’ ‘1211? '

On peut, à cause de ce théorème, appeler Q et Q’ points re'cipro

qzæs relatifs à la sphère S, dont chacun est l’t'mage de l'autre
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dans la sphère. Suivant cette définition, l’image d'une ligne

ou surface sera le lieu des images de points pris sur cette ligne

ou surface. Ainsi, on trouve que l'image d'un plan ou d'une

sphère est toujours une sphère (le plan étant compris sous cette

désignation). Les images de deux sphères se coupent sous le

même angle, réel ou imaginaire, que les surfaces données.

“Soient Q, Q’ deux points réciproques, relativement à une

sphère S, et q, q’, s leurs images et l'image de la sphère S dans

une autre sphère donnée. Les points 9,. q’ seront réciproques

relativementà la sphère s.

209. “A l'aide de ces théorèmes, je parviens facilement

déterminer les images successives d'un point quelconque (qui

n'est pas nécessairement dans la ligne qui passe par leurs

centres), dans deux sphères qui se coupent sous un angle

donné. Quand cet angle est imaginaire, je parviens ainsi à.

exprimer la distribution de l'électricité sur les deux sphères,

sous l'influence d’un point quelconque, chargé d'électricité, au

moyen des séries de M. Poisson (qui convergent comme des

séries géométriques). Quand l'angle d'intersection est réel et

‘IT

compris dans l’expression Î , on parvient ainsi à exprimer

algébriquement la distribution d'une quantité donnée d'élec

tricité sur la surface extérieure des sphères, qui n'est soumise à

aucune influence ou qui l'est à, celle d'un point donné. S'il y

a trois surfaces sphériques qui se coupent perpendiculairement,

on exprime algébriquement, par les mêmes principes, la distri

bution sur la. surface extérieure. Je parviens aussi à déter

miner les températures stationnaires dans l'intérieur d'une

lentille dont les deux surfaces se coupent sous un angle ; la

température de chaque point de ces surfaces étant donnée.

210. “ Si l'on veut déterminer la distribution d’électricité sur

une surface donnée S, sous l'influence d'un point quelconque Q,

on réduit, par les mêmes principes, le problème à la détermina

tion de la distribution, sans aucune influence, sur l'image de S

dans une sphère décrite du centre Q, avec un rayon quelconque.

Une application générale de ce théorème conduit à une démon

stration rigoureuse du théorème de M. Gauss, qu'on peut pro

duire, au moyen d'une distribution déterminée de matière sur

K
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une surface fermée quelconque, une valeur donnée du potentiel

à. chaque point de la surface. Il y a aussi beaucoup d'applica

tions spéciales [see below, 218...220] qu’on peut faire de

ce théorème aux cas dans lesquels S est une sphère, un disque

circulaire, ou un segment d'une surface sphérique fait par un

plan. J'en ai aussi déduit une démonstration géométrique du

théorème que vous avez publié dans le numéro d'avril 1845

de votre Journal (voir page 137), dont voici l’expression analy

tique “‘ * ‘ " [see above, XI. 167, 186].

EXTRAITS DE DEUX LETTRES ADDRESSÉES À M. LIOUVILLE,

PAR M. WILLIAM THOMSON.

[From Liouville’s Journal de Mathématiques, 1847.]

"CAMBRIDGE, 26 juin 1846.

211. “ . . . Les recherches sur lesquelles je vous ai écrit, le

8 octobre 1845, m'ont conduit à. l'emploi d'un système nouveau

de coordonnées orthogonales très-commode dans quelques pro

blèmes des théories de la chaleur et de l'électricité. Les

surfaces coordonnées dans ce système sont les surfaces engen

drées par la rotation, autour d'un axe convenable, d'un système

de coordonnées curvilignes dans un plan, et les plans méridiens.

En effet, soit M un plan méridien quelconque; les coordonnées

d'un point P dans ce plan sont deux cercles qui se coupent à.

angle droit en ce point, et dont le premier passe par deux points

fixes A, A’, dans l'axe de révolution X'X, tandis que le second

est la courbe orthogonale de la série entière des cercles qui

passent par les points A, A’. On démontre facilement que

cette courbe est un cercle qui passe par deux points imaginaires

B, B’, dans la droite Y’OY perpendiculaire à. X’OX, à des dis

tances aux deux côtés de O dont chacune est égale à (la/t1,

a étant la valeur des distances égales A’0, 0A. En efl'et, la

première série est exprimée par l'équation

(1) æ’+y’—2ug=a’,

u étant un paramètre variable, et l'on en déduit

(2) x’+y’—2væ=—a’,

pour l'équation de la courbe orthogonale.
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212. “ Posons

u=acot0, v=a,\/Î1.cotn/«;

0 sera l'angle que la tangente du cercle (1), au point A ou A’,

fait avec l'axe X’X, et 1p- sera l'angle imaginaire que la tangente

du cercle (2), au point B ou B’, fait avec Y’ Y. Pour avoir la

série entière des cercles (1), il faudrait donner à u toutes les

valeurs réelles de- no à 00 , ou à ütoutes les valeurs de 0 à. r;

et, pour la série (2), il faudrait donner à. v toutes les valeurs de

a à. 00 , et de — cc à- a. On peut considérer un point P comme

déterminé sans ambiguïté par les coordonnées 0, 1]: (en prenant

0 + 1r au lieu de 0 pour l'autre point d'intersection des mêmes

cercles). Les équations de transformation, entre les coordon

nées (w, y) et (0, 1p) d'un même point P, sont

(3) æ’+y’—2aycot0=a’,

(4) z‘ +y’— 2ax cot 5l/J:i = —a'.

On en déduit

_ _ sin \h/tl

m‘- “comb-c050’

_ mÿsinô
‘Tl-t: cosyb-cosfl’

x,+y,=a, ÆyH-cos 0

cos ÿ-cos 0 ’

Dans les applications physiques, il s'agit d’exprimer la distance

A, entre deux points P, P’ en fonction des nouvelles coordon

nées. On trouve facilement, à l’aide des formules données

ci-dessus, dans le cas de P et P’ dans un même plan méridien M,

cos(¢—¢')—cos(6—0’)

(cos Ill-cos 0) (cos ¢’—cos 0’) .

Pour le trois coordonnées d'un point dans l'espace, je prends 0,

1],- qui fixent sa position dans un plan méridien, et l’angle ¢

que ce plan fait avec un plan méridien fixe. Je trouve main

tenant, pour la distance entre deux points quelconques P, P’,

, cos (¢- 1P’) — [cos 600s 0'+sin 0sin 0'005 (<I>— ¢’)]
a (cos yb- cos 0) (cos yV- cos 0') '

Pour éviter l’emploi de quantités imaginaires, je pose

A’ =2a’

A‘=2

1 , l

2cos¢=r+7 , 2cosyV=r +7; :
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d’où l'on déduit

1‘

_I2cos<¢-¢'>=,

et l'expression précédente se réduit à.

A, =a, r’ —2rr’[cos 000s 0'+sin Osin 0'cos(4>—4>') [+r" _

(r’—2rcos0+1) (r"—2r’cos0'+1)

A l'aide cette expression, on trouve

I

r
+77

. d (r‘v)

d'(s‘1vr) 1 d 8m 0 d6 + 1 d'(s"1v)

dr’ sin—0 d0 sin‘ 0 d4>‘
7‘ :0,

où

s=(r’—2rcos0+ 1)},

pour l'équation du mouvement uniforme de la chaleur exprimée

par les coordonnées r, 0, 4:.

“ Les surfaces représentées par l’équation

r : constante

sont des sphères engendrées par la révolution d'une série de

cercles autour de la droite qui contient leurs centres. Sup

posons que l'espace entre deux de ces sphères (quand chaque

sphére est en dehors de l'autre, cet espace sera l'espace infini en

dehors des deux sphéres), dont les équations sont

1‘=a, 1‘=a.“

soit rempli d'un milieu solide homogène, que les températures

de tous les points de chaque surface soient données, et qu'il

s'agisse de déterminer la température stationnaire d'un point

quelconque dans le solide; on résoudra ce problème avec

beaucoup de facilité au moyen de l'analyse de Laplace, en

employant les coordonnées que j'ai indiquées. Dans le cas

particulier d'une température constante pour chaque sphère, on

parvient, après quelques réductions, à, trouver la solution que

Poisson a donnée pour le problème correspondant de deux

sphères électrisées.

213. “Il y a un système nouveau et très-remarquable de

coordonnées, qu'on trouve en posant

rcos0=f, rsin0cos4>=m rsin0sin¢=§,

r, 0, ¢ appartenant au système expliqué ci-dessus. Dans ce

système (E, a], g), les surfaces coordonnées sont des sphères

orthogonales qui passent par un point fixe, et qui touchent, par
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conséquent, trois plans orthogonaux menés par ce point. Je

suis parvenu à considérer ces systèmes de coordonnées en

cherchant les images des séries de surfaces des systèmes (polaire

et rectangulaire) ordinaires, dans des sphères convenablement

disposées.

“ L’application du système (E, 17, L’) aux problèmes de physique,

pour le cas de deux systèmes qui se touchent l'un l'autre, en

donne les solutions avec beaucoup de facilité ; mais il est plus

simple (le faire directement la recherche de ces coordonnées,

que de les déduire du système (r, 6, ¢). En effet, soient

:c
Œ2+yl+zl_ 6:0,

æ’+y’+z’—%=0,

æ’+y’+z‘—%=o,

les équations de trois sphères qui se coupent à un point P

(elles se coupent aussi à l'origine 0). Je prends 5,17, {pour

5-1, 1, i
a a a

dans ces équations, au lieu de E, 1,, 1;. pour retrouver les coordon

nées f, n, {indiquées ci-dessus). De ces équations on tire

’”'+”’+"=Fâî+—c=’

œ=———E , y: -—————1’ 1 z=~ ,

§'+’7'+{’ Ë+7I’+C’ Ê’+'7’+C’

2 I a I _ ')1'+((_(')a

(‘z-æ’) +(z_z) "" (gs+nz+gz)(g'z+n’z+ç'a) ’

les coordonnées de ce point (il faudrait substituer

et l'équation

d’v d’v d’v

dî'i'a?+E=0

devient, pour les nouvelles coordonnées,

d’(p“v) d’(p"v) d’(p“v)_

où

p=(ê‘+n’+<’)*

Pour exemple de l'emploi qu'on peut faire de ce système de

coordonnées, supposons que la température d’un point (a, n, g)

est une fonction donnée F (1;, Ç) des coordonnées 1;, L’ de sa



150 Electric Images. [XIV.'

position sur la sphère a, et que la température d'un point

(a1, 1;, Ç) est F1 (1;, g), et qu'il s’agit de déterminer la. température

permanente d’un point quelconque P (E, n, g) dans l’espace

entre les‘ sphères a, a1 (c'est-à-dire l'espace entier pour lequel f

a une valeur intermédiaire à a et al), que nous supposerons

rempli d'un solide homogène. Suivant la. méthode de Fourier,

en observant que les valeurs

cos mn. cosnç. a“,

cos m1) .sînnf. e”,

substituées pour p‘lv, sont des solutions particulières de l’équa

tien (a), pourvu que b”: m2 + n’, je trouve, pour la solution du

problème proposé,

_p °° °° °° °° , cosm(17—n')cosn((—(’)

F(_'1’_,§')_M _fl_ _ W
(b) x («'Ên’îflùflw ’ E M‘ )1 ,

(îFr%%Ë”T)1[€”““)—e-W-«>]

où 5 est la base des logarithmes népériens, et

h=(m2+ns)i.

214. “ Comme exemple de l'usage de cette formule, je ferai

F(11,()=F1(m ()=V,

Vétant une constante. Pour la réduction de l’expression, dans

ce cas, j’observe que

°° °° cosmpcosnq_ €'(”"+’”’)"\‘
(c) Lifpdq<A+p'+q*>*‘2”_<m’+n">*

d'où l'on déduit

en un _ I _ _hd

et
on ce — I _ ha‘

‘LEI-(“Mur cosmgT1ln_l%;g€_n=2n-c°smn.c0sn{.%

le signe supérieur ou inférieur étant pris, dans la seconde

expression, selon que a1 est positif ou négatif (je prends (1

toujours positif et > a1), Ces réductions faites, l'expression

(b) se trouve réduite à.
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E — (m2+ 1m95

(m2 + n’)?

V ou en

(I) =Tff f dmdn cos m1] . cos n(‘.

et w

v=;—,1€/_0/_Qdmdnc0smncosn§

(E-ÏIGI_.EÏNII)EMÊ‘G)+(E—M_ Ehc)E-h(€—a.)

X— h[Eh(a—a|)_e—h’\n—m}-]

(IL)

suivant les deux cas. L’équation (I) se réduit à.

17: V,

à cause de la valeur qu’on trouve pour l'intégrale définie qui y

est contenue.‘

215. “ L'expression pour 'v, dans le second cas, se trouve

réduite en série convergente, si l'on substitue pour

l

éÏKü-G|)—g-MÆ-Gx)

E—h(a.-n|)[1+€-2h(c-u,) + E—4h(u.—a.,) + . I .1,

et puis, pour chaque terme, sa valeur, suivant la. formule citée

dans le cas (I). On trouve ainsi

1 1 l

la série

[(2a-E)’+n’+5’l*+[(1+2n-€)’:H’+Ç’]‘+ [(2y+2.—e>'+n1+ml+ " "

1 l 1

'((y-e)'+»=+a1* [(’1-£)'+1r‘+§']*_[(3v—£)'+1|’+9]‘
v=Vp 1 + l + 1 + I

+[<e—2¢.>’+1#+m* [(y+s—2a.)'+n'+m* [(21+€-2an)’+1r’+9)‘ "

l l 1

" [(7+€)’+11*+ê’]‘-l(27+f)’+n’+s”l‘—l(3y+ê)'+n’+ë’l’ " ' ' ' ' ' "

où y=2(a—a,).

* Les intégrales définies (c) et (I) sont des cas particuliers de deux

intégrales multiples dont j’ai trouvé les valeurs en cherchant une démonstra

tion de la formule (5), tome X de votre Journal, page 141. J'ai trouvé,

[above, § 182, formula (Vu, en effet, .

"-1

fmfw dp,dp,...dhnc0sm1p,cosm,p,..._(n- l)1r ' cfimi’finaunlul

_ _ "i — n-lîl (mÎ+mä+ m);

m P‘ (p{+p§+...+p§+u’) a r( )

2

et

°° °° dmqdmg...cosmlml cos7n2x=...c—(mi’+7'h’+--)l“

f-œf-œ (mi'l'flâulb

"Ill n+1

2"’ T

n-l _

(n-l)(râ+:tâ+ +x..+u”) a

d'où l'on déduit immédiatement les intégrales citées.
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De cette expression on déduit facilement la distribution d'élec

tricité sur deux sphères qui se touchent.

216. “Le cas (I) correspond à. deux sphères dont l’une, (a),

est en dedans de l'autre, (a1). Dans le cas (II), le solide

considéré remplit l'espace entier en dehors des deux sphères,

et la température est zéro à une distance infinie.

217. “ Il y a une interprétation pour le nouveau système de

coordonnées (1', 6) dans un plan, qui est très-simple. En effet,

soient A, A’ deux points fixes, et P un point quelconque dont

il s'agit d’exprimer la position. Cela peut se faire au moyen

de l'angle APA', que j'appelle 0, et de la raison 1' de AP à AP’.

Quand 6 a une valeur constante, le lieu de P est un cercle qui

passe par les points A, A’; et quand 7' a une valeur constante,

le lieu de P est un cercle, dont le centre est dans le prolonge

ment de AA’, d’un côté ou de l'autre, suivant que cette valeur

est plus grande ou plus petite que l'unité, et qui a la propriété

de couper à angle droit tout cercle décrit par les points A, A’.

“ Posons maintenant, pour expliquer le second système,

rcos0=f, rsin0=n.

Le lieu de P, quand {3 a une valeur constante, sera tel que, si l'on

mène, de A, AD perpendiculaire à A’P, la raison DP+AP

sera constante, et l'on trouve ainsi que ce lieu est un cercle

qui touche en A’ une droite perpendiculaire à (1'11; et l'on

trouve semblablement que le lieu de P, quand 1; a une valeur

constante, est un cercle qui touche A’A au point A'.”

“ KNOCK, le 16 septembre 1846.

218. “ . . . Depuis que je vous ai écrit la dernière fois, j'ai

considéré le problème de la,distribution d'électricité sur le

segment d'une couche sphérique infiniment mince, fait par

un plan, ce corps étant composé de matière conductrice, et

j'ai trouvé, en expression finie, la solution complète, en su’p

posant que le corps possède une quantité donnée d'électricité

et que la distribution se fait sous l'influence de masses élec

triques données. J'avais l'intention de rédiger de suite pour vous

un petit Mémoire sur ces recherches, mais j'ai rencontré quelque

difiiculté dans l'exposition de la méthode suivie, et comme je

suis à présent très-occupé (les cours à Glasgow commencent

le 1“r novembre, et il me faudra beaucoup de préparation), il
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me faut différer cette tâche!‘ Je me bornerai pour le moment

aux énoncés de quelques-uns des résultats.

219. “ Soit S le corps conducteur sur lequel il s'agit de déter

miner la distribution. Pour premier cas, soit Q un point en

dehors de S, sur la même surface sphérique dont S fait partie,

et supposons que S soit mis en communication avec le sol par

un fil conducteur infiniment mince (ainsi le potentiel dans S

sera toujours zéro, quels que soient les corps électrisés qui en

soient voisins). Il s'agit de déterminer la distribution d'élec

tricité sur S sous l'influence d'une quantité donnée d'électricité

négative Q, concentrée au point Q. Je démontre que l'intensité

d'électricité a la même valeur aux points voisins des deux côtés

de la couche S, et, en dénotent par a- cette valeur, pour un

point quelconque P de S, je trouve

_ Q (ss_a:)}

‘.fi ' (a:_r:)§_A:’

où a, s et r sont les distances du bord de S, du point Q et du

point P, à un point C’ de S qu'on peut appeler son centre, et A

est la distance entre Q et P. Il est remarquable que cette

expression ne contient pas le rayon de la sphère dont S fait

partie. En supposant que ce rayon soit infini, on a l'expression

pour la distribution d'électricité sur un disque circulaire, sous

l'influence d'un point dans son plan, qui est, en effet, la même

que celle que Green a donnée pour ce cas.

220. “ Pour trouver la distribution dans le cas de S isolé et

électrisé, je remarque que, si la quantité d'électricité sur S est

telle que le potentiel qui en résulte a une valeur donnée V, la

distribution sur S sera la même que celle qui aurait lieu si S

était situé dans l'intérieur d'une couche électrique qui produit

le potentiel — V, S étant dans l'état d'un corps qui n'est pas

isolé. On peut prendre pour cette couche une sphère con

centrique avec celle dont S fait partie; en supposant l'excès du

rayon de la première sphère sur le rayon de la seconde infini

ment petit, on réduit le problème à la détermination de la

distribution sur S, sous l'influence d'une distribution donnée

d'électricité sur la sphère dont S fait partie, ce corps S n'étant

(7'

* It has, in fact, been delayed till December 1868 and January 1869. See

xv. below.
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pas isolé. Ainsi, par intégration, je déduis du résultat donné

ci-dessus les expressions

_ V f'--a2 } fi-a' V
0-2”? (a,_r,) —arctang(a1_rz)]+Wv

V fi-m à f’—a’ b

au mm]
(oùf est le diamétre de la sphère dont S fait partie), pour les

intensités sur les deux côtés, convexe et concave, de S en un

point P.”

I

O‘ :

NOTE AU SUJET DE L’ARTICLE PRÉCÉDENT;

PAR J. LIOUVILLE.

221.’ La Lettre de M. Thomson m’a suggéré quelques re

marques que je crois devoir présenter ici, parce qu’elles montre

ront, ce me semble, plus clairement encore toute l’importance

du travail dont le jeune géomètre de Glasgow nous a donné un

extrait rapide.

Nous résoudrons d’abord le problème suivant :

Problème.-——Soient æ, y,..., z et E, 1),..., C deux groupes con

tenant un nombre égal ou inégal de variables, les premières

w, y,..., z indépendantes, les autres E, q,..., {fonctions des pre

mières, en sorte que

g=f(æ7yr"!z): n=F(æ)3/7"'Jz)1"', ç=4’(œ1yr")z);

soit encore p=1/z(æ, y,...,z).

Désignons d'ailleurs par E’, 'q’,..., Ç’, p’ ce que deviennent les

fonctions f, qy,..., g, p, quand on y remplace x, y,..., z par

æ’, y',..., z’. Cela posé, on demande de déterminer les fonctions

f, F,..., 4), 11:, de manière à avoir généralement

(€'—€)’+(’1'—n)’+---+(§'-f) — PW,

Pour fixer les idées, nous nous bornerons au cas de trois

variables æ, y, z, et de trois variables E, n, C; et la question sera

de vérifier l’équation

‘ [The original numbering of M. Liouville's sections has been altered by

the addition of 220, for more convenient reference in the present volume.]

_<x'-x>*+<1/—y>=+...+<#-z>=_
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I I I I l

(1) (Ë-E)’+(n'-n)’+(C'-O’=(ÂZM%%Ï)—+M—_À

La même méthode réussirait pour deux groupes :22, y,..., z et

E, 1;,..., Ç quelconques. Il n'y aurait de changement que dans

quelques détails, et seulement si le nombre des variables était

différent dans les deux groupes. Au surplus, nous n'aurons

besoin plus tard que du cas où ce nombre est le même de part

et d'autre, et ne surpasse pas trois, ce qui nous permettra d’in

terpréter géométriquement les résultats de notre analyse.

Donnons à. w’, 3/, 2' des valeurs particulières mo, yo, 20 à.

volonté, et représentons par 170, f0, 170, g, les Valeurs correspon

dantes de p’, E’, 17', ç’. L'équation (1) nous donnera

1.: (æ—æo)'+(y—!/o)'+(z—zo)’ _

P H‘E—Z——'—:( — o>'+<n—no>'+<c—ço>’]'

Mais, pour plus de simplicité, nous mettrons partout (1+5,

17+170, (+210, æ+æ0, y+yo, z+z0, au lieu (18517,15 æ, '1, 2, et

de même 5' + E0, :8’ + .730, etc., au lieu de E’, x’, etc., ce qui ne

change rien aux différences {- E, :v'—œ, etc. La valeur de

p’ deviendra ’_ æs+yu+zs

1” ’p:(e'+n*+<'>

et l'équation (l) subsistera telle qu’elle est

Enfaisant

au‘ +212 +z' =ræ 5' +71‘ +c' =p',

æ”+y"+z”=r", E"+17"+Ç"=p",

on aura P’=~ZLI, p”: 7:2,,’

pop POP

et en portant ces valeurs dans l'équation (l), on trouvera aisé

ment 1 1 88' ‘on’ C!’
FJ’FTL'QFF‘L? WW’)

1 1 :c ' y ' z z'

:1’: ;î+7î‘2(: Ëfiî%+F

Maintenant donnons à. x’, y’, z’ quatre systèmes de valeurs

connues à volonté, à chacun desquels répondront des valeurs

déterminées de 'r', E’, 1)’, Ç’, p’, et nous aurons ainsi quatre

équations du premier degré qui fourniront les valeurs de

ênÿl
F 7 F i F; ’ F2 )

considérées comme'quatre inconnues, en fonction linéaire de
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a: y z 1

_" _'7 _7 _'

r’ r’ r‘ r’

En désignant donc par A, B, C, D des constantes, et par P, Q,

R, S des polynômes du premier degré en as, 3/, z, ces valeurs

seront de 1a forme

€_ P ’7_ Q {_ Ë _1_ S
F‘—B+r21 -;,—c+r’1 p’—1)+;

En faisant la somme des carrés des trois premières, on trouve

une valeur de l, qui doit être égale à. celle que donne la

P

quatrième équation. Ainsi les deux fonctions

s
0+;

et Az+B=+cz+ r.

doivent être égales. Mais la première devient une fonction

entière quand on la. multiplie par 1'’. Il faut donc que la

seconde le devienne aussi, et que, par conséquent, P2 + Q’ + R’

soit également divisible par r’. Le quotient ne peut évidem—

ment être qu’une constante, puisque le numérateur et le dé

nominateur sont du même degré. Soit m2 cette constante, et

Ps+ Q2+R!=m!r!=ml(æl +3’: +21).

P, Q, R étant des polynômes du premier degré, je fais

P=m(aæ +by +cz +9),

Q=m(a’x+b'y +c'z+g’),

R=m(a”œ+b”y+c”z+g”),

2(AP+BQ+ 0R) P'+Q’+R'

r!

et j'en conclus par la comparaison des deux membres, d'une

part, a’+a"+a"’=1, ab+a’b’+a”b"=0,

b’+ b"+ b” :1, ac+a'c'+a”c”=0,

c’ + c" + c"’= 1, bc+ b'c'+ b"c" =0,

équations d’où résultent, comme on sait, les équations inverses

a’ +6’ +c’ :1, au’ +bb' +cc' =0,

a”+b" +c"=1, aa" +61)” +cc' =0,

a” + 12"’ +c"2: 1, a'a"+b'b"+c'c"=0 ;

et, d’autre part,

a9+a'9+a”y”=0, cg+c’g'+c"g”=0,

bg+b’g’+b”9”=0, 9’+9” +9”a =0
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Si nous admettions que g, g’, g" sont des constantes réelles,

l’équation g’ + g" + g"2 = 0 nous donnerait g = O, g' = 0, g": 0.

Mais, dans tous les cas, on arrivera au même résultat à. l’aide

des trois précédentes, en ayant égard aux équations de con

dition entre a, b, 0, etc. Pour prouver, par exemple, que g: 0,

il suffira d'ajouter entre elles les trois équations dont nous

parlons après les avoir multipliées par les facteurs respectifs

a, b, o. Il nous reste donc

P=m(aœ+by+cz),

Q=m(a'œ+b'y+c’z),

R= m(a".1:+ b"y+ c"z),

a, b, c, etc, satisfaisant aux équations de condition ci-dessus, les

mêmes qu'on rencontre dans la transformation de coordonnées

rectangulaires en d'autres rectangulaires aussi. Et comme les

équations

Ë=A g)l ' P * Q ’ R '

#(“Fl + (13+?) + (“fil

on en conclut les formules suivantes:

donnent

(A+2>‘+ <B+%>'+ (0%)‘
Mais il faut à présent rétablir E—Eo, 17-770, (-5 au lieu de

E, 1;, L’, et :c-æm y-ym 2-20 au lieu de 2:, y, 2. Ce change

ment fait, on aura les formules les plus générales qui puissent

satisfaire à. l'équation (l). Nous avons donc le théorème

suivant :
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Les formules générales qui peuvent satisfaire à l’équation (l)

s’obtiendront en posant d'abord

3:“ (x"œo)+b (Sa/‘310+’: (1-20);

v=a'(x-zo>+b'<y—yo> +c'<z—zo>,

haw-r0)+b"<y-yo)+c"<z-zo).

les coefficients a, 1), etc., vérifiant les équations de condition

a’+a"+a”’=1, ab+a'b'+a”b”=0,

b’+b"+b"’=l, ac+a'c'+a”c”=0,

c2+ c'2+c"’=1, bc+b’c’+b”c”=0,

puis prenant

mx u=B+ mY 7 w=C+ mz

"=A+' x“+ï*+z’ - W,
x’+v"+z2 ’

et enfin

u v -————————w

ê_êo=u’+vz+Î’ 11-170: !-‘—z+v2+w2’ {-'(0=uz+v2+w|7

Réciproquement, on peut démontrer que l'équation (l) est

satisfaite de cette manière, et trouver la valeur de p qui con

vient.

D’abord, des trois dernières formules on conclut facilement

'_ a '_ 2 ’_ a_(ul_u)'+(vl—v)’+(wI'—w). .

(E -" (uv.'+vi+wî)(ul,+vlj+wl.) -

les trois précédentes donnent de même

I g a ' 2_:(I'_),(I_)'(I_..

(u —u) +(v’—v) +(w —w) —mW,

enfin, à cause des équations de condition entre a, 11, etc, on

trouve

(av-x)’+(v'—v)=+(z'-z)*=(œ'—œ)*+(y’—y)2+(z'—z>æ

Il vient donc, en effet,

(s'—e>'+(n'-n>*+<c'-o*=(—*æ"")’+(y'“w'W“?,

#10"

la valeur de 122 étant

p’=

valeur qu'on pourra aisément exprimer en as, y, 2, en observant

que le produit (1:2 + Y2 + z’) (u2 + v’ + w’) est égal à

(A’+B’+C”)(x’+1"+z’)+2Amx+2BmY+2C’mz+m',

(x! +Y!+ z!) (u! +vl+wi)’

m
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et que x, Y, z sont connus en fonction de x, y, z. Ia valeur

qu'on trouvera ainsi peut se mettre sous la forme

mP’=(A’+B“+Û’)[(æ-æx)’+(.'/—.'/|)’+(zv-zx)’]a

x1, 3/‘, z1 étant des constantes dont voici les valeurs :

æ; =xo—m—'(îîigîî——cqan) I

mgAb +Bb’+ Cb")

%=%‘ m+a+œ ’

z _ z _m(Ac+ Bc'+ Cc") _

l- ° 111+ B: + C:

Si donc nous regardons plus tard 2:, y, z comme étant les co

ordonnées rectangulaires d’un point quelconque, on voit que la

quantité p sera proportionnelle à. la distance de ce point (au, y, z)

à un point fixe (921, y], 21). Il est aisé aussi de s’assurer que

ml ml mi

P P P _

dx' + dy“ + dz‘ _0'

222. Pour avoir explicitement f, 97, Ç en ac, 3/, z, il suffira de

remplacer u, v, w, x, Y, 2 par leurs valeurs. La première sub

stitution fournit

__ A(x’+Y’+z’)+mx
£_£°_(A'+B'+C“) (X'+Y’+z‘)+2Amx+2BmY+2Cmz+m‘u

Le dénominateur est précisément la valeur de mp’ dont on

vient de donner l’expression en æ, y, z, savoir,

mp’=(A’+A’+0’)[(æ-æ1)’+(y-y.)’+(z-zz)’]

Il ne reste donc plus qu’à. chercher le numérateur. Le calcul

deviendra d’ailleurs fort simple si l'on retranche des deux

membres la quantité

A

m’

car alors le second membre pourra se réduire à une fraction

ayant pour numérateur un polynôme du premier degré en

X, Y, z, et, par conséquent aussi, en :z:, y, 2. En désignant donc

par X un tel polynôme, et posant, pour abréger,

A

§o+m=§°,

on pourra écrire £—-£°-—1
X

_p.
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Y
et de même n—no=ÿ, (_(o=§,

97°, z;° étant des constantes, et Y, Z des fonctions linéaires de

2:, y, z. Les polynômes X, Y, Z s’obtiendraient sans peine par

ce qu'on vient de dire; mais on les trouve sous une forme plus

commode en opérant comme il suit. Il est aisé de voir qu’en

attribuant une valeur infinie à une ou plusieurs des quantités

æ, y, z, ou, si l’on veut, en faisant

æ’ +y’ +z’ =oo ,

2 S 1

on a. 5:50, 17:11‘), {:(O,Si donc on introduit cette hypothèse de ac‘2 + y’ + z”: co dans

l’équation générale

(s'—s)=+<n'—n>'+ç'—o2=(—————,——“"æ>'+(y’*y>’+<"—z>’ ,

p’p ’

il viendra

' o 1 ’_ '_ o 2_ m

(s —e> +(n n°)’+(€ c > —(A,+3,m1,,’

d'où, en effaçant les accents,

1 __ 0 i _ 0 9—_ÿ___m .

Mais, d'un autre côté,

‘5'5°>’+<”-v°>'+<<—<°>==ÆLŒ;
Pi

donc

_ ml"
Xs+ Y2+Z’_A2+B2+02,

c’est-à-dire

X’+P+Z’=(m—-œ1)’+(‘y—y,)’+(z—z1)’.

De là, par un calcul tout semblable à celui qu'on a effectué

dans le numéro précédent pour l’équation

I”+Q’+R'=m°(:c’+y’+z’),

on conclut qu’en représentant par a, B, 7, a’, etc, des constantes

assujetties aux équations de condition

a.’ + a."+ 41"’ :1, a,3+a.',[3'+ a.",8"=0,

,B*+B"+,B"==1, a7+a.'y'+a"-y"=O,

7’+ 7”+ 7”‘=1, fl*/+B'7'+B"7"=0,

du même genre que celles entre a, 11, etc., on devra prendre
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X=a' (‘r-3047B (.V_J/1)+7 (2-21)’

Y=""("'3_Œ1)+I8/(.V—!/1)+743-31);

Z=a"(æ—x,)+/5‘"(y—y,)+y"(z—z1).

Et, réciproquement, il est facile de vérifier qu'en adoptant ces

valeurs de X, Y, Z, les formules

_ nX _ nY _ nZ

5’5°—X=+Y:+z=’ ”"’°‘X2’4ÏYŒZ2’ “Ç°‘X=+‘Yf+Zä

qui résultent de notre analyse en faisant, pour abréger,

m _ , _X’+ Y“ +Z2
A’+B‘+C‘_n’ ‘1 °ù p""än—’

entraîneront l'équation demandée (1) dont la solution générale

est exprimée ainsi d'une manière nouvelle et plus simple. En

effet, on trouve d'abord

(E’—£)'+('l’—'1)’+({'—{)’="2

puis

<X'—X>=+<Y'— Y)*+<z’- '=<æ'—æ>=+<y'—y>*+(z'—z)*,

à cause des équations de condition entre a, B, etc. Et de là.

on tire
' 2 ’_ 1 ’_ a_ ‘H I ,_ I'- H

(5-2) +<n n) +<ç o

7

[jX'-X)’+(Y'r Y)7’+<Z'-Z)Î]

(X’+ Y”+Z*)(X’2+ Y”+Z’“) ’

c’est-à-dire l'équation (1), en prenant

p2=X’+ Y’'lï'vzn=(æ_'xl)æ'l'(y_.7/I)24‘(z—z1)2 _

n n

223. On pourrait former inversement les valeurs de av, y, z

en E, 17, Ç; mais il est clair sans calcul, et à priori, que ces

valeurs doivent s'exprimer par des formules du même genre

que celles qui donnent E, 1;, Ç en 3:, y, 2. En effet, p étant une

fonction de x, y, z, on peut concevoir cette quantité comme

fonction de f, 1), Ç Soit donc

1 , 1

17:?’ p=-;,,

w étant une certaine fonction de f, 1;, 2;, et ta" la même fonction

de f, 1)’, ÿ’. L'équation (1) se changera dans l'équation nouvelle

(x’_æ)z+(y'_y)n+(z'_z)s=(E’—ê)a+(n, "ÏIV‘HC“ Ô"

d'une forme toute semblable à. l’équation (1) elle-même, et qui,

' L
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par conséquent, donnera. w, 3/, z en E, 9;, Ç de la même manière

que l'équation (1) a donné E, a], Ç en (1:, y, z.

224. On voit que, par l'échange des lettres m, 3/, z et E, 17, Ç

les unes dans les autres, une solution particulière de l’équation

(l), je veux dire une solution dans laquelle les constantes

auraient des valeurs particulières, en donnera une autre, la

plupart du temps différente, quoique rentrant toujours, bien

entendu, dans le type général indiqué tout à l'heure. Il est

aisé aussi de voir que deux solutions données en fournissent

une troisième. Supposons, en effet, qu'en prenant pour E, 17, Ç, g

des fonctions de U, V, W, on ait

(£'_€>a + (,7’_n)a +(ç'_ O2 +( V gît/9H’ ( ,

et que, de même, en prenant pour U, V, W, p, des fonctions de

av, 3/, z, on ait

(U’—U)’+(V’— V>*+(W*_W)==(——————""”)‘+(;Ç;Æ)’+("")',

il est clair qu'on pourra exprimer aussi q, E, 17, Çen x, y, z, et

qu’il viendra

'_ a r- a I
(e E) +(n 1)) +<c o _ p,q,_p,,q,, ,

d'où une solution nouvelle de notre problème.

On peut dire, en d’autres termes, que diverses transformations

qui résolvent ce problème étant opérées successivement, la

transformation unique composée de cet ensemble le résout

aussi. Et par la manière dont nous avons vérifié ci-dessus

notre solution générale, il est manifeste que cette solution n’est

que le résultat d'une suite de solutions particulières ainsi

ajoutées entre elles pour ainsi dire.

225. Il y a une solution particulière de l’équation (1) que

nous devons étudier spécialement parce qu’elle constitue, à pro

prement parler, l'élément essentiel de nos formules générales,

et qu’elle nous servira d’ailleurs à en bien montrer le sens

géométrique. Elle a été employée par M. Thomson, et consiste

à poser

E=__’L_, .,,__._”3_’_ , ç=__"z_,

æ2+y2+z2 œï+yl+zî æî+yi+zfl

d'où résulte, en effet, l’équation ) (

, a , i , ,_ æ'—.1: 2+ y'— ’+ z'—z ‘

(8 "5) ‘H’? —77) +(( "Ô -""((ÎmWâ)_Î/S'W% ’

l
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c’est-à-dire l’équation (l), en prenant

P,=r’+.:/1’+z’.

On a alors e*+n'+ç’=fi%y

et, par conséquent,

ne m; n{

km’valeurs de même composition en f, q), C que les précédentes en

ac, 3/, z.

On peut interpréter géométriquement ces formules en re

gardant x, y, 2, par exemple, comme des coordonnées rectangu

laires, et f, 1;, {comme des paramètres. Les surfaces (17), (C),

pour lesquelles un de ces paramètres conserve même valeur,

sont des sphères qui se coupent deux à. deux orthogonalement,

et par l'intersection de trois desquelles M. Thomson détermine

la position de chaque point (æ, y, 2) ou (E, 17, Sous ce point

de vue, E, 17, L‘ sont des coordonnées curvilignes qui se rapport

ent à la même figure que les coordonnées rectilignes æ, 3/, z.

Mais il est plus commode, je crois, d'introduire dans nos re

cherches une de ces transmutations de figures si familières aux

geomètres, et qui ont tant contribué aux progrès de la science

dans ces derniers temps. La transformation dont il s’agit est

bien connue, du reste, et des plus simples; c’est celle que

M. Thomson lui-même a jadis employée sous le nom de prin

cipe des images.’ Considérez m, 3/, z comme les coordonnées

d’un point quelconque m d’une figure rapportée à, trois axes

rectangulaires Ow, 0g], 02, E, n, g comme celles d’un point ,1;

d’une autre figure rapportée à. trois axes OE, 01;, OÇ, rectangu

laires aussi, et auxquels nous donnons la même origine 0, et

respectivement les même directions, une de ces figures dérivant

de l’autre, et le point ‘u, en particulier, correspondant au point

m, en vertu des relations par lesquelles E, a], Çs’expriment en

x, y, z, ou m, y, 2 en E, 1;, C. Il est évident que les deux points

correspondants m, [1. sont en ligne droite avec l’origine O, et

que le produit 0m.Op, des rayons vecteurs Om, Op, est constant

' Tome x. de ce Journal, page 364 [above, à 207].
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et = n. Une des figures se déduit donc de l'autre en prenant

sur chacun des rayons vecteurs menés du point O à un point

quelconque de la première figure d’autres rayons vecteurs en

raison inverse des premiers; les extrémités de ces nouveaux

rayons vecteurs déterminent la seconde figure. Nous donne

rons a cette transformation le nom de transformation par rayons

vecteurs réciproques, relativement à. l’origine O. Si, pour un

point m, on a Om: A/Ë, on aura aussi Op: ~/_n, et les points

m et p. qui se correspondent ainsi dans les deux figures coïn

cideront. En disposant de n, on peut faire en sorte qu'un point

donné m reste fixe dans la transformation; il sufiit de prendre

n: Ofiz, et alors tous les points situés sur la sphère dont O est

le centre et Om le rayon, resteront fixes aussi, mais tous les

autres seront déplacés.

226. A l’aide de cette transformation par rayons vecteurs re’

ciproq-ues, on déduira d’une figure donnée une infinité d’autres

figures, soit en changeant l’origine O d’o1‘1 partent les rayons

vecteurs, soit en prenant diverses valeurs de n avec une même

origine 0, ce qui ne donne, au surplus, lieu qu’à des figures

transformées toutes semblables entre elles, du moins tant que n

garde le même signe; car les figures qui répondent à. deux

valeurs de n égales et de signes contraires sont symétriques.

On peut d’ailleurs effectuer, l’une après l'autre, des transforma

tions relatives à, des origines différentes. Mais je dis que nos

formules générales de n° 222 peuvent toujours s’interpréter à.

l'aide d'une seule transformation de cette espèce, en sorte qu'on

n’obtiendrait rien de vraiment nouveau en ajoutant d'autres

transformations à celle-là.

En effet, dans le cas le plus général, nous pouvons encore

considérer w, 3/, z et E, a), Ç comme les coordonnées de deux points

m, p, appartenant à deux figures différentes et rapportés à deux

systèmes d’axes rectangulaires des m, y, z et E, 17, Ç Et voici

comment s’opère la transformation de l’une des figures dans

l’autre.

D’abord on passe de 93, y, z, à X, Y, Z par les formules

X=°' (x_m0)+r8 (.'/_.%)+'Y (2-30);

y:“Xx-1'0) +pI(.'/_1/o) +7’(z_z0)a

Z=«Tac-100+?’(y-yo)+7”(=-zo),
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Or, à cause des équations de condition entre a, B, etc., ce

passage n'est qu'un changement de coordonnées rectangulaires

en d'autres coordonnées rectangulaires, qui n'altère en rien la

première figure à laquelle il est appliqué ; on peut le supposer

opéré d'avance, et confondre dès lors X, Y, Z avec :8, y, 2.

De là nous irons aux formules

5 E0... "X _ <>__—"Y___ f (o- V"ZA_

" ‘X2+'Y*+Z2"’ "‘x=+r=+zr’ _ “pH/1+2”

et nous aurons ainsi une transformation de X, Y, Z en E-Em

17-110, Ç-‘Ç", que nous regarderons comme des coordonnées

rectangulaires prises par rapport aux mêmes axes. Cette trans

formation est à. rayons vecteurs réciproques, comme nous l'avons

vu n° 225. Elle s'opère en portant sur les rayons vecteurs

menés de l'origine actuelle des longueurs inversement propor

tionnelles à. ces rayons vecteurs; l'ancienne figure se trouve

ainsi changée en celle qui résulte des extrémités de toutes ces

longueurs. Passer ensuite de 5-5", l'y-1,0, Ç—Ç° à. E, n, Ç

n'est qu'un simple déplacement de l'origine, les axes restant

parallèles à eux-mêmes; cela ne produit dans la figure trans

formée aucune altération.

Nos formules du n° 222 résultent donc d'une transformation

par rayons vecteurs réciproques, combinée avec des change

ments ordinaires de coordonnées. De telles transformations

en nombre quelconque donnent toujours naissance à une équa

tion de la forme (1), et l'interprétation géométrique des formules

par lesquelles nous avions d'abord lié (n° 221) :c, y, z et E, 17, ç

semblait en demander deux, relatives à deux origines différentes,

l'une pour le passage de X, Y, z à u, v, w, l'autre pour le passage

de u, v, w à f, 17, 1;; mais on voit, par ce qui précède, et grâce

aux formules plus simples du n° 222, qu'une seule transforma

tion suffit pour conduire au résultat le plus général; il était

important de le démontrer.

227. Les considérations géométriques dont nous venons de

faire usage, pour interpréter les formules qui conduisent à.

l'équation (1), donnent lieu à. des conséquences remarquables

dont nous allons dire quelques mots. Dans les deux figures

que déterminent respectivement les coordonnées æ, y, z et les

coordonnées 5, 1;, C, considérons, d'une part, deux points quel
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conques m, m’, et, d’autre part, les points correspondants p, ,u’.

Soient D la distance des deux premiers, A celle des deux autres,

en sorte que

D’=<æ'—æ>=+<y'—y)*+(z'-z)=,

N = (ê'-ê)’+(n’—n)’+((“—()’

L'équation (1), qui pourra s’écrire

D’ D 1 ’
A’ :1077”, A=Ï>17' Î %

fournit une relation entre la distance A de deux points ,u., p.’

dans l'une des figures et les quantités D, p, p’. Nous venons

de dire que D est la distance des deux points m, m’ correspond

ants dans l'autre figure; quant à. p et 10'', ce sont, a un facteur

constant près, les distances des points m, m’ à. un certain point

fixe. Toute relation métrique entre deux ou plusieurs dis

tances A dans l’une des figures fournira. donc immédiatement

une relation analogue dans l'autre figure. Mais il ne faut pas

croire que les divers points correspondants à. ceux de la droite

A soient sur la droite D; cela arrive pour les points extrêmes

par la définition même de ces droites, mais n'a pas lieu, en

général, pour les points intermédiaires. En général, la suite

des points correspondants à. ceux d’une droite de la première

figure forme dans la seconde figure une circonférence de cercle,

laquelle ne se réduit à une ligne droite que dans un cas par

ticulier, celui où son rayon est infini.

Ayant en E, 1;, Ç l’équation d’une surface ou les équations

d’une ligne appartenant à. la première figure, il suffit de substi

tuer à. E, '17, ç leurs valeurs pour former en w, 3/, z l’équation de

la surface ou les équations de la ligne correspondante. On

trouve bien facilement, de cette manière, que les plans et des

sphères se transforment en des sphères qui peuvent se réduire

à des plans quand le rayon devient infini ; que, de même, des

droites et des circonférences de cercle se transforment en des

circonférences de cercle, etc. Mais, pour suivre le mécanisme

de ces transformations, il sufiit de considérer la transformation

par rayons vecteurs réciproques, qui combinée avec des change

ments de coordonnées donne, comme on l’a vu, la transforma

tion la plus générale. Soit donc
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€_ nz _n_f’ :6: n8 _n§’

za+ya+zs r: Ê1+nu+çs p2

n_ ny _IÆ, y: m7 :1117 ,

xl+yï+zi r1 êr+na+çz pa

ç‘- "I ‘E, 2: "C =Ë9

æz+yu+zs r: £1+.,,a+§2 Pa

A=Æ=___"Q__ __"D

PP' A/(Wi-Î'TZŒ)_F,

l'ensemble des formules relatives à, la transformation par rayons

vecteurs réciproques. On en conclut immédiatement ce que

nous venons d’avancer, concernant les plans et les sphères, les

droites et les circonférences de cercle. Mais on voit, de plus,

et même sans calcul, que les plans qui passent par le point O,

origine des rayons vecteurs, sont les seuls qui restent des plans

dans la transformation; avant et après, leur position est la

même, quoique leurs divers points, bien entendu, se soient

déplacés pour se substituer les uns aux autres, ceux qui étaient

loin de l’origine en étant à présent devenus voisins, et vice

versd. Tout autre plan se transforme en une sphère passant

par le point O (où la transformation amène tous les points

situés à. l'infini) et ayant son centre sur la perpendiculaire au

plan menée du point O; la perpendiculaire et le diamètre de

la sphère ont un produit égal à la constante n, et se déduisent

ainsi facilement l'une de l’autre. Il est inutile d'ajouter que

deux sphères qui correspondent à deux plans parallèles se

touchent au point 0. De même, deux sphères ainsi posées se

transformeraient en deux plans parallèles. Mais une sphère

qui ne passe pas par le point O doit rester une sphère, puis

qu'elle ne peut acquérir aucun point à. l’infini. Les droites

passant par le point O restent des droites, et conservent leur

position invariable. Toute autre droite donne lieu à une cir

conférence de cercle dont le plan est déterminé par la droite et

par le point O, et dont le centre est situé sur la perpendiculaire

abaissée du point 0 sur la droite; le diamètre est le quotient

de la constante n par cette perpendiculaire. Les circonférences

provenant de droites parallèles sont toutes tangentes a une

parallèle menée par le point 0 à ces droites. On peut Voir,

enfin, que la transformée d’une circonférence est une droite
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quand la circonférence passe par le point O, et, dans tout autre

cas, reste une circonférence.

Une propriété remarquable de ce genre de transformation

consiste en ce que les deux triangles formés par trois points

infiniment voisins quelconques de la figure primitive et les

trois points correspondants de sa. transformée sont semblables

l’un a l'autre, en sorte que si deux lignes se coupent dans l’une

des deux figures sous un certain angle, les lignes correspond

antes de l’autre figure se couperont sous le même angle.‘ La

démonstration de cette propriété repose sur l'équation (l), à

laquelle nous avons donné la forme

A=2.
I

PP

Supposons, en efl'et, que les deux points m, m’, ou (m, y, z),

(x’, y’, z’), soient infiniment voisins, et que leur distance D soit

représentée par ds. Représentons par de‘ celle des deux points

correspondants p, ,u'. Comme p et 10' n’auront pas de différence

sensible, il nous viendra

__ds

_I;.

Les éléments (la, (L9 ont donc en chaque lieu un rapport con

stant qui dépend de p et change, en général, d'un lieu a l'autre.

Considérons un troisième point m" infiniment voisin des deux

premiers, et désignons par ds' et ds" ses distances à. m et à m’;

da’, der” étant les distances correspondantes dans la seconde

figure, on aura encore

du‘

(10":; a

dull :2‘; I

Donc da- : do": Lia-"z: ds : ds': ds".

Ainsi, le triangle infinitésimal mm'm” est semblable au triangle

* De la similitude des triangles infiniment petits correspondants, il résulte

encore que la figure transformée est semblable à la figure primitive, ou à, sa

symétrique, dans ses éléments infiniment petits. En s‘en tenant au premier

cas, qui est proprement celui de nos formules, où nous prenons naturellement

la constante n positive, on aura, a trois dimensions, une sorte de représenta

tions des corps, analogue au tracé des cartes géographiques [those according

to the “ stereographic projection ”], pour lesquelles le rapport de similitude

des éléments correspondants est variable aussi d'un lieu a l'autre.
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correspondant pp’p”. L’angle de de avec ds’ est, par consé

quent, le même que celui de do’ avec der’. Cette démonstration,

on le voit, n'exige pas même que l'équation (1) ait lieu pour

deux points situés à. une distance finie; elle demande seule

ment que cette équation ait toujours lieu pour deux points

infiniment voisins. On doit en dire autant d’un théorème que

je vais établir, et qui n’est qu’un corollaire de la proposition

précédente.

Une surface appartenant à l’une des deux figures étant

donnée, représentez-vous les lignes de courbure de cette sur

face, et les deux séries de surfaces développables, orthogonales

entre elles et à. la surface donnée, qui sont formées par les

normales successives. Dans la seconde figure, les séries de

surfaces correspondantes resteront orthogonales entre elles et à.

la transformée de la surface donnée; par suite, en vertu du

beau théorème de M. Ch. Dupin, elles traceront encore sur

cette transformée des lignes de courbure. Ces lignes de cour

bure résulteront ainsi des lignes de courbure de la première

surface donnée, et seront immédiatement connues si les autres

le sont. Il sera aisé d’appliquer ce théorème aux surfaces du

second degré, comme aussi aux systèmes triples de surfaces

orthogonales que M. Serret a indiqués dans une Note récente,’

et qui, par notre transformation, en donneront d'autres non

moins curieux, etc.

Proposons-nous, par exemple, de trouver les lignes de cour

bure de la surface enveloppe des sphères qui touchent trois

sphères données, problème que M. Ch. Dupin a résolu jadis

dans la Correspondance sur l'École Polytechnique, tome I, page

22. Soient O et P les points d'intersection de ces trois sphères;

prenons le point O pour origine, et opérons une transformation

par rayons vecteurs réciproques, ce qui nous fournira une

seconde figure d'où nous reviendrons aisément à. la première.

Dans la seconde figure, les trois sphères données seront rem

placées par trois plans qui se couperont en un point H

correspondant au second point P d’intersection de nos trois

sphères. La surface enveloppe des sphères tangentes à ces

trois plans sera (en se bornant à. undes angles solides et à son

* Page 241 du présent volume [Liouville's Journal, 1847].
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opposé) celle d'un cône droit à. base circulaire ayant son sommet

au point H, et circonscrit à une quelconque des sphères tan

gentes aux trois plans. Les lignes de courbure de cette surface

conique sont: 1° les génératrices rectilignes qui passent toutes

par le point II : dans le retour à la première figure, ces droites

deviendront des cercles passant tous par le point P, dont les

tangentes en P feront toutes le même angle avec la tangente

au cercle dans lequel se transforme l’axe du cône, d’où résultera

un nouveau cône droit, et passant toutes aussi avec des cir

constances semblables par le point 0; 2° des cercles, dont les

plans sont tous parallèles entre eux et perpendiculaires à l'axe

du cône, et qui, lors du retour à la première figure, deviendront

des cercles coupant à. angle droit ceux qui résultent de

génératrices rectilignes. Les lignes de courbure de la surface

enveloppe des sphères tangentes à trois sphères données sont

donc des circonférences de cercle.

On démontre avec la même facilité le théorème de M. Dupin

concernant la courbe que trace sur chacune des trois sphères

données la sphère variable qui les touche. En effet, quand les

trois sphères données sont remplacées par trois plans, il est

clair que la suite des points suivant lesquels la sphère variable

touche un quelconque des plans est une ligne droite passant

par le point d’intersection II. Donc, en revenant aux trois

sphères données, la courbe demandée est une circonférence de

cercle qui passe par les points O et P. Il peut arriver, bien

entendu, que les points O et P soient imaginaires; mais il n'y

a alors aucun changement essentiel à, faire dans ce que nous

venons de dire, et nos conclusions subsistent.

La circonstance d’une origine O imaginaire aurait plus

d’inconvénient s'il s’agissait de résoudre le problème d'une

sphère tangente à quatre autres, en le ramenant au problème

très-simple de trouver une sphère tangente à. une sphère donnée

et à trois plans donnés; mais on y remédierait en augmentant

d’une même quantité les rayons des quatre sphères données, ce

qui ne change pas la position du centre de la sphère tangente.

De même, en se bornant à considérer des points tous situés

dans un plan passant par l'origine O, on ramènera la détermi

nation du cercle tangent à, trois autres à celle d’un cercle qui

touche un cercle donné et deux droites données.
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En général, les systèmes de sphères ou de cercles, et spéciale

ment de sphères ou de cercles passant par un point donné,

jouissent de propriétés curieuses dont beaucoup deviennent

intuitives par la transformation dont nous venons de nous

occuper. On peut appliquer en particulier cette remarque aux

théorèmes que M. Miquel a donnés dans son Mémoire sur les

angles curvilignes.* Pour nous borner au cas le plus simple,

il est évident que, dans un triangle ABC formé par trois ares

de cercles passant tous par un même point O, la somme des

angles vaut 2 droits, puisque notre transformation rend ce

triangle rectiligne sans altérer ses angles.

228. Le passage des relations métriques d'une figure à l’autre,

dans la transformation par rayons vecteurs réciproques, en

allant des coordonnées 5, 1), Ç aux coordonnées 2;, y, z, s'opère à

l’aide de la formule

nD
A—Î’ 7

. D
ou simplement A=—, ,

7'!‘

en posant n: 1, ce qui n'a aucun inconvénient. Mais en

désignant par O l’origine, dans la seconde figure seulement, et

en employant les autres lettres A, B, etc., pour représenter à. la

fois les points de la première figure et les points correspondants

de la seconde figure, cette formule revient à. dire que, dans toute

relation entre des distances AB, BD, etc., il faut remplacer

chaque distance telle que AB par 0315B- Voilà donc une

règle pratique très-commode ; cette règle convient aussi bien au

cas du plan qu'à celui de l’espace. Deux exemples suffiront.

Que des droites partant d'un point fixe A coupent chacune

un cercle en deux points B et C, B’ et C’, etc., on aura

ABX AC=AB' X AU’ =constante.

Donc, dans la figure transformée,

AB XAPLXJPÏ' x A0’ ,
011.015‘ 0A.0C 014.01?’ 011.00’

et par conséquent,
AB VAC

O—Bx 00, =constante.

" Tome 1x. de ce Journal, page 20 [Liouville’s Journal, 1844].
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D'ailleurs les points A, B, 0', qui étaient en ligne droite, se

trouvent à. présent sur une circonférence de cercle passant par

le point O. Nous voyons par là que les cercles passant par

deux points fixes A, 0 coupent un cercle donné en deux

points B, 0 tels, que le rapport des produits des distances

AB x AC et OB X 00' a une valeur constante pour tous ces

cercles.

Que les côtés B6’, A0, AB d'un triangle rectiligne ABC

soient coupés en trois points A’, B’, O’ par une transversale, on

aura

AC'xBA’x CB’=BC’x CA’ x AB’.

Donc, dans la figure transformée,

AC'XBA’X CB’_BC"X CA'XAB’

0A.OC’ OB.0A’ 00.03-03.00’ 00.0A’ 0A.0B"

ce qui redonne

AC’XBA'X CB'=BC”X OA’X AB’

Mais cette relation s’applique à présent a un triangle curviljgne

ABC’ formé par trois cercles qui passent tous au point O et

dont les côtés sont coupés en A’, B’, 0’ par un quatrième cercle

passant aussi au point O. Il est, du reste, inutile d'ajouter que

AC", BA’, etc., sont les plus courtes distances des points A et

0', B et A’, etc., et non des segments mesurés sur les côtés du

triangle curviligne.

On généraliserait aisément de la même manière le théorème

relatif à un polygone gauche coupé par un plan. Mais en voilà.

assez sur ce sujet.

229. Etant données deux sphères qui ne se coupent pas, on

peut toujours placer l'origine O sur la droite qui joint leurs

centres, en un point réel tel, qu'après la transformation par

rayons vecteurs réciproques, ces deux sphères seront con

centriques. Prenons la droite des centres pour axe des x;

designons par h la distance inconnue du point O au centre de

- la première sphère, et par h+l sa distance au centre de la

seconde sphère; soient k, le’ les rayons. Les équations des

deux sphères seront, avant la transformation,

(:c—h)’+J/'+z’=k‘,

(z:—h—-l)’+g/’+z'=lc",

et après la transformation, qui consistera à remplacer æ, y, z par
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m 3' __z_

. æ’+y’+z" æ’+y'+Î" av'+.'/’+z"

elles deviendront

h 1 I

(x—l?—_k,) +y’+z'=(h,îk,), I

la+l - _ k"
[œ_lh+l)'-k":l +”'+"“[<h+l>'—k")]"

Pour que le centre soit le même à. présent, il faut et il suffit

h _ h+l 7
que hs_ks—(h+l)i_—klz’

dim; lh'+(l'+k'—lc")h+lk’=0,

équation du second degré qui donnera pour h deux valeurs,

_ l’+Ic’-k” 1 —
h__—2Ï— 1h27 V G’

en posant

G=(l—k—k’) (l—k+lc’) (l+lc—k’) (l+lc+lc');

et il est aisé de voir que G sera positive si les deux sphères

qu'on a données d'abord ne se coupent pas.

230. Ce théorème pourra être utile en géométrie; mais il

aura surtout une application importante dans les questions de

physique mathématique. Essayons ici d’indiquer rapidement

l'usage, en ce genre de questions, de la transformation générale

qui donne l'équation (l). La Lettre de M. Thomson nous

servira de guide; nous y ajouterons quelques développements.

La généralité plus ou moins grande de la solution par laquelle

on satisfait à l'équation (1) ne change en rien la marche à.

suivre, qui reste la même dans tous les cas.

Et d'abord de l'équation

I

1 _ PP

K_Î

on peut conclure, avec M. Thomson, que, si une fonction U de

E, 17, L‘ satisfait à l'équation

d’U d’U d’U

F+a?+ ‘d? -0;

cette même fonction, divisée par p et exprimée en :13, y, z,

vérifiera l'équation de même forme

d‘.p"U d’.p"U d'.p“U_

dm‘ + dyz + dz’ ' '0'
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De là. une liaison entre deux problèmes distincts concernant

tous deux l’équilibre de température dans les corps homogènes,

mais relatifs à deux systèmes dont l'un résulte de l'autre par la

transformation qui lie E, 97, è’ à :3, y, z.

Que le premier système soit formé de deux sphères qui ne se

coupent pas, que la température soit donnée en chaque point

de leurs surfaces, et demandons quelle est la loi des tempéra

tures permanentes dans l'espace compris entre elles, si l’une

est intérieure à l’autre, ou dans l’espace infini extérieur a toutes

deux, si l’une est en dehors de l’autre, en ajoutant dans ce

dernier cas la condition que la température soit nulle à. l’infini.

On raménera cette question au cas très-facile de deux sphères

concentriques. Cela résulte du théorème établi ci-dessus et en

montre toute l’importance. En indiquant cette application à,

la théorie de la chaleur, M. Thomson ajoute, du reste, avec

raison qu'elle s'étend d'elle-même à la théorie de l'électricité.

Dans la théorie de l'électricité ou du magnétisme, et, en

général, dans la théorie de l’attraction, la quantité que G. Green

et M. Gauss nomment potentiel, c’est-à-dire la quantité qu'on

obtient en faisant la somme des éléments attractifs ou répulsifs

d’une masse divisés par leurs distances à. un point, joue un rôle

capital. On connaît le problème de M. Gauss: “Distribuer

sur une surface donnée une masse attractive ou répulsive, de

telle sorte que le potentiel ait en chaque point de la surface

une valeur donnée.” On a résolu ce problème pour différentes

surfaces, en particulier pour l’ellipsoïde. Or la solution relative

à une surface quelconque donne la solution pour toutes les

surfaces qui se déduisent de celle-là par une transformation

pour laquelle l’équation (l) ait lieu. Ayant, en effet, l’équation

mm
pour la première surface, on aura pour la seconde surface une

équation du même genre, remplaçant par leurs nouvelles

valeurs A et dm’. On a

_2 _

PP’

Quant à dm’, j’observe que les éléments linéaires correspondants

do- et ds sont liés par la formule

A
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Donc entre deux éléments superficiels correspondants du), da,

on aura dw=§ , dw’=g,;

, A’ d '
par suite, f F Di=% 7

ce qui résout le problème de M. Gauss pour la surface trans

formée. ,

On peut voir aussi que les équations désignées par (A), (B),

(C) dans mes Lettres à M. Blanchet,* et qui sont d’un si grand

usage dans la plupart des questions pllysico-mathématiques

concernant l’ellipsoïde, ont leurs analogues,‘ qu'on en déduit

immédiatement pour les surfaces transformées de l’ellipsoïdef

On peut considérer encore l'équation

d’U d’U d’U d’U

dt’ = dg + dm + dç"

et lui faire subir la transformation de E, 17, Ç en x, y, 2.

A cause de l’équation

(Io-=31

qui peut s'écrire

de." d ' dz’

dê“+dn’+pf’= +—Pï+—»

on trouve, par des formules connues, que la quantité

d’U d2 U aw

dé’ du’ d?‘

est égale à.

1 dU d 1 dU d l d

e FE ‘Pïy '25 d7
P ——+ +—_..—,

da: dg dz

' Voyez le tome XI de ce Journal.

'1' Parmi ces surfaces, il faut distinguer celle que donne la transformation

par rayons vecteurs réciproques, en mettant l'origine au centre même de

l’ellipsoîda. On sait qu’elle est aussi le lieu des pieds des perpendiculaires

abaissées du centre sur les plans tangents à un autre ellipsoïde dont les axes

ont pour valeurs les inverses des valeurs des axes de l’ellipsoide donné. Une

propriété analogue a lieu dans le plan, pour la lemniscate par exemple, qui

peut ainsi être engendrée de deux manières différentes au moyen d’une

hyperbole équilatère, circonstance dont M. Cbasles a tiré un heureux parti

dans ses recherches sur les arcs égaux de la lemniscate (Comptes Rendus de

(‘Académie des Sciences, tome XXI, séance du 21 juillet 1845.)
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c'est-à-dire à

{M7 d‘U deU dUdp dUdp dUdp
4 _ _— _ _______ __ ______

‘"(dæi + dg’ (w) 21"(ædæ dydy+dz dz)

fip-"IU d’.p"‘U d‘.p"‘U

ou enfin à P‘( d5?- —7y,—+ —dz, ),

en se rappelant que

dzl dal dil

, P P __Il _

dx’ + dg’ + dz‘ ‘0'

Par là on voit d'abord que l'équation

d‘U d’U+d’U

TE‘ dn’ dg’

=0

revient à celle- ci :

d'.p“U d’.p"‘U (Hp-‘U

axa“ T+‘dz: =0’

ce que nous savions déjà, On voit ensuite que l'équation

d'U d’U (P0 «P0

Tu:75+ du‘ + dç'

se transforme en

d’U_ (Hp-‘U d’.p"U d".p-1U

dt’ ‘p5 (—d.z" + dgr + dé‘)’

ou, mieux encore, en

d’.p"Ü dip-1U d'.p"‘U d’. ‘1=p«( + + U)

Réciproquement, cette dernière équation, où le coeflicient p

varie proportionnellement à. la distance du point (w, y, z) à un

point fixe, se ramène à l’équation

dxU_d'U+d2g d'U

dz"- dg’ 'dh’ dg“ ’

qui est à coefiicients constants, résultat qui trouve une applica

tion utile dans la théorie du son.

On peut enfin ajouter que les équations aux différences

partielles I ’

(‘ë’)“(äl +(â'ä) =Q

dU = dU * dU ’_Q

(we) +(aÿ) +(‘äz‘l ‘F

et
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sont des transformées l’un de l'autre, ce qui pourra servir dans

les questions de dynamique, où MM. Hamilton et Jacobi ont

introduit de telles équations aux différences partielles.

On me pardonnera, je l'espère, ces développements que j'ai

cru pouvoir donner, à la suite des deux Lettres si intéressantes

de M. Thomson, sans le gêner dans ses recherches. Mon but

sera rempli, je le répète, s'ils peuvent aider à bien faire com

prendre la haute importance du travail de ce jeune géomètre, et

si M. Thomson lui-même veut bien y voir une preuve nouvelle

de l'amitié que je lui porte et de l'estime que j'ai pour son

talent.



XV. DETERMINATION OF THE DISTRIBUTION OF ELECTRICITY

ON A CIRCULAR SEGMENT OF PLANE 0R SPHERICAL

CONDUCTING SURFACE, UNDER ANY GIVEN INFLUENCE.

[Jam 1869. T02 hitherto published.]

231. The electric density at any point of the surface of an

insulated conducting ellipsoid, electrified and left undisturbed

by external influence, is (§ 11) simply proportional to the dis~

tance of the tangent plane from the centre. If we take p: kp

as the expression of this law, and call q the whole quantity of

electricity communicated, we have 14) 41rkabczq; so that

the formula for the electric density, p, at any point P of the

surface in terms of p, the distance of the tangent plane from

the centre, and a, b, c the three semi-axes, is

p=41r€zbcp (I);

or, in terms of rectangular co-ordinates of the point P,

,,= ‘q (2).

41rabc §+ré—,+§

232. To find the “electrostatic capacity” (§ 51, footnote) of

the charged ellipsoid, let V denote the potential at its surface.

We have, by § 15 (e),

°° du

‘7:91,, ,\/(u'—a’+b’),\/(u'--a’+c’) (3);

and therefore the capacity is the reciprocal of the definite

integral which appears in this formula.

233. By taking 0: O we fall on the case of an infinitely thin

plane elliptic disc: for which we have

_x_: ‘Ly-Q 1-! _ 1 x! ‘L! x! y! _ x1 y!

°'(a4+b‘+a)-° (ah-H “rad-1'5"?
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and therefore p= , 2 (4)

41rab l—;E-—y—)&

a2 b”

Putting b=a in this, we have, for an infinitely thin circular

disc, q (5)

p=41ra(a“--r’)§

where (1 denotes the radius of the disc, and p the electric density

on either side of it, at a distance r from the centre. This result

was first given by Green, near the conclusion of his paper “ On

the Laws of the Equilibrium of Fluids analogous to the Electric

Fluid” (Transactions of the Cambridge Philosophical Society for

Nov. 12, 1832) ; from which I make the following extract :—

234. “ Biot (Traite' de Physique, tome p. 27 7) has related

“ the results of some experiments made by Coulomb on the

_ " distribution of the electric fluid when in equilibrium upon a

“ plate of copper 10 inches in diameter, but of which the thick

“ ness is not specified. If we conceive this thickness to be

" very small compared with the diameter of the plate, which

“ was undoubtedly the case, the formula just found ought to be

“ applicable to it, provided we except those parts of the plate

“ which are in the immediate vicinity of its exterior edge. As

“ the comparison of any results mathematically deduced from

“ the received theory of electricity with those of the experi

" ments of so accurate an observer as Coulomb must always be

" interesting, we will here give a table of the values of the

“ density at different points on the surface of the plate, calcu

" lated by means of the formula (29), together with the cor

“ responding values found from experiment :-—

Distances from Observed Calculated

the Plate’s edge. Densities. Densities.

—__‘_

5in. . . . l. l

4 . . . . . 1,001 1,020

3 . . . . . 1,005 1,090

2 . . . . . 1,17 1,250

l . . . . . 1,52 1,667

,5. . . . ‘ 2,07 2,294

0 . . . . . 2,90 infinite

“ We thus—see that the differences between the calculated

“and observed densities are trifling; and, moreover, that the
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“ observed are all something smaller than the calculated ones,

“ which, it is evident, ought to be the case, since the latter

“ have been determined by considering the thickness of the

“ plate as infinitely small, and consequently they will be some

“ what greater than when this thickness is a finite quantity, as

“ it necessarily was in Coulomb's experiments.”

235. In this case (3) of § 232 becomes

v=q ____d“ - l (6)

Hence the capacity is 27:1- - But [§ 232 (3)] the capacity of a

globe is numerically equal to its radius; and therefore the

capacity of an infinitely thin disc is less than that of a globe

of equal radius, in the ratio of 1 to g , or 1 to 1'571. Caven

dish found the ratio 1 to 1'57, by experiment I‘

236. The expression (5), § 233, for the electric density at

any point P on either side of an

infinitely thin circular disc of con

ducting material electrified and left

A free from disturbing influence, may

be put into a form more convenient

for geometrical investigation, thus :—

Let 0 be the centre of the disc, so

that 011 = a, OP : r, according to

previous notation. Hence BP : a + 1'; PA = a -— r;

* My authority for this statement is the following entry which I find

written in pencil on an old memorandum-book :

“ PLYMOUTH, MomL, July 2, 1849.

“ Sir William Snow Harris has been showing me Cavendish’s unpublished

“Mssq put in his hands by Lord Burlington, and his work upon them; a

“most valuable mine of results. I find already the capacity of a disc

“ (circular) was determined experimentally by Cavendish as L that of a

" sphere of same radius. Now we have 1'57

fa rdr

2__ .
“ capacity of disc = —°—(-a—d—;2=-%=1_;71 l”

o (“z-T2)‘ 2

It is much to be desired that those manuscripts of Cavendish should be

published complete; or, at all events, that their safe keeping and accessi

bility should be secured to the world.
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a’ —r'=BP.PA=KP.PL;

20V

if KL be any chord through P; and (5), with »;— substituted

for 9 according to (6), becomes

___K_

_21r',\/KPTII

237. Consider a plane disc, S’, thus electrified, to a potential

which we shall, for a moment, denote by V’; and, following the

suggestion of 210, take its image relatively to a spherical

surface of radius R described from any point Q as centre.

This image will (§ 207) be a spherical segment, 8', electrified

(§§ 210 and 238) as an infinitely thin conducting surface under

the influence of a quantity V'R of electricity concentrated at

Q; and (compare § 213) the spherical surface of which S is a

part will pass through Q. The reader will have no difiiculty

in verifying these statements for himself; but if he desires it,

he will find some further information and examples in Thom

son and Tait's Natural Philosophy, 512...518. Thus 515

of that work) if p’ be the electric density on either side of the

disc at P1, and p that on either side of its image at P, we have

F331,,’ (8);

and if v’ and v be the potentials at any point H’, and II the

image of H’, due respectively to the disc 8’ and its image, we

have (Thomson and Tait, § 516)

“(like (9).

p (7).

This shows that, as the potential due to S’ has a constant value,

V’, at all points of S’, the potential due to S will be, at different

points of S, inversely as their distances from Q; and if we take

9: —RV', and denote by V the potential due to electricity

distributed over the two sides of S, we have

_:Z

and so see that S is electrified as an infinitely thin conducting

sheet of the same figure would be if connected with the earth

by an infinitely fine wire, and inductively electrified only by
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the influence of a quantity -q of electricity insulated at Q.

Now, with our present notation (7) gives

p'=_,li':n_,_=__i;.l (11),
zm/L'F. P’K’ 21r',\/L'P’. P’K’ R

if K’L’ be any chord through P’ of the circle bounding the

plane disc S’.

238. Let K, P, and L be the images of K’, P’, L’, so that

-------- -' KL, the image of K’L’, is the arc in

' which S is cut by the plane through

Q and K’L’. We have 207)

’ -----------\\ KQ=§%,PQ=%%,

HenceK’Q:P’Q::PQ:KQ; and there

fore the triangles K’P’Q, PKQ are

similar; and therefore

P’Q- K’Q_ R’
KQ.PQ —KPKQPQ

(Compare 213, 227.) From this,

and the corresponding expression for

_____________" LP’ we have

P’K’=KP. (l2),

 

R‘ LP.KP

L’P’. P’K’=m2 -mm (13) '

L’

an expression in which, as the first member has the same value

for all lines such as L'K’ through P’, the second must have

the same value for all planes through PQ, cutting one circle

on one spherical surface through P and Q, in K and L. As

. . P. .

152, is constant, it follows that 2Q 1s constant ;* a theorem

of geometry given above (§ 228) by M. Liouville. Each mem

* As a particular case let Q be either pole of the fixed circle. In this case

LQ=KQ, a. constant. Hence LP.KP is constant; that is, the product of

the two chords from any fixed point P on a spherical surface to the two

points in which any fixed circle on the surface is cut by a plane through P

and one of the poles of that circle, is constant, however the plane be varied.

This is the simplest extension to spherical surfaces of the elementary geo

metrical thcorem (Euc. In. 35) for the constancy of the rectangle under the

two parts of a varying chord of a. fixed circle through a fixed point, already

used in the text (§ 236).
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ber of (12) may be altered in form thus : bisect UK’ in M, and

are LK in N. We have

L'P’.P'K'=MK"—MP"

LP.KP = K’ —NP' }

LQKQ =NQ‘ -—NK'

equations of which the last two are very easily proved from

the formula- sin (a-B) sin (a.+fl)=sin'a—~sin’fi,

by taking for a. and B the angles subtended by §NK and i-NP

at the centre of the circle QKPL; and again, by taking for

a. and B the angles subtended by }NQ and #NK at the same

int.p0239. Using (13) in (11), and the result in (8), we find

F51? a?» 2%? (15>;

and modifying by (14),

1 q NQ’--NK' (16>

P=21H QP’ NIP-NP’

If we take for PKQL the plane through PQ and U the central

point (or pole) of the spherical segment S, so that N becomes

6', NK becomes equal to the chord of any are from C’ to the

lip; and (15) becomes

(14),

i 1

e21, all” 550% <17)»

which is the result stated in § 219, above. It is remarkable

that this expression is independent of the radius of the spheri

cal surface of which the bowl is a part. Hence, if we suppose

the radius infinite, we have the same expression (17) for the

electric density at any point P on either side of an infinitely

thin circular disc of radius a,‘ connected with the earth by an

infinitely fine wire, and influenced by a quantity Q of electricity

collected at any point Q in the plane of the disc, but outside

its bounding circle. It agrees with the solution previously

given by Green for this case in his paper referred to in § 234,

above.

240. (Compare § 220.) To find the distribution for the case

in which S is insulated, electrified, and removed from all dis

turbing influence, let V be the constant potential produced

throughout S by this distribution. Remark that the same



184 Distribution of Electricity on Circular [XV.

distribution of electricity on S would be produced inductively

if it were connected by an infinitely

fine wire with the earth, and en

closed by any surface, EE, rigidly

electrified with such a quantity and

distribution of electricity as 5,

73, 206, 207; also Thomson and

Tait, § 499) to produce a uniform

potential — V through its interior.

Now take this enclosing surface,

EE', to be spherical, concentric with that of which S is a part,

and of radius greater than that of the last mentioned by an

infinitely small excess. The electric density of the inducing

distribution will be uniform all over EE, and equal to —1

21rf

if f be the diameter of the surface. The portion of EE which

lies infinitely near to the convex surface of S will clearly induce

on this convex surface an equal electric density of contrary

V

27f.

electric densities on the concave and convex sides of S, the

amount of either of which at any point P is to be obtained by

integration from (15), (16), or (17), thus :—

241. Let do- be an infinitesimal element of E, situated at a

point Q anywhere on it. The quantity of electricity on this

element is — E‘! and using this for — g

21rf5

in (17), we find, for the density on either

side at P, of the electrification induced

by it, the following expression :

V do CQ'-a'

41r'f PQ‘ a’—_ 01”‘

'_ p 4"" Now calling 0 the centre of the spherical

0 surface, let COP be denoted by 17; OOQ

by 0; the value of either of these when P or Q is at the lip of

the bowl, by a; and the angle between the planes of GOP and

COQ, by ¢: so that we have

a’==1}f'(1—cosa.), CP’ =§f‘(1—cos11), C'Q'=1}f’(1—cos 0)

and PQ’=§f’(1-cos17cos6—sin17siu9cos¢);

 

sign, that is, + The remainder of EE will induce equal
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and we may take

da=}f'sin 0d0d¢.

Hence if, lastly, p denote the electric density at P, on the con

cave side of the segment, we have

_ V . J4,

p_8r‘f~/(c08'q—cosa) dosmov(cosa_cosa)j:'l --cos1|c0s0—sin-qsin6coa$ ‘

But putting tan§¢= t, A : 1 — cos-qcos0, and B: sin'qsina,

we find

' 41¢ __4 °° dt _ 2|’ _ 21

0 1—cos1)cos0—sin17sin0cos¢_ 0 A—B+(A+B)P_~/(A'—B')_cos11—cos0'

and therefore

V ' d0sin 0~/ (cos a-cos 0)

p=41r'f,\/ (cos1)—cos a) , cosy-c059

Lastly, putting 4/ (cosa- cos6) : 2, we find

f" 0~/(cosa-cos0)_ 2f~/(°°I¢+U z’dz

,, cosy-0on0 o cosn—cosa+z'

=2{~/(¢0sa+l)—~/C0s11-—cosa.tan“~/ emu-+1

coon-cou

Hence we have, in conclusion,

V { cosa+1 _tan__‘ cosa-I-l } (18)’

p=21r’f cosy-c030. cosy-com

or, with f and a as above, and r to denote the chord C'P,

f'— ' _ f'— ' .{Jai_:!_tan l~/ aa_r|}and the same, with the addition of

V

5?

gives (§ 240) the electric density on the convex side; which are

exactly the results stated above in § 220. Twenty-two years

ago these and the very simple formula (17) were communicated

by me to M. Liouville without proof, and were published in his

Journal. From that time till now they have not been proved,

or even noticed, so far as I am aware, by any other writer.

242. Numerical results, calculated from the preceding for

mulae (19) and (20), are shown in the following tables :

_ V

p_21r’f

(20),



186 Distribution of Electricity on Circular [XV.

Plane Disc. Curved Disc. Curved Disc. Bacon.

Arc 10'. Are 20'. Are 90'.

Concave. Convex. Concave. Convex. Concave. Convex.

‘9136 1‘0685 ‘8636 1'1364 ‘4459 1'5541

‘9457 10826 ‘8776 1'1504 ‘4469 1'5551

-9920 1-1239 "9236 11964 ‘4828 1-5910

1'0858 1'2227 1'0165 1'2893 ‘5566 1'6648

1‘2722 1'4091 1'2884 1‘5611 ‘7065 1‘8147

1'7386 P8755 P6652 1-9379 1093?. 2-2015

Mean. Mean. Mean.

1 ‘0000 10000 10000 1 '0000

1'0142 1'0141 1'0140 1'0010

10607 10605 10600 10369

1'1547 1'1542 11529 11106

1'3416 1‘3407 1'4247 1'2606

P8091 P8071 1'8016 1'6474

Bowl Bowl. BowL

Arc 180'. Are 270'. Are 940'.

Concave . Convex Concave. Convex. Concave. Convex.

'1202 1'8798 ‘0135 1-9865 “0001 1-9999

‘1266 1'8862 ‘0144 1‘9874 ‘0002 1'9999

-1418 19014 "0176 19906 ‘0002 2'0000

‘1779 19375 ‘0253 19983 ‘0004 2-0001

‘2570 2-0166 ‘0451 2'0181 ‘0009 20006

‘4959 22555 ‘1195 20925 '0042 2-0040

Mean. Mean. Mean.

10000 10000 1 ‘0000

10064 10009 1'0000

10216 10041 1'0001

1'0577 10118 10002

11366 10316 10007

1'3757 1'1060 1-0041

It is remarkable how slight an amount of curvature produces a

very sensible excess of electric density on the convex side in the

first two cases (10° and 20°) of curved discs; yet how nearly

the mean of the densities on the convex and concave sides at

any point agrees with that at the corresponding point on a

plane disc shown in the first column. The results for bowls of

270° and 340° illustrate the tendency of the whole charge to

the convex surface, as the case of a thin spherical conducting

surface with an infinitely small aperture is approached.
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The constant coefiicient for each case has been taken so as

to make the mean of the electric densities on the convex and

concave sides unity at the middle point (as in Green’s numbers,

§ 234 above, for the plane disc). The six points for which

the electric densities are shown in the tables below are (not

the six points to which Ceulomb’s observations and Green's

numbers quoted in § 234 refer, but) the middle point, and the

five pointsjividing the are from the middle to the edge or lip

Emmi?equal parts. 7 5 7

7 243. A second application of the principle stated in § 210,

and used in 237 ...239, allows us to proceed from the solu

tion now found for the electrification of an uninfluenced bowl

to determine the electrification of a bowl or disc under the

influence of electricity insulated at a point Q (not, as in the

solution of § 239, necessarily in the spherical surface or plane

of the bowl or disc, but) anywhere in the neighbourhood. Con

sider the image, S, of an uninfluenced electrified bowl, S’,

relatively to a spherical surface described from any point Q in

its neighbourhood, as centre, with radius R. Let D’ be the

point on the spherical surface of S’ continued, which is equi

distant from the lip (so that D’ and the middle point of the

conducting surface S’ are the two poles of the circle constitut

ing the lip); D'K'P’L’ the circle in which S’, and the con

tinuation of its spherical surface, are cut by the plane through

D’, Q, and any point P of S at which it is desired to find the

electric density; and DKPL the image of D'K'P'L'.

In the annexed diagrams two cases are illustrated; in one

of which S is spherical and concave towards the influencing

 

point, Q; in the other, S is plane. Using now for S’ all the

notation of 240, 241, but with accents added, and taking

advantage of § 238, footnote, we see that
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a”—r" =K'P’. FL’

and f"—a"=D’K”=D’L"=D’K5D’L’.

Hence (1 9) becomes

P,= { D’K'. D’L'_ tar, D’K’. D’L’ } (21)

21r'f P’K’. P L’ P’K’. P’L’ '

for the electric density at P’ on the concave side of S’. But,

as in § 238, we find

P'K’=PK. R" , P'L’=PL._IZ4 (22)

QRQK QRQL ’

and D’K'=D'L’=DK~@L-=DL R’ (23).

QD.QK QD.QL

Also, if h denote the shortest distance from Q to the spherical

or plane surface of S, and f the diameter of this surface (infinite

of course when the surface is plane, or negative if the con

vexity be towards Q), we have

_R' R’ _ R’f
f-T+f_rh(frtj (24*

Using these in (21), putting V’: 1%, and substituting the

expression so obtained for p’ in (8) of § 237, we find

_qh(f—h) 5g. DK.DL__ _ PQ DK.DL
p_21r'f.PQ'{ DQ, PK.PL “m ’ 5Q PK.PL:|} (25)’

for the electric density on the side of S remote from Q (that is,

the convex or concave side, when S is spherical, according as Q

is within or without the completed spherical surface). The

electric density on the side next Q is [§ 241 (20)] the same,

with the addition of 9“f.1,) (26).

21rf.PQ'

These formulae, (25) and (26), express the electric density on

the two sides of a circular segment or disc of infinitely thin

spherical or plane conducting surface connected with the earth

by an infinitely fine wire, and electrified by the influence of a

quantity —q of electricity insulated at a point Q anywhere in

its neighbourhood.

244. The position of the auxiliary point D (which appears in

the diagrams as the image of D’, the unoccupied pole of the lip

of the original bowl S’) may be found, without reference to S’,

by construction from S and Q supposed given; thus :——From

(22) of§ 243 we have

KD:DL::KQ:QL (27),
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where K and L may be the points in which the lip of the bowl

S is cut by any plane through QD'D. Let, for instance, this

plane pass through the centre of one of the spherical surfaces.

It must also pass through the centre of the other, and bisect

each bowl; and if E, F

be the points in which

it cuts the lip of S, (2 6)

applied to the present

case gives

ED:DF::EQ:QF.

Hence (Euclid, v1. 3)

the lines bisecting the

angles EDF, EQF cut

the base ET in the

same point; and D must be in the circle which is the locus

of all points in the plane E'FQ fulfilling this condition, being

found by the well-known construction, thus :—Bisect the angle

EQC by QA, meeting EF in A. Draw QB perpendicular to

QA, and let it meet EF produced, in B. On BA as diameter

describe a circle, which is the required locus; and D is the

point in which this circle cuts the unoccupied part of the

spherical or plane surface of S.

245. D being found by this simple construction, the solution

of the problem is complete, without reference to S’, thus :—To

find the electric density at any point P, draw a plane through

QDP, and let it meet the lip in K and L. Measure DK, DL,

PK, PL, PQ, and DQ, and calculate by (25) and (26). But we

have an important simplification from the geometrical theorem

of § 238, which shows that

DK.DL_Dk.Dl

PK.PL“ Pk.Pl

if k, l he points in which the lip is cut by any plane whatever

through PD. Choose, for instance, the plane through PD,

and C’ the middle point of S. Then, as D, k, P, G, l lie all on

B5

 

(23)

one circle, and C' is the middle point of the arc kPl, we have

(as above, in § 238)

Die. Dl= CD’ -— CL"= CD’— a’,

Pk.Pl= Ok'- OP’ =a’- 0P’ ;
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where, as before, a denotes the chord from the middle point to

the lip. Using this in (28) and (25) we have, finally,

_qh(f—">{fil QW-“LaH-I Pa CD’-”':|} (29),
P_ 591% no a'— GP’ To a‘— GP’

for the density on the side remote from Q; h and f-h being

the shorter and longer distance.

246. For the case in which S is a plane disc, or f= so , this

becomes

_ qh PQ CD'-a‘_ _ PQ CD’-a' 1
P_21r'PQ' {on d-Jfii “a” ‘ m a’—CP' ; (30)’

and~the addition (26) to it to give the electric density on the

side next to Q, qh

211)Q‘Also, as EFD is a straight line in this case, (27) gives

= Fe“as ,
CD §E QF__ QE (32)

QE, QF are to be calculated immediately from data of whatever

form, specifying the position of Q; and from them and CD

found by this formula, DQ is to be calculated. Thus explicitly

we have every element required for calculating electric densities

by (30).

247. For the case of Q in the axis of the disc, D is infinitely

distant, so that CD = 00, DQ : co , and 2%:1. And if for

CF we put r, (30) and (31) give, for the density on remote side,

7: Pa _} PQ
P=27r|qPQ;{ (ag_1_’)§ _t3n (‘r-Ti)‘ }

and for the density on near side,

qh

P+ 21rPQ'
(34).

If P be at the centre of the disc, and if we take 9: 2w’, these

become

for remote side, p=%(-Z- —tan-‘%)

(35);

for near side, p+]-T;
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from which the following numerical results have been calcu

lated, with a, the radius of the disc taken as unity :—

Distance of Induced Electric Density at middle

Influencing of Di“

Point On remote side On near side

h. ‘p=h.-1- not-‘(h-U. p-l-rk".

l-2 1 ‘1651 I 78'7049

'4 ‘1218 19-7567

‘6 ‘1655 8'89? 1

'8 ‘1957 51044

1'0 ‘2146 3‘3562

1'2 ‘2250 2'4067

1'4 ‘2293 F832?

1'6 ‘2296 1'4568

1'8 ‘2273 1'1969

2'0 ‘2232 1‘0086

3‘0 , ‘1946 '5437

248. These numbers show that the distance at which the in-.

fiuencing point, if restricted to the axis of the disc, must be

held to render the induced electric density at the middle on

the far side a. maximum is about 15 times the radius. But the

characteristics (1.) of the zero electric density on the far side,

and infinite on the near side, when the influencing point is

infinitely near the disc; (2.) the proportionality of the latter

to h" for very small distances ; and (3.) the ultimate vanishing

of the difference between the two sides as the influencing point

is removed to an infinite distance, and the approximation of

each to Green's result for a plane uninfluenced disc electrified

to a potential equal to qh (§ 234, above), is better illustrated

by the formulae themselves, (35); (33), (34); and (30), (31);

than by any numerical results calculated from them, however

elaborately. It would be interesting to continue the analytical

investigation far enough to determine the electric potential at

any point in the neighbourhood of a disc electrified under in

fluence, and so to illustrate further than is done by the numbers

and formulae already obtained, the theory of electric screens, and

of Faraday’s celebrated “induction in curved lines” (Experi

mental Researclws in Electricity, 1161, 1232 ; Dec. 21, 1837) ;

but I am obliged to leave the subject for the present, in the

hope that others may be induced to take it up.



XVI. ATMOSPHERIC ELECTRICITY.

[From Nichol's Cyclopmdia, 2d Ed. (1860).]

249. It may be premised, to avoid circumlocution in this

article, that every body in communication with the earth by

means of matter possessing electric conductivity enough to

prevent its electric potential‘ from differing sensibly from that

of the earth, will be called part of the earth. Moist stone, and

rock of all kinds, and all vegetable and animal bodies, in their

natural conditions, except in circumstances of extraordinary

dryness, possess, either superficially or throughout their sub

stance, the requisite conductivity to fulfil that condition. On

the other hand, various natural minerals and artificial com

pounds, such as glass-various vegetable gums, such as India

rubber, gutta percha, r0sin,—and various animal products, such

as silk and gossamer fibre,—when either in a very dry natural

or in an artificially dried atmosphere, resist electrical conduc

tion so strongly that they may support a body, or otherwise

form a material communication between it and the earth, and

yet allow it to remain charged with electricity to a potential

sensibly differing from the earth's, for fractions of a second, for

minutes, for hours, for days, or even for years, without any

fresh excitation or continued source of electricity. Again, air,

whether dry or saturated with vapour of water, and probably

all gases and vapours, unless ruptured by too strong an electro

motive force, are very thoroughly destitute of conductivity—

that is to say, are very perfectly endowed with the property

of resisting the tendency of electricity to pass and establish

’ Two conducting bodies are said to be of the same electric potential

when, if put in conducting communication with the two electrodes of an

elcctrometer, no electric effect is produced. When, on the other hand, the

clcctrometer shows an effect, the amount of this effect measures the dif

ference of potentials between the two bodies thus tested. Difference of

potentials is also called electromotive force.
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equality of potential between two bodies not otherwise materi

ally connected.

250. Hence, when “the surface of the earth" is spoken

of, the surface separating the solids and liquids of the earth

from the air will he meant; and when the more qualified ex

pression “outer surface of the earth” is used, inner surfaces

of vesicles, or the surfaces bounding completely enclosed spaces

of air, must be understood to be excluded. Thus, the surface

of a mountain peak; the surface of a cave, up to the inmost

recesses of the most intricate passages; the surface of a tunnel ;

the surface of the sea, or of a lake or river; all the surface of a

sheet of unbroken water in such a fall as that of Niagara; the

surface of blades of grass and flowers, and of soil below; in a

wood, the surface of soil, and of trunks and leaves of trees;

the surface of any animal resting on the earth ; the outside of

the roof of a house; the whole inside surface of a room with

an open window ; all belong to the outer surface of the earth.

251. On the other hand, the moon, meteoric stones, birds or

insects flying, leaves or fruit falling, seed wafted through the air,

spray breaking away from a cascade or from waves of the sea,

the liquid particles of a cloud or a fog, present surfaces not

belonging to the earth, and between which and the earth's

surface differences of potential, and lines of electric force, may
and generally do exist. ' "a’ ' n‘

252. The whole surface of the earth, as defined above (§ 250),

is at every moment electrified in every part, with the exception

of neutral lines dividing portions which are negatively (resin

ously) from portions which are positively (vitreously) electrified.

The negatively electrified portions are of very much greater

extent, at all times, than those positively electrified; and there

may be times when the whole surface is negatively electrified,

because in all localities in which electrical observations have

been hitherto made, with possibly one remarkable exception,‘

the earth's surface is always found negative, day and night,

" At Guajara station, on the Peak of Tenerifi'e, “ During the whole period

“ of observation, by day and night, the electricity was moderate in quantity,

“ and always resinous. This was during the period of N.E. trade wind, and

“ within its influence, though above its clouds.”——[Professor Piazzi Smyth’s

Account of the Tenerifl'e Astronomical Experiment, Philosophical Transac

lions, 1858, and separate publication ordered by the Lords of the Admiralty]

The “electricity” here referred to was that acquired by an insulated con

ductor carrying a burning match in the air at some distance from the earth. If

X
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during fair weather, and only occasionally positive in broken

weather, or during an actual fall of rain in the immediate

neighbourhood, if not exactly on the place of observation. If,

then, at any one time there chances to be fair weather over the

whole earth, it may be presumed that the whole outer surface

of the earth is then negatively electrified, unless, judging from

the possible exception above alluded to, we are still to expect

positive electrification in same extreme positions.

253. As yet nothing is known regarding the electrification

of air itself)‘ or of clouds or other matter suspended in the air,

except what can be inferred (see below, § 254) from the elec

trification of the earth's surface, and its variations, with which

alone, as Peltier has remarked, the observations of “ atmo

spheric electricity” hitherto published have dealt (see below,

265, 266). It is impossible, in the nature of things, to

investigate the bodily electrification of a non-conductor by any

observation whatever of electric action without it,1' or in any

way whatever, except by something equivalent to a determina

tion of the magnitude and direction of the resultant force at

every point of its massi Towards this thorough investigation

it were really negative, the earth‘s electrification at the place must have been

positive; but the test as to quality may have been deceptive, owing to the

highly insulating condition of both outer and inner surfaces of the glass

shade enclosing the gold leaves, and to the circumstance of the testing piece

of rubbed sealing wax having been applied possibly too near the gold leaves,

instead of beside a remote part of the insulated rod. Professor Smyth

assures the writer, that he considers the electrical experiment as not suffi

ciently complete or confirmed to allow any conclusion to be built on it, and

regard it rather as an indication of the importance of making electrical

observations with better apparatus, and more available time for using it,

than the first Tenerifi'e scientific expedition afl‘orded.

" For knowledge gained since this article was written see §§ 296-301 below.

1' According to Green’s remarkable theorems, triply rediscovered by Gauss,

Chasles, and the writer of this article, all different distributions of electricity

within a solid, which produce the same potential at its surface, produce the

same force at every point without it, and the problem of finding a distribu

tion of electricity within the interior, to produce a given distribution of

potential at the surface, is indeterminate.

i Let X, Y, Z he the components of the resultant force on a unit of elec

tricity, if placed at any point z, y, z in a mass of air or other non-conductor ;

and let p denote the electrical density of the substance, that is to say, the

quantity of electricity per unit of bulk actually possessed by the air in the

neighbourhood of this point. Then, by a well-known proposition of the

mathematical theory of attraction, we have

1 (IX dY d2)

e=nas+zs+w '
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of the distribution of electricity within a non-conducting mass,

it may be remarked, that a determination of the normal com

ponent of the force all round a closed surface is just sufficient to

show the aggregate quantity of electricity possessed by all the

matter situated within it.‘ Hence dbservatiou in positions all

round a mass of air is necessary for determining the quantity

of electricity which it contains; and, therefore, the balloon

must be putin requisition if knowledge of the distribution of

electricity through the atmosphere is to be sought for.

254. Without leaving the earth, however, although we cannot

thoroughly investigate the electrification of the air, we can

make important inferences about it from observations of the

electric density over the earth’s surface, by a principle of judg

ing which may be thus explained :—If the earth were simply

an electrified body, placed in a perfectly insulating medium of

indefinite extent, and not sensibly influenced by any other

electrified matter, or by reflex influence from any conductor or

dielectric in its vicinity, its electricity would be distributed

over its surface according to a perfectly definite law, depend—

ing solely on the form of the surface, and deducible by a

sufficiently powerful mathematical analysis from sufficiently

perfect data of “geometry” (in the primitive sense of the term),

or of what, in more modern language, is called geodesy. If

the surface of the earth were truly spherical, this law would

simply be uniform distribution. A truly elliptic oblateness of

the earth would give, instead of uniformity, a distribution of

electric density in simple proportion to the perpendicular

distance between a tangent (that is horizontal) plane through

any point and the earth's centre ; according to which the electric

density at the equator would be greatest, and would exceed

that at either pole, where it would be least, by sin: a differ

ence which, for the present, we may disregard.

255. The whole amount of electricity over the surface of

any great region of mountainous country, or of forest land,

or of soil and vegetation of any kind, or of streets and houses in

" Let N be the normal component of the force at any point of a closed

surface, ds an element of the surface, f the sign of integration for the whole

surface, and Q the whole quantity of electricity within it. Then, by a well

known theorem of Green’s, rediscovered as alluded to in a preceding note,

we have Q=I11_r [Nds
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a town, or of rough sea, would be very approximately the same

as that on an area of unrufiied ocean, equal to the “ reduced”

area of the irregular surface; but the distribution of the elec

tricity over hill and valley, over the leaves and trunks of trees,

and the surfaces of plants generally, and on the soil beneath

them, over the roofs, perpendicular walls, and overhanging or

overshaded surfaces of buildings, and the surfaces of streets and

enclosed courts between them, and over the hollows and crests

of waves in a stormy sea, would be extremely irregular, with,

in general, greater electric density on the more prominent and

convex portions of surfaces, and less on the more covered and

concave——quite inscnsible, indeed, in any such position as the

interior of a cave, or the soil below trees in a forest even where

considerable angular openings of sky are presented-or the

roof or floor of a tunnel, or covered chamber, even although

open to a considerable angle of sky.

256. If thus a perfect electro-geodesy gave a “reduced”

electric density equal over the whole earth, we might infer that

the electrification of the earth is not influenced by any elec

tricity in the air. According to what has been stated above,

there might in that case be either no electricity in the air, from

the earth’s atmosphere to the remotest star, and'thellingsgi

electric force rising from the earth might either be infinite or

W‘ “- v ‘

terminate in the surfaces of the moon, meteoric stones, sun,

planets, and stars; or there might be, at any distance con

siderably exceeding the height of the highest mountain, a uni~

formly electrified stratum of equal quantity and opposite kind

to the earth’s, balancing through all the exterior space the force

due to the terrestrial electricity, and limiting the manifestations

of electric force to the atmosphere within it; or there might be

any of the infinite variety of distributions of electricity in space

round the earth, by which the electric density at the earth’s

surface would be uninfluenced.

25 7. But, in reality, the electric density varies greatly, even

in serene weather, over the earth’s surface at any one time,

as we may infer from (1.) the facts (established for Europe,

and probably true in all the temperate zones of both hemi

spheres), that in any one place the electric density of the

surface observed during serene weather is much greater in
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winter than in summer, and that it varies according to some

thing of a regular periodicity with the hours of the day and

night; and (2.) the consideration that there is often serene

weather of day and night, and of summer and winter, at one

and the same time, in different temperate portions of the earth.

We may, therefore, consider it as quite established that, even

in serene weather, the electrification of the earth’s surface is.

largely influenced by external electrified matter. Although we

cannot (§ 253) discover the exact locality and distribution of

this influencing electricity from its effects at the earth's surface

alone, yet it is possible, from the character of the distribution

of the terrestrial electric density as influenced by it, to assign a

superior limit to its height.’ If at any one instant the electric

density reduced to the sea level were distributed according to

a simple “harmonic” law, or, more generally, according to a

certain definite character of non-abruptness of variation easily

specified in mathematical language-1' the external influencing

electricity might be at any distance, however great, for all we

could discover by observations near the earth’s surface. But,

little as we know yet regarding the diurnal law of electric

variation in serene weather, it is, we may say with almost

perfect certainty, not such as could give at any instant a dis

tribution over the whole earth possessing any such gradual

character as that referred to; and, therefore, we may, in all

probability, from the character of the diurnal variation itself,

say that its electric origin is not at a distance of many radii

from the surface. On the other hand, when we consider that

in temperate regions the velocity with which the earth's surface

* If at any instant the co-eflicients of the series of “ Laplace's functions,”

eilpressing the terrestrial electric density reduced to the sea level, con

1
verged ultimately with less rapidity than the geometrical series 1, % 5 Han-

we might be sure that there is electricity in the air at some distance from

the centre of the earth, not exceeding m times the radius of the earth's sur

face. For the principles on which this assertion is founded, see a short

article, entitled “Note on Certain Points in the Theory of Heat,” Cambridge

Mathematical Journal, November 1843.

'I' For instance, if in simple proportion to the cosine of the angular distance

from any point of the earth’s surface, or more generally, if expressible by

any finite number of “Laplaee‘s functions,” or still more generally, if ex

pressible by a. series of “Laplace’s functions,” with co-efficients converging

ultimately more rapidly than any geometrical series.
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is carried round in its diurnal course is from 500 to 900 miles

per hour, we see clearly that any law of diurnal electric varia

tion, established on observations even so frequent as once every

hour, could not possibly fix the locality of the origin to within

100 miles of the surface; and as we have as yet nothing to go

upon in the way of published observations more frequent than

three or four times a day, towards establishing either the ex

istence or the character of the diurnal law, we cannot consider it

as proved by observation that the influencing electricity which

produces it is even as near as the 50 or 100 miles limit which is

commonly (but in the opinion of the writer of this article, most

unreasonably) assigned as an end to the earth's atmosphere.

258. The great suddenness of the electric variations during

broken weather, and their close correspondence with beginnings,

changes, and cessations of rain, hail, or snow, compel us (by a

common sense estimate founded on an unconscious application

of the mathematical law stated in the footnotes to the preced

ing § 257) to believe that their origin agrees in position with

that of the showers, and to give it a “local habitation” and a

name—Thundercloud.

259. The writer of this article has observed extremely rapid

variations of terrestrial electrification during perfectly serene

weather. Thus, in a, calm summer night, with an unvarying

cloudless sky overhead, and not the faintest appearance of

auroral light to be seen, he has, in a temporary electric observa

tory in the Island of Arran, found large variations (as much as

from a certain degree to double and back) in the course of

a minute of time. The influencing electricity by which these

variations were produced, cannot possibly (unless on the ex

tremely improbable hypothesis of their being due to highly

electrified extra-terrestrial matter moving very rapidly with

reference to the earth) have been very far removed from the

earth’s surface. It is not impossible, and we have as yet

nothing to make it decidedly improbable, that they were due

to fluctuations up and down of aerial strata, perhaps those of

the great atmospheric currents, in high regions of the atmo

sphere. Judging, however, from still more recent observations

referred to below (§ 262), we may think it more probable that

these remarkable variations in the observed electric force were
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due chiefly to positively or negatively electrified masses moving

along within a few miles of the locality of observation.

260. Returning to the subject of the distribution of elec

tricity over the earth’s surface at any instant, we may remark,

that if over an area of several miles in diameter, of perfectly

level bare country, or of sea, the electrical density is sensibly

uniform, we could not, without going up in a balloon, and

observing the electric force at points in the air above, form

any judgment whatever as to the distance from the earth at

which the influencing electricity is situated. If, on the other

hand, we find a very sensible variation in the electric density

between two points of a piece of level open country, or at

sea, not many miles apart, we may infer as quite certain

that there is influencing electricity not many miles up in the

air, and not uniformly distributed in level strata. Nothing

can be easier than to make this trial-only to observe simul

taneously with similar instruments, similarly placed, at two

neighbouring stations, in a suitable locality-and most interest

ing and important results are to be derived from it, as soon as

arrangements can be made for continuing the requisite observa

tions day and night, during various vicissitudes of weather,

especially during a time of perfect serenity.

261. Corresponding statements apply to a mountainous

country, with this modification, that a very varied, instead of

a uniform distribution of electric density, is, in such a locality,

as explained above in § 255, the natural consequence of freedom

from the disturbing influence of near electrified masses of air or

cloud The problem of accurately determining, from purely

geometric data (§ 256), this undisturbed distribution over even

the smoothest hillside, would infinitely transcend human mathe

matical power, although an approximate solution may be readily

given for any piece of country over the whole of which both the

inclination and the ratio of the height above the general level to

the radius of curvature of the surface are small. For a rugged

mountainous country, the most perfect geometric data, and the

most strenuous mathematical efforts, could scarcely lead us

towards an approximate estimate of the inequalities of electric

density which different localities must present without any

disturbance from near electrified atmosphere. Hence, in a
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mountainous country-unless we find electricity strong in some

locality where from the configuration of the surface, we correctly

judge it ought to be weak if undisturbed, or weak where it ought

to be strong, or unless, at least, we find some very decided devia

tion from any such amount of difference between two stations

as, without being able to make a precise calculation, we can

estimate for the difference due to figure-we cannot judge as

to the influence of aerial electrification from simultaneous

absolute determinations at any one instant alone. But of one

thing we may be sure, that although the absolute amounts of

the electrification at any two stations not far apart may differ

largely, they must remain in an absolutely constant propor—

tion to one another, if there is no electrified air or cloud near.

262. Hence, if we find observations made simultaneously by

two electrometers in neighbouring positions, in a mountainous

country, to bear always the same mutual proportion, we may

not be able to draw any inference as to electrified air; but if,

on the contrary, we find their proportion varying, we may be

perfectly certain that there are varying electrified masses of air

or cloud not far off. A first application of this test is described

in the following extract from the Proceedings of the Literary

and Philosophical Society of Manchester for October 18, 1859 :——

“ The following extract of a letter received from Professor \V.

“Thomson, F.R.S., Glasgow, Honorary Member of the Society,

“ etc, was read by Dr. Joule :

‘ I have a very simple “ domestic” apparatus by which I can

‘ observe atmospheric electricity in an easy way. It consists

‘ merely of an insulated can of water set on a table or window

‘ sill inside, and discharging by a small pipe through a fine nozzle

‘ two or three feet from the wall. With only about ten inches

' head of water and a discharge so slow as to give no trouble in

‘ replenishing the can with water, the atmospheric effect is

‘ collected so quickly that any difference of potentials between

‘ the insulated conductor and the air at the place where the

‘ stream from the nozzle breaks into drops is done away with at

‘ the rate of five per cent. per half second, or even faster. Hence

‘a very moderate degree of insulation is sensibly as good as

‘ perfect, so far as observing the atmospheric effect is concerned.

‘ It is easy, by my plan of drying the atmosphere round the

‘insulating stems by means of pumice-stone moistened with
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‘ sulphuric acid, to insure a degree of insulation in all weathers,

‘by which there need not be more than five per cent. per hour

‘ lost by it from the atmospheric apparatus at any time. A little

‘ attention to keep the ‘outer part of the conductor clear of

‘ spider lines is necessary. The

‘ apparatus I employed at In

‘ vercloy stood on a table beside

‘ a window on the second floor,

‘ which was kept open about

‘ an inch to let the discharg

‘ing tube project out without

 

_ ‘ coming in contact with the Fm.1.

‘frame. The nozzle was only about two feet and a half from

‘the wall, and nearly on a level with the window sill. The

‘divided ring eleotrometer stood on the table beside it, and

‘ acted in a very satisfactory way (as I had supplied it with a

‘ Leyden phial, consisting of a common thin white glass shade,

‘ which insulated remark

‘ably well, instead of the

‘German glass jar—the

‘second of the kind which

‘I had tried, and which

‘would not hold its charge

‘for half a day). I found

‘ from 13}0 to 14° of torsion

‘ required to bring the index

‘to zero, when urged aside

‘ by the electromotive force

‘of ten zinc-copper water

‘cells. The Leyden phial

‘ held so well, that the sensi

‘bility of the electrometer,

‘ measured in that way, did

‘not fall more than from

‘ 13%0 to 13;}0 in three days.

‘ The atmospheric efiect

‘ranged from 30° to above

‘ 420° during the four days

‘ which I had to test it ; that
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‘ is to say, the electromotive force per foot of air, measured hori

‘ zontally from the side of the house, was from 9 to above 126 zinc

‘ copper water cells. The weather was almost perfectly settled,

‘ either calm, or with slight east wind, and in general an easterly

‘ haze in the air. The electrometer twice within half an hour went

‘ above 420°, there being at the time a fresh temporary breeze

‘ from the east. What I had previously observed regarding the

‘ effect of east wind was amply confirmed. Invariably the

‘ electrometer showed very high positive in fine weather, before

‘ and during east wind. It generally rose very much shortly

‘ before a slight puff of wind from that quarter, and continued

‘high till the breeze would begin to abate. I never once

‘ observed the electrometer going up unusually high during fair

‘ weather without east wind following immediately. One even

‘ ing in August I did not perceive the east wind at all, when

‘warned by the electrometer to expect it; but I took the

‘ precaution of bringing my boat up to a safe part of the beach,

‘ and immediately found by waves coming in that the wind

‘ must be blowing a short distance out at sea, although it did

‘not get so far as the shore. I made a slight commencement

‘ of the electrogeodcsy which I pointed out as desirable at the

‘ British Association, and in the course of two days, namely,

‘ October 10th and 11th, got some very decided results. Mac

‘farlane, and one of my former laboratory and Agamemnon

‘ assistants, Russell, came down to Arran for that purpose. Mr.

‘ Russell and I went up Goatfell on the 10th instant, with the

‘ portable electrometer (see Fig. 3), and made observations, while

‘ Mr. Macfarlane remained at Invercloy, constantly observing

‘and recording the indications of the house electrometer. On

‘ the 11th instant the same process was continued, to observe

‘ simultaneously at the house and at one or other of several

‘stations on the way up Goatfell. I have not yet reduced all

' the observations; but I see enough to leave no doubt whatever

' but that cloudless masses of air at no great distance from the

' earth, certainly not more than a mile or two, influence the

‘ electrometer largely by electricity which they carry. This I

‘ conclude because I find no constancy in the relation between

‘ the simultaneous electrometric indications at the different

‘ stations. Between the house and the nearest station the rela
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‘ tive variation was least. Between the house and a station about

‘ half way up Goatfell, at a distance estimated at two miles and

‘ a half in a right line, the number expressing the ratio varied

‘ from about 113 to 360 in the course of about three hours. On

‘ two different mornings the ratio of the house to a station about

‘ sixty yards distant on the road beside the sea was 97 and 96

‘ respectively. On the afternoon of the 11th instant, during a

‘ fresh temporary breeze of east wind, blowing up a little spray as

‘ far as the road station, most of which would fall short of the

‘ house, the ratio was 108 in favour of the house electrometer

‘ —both standing at the time very high-the house about 350°.

‘ I have little doubt but that this was owing to the negative _

‘ electricity carried by the spray from the sea, which would

‘ diminish relatively the indications of the road electrometer.’ ”

263. The electrometers referred to in the preceding extract

were on two different plans. The first, or "divided ring

electrometer,” consists of—(l.) A ring of metal divided into

sectors, of which some-one or more—are insulated and con

nected with the conductor to be electrically tested, and the

' remainder connected with the earth. (2.) An index of metal

supported by a glass fibre, or a wire, stretched in the line of

the axis of the ring, and capable of having its fixed and turned

through angles measured by a circle and pointer. (3.) A

Leyden phial, with its insulated coating electrically connected

with the index. (4.) A case to protect the index from currents

of air, and to keep an artificially dried atmosphere round 'the

insulating supports—glazed to allow the index to be seen from

without, but with the inner surface of the glass screened

(electrically) by wire cloth, perforated metal, or tinfoil, to do

away with irregular reflections on the index. In the instru

ment represented in the drawing (No.2) above, the ring is

divided only into two parts, which are equal, and separated by

a space of air about 1511; of an inch. Each of these half rings is

supported on two glass pillars ; and by means of screws acting

on a foot which bears these pillars, it is adjusted and fixed in

its proper position. The index is of thin sheet aluminium, and

projects in only one direction from the glass fibre bearing it.

A stiff vertical wire, rigidly connected with it, nearly in the

prolongation of the fibre, bears a counterpoise considerably
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below the level of the index, and heavy enough to keep the

index horizontal. A thin platinum wire hooked to the lower

end of this vertical wire, dips in sulphuric acid in the bottom

of the Leyden phial. The Leyden phial is charged either posi

tively or negatively; and is found to retain its charge for

~-=» “ months, losing, however, gradually, at some

low rate, less generally than one per cent. per

day of its amount, The index is thus, when

the instrument is in use, kept in a state of

charge corresponding to the potential of the

inside coating of the phial. \Vhen one of the

half rings is connected with the earth, and a

charge of electricity communicated to the other,

the index moves from or towards the latter,

according as the charge communicated to it is

of the same or the opposite kind to that of the

index. This instrument, as an electroscope,

possesses extreme sensibility—much greater

than that of any other hitherto constructed;

and by the aid of the torsion arrangement, it

may be made to give accurate metrical results.

There are some difficulties in the use of it,

especially as regards the comparison of the indi

cations obtained with different degrees of elec

trification of the index, and

the reduction of the results

to absolute measure, hither

to obviated only by a daily

application of Delmann’s

method of reference to a

zinc-copper water battery,

which Delmann . himself

applies once for all, to one

of his electrometers (unless

his glass fibre breaks, when

he must make a fresh deter

mination of the sensibility

of the instrument with its

new fibre). The high sensi

Fm. svipnflfllllt’Atlllllflpill'l‘k‘Ell'l'tl‘OlllCi-(‘F 0f the divided ring
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electrometer renders this test really very easy, as not more than

from ten to twenty cells are required ; and a comparison with a

few good cells of Daniell’s may be made by its aid, to ascertain

the absolute value and the constancy of the water cells. The

difficulty thus met is altogether done away with in another

kind of electrometer, also “ heterostatic,” of which only one has

yet been constructed-the electrometer of the portable apparatus

shown in the third drawing. In it the index is attached at

right angles to the middle of a fine platinum wire, firmly

stretched between the inside coatings of two Leyden phials,

and consists simply of a very light bar of aluminium, extend

ing equally on the two sides of the supporting wire. It is

repelled by two short bars of metal, fixed on the two sides of

the top of a metal tube, which is supported by the inside coat-

ing of the lower phial, and has the fine wire in its axis. A

conductor of suitable shape, bearing an electrode, to connect

with the body to be tested, insulated inside the case of the

instrument, in the neighbourhood of the index, and when elec

trified in the same way, or the contrary way, to the inside

coatings of the Leyden phials, causes, by its influence, the

repulsion between the index and the fixed bars to be diminished

or increased. The upper Leyden phial is moveable about a

fixed axis, through angles measured by a pointer and circle,

and thus the amount of torsion, in one-half of the bearing

wire, required to bring the index to a constant position, in any

case, is measured. The square root of the number of degrees

of torsion measures the difference of potentials between the

conductor tested and the inner coating of the Leyden phial.

In using the instrument, the conductor tested is first put in

connexion with the earth, and the torsion required to bring the

index to its fixed position is read off. This is called the zero,

or earth reading. The tested conductor is then electrified, and

the torsion reading taken. In the atmospheric application, this

is called the air reading. The excess-—-positive or negative

of its square root, above that of the zero reading, measures the

electromotive force between the earth and the point of air

tested. This result, when positive shows vitreous, when nega

tive resinous potential in the air; if the index is resinous. By

the aid of Barlow’s table of square roots, the indications of the
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instrument may thus be reduced to definite measure of potential,

almost as quickly as they can be written down. Once for all,

the sensibility of the instrument can be determined by com

parison with an absolute electrometer, or a galvanic battery.

In the portable apparatus a burning match is used—--instead of

the water-dropping system, which the writer finds more con

venient than any other for a fixed apparatus~to reduce the

insulated conductor to the same potential as the air at its end.

264. As has been remarked above (§ 252), it is the electrifica

tion of the earth’s surface which has either directly or virtually

been the subject of measurement in all observations on atmo

spheric electricity hitherto made. The methods which have

been followed may be divided into two classes-(1.) Those in

which means are taken to reduce the potential of an insulated

conductor to the same as that of the air, at some point, a few

feet or yards distant from the earth. Those in which a

portion of the earth (see above, § 253) is insulated, removed

from its position, and tested by an electrometer, in a different

position, or under cover. The first method was very imperfectly

carried out by Beccaria with his long “ exploring wire,” stretched

between insulating supports, or elevated portions of buildings,

tree tops, or other prominent positions of the earth (see above,

§ 249) ; also, very imperfectly by means of “ Volta’s lantern”—

an enclosed flame, supported on the top of an insulated conduc

tor. On the other hand, it is put in practice very perfectly, by

means of a match, or flame burning in the open air, on the top

of a well insulated conductor—a plan adopted, after Volta's

suggestion, by many observers; also, even more decidedly, by

means of the water-dropping system—described in the preced

ing extract-which has recently occurred to the writer, and has

been found by him both to be very satisfactory in its action,

and extremely easy and convenient in practice. The principle

of each of these methods of the first class may be explained

best by first considering the methods of the second class, as

follows :-—

265. If a large sheet of metal were laid on the earth in

a perfectly level district, and if a circular area of the same

metal were laid upon it, and, after the manner of Coulomb’s

proof plane, were lifted by an insulated handle, and removed
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to an electrometer within doors, a measure of the earth's elec

trification, at the time, would be obtained ; or, if a ball, placed

on the top of a conducting rod in the open air, were lifted from

that position by an insulating support, and carried to an

electromet-er within doors, we should also have, on precisely the

same principle, a measure of the earth's electrification at the time.

If the height of the ball in this second plan were equal to one

sixteenth of the circumference of the disc (compare § 235) used

in the first plan, the electrometric indications would be the same,

provided the diameter of the ball is small, in comparison with

the height to which it is raised in the air, and the electrostatic

capacity of the electrometer is small enough not to take any

considerable proportion of the electricity from the ball in its

application. The idea of experimenting by means of a disc laid

flat on the earth, is merely suggested for the sake of illustra

tion, and would obviously be most inconvenient in practice.

On the other hand, the method, by a carrier ball, instead of a

proof plane, is precisely the method by which, on a small scale,

Faraday investigated the distribution of electricity induced on

the earth’s surface (see above,§ 24-9), by a piece of rubbed shell

lac; and the same method, applied on a suitable scale, for test

ing the natural electrification of the earth in the open air, has

given, in the hands of Delmann of Creuznach, the most accurate

results hitherto published in the way of electro-meteorological

observation.‘ -

266. If, now, we conceive an elevated conductor, first belong

ing to the earth (§ 249), to become insulated, and to be made

to throw off, and to continue throwing ofi', portions from an

exposed position of its own surface, this part of its surface will

quickly be reduced to a state of no electrification, and the whole

conductor will be brought to such a potential as will allow it to

remain in electrical equilibrium in the air, with that portion of

its surface neutral. In other words, the potential throughout

the insulated conductor is brought to be the same as that of the

' Through some misapprehension, Mr. Delmann himself has not perceived

that his own method of observation really consists in removing a portion of

the earth, and bringing it insulated with the electricity which it possessed

in situ, to be tested within doors, otherwise, he could not have objected, as

he has, to Peltier’s view.
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particular equi-potential surface in the air, which passes through

the point of it from which matter breaks away. A flame, or

the heated gas passing from a burning match, does precisely

this: the flame itself, or the highly-heated gas close to the

match being a conductor which is constantly extending out,

and gradually becoming a non-conductor. The drops into

which the jet issuing from the insulated conductor, on the plan

introduced by the writer, produce the same effects, with more

pointed decision, and with more of dynamical energy to remove

the rejected matter with the electricity which it carries from

the neighbourhood of the fixed conductor.

ROYAL INSTITUTION FRIDAY EVENING LECTURE,

MAY 18, 1860.

267. Stephen Gray, a pensioner of the Charter-house, after

many years of enthusiastic and persevering devotion to electric

science, closed his philosophical labours, about one hundred

and thirty years ago, with the following remarkable conjec

ture :——“ That there may be found a way to collect a greater

“ quantity of the electrical fire, and consequently to increase

“ the force of that power, which, by several of these experi

“ ments, si licct magna cmnponcrc part-is, seems to be of the

“ same nature with that of thunder and lightning.”

The ‘inventions of the electrical machine and the Leyden

phial immediately fulfilled these expectations as to collecting

greater quantities of electric fire; and the surprise and delight

which they elicited by their mimic lightnings and thunders,

and above all by the terrible electric shock, had scarcely sub

sided when Franklin sent his kite messenger to the clouds, and

demonstrated that the imagination had been a true guide to

this great scientific discovery-the identity of the natural agent

in the thunderstorm with the mysterious influence produced

by the simple operation of rubbing a piece of amber, which,

two thousand years before, had attracted the attention of those



XVL] Atnwspheric Electricity. 209

philosophers among the ancients who did not despise the small

things of nature.

268. The investigation of atmospheric electricity immediately

became a very popular branch of natural science; and the dis

covery of remarkable and most interesting phenomena quickly

rewarded its cultivators. The foundation of all we now know

was completed by Beccaria, in his observations on “the mild

electricity of serene weather,” nearly a hundred years ago. It

was not until comparatively recent years that definite quan

titative comparisons from time to time of the electric quality

manifested by the atmosphere in one locality were first obtained

by the application of Peltier’s mode of observation with his

metrical electroscope. The much more accurate electrometer,

and the greatly improved mode of observation, invented by

Delmann, have given for the electric intensity, at any instant,

still more precise results; but have left something to desire in

point of simplicity and convenience for general use, and have

not afforded any means for continuous observation, or for the

introduction of self<recording apparatus. The speaker had

attempted to supply some of these wants, and he explained

the construction and use of instruments, now exhibited to the

meeting, which he had planned for this purpose.

269. Apparatus for the observation of atmospheric electricity _

has essentially two functions to perform ; to electrify a body with

some of the natural electricity, or with electricity produced by

its influence; and to measure the electrification thus obtained.

270. The measuring apparatus exhibited, consisted of three

electrometers, which were referred to under the designations of

(L) The divided ring reflecting electrometer; (IL) The common

house electrometer; and (III.) The portable electrometer.

(1.) The divided ring reflecting electrometer [compare § 263,

above, and 444...456, below] consists of :—

(1.) A ring of metal divided into two equal parts, of which

one is insulated, and the other connected with the metal case

(5.) of the instrument.

(2.) A very light needle of sheet aluminium hung by a fine

glass fibre, and counterpoised so as to make it project only to

one side of this axis of suspension.

(1
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(3.) A Leyden phial, consisting of an open glass jar, coated

outside and inside in the usual manner, with the exception

that the tinfoil of the inner coating does not extend to the

bottom of the jar, which is occupied instead by a small quantity

of sulphuric acid [connected with the tinfoil by means of a

platinum wire].

(4.) A stiff straight wire rigidly attached to the aluminium

needle, as nearly as may be in the line

of the suspending fibre, bearing a light

platinum wire linked to its lower end,

and hanging down so as to dip into the

sulphuric acid.

(5.) A case protecting the needle from

currents of air, and from irregular electric

actions, and maintaining an artificially

dried atmosphere round the glass pillar

or pillars supporting the insulated half

ring and the uncoated portion of the glass

of the phial.

(6.) A light stifi' metallic electrode pro

jectingfromthcinsulatedhalf-riugthrough

the middle of a small aperture in the metal case, to the outside.

(7.) A wide metal tube of somewhat less diameter than the

Leyden jar, attached to a metal ring borne by its inside coat

ing, and standing up vertically to a few inches above the level

of the mouth of the jar.

(8.) A stifl' wire projecting horizontally from this metal tube

above the edge of the Lcyden jar, and out through a wide hole

in the case of the instrument to'a convenient position for

applying electricity to charge the jar with.

(9.) A very light glass mirror, about three-quarters of an

inch diameter, attached by its back to the wire (4.), and there

fore rigidly connected with the aluminium needle.

(10.) A circular aperture in the case shut by a convex lens,

and along horizontal slit shut by plate glass, with its centre im

mediately above or below that of the lens, one of them above,

and the other equally below the level of the centre of the mirror.

(11.) A large aperture in the wide metal tube (7.), on a level

with the mirror (9.), to allow light from a lamp outside the

case, entering through the lens, to fall upon the mirror, and be
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reflected out through the plate-glass window; and three or

four fine metal wires stretched across this aperture to screen

the mirror from irregular electric influences, without sensibly

diminishing the amount of light falling on and reflected off it.

271. The divided ring is cut out of thick strong sheet

metal (generally brass). Its outer diameter is about 4 inches,

its inner diameter 2}; and it is divided into two equal parts by

cutting it along a diameter with a saw. The two halves are

fixed horizontally; one of them on a firm metal support, and

the other on glass, so as to retain as nearly as may be their

original relative position, with just the saw cut, from T11; to £11

of an inch broad, vacant between them. They are placed with

their common centre as nearly as may be in the axis of the

case (5.), which is cylindrical, and placed vertically. The Leyden

jar (3.), and the tube (7.), carried by its inside coating, have

their common axis fixed to coincide as nearly as may be with

that of the case and divided ring. The glass fibre hangs down

from above in the direction of this axis, and supports the needle

about an inch above the level of the divided ring. The stiff

wire (4.), attached to the needle, hangs down as nearly as may

be along the axis of the tube (7

[The following diagrams, placed here to facilitate comparison,

represent the arrangement of “ needle" and quadrants described

below in§ 345, as substituted in the modern instrument for

the bisected ring and narrow needle of the old electrometer

here described] :

27 2. Before using the instrument, the Leyden phial (3.) is

charged by means of its projecting electrode (8.). \Vhen an

electrical machine is not available, this is very easily done by the

aid of a stick of vulcanite, rubbed by a piece of chamois leather.

The potential of the charge thus communicated to the phial, is
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to be kept as nearly constant as is required for the accuracy of

the investigation for which the instrument is used. Two or

three rubs of the stick of vulcanite once a day, or twice a day,

are sufiicient when the phial is of good glass, well kept dry.

The most convenient test for the charge of .the phial is a

proper electrometer or electroscope, of any convenient kind,

kept constantly in communication with the charging elec

trode (8.). [Compare § 353, below.]

The electrometer (IL) is to be ordinarily used for that pur

pose in the Kew apparatus. Failing any such gauge electro

meter or electroscope, a zinc-copper-water battery of ten, twenty,

or more small cells may be very conveniently used (after the

manner of Delmann) to test directly the sensibility of the re

flecting electrometer, which is to be brought to its proper degree

by charging its Leyden phial as much as is required.

273. In the use of this electrometer, the two bodies of which

the difference of potentials is to be tested are connected, one of

them, which is generally the earth, with the metal case of the

instrument, and the other with the insulated half ring. The

needle being, let us suppose, negatively electrified, will move

towards or from the insulated half ring, according as the poten~

tial of the conductor connected with this half ring differs posi

tively or negatively from that of the other conductor (earth)

connected with the case. The mirror turns accordingly in one

direction or the other through a small angle from its zero posi—

tion, and produces a corresponding motion in the image of the

lamp on the screen on which it is thrown.

274. (II.) The common house electrometer [compare § 263,

above, and 374. ..37 7, below].—This instrument consists of:——

(1.) A thin flint-glass bell, coated outside and inside like a

Leyden phial, with the exception of the bottom inside, which

contains a little sulphuric acid.

(2.) A cylindrical metal case, enclosing the glass jar, cemented

to it round its mouth outside, extending upwards about an inch

and a half above the mouth, and downwards to a metal base

supporting the whole instrument, and protecting the glass

against the danger of breakage.

(3.) A cover of plate glass, with a metal rim, closing the top

of the cylindrical case of the instrument.
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(4.) A torsion head, after the manner of Coulomb's balance,

supported in the centre of the glass cover, and bearing a glass

fibre which hangs down through an aperture in its_centre.

(5.) A light aluminium needle attached across the lower end

of the fibre (which is somewhat above the centre of the glass

bell), and a stiff platinum wire attached to it at right angles,

and hanging down to near the bottom of the jar.
 

(6.) A very light platinum wire, long enough to hang within

one~eighth of an inch or so of the bottom of the jar, and to dip

in the sulphuric acid.

(7.) A metal ring, attached to the inner coating of the jar,

bearing two plates in proper positions for repelling the two

ends of the aluminium needle when similarly electrified, and

proper stops to limit the angular motion of the needle to with

in about 45° from these plates.

(8.) A cage of fine brass wire, stretched on brass framework,

supported from the main case above by two glass pillars, and

partially enclosing the two ends of the needle, and the repel

ling plates, from all of which it is separated by clear spaces, of

nowhere less than one-fourth of an inch of air.

(9.) A charging electrode, attached to the ring (7.), and pro

jecting over the mouth of the jar to the outside of the metal

case (2.), through a wide aperture, which is commonly kept

closed by a metal cap, leaving at least one-quarter of an inch

of air round the projecting end of the electrode.

(10.) An electrode attached to the cage (8.), and projecting over
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the mouth of the jar to the outside of the metal case (2.), through

the centre of an aperture, about a quarter of an inch diameter.

274. This instrument is adapted to measure difi‘erences of

potential between two conducting systems, namely; as one, the

aluminium needle (5.), the repelling plates (7.), and the inner

coating of the jar; and, as the other, the insulated cage (8.). This

latter is commonly connected by means of its projecting electrode

(10.), with the conductor to be tested. The two conducting

systems, if through their projectingr electrodes connected by a

metallic wire, may be electrified to any degree, without causing

the slightest sensible motion in the needle. If, on the other

hand, the two electrodes of these two systems are connected

with two conductors, electrified to different potentials, the needle

moves away from the repelling plates; and if, by turning the

torsion head, it is brought back to one accurately marked posi

tion, the number of degrees of torsion required is proportional

to the square of the difference of potentials thus tested.

275. In the ordinary use of the instrument, the inner coating

of the Leyrlen jar is charged negatively, by an external applica

tion of electricity through its projecting electrode (9.). The

degree of the charge thus communicated, is determined by

putting the cage in connexion with the earth through its elec

trode (10.), and bringing the needle by torsion to its marked

position. The square root of the number of degrees of torsion

required to effect this, measures the potential of the Leyden

charge. This result is called the reduced earth reading. When

the atmosphere inside the jar is kept sutficiently dry,—this

charge is retained from day to day with little loss; not more,

often, than one per cent. in the twenty-four hours.

276. In using the instrument the charging electrode (9.) of

the jar is left untouched, with the aperture through which it pro

jects closed over it by the metal cap referred to above. The

electrode (10.) of the cage, when an observation is to be made,

is connected with the conductor to be tested, and the needle is

brought by torsion to its marked position. The square root of

the number of degrees of torsion now required measures the

difference of potentials between the conductor tested and the

interior coating of the Leyden jar. The excess, positive or nega

tive. of this result above the reduced earth reading, measures
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the excess of the potential, positive or negative, of the c0nduc~

tor tested above that of the earth; or simply the potential of

the conductor tested, if we regard that of the earth as zero.

277. (III) The portable electrometer [compare § 263, above,

and 36?»...373, below] is constructed on the same elec

trical principles as the house electrometer just described.

The mode of suspension of the needle is, however, essentially

different; and a varied plan of connexion between the different

electrical parts has been consequently adopted as more con

venient. In the portable electrometer, the needle is firmly

attached at right angles to the middle of a fine platinum wire,

tightly stretched in the axis of a brass tube with apertures in

‘its middle to allow the needle to project on the two sides.

One end of the platinum wire is rigidly connected with this

.tube; the other is attached to a graduated torsion head. The

brass tube carries two metal plates in suitable positions to

repel the two ends of the needle in contrary directions, and

metal stops to limit its angular motion within a convenient

range. The conducting system composed of these difl'erent

parts is supported from the metal cover, or roof of the jar, by

three glass stems. The torsion head is carried round by means

of a stout glass bar, projecting down from a pinion centered on

the lower side of this cover, and turned by the action of a tan

gent screw presenting a milled head, to the hand of the opera—

tor outside. The conducting system thus borne by insulating

supports is connected with the outside conductor to be tested

by means of an electrode passing out through the centre of the

top of the case by a wide aperture in the centre of the pinion.

A wire cage, surrounding the central part of the tube and the

needle and repelling plates, is rigidly attached to the interior

coating of the Leyden jar. It carries two metal sectors, or

“bulkheads,” in suitable positions to attract the two ends of

the needle, which, however, is prevented from touching them

by the limiting stops referred to above. The effect of these

attracting plates, as they will be called, is to increase very

much the sensibility of the instrument. The square root of

the number of degrees of torsion required to bring the needle

to a sighted position near the repelling plates, measures the
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difference of potentials between the cage and the conducting

system, consisting of tube, torsion-head, repelling plates, and

needle. The metal roof of the jar is attached to a strong metal

case, cemented round the outside of the top of the jar, and

enclosing it all round and below, to protect it from breakage

when being carried about. There- are sufficient apertures in

this case, opened by means of a sliding piece, to allow the

observer to see the needle and graduated circle (torsion head),

when using the instrument. On the outside of the roof of the

jar a stout glass stem is attached, which supports a light stiff

metallic conductor, by means of which a burning match is

supported, at the height of two or three feet above the observer.

This conductor is ‘connected by means of a fine wire with the

electrometer, in the manner described above, through the centre

of the aperture in the roof. An artificially dried atmosphere

is maintained around this glass stem, by means of-a metal case

surrounding it, and containing receptacles of gutta percha, or

lead, holding suitably shaped pieces of pumice-stone moistened

with sulphuric acid. The conductor which bears the match

projects upwards through the centre of a sufficiently wide aper

ture, and hears a small umbrella, which both stops rain from

falling into this aperture, and diminishes the circulation of air,

owing to wind blowing round the instrument,- from taking place,

to so great a degree as to do'away with the dryness of the in

terior atmosphere required to allow the glass stem to insulate

sufficiently. The instrument may be held by the observer in

his hand in the open air without the assistance of any fixed

stand. A sling attached to the instrument and passing over

his left shoulder, much facilitates operations, and renders it

easy to carry the apparatus to the place of observation, even if

up a rugged hill side, with little risk of accident.

278. The burning match in the apparatus which has just been

described, performs the collecting function referred to above.

The collector employed for the station apparatus, whether the

reflecting electrometer or the common house electrometer is

used, is an insulated vessel of water, allowed to flow out in a

fine stream through a small aperture at the end of a pipe pro

jecting to a distance of several feet from the wall of the build

ing in which the observations are made.
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27 9. The principle of collecting, whether by fire or by water,

in the observation of atmospheric electricity, was explained by

the speaker thus :—The earth’s surface is, except at instants,

always found electrified, in general negatively, but sometimes

positively. [Quotation from Nichol's Cyclopwdia, viz., § 265,

above, comes here in the original]

After having given so much of these explanations as seemed

necessary to convey a general idea of the principles on which

the construction of the instruments of investigation depended,

the speaker proceeded to call attention to the special subject

proposed for consideration this evening.

280. What is terrestrial atmospheric electricity? Is it elec

tricity of earth, or electricity of air, or electricity of watery or

other particles in the air? An endeavour to answer these ques

tions was all that was offered ; abstinence from speculation as to

the origin of this electric condition of our atmosphere, and its

physical relations with earth, air, and water, having been pain

fully learned by repeated and varied failure in every attempt

to see beyond facts of observation. In serene weather, the

earth’s surface is generally, in most localities hitherto examined,

found negatively or resinously electrified; and when this fact

alone is known, it might be supposed that the globe is merely

electrified as a whole with a resinous charge, and left insulated

in space.

281. But it is to be remarked that the earth, although insulated

in its atmospheric envelope, being in fact a conductor, touched

only by air one of the best although not the strongest of in

sulators, cannot with its atmosphere be supposed to be insulated

so as to hold an electric charge in interplanetary space. It has

been supposed, indeed, that outside the earth’s recognised atmo

sphere there exists something or nothing in space which con

stitutes a perfect insulator; but this supposition seems to have

no other foundation than a strange idea that electric conduc

tivity is a strength or a power of matter rather than a mere

non-resistance. In reality we know that air highly rarefied by

the air-pump, or by other processes, as in the construction of

the “vacuum tubes,” by which such admirable phenomena of

electric light have recently been seen in this place, becomes

extremely weak in its resistance to the transference of elec
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tricity through it, and begins to appear rather as a conductor

than an insulator. One hundred miles or upwards from the

earth’s surface, the air in space cannot in all probability have

resisting power enough to bear any such electric forces as those

which we generally find even in serene weather in the lower

strata Hence we cannot, with Peltier, regard the earth as a

resinously charged conductor, insulated in space, and subject

only to accidental influences from temporary electric deposits

in clouds, or air round it; but we must suppose that there is

always essentially in the higher aerial regions a distribution

arising from the self- relief of the outer highly rarefied air by

disruptive discharge. This electric stratum must constitute

very nearly the electro-polar complement to all the electricity

that exists on the earth's surface, and in the lower strata of the

atmosphere; in other words, the total quantity of electricity,

reckoned as excess of positive above negative, or of negative

above positive, in any large portion of the atmosphere, and on

the portion of the earth’s surface below it, must be very nearly

zero. The quality of non-resistance to electric force of the thin

interplanetary air being duly considered, we might regard the

earth, its atmosphere, and the surrounding medium as constitut

ing respectively the inner coating, the di-eleetric (as it were

glass), and the outer coating of a great Leyden phial, charged

negatively; and even if we were to neglect the consideration

of possible deposits of electricity through the body of the di

electric itself, we should arrive at a correct view of the electric

indications discoverable at any one time and place of the earth's

surface. In fact, any kind of “collector,” or plan for collect

ing electricity from or in virtue of the natural “terrestrial

atmospheric electricity,” gives an effect simply proportional to

the electrification of the earth's surface then and there. The

methods of collecting by fire and water which the speaker

exhibited, gave definitively, in the language of the mathemati

cal theory, the “electric potential” of the air at the point

occupied by the burning end of the match, or by the portion

of the stream of water where it breaks into drops. If the

apparatus is used in an open plane, and care be taken to

eliminate all disturbance due to the presence of the electro

meter itself and of the observer above the ground, the indicated
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effect, if expressed in absolute electrostatic measure, and divided

by the height of the point tested above the ground, has only to

be [according to an old theorem of Coulomb's (see footnote on

§ 25, above), corrected by Laplace] divided by four times the

ratio of the circumference of a circle to its diameter, to reduce it

to an expression of the number of units, in absolute electrostatic

measure, of the electricity per unit of area of the earth’s surface

at the time and place. The mathematical theory does away

with every difficulty in explaining the various and seemingly

irreconcilable views which different writers have expressed,

- and explanations which different observers have given of the

functions of their testing apparatus. In the present state of

electric science, the most convenient and generally intelligible

way to state the result of an observation of terrestrial atmo

spheric electricity, in absolute measure, is in terms of the

number of elements of a constant galvanic battery, required to

produce the same difference of potentials as exists between the

earth and a point in the air at a stated height above an open

level plane of ground. Observations with the portable electro

meter had given, in ordinary fair weather, in the island of

Arran, on a flat open sea beach, readings varying from 200 to

400, Daniel’s elements, as the difference of potentials between

the earth and the match, at a height of 9 feet above it. Hence,

the intensity of electric force perpendicular to the earth’s sur

face must have amounted to from 22 to 44 Daniel’s elements

per foot of air. In fair weather, with breezes from the east or

north-east, he had often found from 6 to 10 times the higher of

these intensities.

282. Even in fair weather, the intensity of the electric force in

the air near the earth’s surface is perpetually fluctuating. The

speaker had often observed it, especially during calms or very

light breezes from the east, varying from 40 Daniel’s elements

per foot to three or four times that amount during a few

minutes; and returning again as rapidly to the lower amount.

More frequently he had observed variations from about 30 to

about 40, and back again, recurring in uncertain periods of

perhaps about two minutes. These gradual variations cannot

but be produced by electrified masses of air or cloud, floating

by the locality of observation. Again, it is well known that
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during storms of rain, hail, or snow, there are great and some

times sudden variations of electric force in the air close to the

earth. These are undoubtedly produced, partly as those of fair

weather, by motions of electrified masses of air and cloud;

partly by the fall of vitreously or resinously electrified rain,

leaving a corresponding deficiency in the air or cloud‘ from

which it falls; and partly by disruptive discharges (flashes of

lightning) between masses of air or cloud, or between either

and the earth. The consideration of these various phenomena

suggested the following questions, and modes of observation for

answering them :

283. Question 1. How is electricity distributed through the dif

ferent strata of the atmosphere to a height of five or six miles

above the earth's surface in ordinary fair weather? To be

answered by electrical observations in balloons at all heights

up to the highest limit, and simultaneous observations at the

earth's surface.

Q. 2. Does electrification of air close to the earth's surface,

or within a few hundred feet of it, sensibly influence the

observed electric force? and if so, how does it vary with the

weather, and with the time of day or year ? The first part of

this question has been answered very decidedly in the aflirma

tive, first, for large masses of air within a few hundred yards

of the earth’s surface, by means of observations made simul

taneously at a station near the seashore in the island of Arran,

and at one or other of several stations at different distances,

within six miles of it, on the sides and summit of Goatfell.

After that it was found, by simultaneous observations made at

a window in the Natural Philosophy Lecture-Room, and on the

College Tower of the University of Glasgow, that the influence

of the air within 100 feet of the earth’ surface was always

sensible at both stations, and often paramount at the lower.

Thus, for example, when, in broken weather, the superficial

electrification of the outside of the lecture-room, about 20 feet

above the ground, in a quadrangle of buildings, was found

positive, the superficial electrification of the sides of the tower,

about 70 feet higher, was often found negative, or nearly zero;

and this sometimes even when the positive electrification of the

sides of the building at the lower station equalled in amount
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an ordinary fair weather negative. This state of things could

only exist in virtue of a negative electrification of the circum

ambient air, inducing a positive electrification on the ground

and sides of the quadrangle, but not sufficient to counter

balance the influence, on the higher parts of the tower, of more

distant positively electrified aerial masses.

A long continuation of such systems of simultaneous obser

vation—not- in a town only, but in various situations of flat and

of mountainous country, on the sea coast as well as far inland,

in various regions of the world—will be required to obtain the

information asked for in the second part of this question.

Q. 3. Do the particles of rain, hail, and snow in falling

through the air possess absolute charges of electricity? and if

so, whether positive or negative, and of what amounts in differ

ent conditions as to place and weather? Attempts to answer

this question have been made by various observers, but as yet

without success; as, for instance, by an “ electro pluviometer,"

tried at Kew many years ago. By using a sufficiently well

insulated vessel to collect the falling particles, it is quite certain

that a decided answer may be obtained with ease for the cases

of hail and snow. Inductive effects produced by drops splash

ing away from the collecting vessel, if exposed to the electric

force of the air in an open position, or inductive effects of the

opposite kind produced by drops splashing away from surround

ing walls or screens and falling into the collecting vessel, if not

in an exposed position, make it less easy to ascertain the elec

trical quality of rain ; but, by taking means to obviate the

disturbing effects of these influences, the speaker hoped to

arrive at definite results.

284. It would have been more satisfactory to have been able

to conclude a discourse on atmospheric electricity otherwise than

in questions, but no other form of conclusion would have been

at all consistent with the present state of knowledge.

285. The discourse was illustrated by the use of the mirror

electrometer reflecting a beam of light from the electric lamp,

and throwing it on a white screen, where its motions were

measured by a divided scale. The principle of the water

dropping collector was illustrated by allowing a jet of water to

flow by a. fine nozzle into the middle of the lecture-room, from
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an nninsulated metal vessel of water and compressed air, and

collecting the drops in an insulated vessel on the floor. This

vessel was connected with the testing electrode of the reflecting

electrometer; and it was then found to experience a continually

increasing negative electrification, when fixed positively elec

trified bodies were in the neighbourhood of the nozzle. If the

same experiment were made in ordinary fair weather in the

open air, instead of under the roof and within the walls of the

lecture-room, the same result would be observed, without

the presence of any artificially electrified body. The vessel

from which the water was discharged was next insulated; and

other circumstances remaining unvaried, it was shown that

this vessel became rapidly electrified to a certain degree of

positive potential, and the falling drops ceased to communicate

any more electricity to the vessel in which they were gathered.

286. The influence of electrified masses of air was illustrated

by carrying about the portable electrometer, with its match burn

ing, to different parts of the lecture-room, while insulated

spirit-lamps connected with the positive and negative con

ductor of an electrical machine, burned on the two sides. The

speaker observed the indications on the portable electrometer;

but the potentials thus measured were seen by the audience

marked on the scale by the spot of light; the refiectingelectro

meter being kept connected with the portable electrometer in

all its positions, by means of a long fine wire. It was found

that, when the burning match was on one side of a certain

surface dividing the air of the lecture-room, the potential indi

cated was positive, and on the other side negative.

287. The water-dropping collector constructed for the self

registering apparatus to be used at Kew, had been previously

set upon the roof of the Royal Institution, and an insulated

wire (Beecaria’s “Deferent Wire”) led down to the reflecting

electrometer on the lecture-room table. The electric force in

the air above the roof was thus tested several times during the

meeting; and it was at first found to be, as it had been during

several days preceding, somewhat feeble positive (corresponding

to a feeble negative electrification of the earth's surface, or

rather housetops, in the. neighbourhood). This was a not

unfrequent electrical condition of days, such as these had been
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of dull rain, with occasional intervals of heavier rain and of

cessation. The natural electricity was again observed by

means of the reflecting electrometer during several minutes

near the end of the discourse; and was found, instead of the

weak positive which had been previously observed, to be

strong positive of three or four times the amount. Upon this

the speaker quoted‘ an answer which Prior Ceca. had given to

a question Beccaria had put to him “ concerning the state of

“electricity when the weather clears up.” “ ‘ If, when the rain

“‘ has ceased (the Prior said to me) a strong excessive-l‘ elec

“ ‘ tricity obtains, it is a sign that the weather will continue fair

“‘ for several days ; if the electricity is but small, it is a sign

“ ‘ that such weather will not last so much as that whole day,

“‘ and that it will soon be cloudy again, or even will again

“‘ rain.’ ” The climate of this country is very different from

that of Piedmont, where Beccaria and his friend made their

observations, but their rule as to the “electricity of clearing

weather” has been found frequently confirmed by the speaker.

He therefore considered that, although it was still raining at

the commencement of the meeting, the electrical indications

they had seen gave fair promise: for the remainder of this

evening, if not for a longer period. There can be no doubt but

that electric indications, when sufficiently studied, will be

found important additions to our means for prognosticating the

weather; and the speaker hoped soon to see the atmospheric

electrometer generally adopted as a useful and convenient

weather—glass.

288. The speaker could not conclude without guarding him

self against any imputation of having assumed the existence of

two electric fluids or substances, because he had frequently

spoken of the vitreous and resinous electricities. Dufay’s very

important discovery of two modes or qualities of electrification,

led his followers too readily to admit his supposition of two

distinct electric fluids. Franklin, lEpinus, and Cavendish,

* From Beccaria’s first letter “ On Terrestrial Atmospheric Electricity

during Serene \Veather.”-—Garzegna (Ii illondovi, May 16, 1775.

'l' i.e., vitreous, or positive.

: At the conclusion of the meeting it was found that the rain had actually

ceased. The weather continued fair during the remainder of the night, and

three or four of the finest days of the season followed.
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with a hypothesis of one electric fluid, opened the way for a

juster appreciation of the wait]; of nature in electric phenomena

Beccaria, with his “electric atmospheres,” somewhat vaguely

struggled to see deeper into the working of electric force, but

his views found little acceptance, and scarcely suggested in

quiry or even meditation. The eighteenth century made a

school of science for itself, in which, for the not unnatural

dogma of the earlier schoolmen, “ matter cannot act where it is

not,” was substituted the most fantastic of paradoxes, contact

does not exist. Boscovich’s theory was the consummation of

the eighteenth century school of physical science. This'strange

idea took deep root, and from it grew up a barren tree, exhaust

ing the soil and overshadowing the whole field of molecular

investigation, on which so much unavailing labour was spent

by the great mathematicians of the early part of our nineteenth

century. If Boscovich’s theory no longer cunibers the ground,

it is because one true philosopher required more light for trac

ing lines of electric force.

289. Mr. Faraday’s investigation of electrostatic induction in

fluences now every department of physical speculation, and

constitutes an era in science. If we can no longer regard

electric and magnetic fluids attracting or repelling at a distance

as realities, we may now also contemplate as a thing of the

past that belief in atoms and in vacuum, against which Leib—

nitz so earnestly contended in his memorable correspondence

with Dr. Samuel Clarke.

290. We now look on space as full. We know that light is

propagated like sound through pressure and motion. We know

that there is no substance of caloric—that inscrutably minute

motions cause the expansion which the thermometer marks,

and stimulate our sensation of heat—-that fire is not laid up in

coal more than in this Leyden phial, or this weight: there is

potential fire in each. If electric force depends on a residual

smface action, a resultant of an inner tension experienced by

the insulating medium, we can conceive that electricity itself

is to be understood as not an accident, but an essence of matter.

Whatever electricity is, it seems quite certain that electricity

in motion IS hcat ; and that a certain alignment of axes of

revolution in this motion IS magnetism. Faraday’s magneto
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optic experiment makes this not a hypothesis, but a demon

strated conclusion‘ Thus a rifle-bullet keeps its point fore

most; Foucault's gyroscope finds the earth's axis of palpable

rotation ; and the magnetic needle shows that more subtle

rotatory movement in matter of the earth, which we call ter~

restrial magnetism : all by one and the same dynamical action.

291. It is often asked, are we to fall back on facts and pheno

mena, and give up all idea of penetrating that mystery which

hangs round the ultimate nature of matter? This is a question

that must be answered by the metaphysician, and it does not be

long to the domain of Natural Philosophy. But it does seem that

the marvellous train of discovery, unparalleled in the history

of experimental science, which the last years of the world has

seen to emanate from experiments within these walls, must

lead to a stage of knowledge, in which laws of inorganic nature

will be understood in this sense-that one will be known as

essentially connected with all, and in which unity of plan

through an inexhaustibly varied execution, will be recognised

as a universally manifested result of creative wisdom.

292. [Postscript, with diagram, communicated to the Philoso

ph'ical Magazine in 1861 ; but now first published]

Mr. Balfour Stewart, Director oi‘ the Kew Meteorological

Observatory, has, since the commencement of the present year

(1861), brought into regular and satisfactory operation the self.

recording atmospheric electrometer with water-dropping collec

tor, described in the preceding abstract: a specimen of the

results is exhibited in the accompanying photographic curves.
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"V See “ Dynamical Illustrations of the Magnetic and the Helicoidal Rota

tory Effects of Transparent Bodies on Polarized Light.” By Prof. W. Thom

son.—ProceedIngs of the Royal Society, June 12, 1856.
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293. The diagram exhibits the variations of the electric force

of the atmosphere, as photographically recorded by the divided

ring electrometer at the Kew Observatory for two succes

sive days, commencing on the 28th of April 186]. The

prepared sensitive paper was made to move vertically at a

uniform rate by means of clock-work, while a spot of light (the

image of a portion of a gas-flame reflected from the mirror of

the divided ring electrometer) moved horizontally across it

according to the continually varying electric force of the atmo

sphere, and marked the curve photographically. The datum

line, showingr the position the spot of light would have if the

electric force were zero, is produced by an image from the same

source of light reflected from a fixed mirror attached to the

case of the electrometer. The numbers indicate hours reckoned

from noon as zero, up to 23. The same paper is, for the sake

of economy, generally used to bear the record for two days.

Thus the distance of the spot of light from the datum line,

on one side or other, indicates, and the photo-chemical action

records, for each instant of time the electric potential, positive

or negative, of the atmosphere at the point where the stream of

water discharged from the insulated vessel breaks into drops.

ON ELECTRICAL “FREQUENCY.”

[From Report of British Association, Aberdeen Meeting, 1859.]

294. Beccaria found that a conductor insulated in the open

air becomes charged sometimes with greater and sometimes

with less rapidity, and he gave the name of “ frequency” to ex

press the atmospheric quality on which the rapidity of charg

ing depends. It might seem natural to attribute this quality

to electrification of the air itself round the conductor, or to

electrified particles in the air impinging upon it ; but the author

gave reasons for believing that the observed effects are entirely

due to particles flying away from the surface of the conductor,

in consequence of the impact of non-electrified particles against

it. He had shown in a previous communication that when no

electricity of separation (or, as it is more generally called,

"frictional electricity," or “contact electricity") is called into
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play, the tendency of particles continually flying off from a

conductor is to destroy all electrification at the part of its sur

face from which they break away. Hence a conductor insulated

in the open air, and exposed to mist or rain, with wind, will

tend rapidly to the same electric potential as that of the air,

beside that part of its surface from which there is the most

frequent dropping, or flying away, of aqueous particles. The

rapid charging indicated by the electrometer under cover, after

putting it for an instant in connexion with the earth, is there

fore, in reality, due to a rapid discharging of the exposed parts

of the conductor. The author had been led to these views by

remarking the extreme rapidity with which an electrometer,

connected by a fine wire with a conductor insulated above the

roof of his temporary electric observatory in the island of

Arran, became charged, reaching its full indication in a few

seconds, and sometimes in a fraction of a second, after being

touched by the hand, during a gale of wind and rain. The

conductor, a vertical cylinder about 10 inches long and 4 inches

diameter, with its upper end flat and corner slightly rounded

off, stood only 8 feet above the roof, or, in all, 20 feet above

the ground, and was nearly surrounded by buildings rising to

a higher level. Even with so moderate an exposure as this,

sparks were frequently produced between an insulated and an

uninsulated piece of metal, which may have been about {nth of

an inch apart, within the electrometer, and more than once a

continuous line of fire was observed in the instrument during

nearly a minute at a time, while rain was falling in torrents

outside.

ON THE NECESSITY FOR INCESSANT RECORDING, AND FOR

SIMULTANEOUS OBSERVATIONS IN DIFFERENT LOCALI

TIES, TO INVESTIGATE ATMOSPHERIC ELECTRICITY.

[From Report of British Association, Aberdeen Meeting, 1859.]

295. The necessity for incessantly recording the electric con

dition of the atmosphere was illustrated by reference to obser

vations recently made by the author in the island of Arran, by

which it appeared that even under a cloudless sky, without any



228 Atmospheric Electricity. [XVL

sensible wind, the negative electrification of the surface of the

earth, always found during serene weather, is constantly vary

ing in degree. He had found it impossible, at any time, to

leave the electrometer without losing remarkable features of

the phenomenon. Beocaria, Professor of Natural Philosophy

in the University of Turin a century ago, used to retire to

Garzegna when his vacation commenced, and to make inces

sant observations on atmospheric electricity, night and day,

sleeping in the room with his electrometer in a lofty position,

from which he could watch the sky all round, limited by the

Alpine range on one side, and the great plain of Piedmont on

the other. Unless relays of observers can be got to follow his

example, and to take advantage of the more accurate instru

ments supplied by advanced electric science, a self-recording

apparatus must be applied to provide the data required for

obtaining knowledge in this most interesting field of nature.

The author pointed out certain simple and easily-executed

modifications of working electrometers (exhibited to the meet

ing), to render them self-recording. He also explained a new

collecting apparatus for atmospheric electricity, consisting of

an insulated vessel of water, discharging its contents in a

fine stream from a pointed tube. This stream carries away

electricity as long as any exists on its surface, where it breaks

into drops. The immediate object of this arrangement is to

maintain the whole insulated conductor, including the portion

of the electrometer connected with it and the connecting wire,

in the condition of no absolute charge ; that is to say, with as

much positive electricity on one side of a neutral line as of

negative on the other. Hence the position of the discharging

nozzle must be such, that the point where the stream breaks

into drops is in what would be the neutral line of the con

ductor, if first perfectly discharged under temporary cover, and

then exposed in its permanent open position, in which it will

become inductively electrified by the aerial electromotive force.

If the insulation is maintained in perfection, the dropping will

not be called on for any electrical effect, and sudden or slow

atmospheric changes will all instantaneously and perfectly in

duce their corresponding variations in the conductor, and give

their appropriate indications to the electrometer. The neces



XVI Atmospheric Electricity. 2 2 9

sary imperfection of the actual insulation, which tends to bring

the neutral line downwards or inwards, or the contrary effects

of convection, which, when the insulation is good, gene—

rally preponderate, and which in some conditions of the atmo

sphere, especially during heavy wind and rain, are often very

large, are corrected by the tendency of the dropping to main

tain the neutral line in the one definite position. The objects

to be attained by simultaneous observations in different localities

alluded to were-(1.) to fix the constant for any observatory,

by which its observations are reduced to absolute measure of

electromotive force per foot of air; (2.) to investigate the dis

tribution of electricity in the air itself (whether on visible

clouds or in clear air) by a species of electrical trigonometry, of

which the general principles were slightly indicated. A por

table electrometer, adapted for balloon and mountain observa

tions, with a burning match, regulated by a spring so as to give

a cone of fire in the open air, in a definite position with refer

ence to the instrument, was exhibited. It is easily carried,

with or without the aid of a. shoulder-strap, and can be used

by the observer standing up, and simply holding the entire

apparatus in his hands, without a stand or rest of any kind.

Its indications distinguish positive from negative, and are re—

dncible to absolute measure on the spot. The author gave the

result of a determination which he had made, with the assist

ance of Mr. Joule, on the Links, a piece of level ground near

the sea, beside the city of Aberdeen, about 8 AM. on the pre

ceding day (September 14), under a cloudless sky, and with a

light north-west wind blowing, with the insulating stand of the

collecting part of the apparatus buried in the ground, ‘and the

electrometer removed to a distance of 5 or 6 yards, and con

nected by a fine wire with the collecting conductor. The

height of the match was 3 feet above the ground, and the

observer at the electrometer lay on the ground to render the

electrical influence of his own body on the match insensible.

The result showed a difference of potentials between the earth

(negative) and the air (positive) at the match equal to that of

115 elements of Daniell's battery, and, therefore, at that time

and place, the aerial electromotive force per foot amounted to

that of thirty-eight Daniell's cells, or 1'2 cells per centimetre.
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OBSERVATIONS ON ATMOSPHERIC ELECTRICITY.

[From the Proceedings of the Literary and Philosophical Society of Manchester,

March 1862.]

296. I find that atmospheric electricity is generally negative

within doors, and almost always sensible to my divided ring

reflecting electrometer. I use a spirit-lamp, on an insulated

stand a few feet from walls, floor, or ceiling of my lecture

room, and connect it by a fine wire with the insulated half

ring of the electrometer. A decided negative effect is generally

found, which shows a potential to be produced in the con

ductors connected with the flame, negative relatively to the

earth by a difference amounting to several times the difference

of potentials (or electromotive force) between two wires of one

metal connected with the two plates of a single element of

Daniell’s. I have tested that the spirit—lamp gives no idio

elect'ric effect amounting to so much as the efi‘ect of a single

cell. The electric effect observed is therefore not due to

thermal or chemical action in the flame. It cannot be due to

contact electrifications of metallic or other bodies in conductive

communication with the walls, floor, or ceiling, because the

potentials of such must always fall short of the difference of

potentials produced by a single cell. I have taken care to

distinguish the observed natural effect from anything that can

be produced by electrical operations for lecture or laboratory

purposes. Thus I observe generally in the morning before any

electrical operations have been performed, and find ordinarily

results quite similar to those observed on the Monday mornings

when the electrical machine has not been turned since the

previous Friday. The effect, when there has been no artificial

disturbance, has always been found negative, except two or three

times, since the middle of November; but trustworthy obser

vations have not been made on more than a quarter of the

number of days.

297. A few turns of the electrical machine, with a spirit-lamp

on its prime conductor, or a slightly charged Leyden phial, with

its inside coating positive put in connexion with an insulated

spirit-lamp, is enough to reverse the common negative indica

tion. Another very striking way in which this may be done

is to put a negatively charged Leg/den phz'al below an insulated
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flame (a common gas-burner, for instance). The flame, becom_

ing positively electrified by induction, keeps throwing off, by

the dynamic power of its burning, portions of its own gaseous

matter, and does not allow them to be electrically attracted

down to the Leyden phial, but forces them to rise. These, on

cooling, become, like common air,excellent non-conductors,* and,

mixing with the air of the room, give a preponderance of positive

influence to the testing insulated flame (that is to say, render the

air potential positive at the place occupied by this flame).

298. Half an hour, or often much more, elapses after such an

operation, before the natural negatively electrified air becomes

again paramount in its influence on the testing flame.

299. That either positive or negative electricity may be

carried, even through narrow passages, by air, I have tested by

turning an electric machine, with a spirit-lamp on its prime

conductor, for a short time in a room separated from the lecture

room by an oblique passage about two yards long and then

stopping the machine and extinguishing the lamp; so as to

send a limited quantity of positive electricity into the air of

that room. \Vhen the lecture-room window was kept open, and

the door leading to the adjoining room shut, the testing spirit

lamp showed the natural negative. When the window was

closed, and a small chink (an inch or less wide) opened of the

door, the indication quickly became positive. If the door was

then shut, and the window again opened, the natural effect was

slowly recovered. A current of air, to feed the lecture-room

fire, was found entering by either door or window when the

other was shut. This alternate positive and negative electric

ventilation may be repeated many times without renewing the

positive electricity of the adjoining room by turning the

machine afresh.

_+

* I find that steam from a kettle boiling briskly on a common fire is an

excellent insulator. I allow it to blow for a quarter of an hour or more

against an insulated electrified conductor, without discovering that it has

any efl'ect on the retention of the charge. The electricity of the steam itself,

in such circumstances, as is to be expected from Faraday’s investigation, is

not considerable. Common air loses nearly all its resisting power at some

temperature between that of boiling water and red-hot iron, and conducts

continuously (not, as I believe is generally supposed to be the case, by dis

ruption) as glass does at some temperature below the boiling point, with so

great ease as to discharge any common insulated conductor almost completely

in a few seconds.
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300. The out of doors air potential, as tested by a portable

electrometer in an open place, or even by a water dropping

nozzle outside, two or three feet from the walls of the lecture

room, was generally on these occasions positive, and the earth’s

surface itself, therefore, of course, negative ;——the common fair

weather condition, which I am forced to conclude is due to a

paramount influence of positive electricity in higher regions of

the air, notwithstanding the negative electricity of the air in

the lower stratum near the earth’s surface. On the two or three

occasions when the in-door atmospheric electricity was found

positive, and, therefore, the surface of the floor, walls, and ceil

ing negative, the potential outside was certainly positive,

and the earth’s surface out of doors negative, as usual in fair

weather.

ON SOME REMARKABLE EFFECTS OF LIGHTNING OBSERVED

IN A FARM-HOUSE NEAR MONIEMAIL, CUPAR-FIFE.

(From Proceedings of the Philosophical Society of Glasgow.)

301. The following is an extract from a letter, addressed last

autumn to me by Mr. Leitch, minister of Moniemail parish :—

“ Monnnum. Msnsa, Conn-Fr“,

26th August 1849.

“ .' . . We were visited on the 11th inst. with a violent

thunder-storm, which did considerable damage to a farm-house

in my immediate neighbourhood. I called shortly after

wards and brought away the wires and the paper which I

enclose. .

“ I have some difliculty in accounting for the appearance of

the wires. You will observe that they have been partially

fused, and when I got them ‘first they adhered closely to one

another. You will find that the flat sides exactly fit. They

were both attached to one crank, and ran parallel to one

another. The question is, how were they attracted so power

fully as to be compressed together? . . .

“ You will observe that the paper is discoloured. This has
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been done, not by scorching, but by having some substance

deposited on it. There was painted wood also discoloured, on

which the stratum was much thicker. It could easily be

rubbed off, when you saw the paint quite fresh beneath. . . .

“The farmer showed me a probang which hung on a nail.

The handle only was left. The rest, consisting of a twisted

cane, had entirely disappeared. By minute examination I

found a small fragment, which was not burnt, but broken off.”

[The copper wires and the stained paper, enclosed with Mr.

Leitch’s letter, were laid before the Society]

The remarkable effects of lightning, described by Mr. Leitch,

are all extremely interesting. Those with reference to the

copper Wires are quite out of the common class of electrical

phenomena; nothing of the kind having, so far as I am aware,

been observed previously, either as resulting from natural dis

charges, or in experiments on electricity. It is not improbable

that they are due to the electromagnetic attraction which

must have subsisted between the two wires during the dis

charge, it being a well-known fact that adjacent wires, with

currents of electricity in similar directions along them, attract

one another. It may certainly be doubted whether the in

appreciably short time occupied by the electrical discharge

could have been sufficient to allow the wires, after having been

drawn into contact, to be pressed with sufficient force to make

them adhere together, and to produce the remarkable impres

sions which they still retain. On the other hand, the electro~

magnetic force must have been very considerable, since the

currents in the wires were strong enough nearly to melt them,

and since they appear to have been softened, if not partially

fused ; the flattening and remarkable impressions might readily

have been produced by even a slight force subsisting after the

wires came in contact.

The circumstances with reference to the probang, described

by Mr. Leitch, afford a remarkable illustration of the well

known fact, that an electrical discharge, when effected through

the substance of a non-conducting (that is to say, a powerfully

resisting) solid, shatters it, without producing any considerable

elevation of its temperature; not leaving marks of combustion,

if it be of an ordinary combustible material such as wood.
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Dr. Robert Thomson, at my request, kindly undertook to

examine the paper removed from the wall of the farm-house,

and enclosed with his letter to me by Mr. Leitch; so as, if

possible, by the application of chemical tests, to discover the

staining substance deposited on its surface. Mr. Leitch, in his

letter, had suggested that it would be worth while to try

whether this case is an example of the deposition of sulphur,

which Fusinieri believed he had discovered in similar circum

stances. Accordingly tests for sulphur were applied, but with

entirely negative results. Stains presenting a similar appear

ance had been sometimes observed on paper in the neighbour

hood of copper-wires through which powerful discharges in

experiments with the hydro-electric machine had been passed ;

and from this it was suggested that the staining substance

might have come from the bell wires. Tests for copper were

accordingly applied, and the results were most satisfactory.

The front of the paper was scraped in different places, so as to

remove some of the pigment in powder ; and the powders from

the stained, and from the not stained parts, were repeatedly

examined. The presence of copper in the former was readily

made manifest by the ordinary tests: in the latter, no traces of

copper could be discovered. The back of the paper presented

a green tint, having been torn from a wall which has probably

been painted with Scheele’s green; and matter scraped away

from any part of the back was found to contain copper. Since,

however, the stains in front were manifestly superficial, the

discolouration being entirely removed by scraping, and since

there was no appearance whatever of staining at the back of

the paper, nor of any effect of the electrical discharge, it was

impossible to attribute the stains to copper produced from the

Scheele’s green on the wall below the paper. Dr. Thomson,

therefore, considered the most probable explanation to be,

that the stains of oxide of copper must have come from the

bell-wire. To ascertain how far this explanation could be

supported by the circumstances of the case, I wrote to Mr.

Leitch asking him for further particulars, especially with re

ference to this point, and I received the following answer :-—
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“ MoNrmAIL, CUPAR-FII'B,

30th Nov. 1849.

“ . . . I received your letter to-day, and immediately

called at Hall-hill, in the parish of Collessie, the farm-house

which had been struck by the lightning. . . .

“ I find that Dr. Thomson's suggestion is fully borne out by

the facts. I at' first thought that the bell-wire did not run

along the line of discolouration, but I now find that such was

the case. . . .

[From a drawing and explanation which Mr. Leitch gives, it

appears that the wire runs vertically along a corner of the

room, from the floor, to about a yard from the ceiling, where

it branches into two, connected with two cranks near one

another, and close to the ceiling]

“The efi‘lorescence [the stains previously adverted to] was

on each side of this perpendicular wire. In some places it

extended more than a foot from the wire. The deposit seemed

to vary in thickness according to the surface on which it was

deposited. There was none on the plaster on the roof. It

was thinnest upon the wall-paper, and thickest upon the wood

facing of the door.‘ This last exhibited various colours. On

the thickest part it appeared quite black ; where there was only

a slight film, it was green or yellow. . . .

- “ I may mention that the thunder-storm was that of the 11th

of August last. It passed over most of Scotland, and has

rarely been surpassed for terrific grandeur at least beyond the

tropics. It commenced about nine o'clock P.M., and in the

_ course of an hour it seemed to die away altogether. The peals

became very faint, and the intervals between the flashes and

the reports very great, when all at once a terrific crashing peal

was heard, which did the damage. The storm ceased with

this peal.

“ The electricity must have been conducted along the lead

on the ridge of the house, and have diverged into three streams;

one down through the roof, and the two others along the roof to

the chimneys. One of these appears to have struck a large stone

‘ These remarkable facts are probably connected with the conducting

powers of the different surfaces. The plaster on the roof is not so good a

conductor as the wall-paper, with its pigments; and the painted wood is

probably a better conductor than eithen-W. T.
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out from the chimney, and to have been conducted down the

chimney to the kitchen, where it left traces upon the floor. It

had been washed over before I saw it, but still the traces were

visible on the Arbroath flags. The stains were of a lighter

tint than the stone, and the general appearance was as if a pail

of some light-coloured fluid had been dashed over the floor, so

as to produce various distinct streams. All along the course of

the discharge, and particularly in the neighbourhood of the bell~

wires, there were small holes in the wall about an inch deep,

like the marks that might be made by a finger in soft plaster.

“ Most of the windows were shattered, and all the fragments

of glass were on the outside. I suppose this must be accounted

for by the expansion of the air within the house.

“ The window-blind of the staircase, which was down at the

time, was riddled, as if with small shot. The diameter of the

space so riddled was about a foot. On minute examination I

found that the holes were not such as could readily be made

by a pointed instrument or a pellet. They were angular, the

cloth being torn along both the warp and the woof.

“ The house was shattered from top to bottom. Two of the

serving-maids received a positive shock, but soon recovered.

A strong smell of what was supposed to be sulphur was per

ceived throughout the house, but particularly in the bed-room

in which the effects I described before took place.”

XVII. SOUND PRODUCED BY THE DISCHARGE OF A

CONDENSER.

[LE'I'I‘ER 'ro rsorssson TAIT.]

KILMICHAEL, Bnonrcx,

ISLE or ARRAN, Oct. 10, 1863.

302. Yesterday evening, when engaged in measuring the

electrostatic capacities of some specimens of insulated wire

designed for submarine telegraph cables, I had occasion fre

quently to discharge, through a galvanometer coil, a condenser

consisting of two parallel plates of metal, separated by a space

of air about ‘007 inch across, and charged to a difference

of potentials equal to that of about 800 Daniell’s elements.

I remarked at an instant of discharge a sharp sound, with a.
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very slight prolonged resonance, which seemed to come from

the interior of the case containing the condenser, and which

struck me as resembling a sound I had repeatedly heard before

when the condenser had been overcharged and a spark passed

across its air-space. But I ascertained that this sound was

distinctly audible when there was no spark within the con

denser, and the whole discharge took place fairly through the

2000 yards of fine wire, constituting the galvanometer coil. I

arranged the circuit so that the place where the contact was

made to produce the discharge was so far from my ear that the

initiating spark was inaudible; but still I heard distinctly the

same sound as before from within the condenser.

303. Using instead of the galvanometer coil either a short

wire or my own body (as in taking a shock from a Leyden phial),

I still heard the sound within the condenser. The shock was

imperceptible except by a very faint prick on the finger in the

place of the spark, and (the direct sound of the spark being

barely, if at all, sensible) there was still a very audible sound,

always of the same character, within the condenser, which I

heard at the same instant as I felt the spark on my finger.

Mr. Maofarlane could hear it distinctly standing at a distance

of several yards. \Ve watched for light within the condenser,

but could see none. I have since ascertained that suddenly

charging the condenser out of one of the specimens of cable

charged for the purpose produces the same sound within the

condenser; also that it is produced by suddenly reversing the

charge of the condenser.

304. Thus it is distinctly proved that a plate of air emits a

sound on being suddenly subjected to electric force, or on expe

riencing a sudden change of electric force through it. This seems

a most natural result when viewed in connexion with the new

theory put forward by Faraday in his series regarding the part

played by air or other dielectric in manifestations of electric

force. It also tends to confirm the hypothesis I suggested to

account for the remarkable observation made regarding light~

ning, when you told me of it about a year ago, and other

similar observations which I believe have been reported, prov

ing a sound to be heard at the instant of a flash of lightning

in localities at considerable distances from any pait of the line

of discharge, and which by some have been supposed to de
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monstrate an error in the common theory of sound. I may

add that Mr. Macfarlane tells me he believes he has heard, at

the instant of a flash of lightning, a sound as of a heavy body

striking the earth, and imagined at first that something close

to him had been struck, but heard the ordinary thunder at a

sensible time later.

XVIII. MEASUREMENT OF THE ELECTROSTATIC FORCE

PRODUCED BY A DANIELL’S BATTERY.

[Proceedings Royal Society, Feb. 23 and April 12, 1860, or Phil. Mag. 1860,

second half-yearn]

305. In a paper “ On Transient Electric Currents," published

in the Philosophical Magazine for June 1853, I described a

method for measuring differences of electric potential in abso

lute electrostatic units, which seemed to me the best adapted

for obtaining accurate results. The “absolute electrometer"

which I exhibited to the British Association on the occasion

of its meeting at Glasgow in 1855, was constructed for the

purpose of putting this method into practice, and, as I then

explained, was adapted to reduce the indications of an electro

scopic‘ or of a torsion electrometer to absolute measure.

306. The want of sufficiently constant and accurate instru

ments of the latter class has long delayed my carrying out of

the plans then set forth. Efforts which I have made to produce

electrometers to fulfil certain conditions of sensibility, con

venience, and constancy, for various objects, especially the

electrostatic measurement of galvanic forces, and of the differ

ences of potential required to produce sparks in air, under

definite conditions, and the observation of natural atmospheric

electricity, have enabled me now to make a beginning of abso

lute determinations, which I hope to be able to carry out soon

in a much more accurate manner. In the meantime, I shall

give a slight description of the chief instruments and processes

‘ I have used the expression " electroscopic electrometer,” to designate an

electrometer of which the indications are merely read off in each instanbe by

a single observation, without the necessity of applying any experimental pro

cess of weighing, or of balancing by torsion, or of otherwise modifying the

conditions exhibited. -
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followed, and state the approximate results already obtained,

as these may be made the foundation of various important

estimates in several departments of electrical science.

307. The absolute electrometer alluded to above (compare

§ 358, below), consists of a plane metallic disc, insulated in a

horizontal position, with a somewhat smaller plane metallic disc

hung centrally over it, from one end of the beam of a balance.

A metal case protects the suspended disc from currents of air,

and from irregular electric influences, allowing a light vertical

rod, rigidly connected with the disc at its lower end, and sus

pended from the balance above, to move up and down freely,

through an aperture just wide enough not to touch it. In the

side of the case there is another aperture, through which pro

jects an electrode rigidly connected with the lower insulated disc.

The upper disc is kept in metallic communication with the case.

308. In using this instrument to reduce the indications of an

electroscopic or torsion electrometer to absolute electrostatic

measure, the insulated part of the electrometer is kept in

metallic communication with the insulated disc, while the

cases enclosing the two instruments are also kept in metallic

communication with one another. A charge, either positive or

negative, is communicated to the insulated part of the double

apparatus. The indication of the tested electrometer is read

off, and at the same time the force required to keep the move

able disc at a stated distance from the fixed disc below it, is

weighed by the balance. This part of the operation is, as I

anticipated, somewhat troublesome, in consequence of the in

stability of the equilibrium, but with a little care it may be

managed with considerable accuracy. The plan which I have

hitherto followed, has been to limit the play of the arm of the

balance to a very small arc, by means of firm stops suitably

placed, thus allowing a. range of motion to the upper disc

through but a small part of its whole distance from the lower.

A certain weight is put into the opposite scale of the balance,

and the indications of the second electrometer are observed

when the electric force is just sufficient to draw down the

upper disc from resting in its upper position, and again when

insuflicient to keep it down with the beam pressed on its

lower stop. This operation is repeated at different distances,
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and thus no considerable error depending on a want of parallel

ism between the discs could remain undetected. It may be

remarked that the upper disc is carefully balanced by means

of small weights attached to it, so as to make it hang as nearly

as possible parallel to the lower disc. The stem carrying it is

graduated to hundredths of an inch (‘254 of a millimetre);

and by watching it through a telescope at a short distance, it

is easy to observe 1% of a millimetre of its vertical motion.

309. I have recently applied this method to reduce to ab

solute electrostatic measure the indications of an electrometer

forming part of a portable apparatus for the observation of

atmospheric electricity. In this instrument (compare § 263)

a very light bar of aluminium attached at right angles to the

middle of a fine platinum wire, which is firmly stretched be

tween the inside coatings of two Leyden phials, one occupying

an inverted position above the other, experiences and indicates

the electrical force which is the subject of measurement, and

which consists of repulsions in contrary directions on its two

ends, produced by two short bars of metal fixed on the two

sides of the top of a metal tube, supported by the inside coat

ing of the lower phial.

310. The amount of the electrical force (or rather, as it should

be called in correct mechanical language, couple) is measured by

the angle through which the upper Leyden phial must be

turned round an axis coincident with the line of the wire, so

as to bring the index to a marked position. An independently

insulated metal case, bearing an electrode projecting outwards,

to which the body to be tested is applied, surrounds the index

and repelling bars, but leaves free apertures above and below,

for the wire to pass through it without touching it; and by

other apertures in its sides and top, it allows the motions of

the index to be observed, and the Leyden phials to be charged

or discharged at pleasure, by means of an electrode applied to

one of the fixed bars described above. When by means of such

an electrode the inside coatings of the Leyden phials are kept

connected with the earth, this electrometer becomes a plain

repulsion electrometer, on the same principle as l’eltier’s, with

the exception that the index, supported by a platinum wire

instead of on a pivot, is directed by elasticity of torsion instead
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of by magnetism; and the electrical efi'ect to be measured is

produced by applying the electrified body to a conductor con

nected with a fixed metal case round the index and repelling

bars, instead of with these conductors themselves.

311. This electrometer, being of suitable sensibility for direct

comparison with the absolute electrometer according to the

process described above, is not sufficiently sensitive to measure

directly the electrostatic effect of any galvanic battery of fewer

than two hundred cells with much accuracy. Not having at

the time arrangements for working with a multiple battery of

reliable character, I used a second torsion electrometer of a

higher degree of sensibility as a medium for comparison, and

determined the value of its indications by direct reference to a

Daniell’s battery of from six to twelve elements in good work

ing order. This electrometer, in which a light aluminium

index, suspended by means of a fine glass fibre, kept constantly

electrified by means of a light platinum wire hanging down

from it and dipping into some sulphuric acid in the bottom of

a charged Leyden jar, exhibits the effects of electric force due

to a difference of potentials between two halves of a metallic

ring separately insulated in its neighbourhood, will be sufiici

'ently described in another communication to the Royal Society.

‘Slight descriptions of trial instruments of this kind have already

been published in the Transactions of the Pontifical Academy

of Rome,‘ and in the second edition of Nichol’s Cyclopwdia

(article Electricity, Atmospheric), 1860 (§§ 249, 266, above).

312. I hope soon to have another electrometer on the same

general principle, but modified from those hitherto made, so

as to be more convenient for accurate measurement in terms of

constant units. In the meantime, I find that, by exercising

sufficient care, I can obtain good measurements by means of

the divided ring electrometer of the form described in Nichol’s

Cyclopccdia (§ 263, above). '

313. In the ordinary use of the portable electrometer, a con

siderable charge is communicated to the connected inside coat

ings of the Leyden phials, and the aluminium index is brought

to an accurately marked position by torsion, while the insulated

* Accademia Pontiticia dei Nuovi Lyncei, February 1857.

Q



242 Jlfeasurcment of the Electrostatic Force [XVIII.

metal case surrounding it is kept connected with the earth.

The square root of the reading of the torsion~head thus ob

tained measures the potential, to which the inside coatings of

the phials have been electrified. If, now, the metal case

referred to is disconnected from the earth and put in con

nexion with a conductor whose potential is to be tested, the

square root of the altered reading of the torsion-head required

to bring the index to its marked position in the new circum

stances measures similarly the difi'erence between this last

potential and that of the inside coatings of the phials. Hence

the excess of the latter square root above the former expresses

in degree and in quality (positive or negative) the required

potential. This plan has not only the merit of indicating the

quality of the electricity to be tested, which is of great import

ance in atmospheric‘observation, but it also affords a much

higher degree of sensibility than the instrument has when used

as a plain repulsion electrometer; and, on account of this last

mentioned advantage, it was adopted in the comparisons with

the divided ring electrometer. On the other hand, the portable

electrometer was used in its least sensitive state, that is to say,

with its Leyden phials connected with the earth, when the

comparisons with the absolute electrometer were made.

314. The general result of the weighings hitherto made, is

that when the discs of the absolute electrometer were at a dis

tance of ‘5080 of a centimetre, the number of degrees of torsion

in the portable electrometer was '20924 times the number of

grammes’ weight required to balance the attractive force; and

the number of degrees of torsion was '4983 times the number

of grammes’ weight found in other series of experiments in

which the distance between the discs was '762 of a centimetre.

According to the law of inverse squares of the distances to

which the attraction between two parallel discs is subject when

a constant difference of potentials is maintained between them,"i

the force at a distance of ‘254 of a centimetre would have been

fi-‘n, according to the first of the preceding results, or, accord

ing to the second, ‘rs-11m of the number of degrees of torsion.

The mean of these is Tyler, or '07 77 ; and we may consider this

* Seo§ ll of Elements of Mathematical Theory of Electricity appended

to the communication following this in the “ Proceedings."



XVIIL] produced by a Daniell’s Battery. 243

number as representing approximately the value in grammes’

weight at ‘254 of a centimetre distance between the discs of the

absolute electrometer, corresponding to one degree of torsion

of the portable electrometer. By comparing the indications of

the portable electrometer with those of the divided ring electro

meter, and by evaluating those of the latter in terms of the

electromotive force of a Daniell's battery charged in the usual

manner, I find that 284 times the square root of the number

of degrees of torsion in the portable electrometer is approxi

mately the number of cells of a Daniell's battery which would

produce an electromotive force (or, which is the same thing, a

difference of potentials) equal to that indicated Hence the

attraction between the discs of the portable electrometer, if at

‘254 of a centimetre distance, and maintained at a. difference of

potentials amounting to that produced by 284 cells, is '07 77 of

a gramme. The effect of 1000 cells would therefore be to give a

force of "965 of a gramme, since the force of attraction is propor—

tional to the square of the difference of potentials between the

discs. The diameter of the opposed circular areas between

which the attraction observed took place, was 1488 centi

metres. Its area was therefore 1740 square centimetres, and

therefore the amount of attraction per square decimetre, accord

ing to the preceding estimate for '254 of a centimetre distance

and 1000 cells’ difference of potential, is ‘554 of a gramme.

Hence, with an electromotive force or difference of potentials

produced by 1000 cells of Daniell's battery, the force of attrac

tion would be 357 grammes weight per square decimetre

between discs separated to a distance of 1 millimetre. [The

force in grammes weight is equal to ‘000357 x 11.2, if the area

of each of the opposed surfaces is equal to a square whose side

is n times the distance between them, provided n be a large

number.]

315. This result differs very much from an estimate I have

made according to \Veber’s comparison of electrostatic with elec

tro-magnetic units and my theoretical estimate of 2,500,000

British electro-magnetic units for the electromotive force of a

single element of Daniell’s. On the other hand, it agrees to

a remarkable degree of accuracy with direct observations made

for me, during my absence in Germany, by Mr. Macfarlane, in
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the months of June and July 1856, on the force of attraction

produced by the direct application of a miniature Daniell’s

battery, of different numbers of elements, from 93 to 451,

applied to the same absolute electrometer with its discs at

'2006 of a centimetre asunder. These observations gave

forces varying, on the whole, very closely according to the

square of the number of cells used; and the mean result re

duced according to this law to 1000 cells was 1616 grammes.

Reducing this to the distance of l millimetre, and dividing

by 1'74, the area in square decimetres, we find 3'51 grammes

per square decimetre at a distance of 1 millimetre.

316. Although the experiments leading to this result were

executed with great care by Mr. Maofarlane, I delayed publish

ing it because of the great discrepance it presented from the

estimate which I deduced from \Veber’s measurement, pub

lished while my preparations were in progress. I cannot

doubt its general correctness now, when it is so decidedly con

firmed by the electrometric experiments I have just described,

which have been executed chiefly by Mr. John Smith and

Mr. John Ferguson, working in my laboratory with much

ability since the month of November. I am still unable to

explain the discrepance, but it may possibly be owing to some

miscalculation I have made in my deductions from \Veber’s

result.

Gusoow COLLEGE, Jan. 18, 1860.

[Additiom April 1870.—From experiments of the present

date, performed by Mr. \Villiam Leitch and Mr. Dugald

M‘Kichan, with the new Absolute Electrometer 364, below),

it is deduced that with the difference of potentials produced

by 1000 Daniell’s cells in series, the force of attraction would

be 5'7 grammes per square decimetre between discs separated

to a distance of 1 millimetre, instead of 3'57 grammes as found

in 314. This new measurement, with Maxwell’s correction

of \Veber’s number, which diminishes it by about 8 per cent.

(Report of British Association for 1869, page 438 :-—Committee

on Electrical Standards), seems to reduce to as nearly as may

be nothing, the discrepance from my thermo-dynamic estimate

of December 1851 (Philosophical Magazine) referred to in § 318,



XVIIL] produced by a Daniell’s Battery. 245

below. Calculating from it by § 339, we find 3'74 for the dif

ference of potentials (or electromotive force in absolute electro

static measure), produced by 1000 elements of Daniell’s]

POSTSCRIPT, April 12, 1860.

317. I have since found that I had inadvertently misinter

preted Weber’s statement in the ratio of 2 to 1. I had always,

as it appears to me most natural to do, regarded the transference

of negative electricity in one direction, and of positive elec

tricity in the other direction, as identical agencies, to which, in

our ignorance as to the real nature of electricity, we may apply

indiscriminately the one expression or the other, or a. combina

tion of the two. Hence I have always regarded a current of

unit strength as a current in which the positive or vitreous

electricity flows in one direction at the rate of a unit of elec

tricity per unit of time ; or the negative or resinous electricity

in the other direction at the same rate; or (according to the

infinitely improbable hypothesis of two electric fluids) the

vitreous electricity flows in one direction at any rate less than

a unit per second, and the resinous in the opposite direction at

a rate equal to the remainder of the unit per second. I have

only recently remarked that Weber’s expressions are not only

adapted to the hypothesis of two electric fluids, but that they

also reckon as a current of unit strength, what I should have

called a current of strength 2, namely, a flow of vitreous

electricity in one direction at the rate of a unit of vitreous

electricity per unit of time, and of the resinous electricity in

the other direction simultaneously, at the rate of a unit of

resinous electricity per unit of time.

318. Weber’s result as to the relation between electrostatic

and electro-magnetic units, when correctly interpreted, I now

find would be in perfect accordance with my own results given

above, if the electromotive force of a single element of the

Daniell’s battery used were 2,140,000 British electro-magnetic

units instead of 2,500,000, as according to my thermo-dynamic

estimate. This is as good an agreement as could be ex

pected when the difliculties of the investigations, and the

uncertainty which still exists as to the true measure of the
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electrornotive force of the Daniell’s element are considered.

It must indeed be remarked that the electromotive force of

Daniell’s battery varies by two or three or more per cent. with

variations of the solutions used ; that it varies also very sensibly

with temperature; and that it seems also to be dependent, to

some extent, on circumstances not hitherto elucidated. A

thorough examination of the electromotive force of Daniell’s

and other forms of galvanic battery, is an object of high im

portance, which, it is to be hoped, will soon be attained. Until

this has been done, at least for Daniell’s battery, the results of

the preceding paper may be regarded as having about as much

accuracy as is desirable.

319. I may state, therefore, in conclusion, that the average

electromotive force per cell of the Daniell's batteries which I

have used, produces a difference of potentials amounting to

‘00296 [corrected to ‘00374, April 1870,] in absolute electro

static measure. This statement is perfectly equivalent to the

following in more familiar terms :—

One thousand cells of Daniell’s battery, with its two poles

connected by wires with two parallel plates of metal 1 millimetre

apart, and each a square decimetre in area, produces an elec

trical attraction equal to the weight of 3,57 [corrected to 5'7]

grammes.



XIX. MEASUREMENT OF THE ELECTROMOTIVE FORCE

REQUIRED TO PRODUCE A SPARK IN AIR BETWEEN

PARALLEL METAL PLATES AT DIFFERENT DISTANCES.

[Proceedings Royal Society, Feb. 23 and April 12, 1860, or Phil. May, 1860,

second half-yearn]

320. THE electrometers used in this investigation were the

absolute electrometer and the portable electrometer described in

my last communication to the Royal Society, and the opera

tions were executed by the same gentlemen, Mr. Smith and

Mr. Ferguson. The conductors between which the sparks

passed were two unvarnished plates of a condenser, of which

one was moved by a micrometer screw, giving a motion of

111-; of an inch (about one millimetre) per turn, and having its

head divided into 40 equal parts of circumference. The

readings on the screw-head could be readily taken to tenth

parts of a division, that is to say, to about 111R)‘ of a millimetre

on the distance to be measured. The point from which the

spark would pass in successive trials being somewhat vari

able, and often near the edges of the discs, a thin flat

piece of metal, made very slightly convex on its upper

surface like an extremely fiat watch-glass, was laid on the

lower plate It was then found that the spark always passed

between the crown of this convex piece of metal and the flat

upper plate. The curvature of the former was so small, that

the physical circumstances of its own electrification near its

crown, the opposite electrification of the opposed flat surface

in the parts near the crown of the convex, and the electric

pressure on or tension in the air between them could not, it

was supposed, differ sensibly from those between two plane

conducting surfaces at the same distance and maintained at

the same difference of potentials.
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321. The reading of the screw-head corresponding to the posi

tion of the moveable disc when touching the metal below, was

always determined electrically by making a succession of sparks

pass, and approaching the moveable disc gradually by the screw

until all appearance of sparks ceased. Contact was thus pro

duced without any force of pressure between the two bodies

capable of sensibly distorting their supports.

With these arrangements several series of experiments were

made, in which the differences of potentials producing sparks

across different thicknesses of air were measured first by the

absolute electrometer, and afterwards by the portable torsion

electrometer. The following Tables exhibit the results hither

to obtained :

322. TABLE I.—December 13, 1859. illeasurcments by absolute elec

trometer of maximum electrostatic forces* across a stratum of

air Q)" diferent thicknesses.

Area of each plate of absolute electrometer=l74 square centimetres.

Distance between plates of absolute electrometer: ‘508 of a centimetre.

Electrostatic force, or

Length of Weight‘ in i“ Electroinotive force electmmfifive force

spark in r'iq‘med w “lance in units of the Per inch or ail'v in

inches. m abmlut" Glee‘ electrometer. temporary “nits

tmmeter. MW

8. w. ~lw, I _ _

s

‘007 6 2'4495 349'9

‘0105 9 3'0000 285'7

'01 15 10 31622 275‘()

‘014 13 3'6055 257'5

‘017 16 4'0000 235'3

‘018 19 4'3589 242'2

‘024 30 5‘4772 228?

'0295 40 6'3245 214'4

‘034 50 7'07 1 0 208'0

‘0385 60 7'7459 201‘2'

‘041 70 8'3666 204'1

‘U445 80 8'9442 201'0

‘048 90 9'4868 197'6

‘052 100 10'0000 19‘2‘3

‘055 110 10'4880 190'‘?

‘058 120 10‘9544 188'9

‘060 130 11'4017 190'0

323. These numbers demonstrate an unexpected and a very

remarkable result,—that greater electromotive force per unit

’* See§ 331 below.
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length of air is required to produce a spark at short distances

than at long. \Vhen it is considered that the absolute electri

fication of each of the opposed surfaces‘ depends simply on

the electromotive force per unit length of the space between

them, or, which is the same thing, the resultant electrostatic

force in the air occupying that space, it is difficult even to con

jecture an explanation. Without attempting to explain it, we

are forced to recognise the fact that a thin stratum of air is

stronger than a thick one against the same disruptive tension

in the air, according to Faraday’s view of its condition as trans

mitting electric force, or against the same lifting electric pres

sure from its bounding surfaces, according to the views of the

eighteenth century school, as represented by Poisson. The

same conclusion is established by a series of experiments with

the previously~described portable torsion electrometer substi

tuted for the absolute electrometer, leading to results shown

in the following Table :—

324. TABLE IL-January 17, 1860. Measurements by portable lor

sion electrometer of electromotive forces producing sparks across

a stratum of air of dg'fi‘erent thicknesses.

Torsion in egg - A Electrostatic force, or
LHgt‘Fnggark required to (11); ance l‘ Eleiiltiiliiltgtiytllzme electromotive for“

' in electrometer. electrometer. Per inch or all’; in

8. a. V0 temporary units,

' V0-I-I

‘001 3 1'732 1732

‘002 7 T646 1323

‘003 11 3-316 1105

‘004 14 3-742 935

‘005 18 4'243 849

‘006 22 4'690 782

‘007 27 5'196 742

‘008 30 5'47? 685

‘009 33 5744 638

‘O 1 0 38 6'1 64 616

‘O l l 43 6'557 596

‘O1 2 48‘5 6‘964 580

'01 3 54 7'348 565

'0 14 59 7'68 1 549

'0 l5 66 8'124 542

'0 1 6 73 8544 534

‘0 1 7 7 9 8'888 523

'013 85 9'219 512

1" See § 332 below.
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325. The series of experiments here tabulated stops at the dis

tance 18 thousandths of an inch, because it was found that the

force in the electrometer corresponding to longer sparks than

that, was too strong to be measured with certainty by the port

able electrometer, whether from the elasticity of the platinum

wire, or from the rigidity of its connexion with the aluminium

index being liable to fail when more than 85° or 90° of torsion

were applied. So far as it goes, it agrees remarkably well with

the other experiments exhibited in Table I., as is shown by the

following comparative Table, in which, along with results of

actual observation extracted from Table II., are placed results

deduced from Table I. by interpolation for the same lengths of

spark :

TABLE III.—Experiments of December 13, 1859, and January 17,

1860, compared.

C01. 1. } 00L 2. Col. 8. 00L 4.

Electrpmgtize force Electromptive force

1' no 0 air » -r in f i , ."k Dedlelfl, in temporary Janl. ‘17, ill ltgmlimdrary xtws of numbers

8 units of that day. units of that day. l h5g3: ail?"

' *1’. i’ . . i '

, , 1
~00? 349-3 742 1 F213

‘0105 285'7 606 \ 2'12

'01 15 275'0 588 I 2'14
‘014 2575 549 - ' 2'14

‘017 235'3 523 2'22

‘018 242‘2 512 2'11

Mean 214 I

The close agreement with one another of the numbers in

C01. 4, derived from series difl‘ering so much as those in 001s.

2 and 3, and obtained by means of electrometers differing so

much in construction, constitutes a very thorough confirmation

of the remarkable result inferred above from the experiments

of the first series, and shows that the law of variation of the

electrostatic force in the air required to produce sparks of the

different lengths, must be represented with some degree of

accuracy by the numbers shown in the last cohnnn of either

Table I. or Table III.

The following additional series of experiments were made on

precisely the same plan as those of Table II. :—
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TABLE IV.——Januar_y 21, 1860. Measurements by portable torsion

electrometer of electromotive forces producing sparks across a

stratum of air of difi‘erent thicknesses.

o n in de ecs Electromotivc fore macmtic force’ or
Lexifitihngigguk rgqlrsiirtiid to bailzncc in units of the a egzitfigi‘ogfvsifma

a. in electrometer. electrometer. temporary “Him

0. A/O- 40+a.

‘ 1'19 1790

.002 64 T32 1 11 60

_003 10.5 3-24 1 1080

,004 13.2 3-63 907

,005 14.2 3-77 754

,006 18-2 4'27 712 '

.012 41.2 6'42 ‘,0‘ 3 46.7 6'83 525

-014 53'? ; 7'29 i 52‘
.015 57.2 7-56 ‘ 504

‘017 68-2 am; 486

_018 ‘ 78.2 8-84 I 491

TABLE V.—January 23, 1860. Similar experiments repeated.

5. 0. V6. 40-1-5.

001 3-5 1-s7 1870

002 6'5 255 1275

00s . 9-5 3-08 1027

-004 12'-7 3'56 890

-005 . 15-5 3-94 788

000 18-5 4-30 ‘ 716

007 . 23-0 4'80 686

008 25-52 5'06 632

-009 , 30-5 - 5-52 613

-010 35-0 5-92 . 592

-011 39-5 028 5 571

-012 44-0 6-63 1 55s

013 50-0 7-07 544

014 54-0 7-35 525

, 015 59-0 7'68 512

' 01s 63'5 7-97 498

-017 69'?) 8'34 490

018 74-5 8-63 479

The difference between the numbers shown in these two

Tables and in Table II. above, are probably due in part to true

differences in the resistance of the air to electrical disruption ;

but variations in the electrometer, which was by no means of

perfect construction, may have sensibly influenced the results,
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especially as regards the differences between those shown in

Table II. and those shown in Tables IV. and V., which, agree

ing on the whole closely with one another, fall considerably

short of the former.

326. TABLE VI.—Summary of results reduced to absolute measure.

C01. 1. C01. 2. COL 3. C01. 4. C01. 5.

‘ Pressures of electricity

Electrqmtw (""795 Electrostatic from either metallic

Length of ugczmh'lg ta “mph forces according surface bllaueed by air

spark in e ""1"?" 0115 of to estimated immediately before

centimetres De¢~ 15, 1309- avemge of Din-"mega disrulition, in grammes

' x/w , 981-4 x 8,» various deter- welght'per square

8- TX 508 ,J —*17; * mimgiom centimetre.‘

=3. R- R’ _

8n X 981 '4

‘00254 527'? 11'290

‘00508 367'8 5-484

‘00762 314‘4 4'007

‘01016 267'6 2-903

‘01270 234-0 2-220

‘01524 _ 216‘1 1'893

‘01778 211‘4 208'2 +3'2 1'757

‘02032 193'1 1'512

‘02286 183‘4 1‘364

‘02540 177'5 1‘277

‘02667 1728 "3'3 —0'5 1217

‘02794 171‘0 1‘185

‘02921 166'4 166'9 —0‘5 1129

‘03048 163'2 1‘080

‘03302 159'4 1'030

‘03556 155‘8 1558 ‘0 ‘984

‘03810 152'6 -944

‘04064 149'9 -911

‘04318 142‘5 144'4 — 1'9 '845

‘04572 146'7 1457 + 1'0 ‘860

‘06096 142‘5 m -823

‘07493 129’6 ‘ ‘681

‘08636 126'0 ‘644

‘09779 121'8 ‘601

‘10414 123'7 ‘620

‘11303 121‘8 ‘601

‘12192 119'5 u. ‘579

‘13208 1163 ‘548

‘13970 115'4 '540

‘14732 114'5 ‘531

'15240 114-9 ~535

* Distance between discs of absolute electrometer= ‘508 of a centimetre.

Area of each: 174 square centimetres.

Force of gravity at Glasgow on unit msss=98l'4 dynamical units of force;

that is to say, generates in one second a velocity of 981'4 centimetres per

second.

'1' This is most directly obtained by finding the force between the discs of

the absolute electrometer per square centimetre, and reducing, according to

the inverse proportion of squares of distances, to what it would have been

if the distance between them had been equal to the length of the spark.
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APPENDIX (§§ 327-338).

327. In order that the different expressions, “potential,”

" electromotive force,” “ electric force,” or “electrostatic force,”

“pressure of electricity from a metallic surface balanced by air,”

used in the preceding statement, may be perfectly understood, I

add the following explanations and definitions belonging to the

ordinary elements of the mathematical theory of electricity :

328. illeasure'ment of quantities of electricity.—-The unit quan

tity of electricity is such a quantity, that, if collected in a point,

it will repel an equal quantity collected in a point at a unit

distance with a force equal to unity.

[In absolute measurements the unit distance is one centi

metre ; and the unit force is that force which, acting on a

gramme of matter during a'second of time, generates a velocity

of one centimetre per second. The weight of a gramme at

Glasgow is '981'4 of these units of force. The weight of a

gramme in any part of the earth’s surface may be estimated

with about as much accuracy as it can be without a special

experiment to determine it for the particular locality, by the

following expression :—

In latitude 7\, average weight of a gramme

: 978'024 x (1 + '005133 x singx) absolute kinetic units]

330. Electric dcmity.—This term was introduced by Coulomb

to designate the quantity of electricity per unit of area in any

part of the surface of a conductor. He showed how to measure

it, though not in absolute measure, by his proof plane.

331. Resultant clectricforee at (my point in an insulatingfluid

[compare § 65, above].—The resultant force at any point in air

or other insulating fluid in the neighbourhood of an electrified

body, is the force which a unit of electricity concentrated at

that point would experience if it exercised no influence on the

electric distributions in its neighbourhood.

332. Relation between electric density on the surface of a con

cluctor, and electric force at points in the air close to it.—Accord

ing to a proposition of Coulomb’s, requiring, however, correction,

and first correctly given by Laplace, the resultant force at any

point in the air close to the surface of a conductor is perpendi
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cular to the surface and equal to 41rp, if p denotes the electric

density of the surface in the neighbourhood (§ 87, Con).

333. Electric pressure from the surface of a conductor balanced

by air.—A thin metallic shell or liquid film, as for instance a

soap-bubble, if electrified, experiences a real mechanical force

in a direction perpendicular to the surface outwards, equal in

amount per unit of area to 27rp2, p denoting, as before, the

electric density at the part of the surface considered (§ 88).

This force may be called either a repulsion (as according to

the views of the eighteenth century school) or an attraction

effected by tension of air between the surface of the conductor

and the conducting boundary of the air in which it is insu

lated, as it would probably be considered to be by Faraday;

but whatever may be the ‘explanation of the modus operandi by

which it is produced, it is a real mechanical force, and may be

reckoned as in C01. 5 of the preceding Table, in grammes weight

per square centimetre. In the case of the soap-bubble, for

instance, its effect will be to cause a slight enlargement of the

bubble on electrification with either vitreous or resinous elec

tricity, and a corresponding collapse on being perfectly dis

charged. In every case we may regard it as constituting a

deduction from the amount of air-pressure which the body

experiences when unelectrified The amount of this deduction

being different in different parts according to the square of the

electric density, its resultant action on the whole body disturbs

its equilibrium, and constitutes in fact the resultant of the

electric force experienced by the body.

334. Collcetedfm'mula: ofrelation between electric density on the

surface of a conductor, electric diminution of air-pressure upon

it, and resultant force in the air close to the smface.—Let, as

before, p denote the first of these three elements, let p denote

the second reckoned in units of force per unit of area, and let

R denote the third. Then we have

R=41rp,

p= 21rpl = slrR',

335. Electric potential [difference of potentials being what,

aft'er German usage, is still sometimes called “electromotive

force.” (Addition, April 1870.)]—The amount of work required
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to move a unit of electricity against electric repulsion from any

one position to any other position, is equal to the excess of the

electric potential of the second position above the electric

potential of the first position.

Cor. l. The electric potential at all points close to the surface

of an electrified metallic body has one value, since an electri

fied point, possessing so small a quantity of electricity as not

sensibly to influence the electrification of the metallic surface,

would, if held near the surface in any locality, experience a

force perpendicular to the surface in its neighbourhood.

Cor. 2. The electric potential throughout the interior of a

hollow metallic body, electrified in any way by external influ~

ence, or, if insulated, electrified either by influence or by com~

munication of electricity to it, is constant, since there is no

electric force in the interior in such circumstances.

[It is easily shown by mathematical investigation, that the

electric force experienced by an electric point containing an

infinitely small quantity of electricity, when placed anywhere

in the neighbourhood of a hollow electrified metallic shell,

gradually diminishes to nothing if the electric point he moved

gradually from the exterior through a small aperture in the

shell into the interior. Hence the one value of the potential

close to the surface outside, mentioned in Cor. 1, is equal to

the constant value throughout the interior mentioned in Cor. 2.]

336. Interpretation of measurement by electrometer.—Every

kind of electrometer consists of a cage or case containing a move

able and a fixed conductor, of which one at least is insulated and

put in metallic communication, by what I shall call the prin

cipal electrode passing through an aperture in the case or cage,

with the conductor whose electricity is to be tested. In every

properly constructed electrometer, the electric force experi

enced by the moveable part in a given position cannot be

electrically influenced except by changing the difference of

potentials between the principal electrode and the uninsulated

conductor or conducting system in the electrometer. Even

the best of ordinary electrometers hitherto constructed do not

fulfil this condition, as the inner surface of the glass of which

the whole or part of the enclosing case is generally made, is

liable to become electrified, and inevitably does become so
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when any very high electrification is designedly or acciden

tally introduced, even for a very short time; the consequence

of which is that the moving body will generally not return to

its zero position when the principal electrode is perfectly dis

insulated. Faraday long ago showed how to obviate this radi

cal defect by coating the interior of the glass case with a fine

network of tinfoil; and it seems strange that even at the pre

sent day electrometers for scientific research, as, for instance,

for the investigation of atmospheric electricity, should be con

structed with so bad and obvious a defect uncured by so simple

and perfect a remedy. 'When it is desired to leave the interior

of the electrometer as much light as possible, and to allow it

to be clearly seen from any external position with as little

embarrassment as possible, a cage made like a bird’s cage, with

an extremely fine wire on a metal frame, inside the glass shade

used to protect the instrument from currents of air, etc., may

be substituted with advantage for the tinfoil network lining of

the glass. It appears, therefore, that a properly constructed

electrometer is an instrument for measuring, by means of the

motions of a moveable conductor, the difference of potentials

of two conducting systems insulated from one another, of one

of which the case or cage of the apparatus forms part. It may

be remarked in passing, that it is sometimes convenient in

special researches to insulate the case or cage of the apparatus,

and allow it to acquire a potential difi'ering from that of the

earth, and that then, as always, the subject of measurement is

the difference of potentials between the principal electrode and

the case or cage, while in the ordinary use of the instrument

the potential of the latter is the same as that of the earth.

Hence we may regard the electrometer merely as an instrument

for measuring differences of potential between two conducting

systems mutually insulated; and the object to be aimed at in

perfecting any kind of electrometer (more or less sensitive as it

may be, according to the subjects of investigation for which it

is to be used), is, that accurate evaluations in absolute measure,

of difi'erenees of potential, may be immediately derivable from its

indications.

337. Relation between electrostaticforce and variation ofelectric

potential.-—§ 335, otherwise stated, is equivalent to this :-The
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average component electrostatic force in the straight line of

air between two points in the neighbourhood of an electrified

body is equal to their difference of potentials divided by their

distance. In other words, the rate of variation of electric

potential per unit of length in any direction is equal to the

component of the electrostatic force in that direction. Since

the average electrostatic force in the line joining two points at

which the values of the potential are equal is nothing, the

direction of the resultant electrostatic force at any point must

be perpendicular to the equipotential surface passing through

that point; or the lines of force (which are generally curves)

cut the series of equipotential surfaces at right angles. The

rate of variation of potential per unit of length along a. line of

force is therefore equal to the electrostatic force at any point.

338. Stratum of air between two parallel or nearly parallel

plane or curved metallic surfaces maintained at dzfi'erent p0ten~

tiala-Let a denote the distance between the metallic surfaces

on each side of the stratum of air at any part, and V the differ

ence of potentials. It is easily shown that the resultant elec

trostatic force is sensibly constant through the whole distance;

from the one surface to the other; and being in a direction

sensibly perpendicular to each, it must 337) be equal to IE’

Hence (§ 332) the electric density on each of the opposed sur

faces is equal to 5‘;- This is Green's theory of the Leyden

phial.

339. Absolute Electrometer.-As a particular case of 338,

let the discs be plane and parallel: and let the distance be“

tween them be small in comparison with their diameters, or

with the distance of any part of either from any conductor

difl'ering from it in potential. The electric density will be

uniform over the whole of each of the opposed surfaces and

equal to ‘I; , being positive on one and negative on the other;

and in all other parts of the surface of each the electrification

will be comparatively insensible. Hence the force of attraction

between them per unit of area 333 and 334) will be 8:, ;

if A denote 'the area of either of the opposed surfaces, the

IR
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. . V

whole force of attraction between them is therefore A 8;‘?

Hence, if the observed force be equal to the weight of w grammes

at Glasgow, we have gsmx w=A VI.’

81rd

and therefore -V=a~/98l 4 >ilfi1rx w _

ADDITION, DATED APRIL 12, 1860.

340. Experiments on precisely the same plan as those of

Table 1. December 13, have been repeated by the same two ex

perimenters, with different distances from '75 to 1'5 of a centi

metre between the plates of the absolute electrometer, and

results have been obtained confirming the general character of

those shown in the preceding Tables.

The absolute evaluations derived from these later series

must be more accurate than those deduced above from the

single series of December 13, when the distance between the

plates in the absolute electrometer was only '5 of a centimetre.

I therefore, by permission, add the following Table of absolute

determinations :—

Electrostatic forces according ]

Length of spark to estimated average of deter- .

in centimetres. mlnatlous of February 16. 28, i

L 28, and 29, and March 2. 5

y R. 1

. l 7 ~ ‘

0005 257-1 \

0127 257 '0 .

'01 27 262'2 I

‘0190 224'?

I ‘0281 | 2006
1 @405 I 151 '5

‘ ‘0563 y 144' l 1

‘0584 139‘6

0633 i 1408 1
‘0904 134'9

‘1056 1321

‘1325 , 131'0

These results, as well as those shown in the preceding Tables,

demonstrate a much less rapid variation with distance, of the

electrostatic force preceding a spark, at the greater than at the
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smaller distances. It seems most probable that at still greater

distances the electrostatic force will be found to be sensibly

constant, as it was certainly expected to be at all distances.

The limiting value to which the iesults shown in the last

Table seem to point must be something not much less than

130. This corresponds to a pressure of 68 grammes weight per

square decinietre. We may therefore conclude that the ordi

nary atmospheric pressure of 103,200 grammes per square deci

metre, is electrically relieved by the subtraction of not more

than 68, on two very slightly convex metallic surfaces, before

the air between them is cracked and a spark passes, provided

the distance between them is not less than 1'; of acentimetre.

By taking into account the result of my preceding communica

tion to the Royal Society, we may also conclude that a Daniell's

battery of 5510 elements can produce a spark between two

slightly convex metallic surfaces at t of a centimetre asunder

in ordinary atmospheric air.



XX. REPORT ON ELECTROMETERS AND ELECTRO

STATIC MEASUREMENTS.

[Britiah Association Report for 1867. Report of Cormnitlce on Standards

of Electrical Resistance]

341. AN electrometer is an instrument for measuring differ

ences of electric potential between two conductors through

effects of electrostatic force, and is distinguished from the gal

vanometer, which, of whatever species, measures differences of

electric potentials through electromagnetic efi'ects of electric

currents produced by them. When an electrometer merely

indicates the existence of electric potential, without measuring

its amount, it is commonly called an electroscope; but the

name electrometer is properly applied when greater or less

degrees of difference are indicated on any scale of reckoning,

if approximately constant, even during a single series of experi

ments. The first step towards accurate electrometry in every

case is to deduce from the scale-readings, numbers which shall

be in simple proportion to the difference of potentials to be

determined. The next and last step is to assign the corre

sponding values in absolute electrostatic measure. Thus, when ,

for any electrometer the first step has been taken, it remains

only to determine the single constant coefiicient by which the

numbers, deduced from its indications as simply proportional

to differences of potential, must be multiplied to give difi'er

ences of potential in absolute electrostatic measure. This co

efficient will be called, for brevity, the absolute coeflicient of

the instrument in question.

342. Thus, for example, the gold-leaf electrometer indicates

differences of potential between the gold leaves and the solid

walls enclosing the air-space in which they move. If this

solid be of other than sufficiently perfect conducting material,

of wood and glass, or of metal and glass, for instance, as in the
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instrument ordinarily made, it is quite imperfect and indefinite

in its indications, and is not worthy of being even called an

electroscope, as it may exhibit a divergence when the difference

of potentials which the operator desires to discover is absolutely

zero. It is interesting to remark (§ 336) that Faraday first

remedied this defect by coating the interior of the glass case

with tinfoil, cut away to leave apertures proper and sufficient

to allow indications to be seen, but not enough to cause these

indications to differ sensibly from what they would be if the

conducting envelope were completely closed around it; and

that not till a long time after did any other naturalist, mathe

matician, or instrument-maker seem to have noticed the defect,

or even to have unconsciously remedied it.

343. Electrometers may be classified in genera and species

according to the shape and kinematic relations of their parts;

but as in plants and animals a perfect continuity of interme

diate species has been imagined between the rudimentary plant

and the most perfect animal, so in electrometers we may actu

ally construct species having intermediate qualities continuous

between the most widely different genera. But, notwithstand

ing, some such classification as the following is convenient

with reference to the several instruments commonly in use and ‘

now to be described :—

I. Repulsion electrometers.

Pair of diverging straws as used by Beccaria, Volta, and

others, last century.

Pair of diverging gold leaves (Bennet).

Peltier’s electrometer.

Delmann’s electrometer.

Old station-electrometer, described in lecture to the

Royal Institution, May 1860 274-275, above] ;

also in Nichol’s Cg/clopa'dia, article “ Electricity, Atmo

spheric” (edition, 1860) 263, above], and in Dr.

Everett's paper of 1867, “ On Atmospheric Electricity "

(Philosophical Transactions).

II. Symmetrical electrometers.

Bohnenberger’s electrometer.

Divided-ring electrometers.
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III. Attracted disc electrometers.

1 ~\b Absolute electrometer.

" Long-range electrometer.

Portable electrometer.

Spring-standard electrometer.

344. Class I. is sufficiently illustrated by the examples re

timed to; and it is not necessary to explain any of these

instruments minutely at present, as they are, for the present

at all events, superseded by the divided-ring electrometer and

electrometers of the third class.

There are at present only two known species of the second

class; but it is intended to include all electrometers in which

a symmetrical field of electric force is constituted by two sym

metrical fixed conductors at different electric potentials, and in

which the indication of the force is produced by means of an

electrified body moveable symmetrically in either direction

from a middle position in this field. This definition is obvi—

ously fulfilled by Bohnenberger’s well-known instrument.‘

345. My first published description of a divided-ring electro

meter is to be found in the Memoirs of the Roman Academy of

Scienccs'f for February 1857 ; but since that time I have made

great improvements in the instrument—first, by applying a

light mirror to indicate deflections of the moving body; next,

by substituting for two half rings four quadrants, and conse—

quently for an electrified body projecting on one side only of

the axis, an electrified body projecting symmetrically on the

two sides, and moveable round an axis; and lastly, by various

mechanical improvements, and by the addition of a simple

gauge to test the electrification of the moveable body, and of

a replenisher to raise this electrification to any desired degree.

346. In the accompanying drawings, Plate 1. fig. 1 repre

sents the front elevation of the instrument, of which the chief

bulk consists of a jar of white glass (flint) supported on three

legs by a brass mounting, cemented round the outside of its

month, which is closed by a plate of stout sheet-brass, with

* A single gold leaf hanging between the upper ends of two equal and

similar dry piles standing vertically on a horizontal plate of metal, one with

its positive and the other with its negative pole up.

1' Accademia Pontificia dei Nnovi Lincei.
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a lantern-shaped cover standing over a wide aperture in its

centre. For brevity, in what follows these three parts will be

called the jar, the main cover, and the lantern.

Fig. 5 represents the quadrants as seen from above; they

are shown in elevation at a and b, fig. l, and in section at c and

d, fig. 2. They consist of four quarters of a fiat circular box

of brass, with circular apertures in the centres of its top and

bottom. Their position in the instrument is shown in figs.

l, 2, and 6. ‘Each of the four quadrants is supported on a

glass stem passing downwards through a slot in the main cover

of the jar, from a brass mounting on the outside of it, and

admits of being drawn outwards for a space of about 1 centi

metre (% of an inch) from the positions they occupy when the

instrument is in use, which are approximately those shown in

the drawings. Three of them are secured in their proper posi

tions by nuts (6, e, e) on the outside of the chief fiat lid of the

jar shown in fig. 4. The upper end of the stem, carrying the

fourth, is attached to a brass piece (f, fig. 6) resting on three

short legs on the upper side of the main cover, two of these

legs being guided by a straight V-groove at (g) to give them

freedom to move in a straight line inwards or outwards, and to

prevent any other motion. This brass piece is pressed out

wards and downwards by a properly arranged spring (h), and

is kept from sliding out by a micrometer-screw (i) turning in

a fixed nut. This simple kinematic arrangement gives great

steadiness to the fourth quadrant when the screw is turned

inwards or outwards, and then left in any position ; and at the

same time produces but little friction against the sliding in

either direction. The opposite quadrants are connected in two

pairs by wires, as shown in fig. 5 ; and two stout vertical wires

(1, m), called the chief electrodes, passing through holes in the

roof of the lantern, are firmly supported by long perforated

vulcanite columns passing through those holes, and serve to

connect the pairs of quadrants with the external conductors

whose difference of potentials is to be tested. Springs (n, 0) at

the lower ends of these columns, shown in figs. 1 and 2, main

tain metallic contact between the chief electrodes and the

upper sides of two contiguous quadrants (a and b) when the

lantern is set down in its proper position, but allow the lantern
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to be removed, carrying the chief electrodes with it, and to be

replaced at pleasure without disturbing the quadrants. The

lantern also carries an insulated charging-rod (p), or temporary

electrode, for charging the inner coating of the jar (§ 351) to a

small degree, to be increased by the replenisher (§ 352), or, it

may be, for making special experiments in which the potential

of the interior coating of the jar is to be measured by a separate

clectrometer, or kept at any stated amount of difference from

that of the outer coating. When not in use this temporary

electrode is secured in a position in which it is disconnected

from the inner coating.

347. The main cover supports a glass column (q, fig. 2)

projecting vertically upwards through its central aperture,

to the upper end of which is attached a brass piece (7'), which

bears above it a fixed attracting disc (s), to be described later

(§ 353); and projecting down from it a fixed plate bearing

the silk-fibre suspension of the mirror (t), needle (it), etc., seen

in figs. 1 and 2, and fixed guard tubes (r, w), to be described

presently. To the main cover also is attached the circular

level (fig. 6), which is adjusted to indicate the position of the

instrument in which the quadrants are level, and the guard

tubes just mentioned vertical. Its lower surface which rests

on the cover is slightly rounded, like a convex lens, so as to

admit of a slight fulther adjustment (see end of § 348, Addition)

by varying the relative pressure of the three screws by which it

is fastened down to the cover.

348. The moveable conductor of the instrument consists of a

stiff platinum wire (as), about 8 centimetres inches) long,

with the needle rigidly attached in a plane perpendicular to it,

and connected with sulphuric acid in the bottom of the jar by

a fine platinum wire hanging down from its lower end and kept

stretched by a platinum weight under the level of the liquid.

The upper end of the stiff platinum wire is supported by a

single silk-fibre so that it hangs down vertically. The mirror

is attached to it just below its upper end. Thus the mirror,

the needle, and the stiff platinum stem constitute a rigid body

having very perfect freedom to move round a vertical axis (the

line of the bearing fibre), and yet practically prevented from

any other motion in the regular use of the instrument by the
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weight of its own mass and that of the loose piece of platinum

hanging from it below the surface of the liquid in the jar. A

very small magnet is attached to the needle, which, by strong

magnets fixed outside the jar, is directed to one position, about

which it oscillates after it is turned through any angle round

the vertical axis, and then left to itself. The external magnets

are so placed that when there is magnetic equilibrium the

needle is in the symmetrical position shown in figs. 5 and 6

with reference to the quadrants.*

[Additiom April 1870.—The success of the experiments re

ferred to in the footnote has led to the adoption of the bifilar

suspension in all the Quadrant Elec

trometers now made. It is repre- _.

sented in the margin. The stifi" plati

num wire which carries the mirror

and needle has a cross piece at its

upper end, to which are attached the

lower ends of the two suspending

silk fibres ; the other ends being

wound upon the two pins 0, d, which

may be turned in their sockets by a

square-pointed key, to equalize the

tensions of the fibres, and make the

needle hang midway between the

upper and under surfaces of the qua

drants. The pins 0, d, are pivoted

in blocks carried by springs e, f, to

allow them to be shifted horizontally

when adjusting the position of the

points of suspension. The screws a, b,

which traverse these blocks, have their

points bearing against the fixed plate behind, so that when a or.

b is turned in the direction of the hands of a watch, the neigh

bouring point- of suspension is brought forward, and conversely.

 

'The needle may thus be made to turn through an angle, till it

lies in the symmetrical position represented in fig. 5, Plate 1.,

when all electrical disturbance has been guarded against by

" Recentlywl have made experiments on a bifilar suspension with a view

to snperseding the magnetic adjustment, which promise well.



266 On Electrometers and Electrostatic Jlfeasurements. [XX.

connecting the quadrants with the inside and outside of the jar.

The conical pin it passes between the two springs and screws

into the plate behind; by screwing it inwards the points of sus

pension are made to recede from each other laterally, and the

sensibility of the needle to a deflecting couple is diminished,

and conversely.

The method employed to test the symmetry of the suspen

sion is suggested by the consideration that if the tension be

equally distributed between the two fibres, the sensibility of

the needlesto the same deflecting,r couple will be less than if

the whole or the greater part of the weight were supported

by one fibre; also, the sensibility being a minimum, a small

deviation from the conditions which make it so will produce

the least change of sensibility, by the known property of a

maximum or minimum. To test whether these conditions are

attained, raise first one side of the instrument a little (one turn

of the foot-screw on that side is usually sufficient), and then

produce an equal deviation in the opposite direction from the

position marked by the attached level (§ 347); and in each

position of the instrument observe the deflection of the image

on the scale produced by some constant difference of potentials,

as that between the two poles of a Daniell’s celL This deflection

ought to be very nearly equal in the three positions, but exactly

equal in the two disturbed positions, and somewhat greater in

these than in the middle or level position. When the instru

ment is far out of adjustment, the deviation will be greater in

one of the disturbed positions and less in the other than in the

middle position. When it is but slightly out of adjustment,

the deflections in the disturbed positions may both somewhat

exceed that in the middle position, but to different degrees.

An approximation to symmetry thus far at least should be

obtained by merely turning the pins (0, d) in their sockets as

already directed, through the niinutest angles sensible to the

operator, without altering the adjustment of the spirit-level on

the cover. When that has been done, the level on the cover

ought to be adjusted (§ 347) by successive trials to indicate

the position of the instrument such that when equally dis—

turbed from it in opposite directions, the deflections obtained

are equally in excess of the deflection obtained in the indicated

position]
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349. The needle (11) is of thin sheet aluminium cut to

the shape seen in figs. 5 and 6; the very thinnest sheet

that gives the requisite stiffness being chosen. Its area is 4}

square centimetres, and weight '07 of a gramme. If the four

quadrants are in a perfectly symmetrical position round it, and

if they are kept at one electric potential by a metallic are con—

necting the chief electrodes outside, the needle may be strongly

electrified without being disturbed from its position of magnetic

equilibrium; but if it is electrified, and if the external elec

trodes be disconnected, and any difference of potentials esta

blished between them, the needle will clearly experience a

couple turning it round its vertical axis, its two ends being

driven from the positive quadrants towards the negative, if it

is itself positively electrified. It is kept positive rather than

negative in the ordinary use of the instrument, because I find

that when a conductor with sharp edges-or points is surrounded

by another presenting everywhere a smooth surface, a much

greater difference of potentials can be established between them,

without producing disruptive discharge, if the points and edges

are positive than if they are negative.

350. The mirror (t) serves to indicate, by reflecting a ray of

light from a lamp, small angular motions of the needle round

the vertical axis. It is a very light, concave, silvered glass

mirror, being of only 8 millimetres (§ of an inch) diameter, and

22 milligrammes (Q, of a grain) weight. I had for many years

experienced great difiiculty in getting suitable mirrors for my

form of mirror galvanometer; but they are now supplied in

very great perfection by Mr. Becker, of Messrs. Elliott Brothers,

London. [Addition May 1870.-—I have not succeeded in get

ting more of these light ground concave mirrors giving good

images, after a few supplied by Mr. Becker at the time when

the report was written. The lightest ground mirrors that

Mr. Becker can guarantee to give good images, weigh ‘519' of a

gramme (7% of a grain). These answer well enough for the

electrometers, because the aluminium needle weighing T11 of a,

gramme (1% grain), and being of much greater linear dimen

sions, its moment of inertia is not largely increased by the

addition of a mirror of that weight ; and they are preferred for

this purpose to the exquisite light mirrors supplied by Mr.

White, as being stronger and less liable to warp in being
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mounted. But for galvanometers, and especially telegraph

signal galvauometers, it is important that the mirrors be the

very lightest possible. The only mirrors suitable for this

purpose which I can now obtain are supplied by Mr. White.

They give very perfect images, and weigh {a of a gramme

(T31; of a grain) without the magnets, and 511; of a gramme

with the magnets attached. Mr. White produces them by

cutting out and silvering a large number of circles of the

thinnest microscope glass, attaching the magnets (four on the

back of each mirror), and finally testing for the image. Out of

fifty tried, about ten or fifteen are generally found satisfactory.

A mirror may give a good image before the magnets are

attached, and become warped out of shape and give a bad

image after the magnets have been cemented to it.] The

focus for parallel rays is about 50 centimetres (20 inches)

from the mirror, and thus the rays of the lamp placed at a

distance of 1 metre (or 40 inches) are brought to a focus

at the same distance. The lamp is usually placed close be

hind the vertical screen a little below or above the normal

line of the mirror, and the image is thrown on a graduated

scale extending horizontally above or below the aperture in the

screen through which the lamp sends its light. When the

mirror is at its magnetic zero position, the lamp is so placed

that its image is, as nearly as may be, in a vertical plane with

itself, and not more than an inch above or below its level, so

that there is as little obliquity as possible in the reflection, and

the line traversed by the image on the screen during the deflec

tion is, as nearly as may be, straight. The distance of the lamp

and screen from the mirror is adjusted so as to give as perfect

an image as possible of a fine wire which is stretched vertically

in the plane of the screen across the aperture through which

the lamp shines on the mirror; and with Mr. Becker’s mirrors,

as with Mr. White’s selected galvanometer mirrors, I find

it easy to read the horizontal motions of the dark image to

an accuracy of the tenth of a millimetre. In the ordinary

use of the instrument a white paper screen, printed from a

copper-plate, divided to fortieths of an inch, is employed, and

the readings are commonly taken to about a quarter of a scale

division; but with a little practice they may, when so much
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accuracy is desired, he read with considerable accuracy to the

tenth of a scale-division. Formerly a slit in front of the lamp

was used, but the wire giving a dark line in the middle of the

image of the flame is a very great improvement, first intro

duced by Dr. Everett (in consequence of a suggestion made

by Professor P. G. Tait) in his experiments on the elasticity of

solids made in the Natural Philosophy Laboratory of Glasgow

University?"

351. The charge of the needle remains sensibly constant

from hour to hour, and even from day to day, in virtue of

the arrangement by which it is kept in communication with

sulphuric acid in the bottom of the jar, the outside of the

jar being coated with tinfoil and connected with the earth, so

that it is in reality a Leyden jar. The whole outside of the

jar, even where not coated with tinfoil, is in the ordinary use

of the instrument, especially in our moist climate, kept virtually

at one potential through conduction along its surface. This

potential is generally, by connecting wires or metal pieces, kept

the same as that of the brass legs and framework of the instru

ment. To prevent disturbance in case of strongly electrified

bodies being brought into the neighbourhood of the instrument,

a wire is either wrapped round the jar from top to bottom, or a

cage or network of wire, or any convenient metal case, is placed

round it; but this ought to be easily removed or opened at any

time to permit the interior to be seen. When the instrument ,

is left to itself from day to day in ordinary use, the needle,

connected with the inner coating of the jar as just described,

loses, of course, unless replenished, something of its charge;

but not in general more than l per cent. per day, when the jar

is of flint—glass made in Glasgow. On trying similar jars of

green glass I found that they lost their charge more rapidly

per hour than the white glass jars per month. I have occa

sionally, but very rarely, found white glass jars to bev as defec

tive as those green ones, and it is possible that the defect I

' A Drummond light placed about 70 centimetres from the mirror gives

an image, on a screen about 3 metres distant, brilliant enough for lecture

illnstrations, and with sufficient definition to allow accurate readings of the

positions on a scale marked by the image of a fine vertical wire in front of

the light. ‘
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found in the green jars may have been an accident to the jars

tested, and not an essential property of that kind of glass.

352. I have recently made the very useful addition of a

replenisher to restore electricity to the jar from time to time

when required. It consists of (1.) a turning vertical shaft of

vulcanite bearing two metal pieces called carriers (b, b, figs.

l7 and 18); (2.) two springs (d, d, figs. l6 and 18), con

nected by a metallic arc, making contact with the carriers once

every half turn of the shaft, and therefore called connectors;

and (3.) two inductors (a, a) with receiving springs (c, 0) attached

to them, which make contact with the carriers once every half

turn, shortly before the connecting contacts are made. The

inductors (a, a, figs. 16 and 18) are pieces of sheet metal bent

into circular cylindrical shapes of about 120° each; they are

placed so as to deviate in the manner shown in the drawing,r

from parts of a cylindrical surface coaxial with the turning

shaft, leaving gaps of about 60° on each side. The diameter of

this cylindrical surface is about 15 millimetres (about 2 of an

inch). The carriers (b, b, figs. l7 and 18) are also of sheet

metal bent to cylindrical surfaces, but not exactly circular

cylinders; and are so placed on the bearing vulcauite shaft

that each is rubbed by the contact springs over a very short

space, about 1 millimetre beyond its foremost edge, when turned

in the proper direction for replenishing. The receiving springs

(c, 0, figs. 17 and 18) make their contacts with each carrier

immediately after it has got fairly under cover, as it were, of

the inductor. _Each carrier subtends an angle of about 60° at

the axis of the turning-shaft. The connecting contacts are

completed just before the carriers commence emerging from

being under cover of the inductors. The carriers may be said

to be under cover of the inductors when they are within the

angle of 120° subtended by the inductors on each side of the

axis. One of the inductors is in metallic communication with

the outside coating of the jar, the other with the inside. Figs.

l6, l7, and 18 illustrate sufficiently the shape of carriers and

the succession of the contacts. The arrow-head indicates the

direction to turn for replenishing. When it is desired to

diminish the charge, the replenisher is turned backwards. A

small charge having been given to the jar from an independent
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source, the replenisher when turned forwards increases the dif

ference of potentials between the two inductors and therefore

between the two coatings of the jar connected with them by a

constant percentage per half turn, unless it is raised to so high

a degree as to break down the air-insulation by disruptive dis

charge. The electric action is explained simply thus :—The

carriers, when connected by the connecting springs, receive op

posite charges by induction, of which they deposit large propor

tions the next time they touch receiving springs. Thus, for

example, if the jar be charged positively, the carrier emerging

from the inductor connected with the inner coating carries a

negative charge round to the receiving spring connected with the

outside coating, while the other carrier, emerging from the induc

tor connected with the outside coating, carries a positive charge

round to the receiving spring connected with the inside coating.

If the carriers are not sufficiently well under cover of the in—

ductors during both the receiving contacts and the connecting

contacts to render the charges which they acquire by induction

during the connecting contacts greater than that which they

carry away with them from the receiving contacts, the rotation,

even in the proper direction for replenishing, does not increase,

but, on the contrary, diminishes the charge of the jar. The

deviations of the inductors from the circular cylinder, referred

to above, have been adopted to give greater security against

this failure. A steel pivot fixed to the top of the vulcanite

shaft, and passing through the main cover, carries a small

milled head (y, fig. 1) above, on the outside, which is spun

rapidly round in either direction by the finger, and thus in

less than a minute a small charge in the jar may be doubled.

The diminution of the charge, when the instrument is left to

itself for twenty-four hours, is sometimes imperceptible; but

when any loss is discovered to have taken place, even if to the

extent of 10 per cent, a few moments’ use of the replenisher

suffices to restore it, and to adjust it with minute accuracy to

the required degree by aid of gtllagauge towbexdescribed pre

,,sently. The principle of the "replenisher” is Emma with

that of the “doubler” of Bonnet. In the essentials of its con

struction it is the same as Varley’s improved form of Nichol

son's “ revolving doubler."
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353. The gauge consists of an electrometer of Class III.

The moveable attracted disc is a square portion of a piece of

very thin sheet aluminium 0f the shape shown at a. in fig. 4.

It is supported on a stretched platinum wire passing through

two holes in the sheet, and over a very small projecting ridge

-of bent sheet aluminium placed in the manner shown in the

magnified drawing, fig. 3. The ends of this wire are passed

through holes in curved springs, shown in fig. 4, and are bent

round them so as to give a secure attachment without solder,

and without touching the straight stretched part of the wire.

The ends of the platinum wire (B, B) are attached by cement

to the springs, merely to prevent them from becoming loose,

care being taken that the cement does not prevent metallic

contact between some part of the aluminium wire and one

or both of the brass springs. I have constantly found fine

platinum wire rendered brittle by ordinary solder applied to it.

The use of these springs is to keep the platinum wire stretched

with an approximately constant tension from year to year, and

at various temperatures. Their fixed ends are attached to

round pins, which are held with their axes in a line with the

fibre by friction, in bearings forming parts of two adjustable

brass pieces (7, 7) indicated in fig. 4 ; these pieces are adjusted

once for all to stretch the wire with sufficient force, and to keep

the square attracted disc in its proper position. The round

pins bearing the stretching springs are turned through very

small angles by pressing on the projecting springs with the

finger. They_are set so as to give a proper amount of torsion

tending to tilt the attracted disc (a) upwards, and the long end

of the aluminium lever (8), of which it forms a part, downwards.

The downward motion of the long end is limited by a properly

placed stop. Another stop (6) above limits the upward motion,

which takes place under the influence of electrification in the

use of the instrument. A very fine opaque black hair (that of a

small black-and-tan terrier I have found much superior to any

hitherto tried) is stretched across the forked portion of the

sheet aluminium in which the long arm of the lever terminates.

Looked at horizontally from the outside of the instrument it is

seen, as shown in fig. 7, Plate 1., against a white background,

marked with two very fine black circles. Those sight-plates
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in the instruments, as now made by Mr. White, are of the same

material as the ordinary enamel watch-dials, with black figures

on a white ground. The white space between the two circles

should be a very little less than the breadth of the hair. The

sight-plate is set to be as near the hair as it can be without

impeding its motion in any part of its range; it is slightly

convex forwards, and is so placed that the hair is nearer to it

when in the middle between the black circles than when in

any other part of its range. It is thus made very easy, even

without optical aid, to avoid any considerable error of parallax

in estimating the position of the hair relatively to the two

black circles. By a simple plano—convex lens (¢, fig. 2), with

the convex side turned inwards, it is easy, in the ordinary use

of the instrument, to distinguish a motion up or down of the

hair amounting to “Fm; of an inch. With a little care I have

ascertained, Dr. Joule assisting, that a motion of no more than

‘01,00 of an inch from one definite central position can be

securely tested without the aid of other magnifying power than

that given by the simple lens. The lens during use is in a

fixed position relatively to the framework bearing the needle,

but it may be drawn out or pushed in to suit the focus of each

observer. To give great magnification, it ought to be drawn out

so far that the hair and sight-plate behind may be but little

nearer to the lens than its principal focus, and the observer's

eye ought to be at a very considerable distance from the instru

ment, no less than 20 centimetres (8 inches) to get good mag

nification ; and a short-sighted person should use his ordinary

concave eye-lens close to his eye. The reason for turning the

convexity of the small piano-convex lens inwards is, that with

such a lens so placed, if the eye of the observer is too high or too

low, the hair seems to him curved upwards or downwards, and

he is thus guided to keep his eye on a level sufficiently constant

to do away with all sensible effects of parallax on the position of

the hair relatively to the black circles. The framework carry

ing the stretched platinum wire and moveable attracted disc is

above the brass roof of the lantern, in which a square aperture

is cut to allow the square portion constituting the short arm of

the aluminium balance to be attracted downwards by the fixed

attracting disc (§ 347), to be presently described. A side view

s
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of the attracting plate, the brass roof of the lantern, the alu

minium balance, the sight-plate, the hair, and the plane-convex

lens is given in section (fig. 2) ; also a glass upper roof to pro

tect the gauge and the interior of the instrument below from

dust and disturbance by currents of air, to which, without this

upper roof, it would be exposed, through the small vacant space

around the moveable aluminium square. The fixed attracting

disc is borne by a vertical screw screwing into the upper brass

mounting (z, fig. 2) (§ 347), connected with the inner coating of

the Leyden jar through the guard tubes, etc, and is secured in

any position by the “jam nut," shown in the drawing at z,

fig. 2. This disc (s) is circular, and about 38 millimetres (1%

inch) in diameter, and is placed horizontally with its centre

under the centre of the square aperture in the roof of the

lantern. Its distance from the lower surface of the roof and of

the moveable attracted disc may be from 2% to 5 millimetres

(from 116 to if of an inch), and is to be adjusted, along with the

amount of torsion in the platinum wire bearing the aluminium

balance-arm, so as to give the proper sensibility to the gauge.

The sensibility is increased by diminishing the distance from

the attracting to the attracted plate, and increasing the amount

of torsion. Or, again, the degree of the potential indicated by

it when the hair is in the sighted position is increased by in

creasing the distance between the plates, or by increasing the

amount of torsion. If the electrification of the needle is too

great, its proper position of equilibrium becomes unstable; or

before this there is sometimes a liability to discharge by a spark

across some of the air-spaces. The instrument works extremely

well with the needle charged but little less than to give rise to

one or both of these faults, and I adjust the gauge accordingly.

354. The strength of the fixed steel directing magnets is to

be adjusted to give the desired amount of deflection with any

stated difference of potentials maintained between the two

chief electrodes, when the jar is charged to the degree which

brings the hair of the gauge to its sighted position. In the

instruments already made, the deflection * by a single cell of

* That is to say, the number of scale-divisions over which the luminous

image moves when the chief electrodes are disconnected from one another

and put in metallic connexion with the two plates of a Daniell’s battery.
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Daniell’s amounts to about 100 scale-divisions (of T11; of an inch

each and at a distance of 40 inches), if the magnetic directive

force is such as to give a period of vibration equal to about 1'5

seconds, when the jar is discharged and the four quadrants

are connected with one another and with the inner coating of

the jar. Lower degrees of sensibility may be attained better by

increasing the magnetic directing force than by diminishing the

charge of the jar. Thus, for instance, when it is to be used

for measuring and photographically recording the potential of

atmospheric electricity at the point where the stream of the

water-dropping collector * breaks into drops, the magnetic

directing force may be made from 10 to 100 times greater than

that just described. When this is to be done it may be con

venient to attach a somewhat more powerful magnetic needle

than that which has been made in the most recent instruments

where a high degree of sensibility has been provided for. But it

is to be remarked that in general the directing~force of the ex

ternal steel magnets cannot be too strong, as the stronger it is

the less is the disturbance produced by magnetic bodies moving

in the neighbourhood of the instrumenti In laboratory work,

where numerous magnetic experiments are being performed in

the immediate neighbourhood, and in telegraph factories where

there is constant disturbance by large moving masses of iron,

the artificial magnetic field of the electrometer ought to be

made very strong. To allow this, and yet leave suflicient

sensibility to the instrument, the suspended magnetic needle

has been made smaller and smaller, until it is now reduced to

two small pieces of steel side by side, 6 millimetres (} of an

inch) long. For a meteorological observatory all that is neces

sary is, that the directing magnetic force may be so great that

the greatest disturbance experienced in magnetic storms shall

not sensibly deflect the luminous image.

355. The sensibility of the gauge should be so adjusted that

a variation in the charge of the jar, producing an easily per

ceived change in the position of the hair, shall produce no

* See Royal Institution Lecture, May 18, 1860 (§ 278, 279, above), 01'

Nichol’s Cyclopedia, article “ Electricity, Atmospheric ” (Edition 1860)

(g 262, above).

+ All embarrassment from this source will be done away with if the bifilar

plan be adopted (see § 348, Addition).
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sensible change in the deflection of the luminous image pro

duced by the greatest difference of potentials between the

quadrants, which is to be measured in the use of the instru

ment. I believe the instruments already made, when adjusted

to fulfil these conditions, may be trusted to measure the dif~

ference of potentials produced by a single cell of Daniell’s to

an accuracy of a quarter per cent. It must be remembered

that the constancy of value of the unit of each instrument

depends not only on the constancy of the potential indicated

by the gauge, but also on the constancy of the magnetic force

in the field traversed by the suspended magnet, and on the con

stancy of the magnetic moment of the latter. As each of these

may be expected to decrease gradually from year to year (al

though very slowly after the first few hours or weeks), rigorous

methods must be adopted to take such variations into account, if

the instrument is to be trusted as giving accurately comparable

indications at all times. The only method hitherto provided

for this most important object consists in the observation of

the deflection produced by a measured motion of one of the

quadrants by the micrometer screw (1) when the four quadrants

are put in metallic communication with one another through

the principal electrodes ; the jar being brought to one constant

potential by aid of the gauge, and therefore the force producing

the deflection being constant. The amount of the deflection will

show whether or not the force of the magnetic field has changed,

and will render it easy at any time to adjust the strength of the

magnets, if necessary, to secure this constancy. But to attain

this object by these means, the three quadrants not moved by

the micrometer screw must be clamped by their fixing—screws

so that they may be always in the same position.

356. The absolute constancy of the gauge cannot be altogether

relied upon. It certainly changes to a sensible degree with tem

perature ; and in difi'erent instruments, to very different degrees,

and even in different directions, as will be seen (§ 377) in con

nexion with the description of the portable electrometer to be

given later. But this temperature variation does not amount in

ordinary cases probably to as much as one per cent. ; and it is

probable that after a year or two any continued secular variation

of the platinum torsion spring will be quite insensible. It is to
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be remarked, however, that secular experiments on the elasticity

of metals are wanting, and ought at least to be commenced in

our generation. In the meantime it will be desirable, both on

account of the temperature variation and of the possible secular

variation in the couple of torsion, to check the gauge by accu

rate measurements of the time of oscillation of the needle with

its appiu'tenances. The moment of inertia of this rigid body,

except in so far as it may be influenced by oxidation of the

metal, of which I have as yet discovered no signs, may be

regarded as constant, and therefore the amount of the direct

ing couple due to the magnets may be determined with great

accuracy by finding the period of an oscillation when the four

quadrants are put in connexion through the charging rod with

the metal mounting hearing the guard plates, etc. I have not

as yet put into practice any of the obvious methods, founded

on the general principle of coincidences used in pendulum

observations, for determining the period of the oscillation; but

although not more than twenty or thirty complete oscillations

can be counted, it seems certain that with a little trouble the

period of one of them may be easily determined to an accuracy

of about 111; per cent.

357. [Additiom May 1870.—The most direct and obvious

method of using the Quadrant Electrometer is to connect the

two chief electrodes, with the two bodies whose difference of

potentials is to be measured, and one of them with the case of

the instrument. \Vith the instruments made at the present

date, a difference of potentials equal to that of the opposite poles

of a single Daniell’s cell gives, when measured in this manner,

a deflection of the image over about 60 scale-divisions, more

or less according to the distance at which the points of sus

pension of the silk fibres have been adjusted 348, Addition).

The difference of potentials due to six cells in series would

thus deflect the image to the extremity of the scale, and be the

greatest difference of potentials that could be measured by the

electrometer, if these were the only oonnexions available for

measurements. A second and much lower grade of sensibility

is obtained by simply raising, so as to disconnect from the

quadrant beneath it, the electrode connected with the case.

This being done, it requires a battery of about 10 or 15 cells
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to produce the deflection previously produced by a single cell.

Several still lower grades of sensibility have been provided for

in the instruments recently made, by the addition of an induc

tion-plate, insulated directly over one of the quadrants behind

the mirror. The sketch in the margin represents a vertical

section through the induction

plate (e), insulating glass stem (1)

by which it is supported, its

electrode (a), the quadrant (c),

and main glass stern The

line AB in the horizontal plan

below is the line of section, pass

ing through the centres of the

electrode and insulating stem of

the induction-plate, and that of

the main glass stem, which are in

one straight line. The plan re

presents that part of the main

cover as seen from above, when

the lantern and upper works are

removed. The plate (b) which

supports the main stem (g) has

been enlarged to bear also the in

sulating support (i) of the induction-plate. The outline of the

induction-plate falls Within that of the quadrant beneath it by

‘16 of a centimetre (1'13 of an inch) all round. It is distant '48

of a centimetre (1%; of an inch) from the upper surface of the

quadrant. The dimensions in the figure are half full size.

With an electrometer fitted with the induction-plate, the

usual connexions for the first or direct method of measure

ment are the same as above mentioned. The electrode of the

induction-plate may be connected with that of the quadrant

beneath it, or with the case, or it may be insulated, without

sensibly affecting the indications of the instrument. For

the second grade of sensibility the induction-plate is con

nected with the case, and the difference of potentials to

be measured is established between it and the distant pair

of quadrants, the nearer pair being insulated by raising their

electrode. To free the latter from the induced charge which
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they commonly receive by ‘the act of raising their electrode,

a disinsulator is provided, consisting of a light arm or spring

which may be turned so as to make contact with the quad

rant by means of a small milled head projecting above the

cover. For a certain lower grade the arrangement is the same,

except that the distant pair of quadrants, instead of the induc

tion-plate, is connected with the cover, and the difi'erence of

potentials to be measured is established between the cover and

the induction-plate. With this arrangement the deflections

measure about five times the difference of potentials producing

the same deflections by the second grade.

The connexions may be further varied so as to produce

other degrees of sensibility indications perfectly trust

worthy and available for comparative measurements. The dif

ferent methods of forming the connexions, with or without an

inductor, are indicated in the following table, where R means

the electrode of the pair of quadrants marked RR’ in the figure,

L that of the pair LL’, and I that of the induction-plate; C is

the conductor led from one of the bodies experimented upon,

0 the conductor led from the other and connected to the outer

metallic case of the instrument, which may be insulated from

the table if necessary by placing a small block or cake of clean

paraflin under each of the three feet on which the instrument

stands; (R) or (L) means that the electrode of RR’ or LL’ is

to be raised so as to be disconnected from its pair of quadrants.

Thus in the grade of diminished power or sensibility standing

first in the table on the right, the electrode L is raised, one

conductor is connected with R; I and the other with the case of

the instrument. The grade standing last in the table, in which

L and R are both raised, is the least sensitive of all. In each of

these methods the correctness of the indications has been veri

fied by measurements taken simultaneously with the Standard

Electrometer (§ 379), the measured difference of potentials

being that of the earth and of a Leyden jar fitted with a

replenisher, by means of which its potential was varied so as

to make the deflected image stand at all points between the

extremity of the scale and the zero position. The working

of the replenisher being suspended at intervals to allow an

accurate reading to be taken of the position of the image and



280 On Electromtcrs and Electrostatic jlleasurcnwnts. [XX.

the indication of the Standard Electrometer, the subsistence of

a correct proportion between the deflection and the measure

ment obtained from the Standard Electrometer was verified at

all points of the range.

WITHOUT INDUCTOR. WITH INDUCTOR.

Full Power. Full Power.

LC’ RC LC or R0

R0 °r L0 1:0 L0

Diminished POWQR Grades of Diminished Power.

RC’ L0 B0 LC

(Di; 0] or (R)[ 0:] [I0 [10

S0 1.. BIG LI0

(L) E 0 (R) 0
Left. . Right.

‘ I0 10

i E R0 [ L0

l (12L) [:18]

The facility afforded by the number

of these arrangements for varying the

sensibility of the instrument even to

a moderate or slight degree without

altering the adjustment of the fibres,

will be found useful in some kinds

of observations. For instance, if it

be desired to observe the fluctuations

of a yarying potential, a degree of

sensibility which throws the deflected

image nearly to the extremity of the

scale will cause the fluctuations to be

twice as sensible and accurately read

as if the deflection were only half as

much, as they will bear the same pro

portion to the whole deflection in the

two cases.

It is intended in future to make the induction-plate smaller

and more distant from the quadrant, in order to diminish the
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inductive effect and permit of the measurement of from 100 to

5000 cells by the least sensitive method. In some electro

meters also the first two grades of sensibility may be considered

sufficient, and the induction-plate dispensed with.]

ABSOLUTE ELECTROMETER.

358. The absolute electrometer (fig. 11, Plate II.) and the

other instruments of Class III. are founded on a method of

experimenting introduced by Sir \Villiam Snow Harris, and

described in his first paper “On the Elementary Laws of

Electricity,” *‘ thirty—four years ago. In these experiments

a conductor, hung from one arm of a balance and kept in

metallic communication with the earth, is attracted by a. fixed

insulated conductor, which is electrified, and, for the sake of

keeping its electric potential constant, is connected with the

inner coating of a Leyden battery. The first result which

he announced is, that, when other circumstances remain the

same, the attraction varies with the square of the quantity

of electricity with which the insulated body is charged and

is independent of the unopposed parts. “It is readily seen

“ that, in the case of Mr. Harris’s experiments, it will be

“ so slight on the unopposed portions that it could not be

“ perceived without experiments of a very refined nature, such

“ as might be made by the proof plane of Coulomb, which is,

“ in fact, with a slight modification, the instrument employed

“ by Mr. Faraday in the investigation. Now to the degree of ap

“ proximation to which the electrification of the unopposed parts

“ may be neglected, the laws observed by Mr. Harris when the

“ opposed surfaces are plane may be readily deduced from the

“ mathematical theory. Thus let 1) be the potential in the in

“ terior of A, the charged body, a quantity which will depend

“ solely on the state of the interior coating of the battery with

“ which, in Mr. Harris's experiments, A is connected, and will

“ therefore be sensibly constant for different positions of A

“ relative to the uninsulated opposed body B. Let a be the

"distance between the plane opposed faces of A and B, and

* Philosophical Transactions, 1834.
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“ let S be the area of the opposed parts of these faces, which

“ will in general be the area of the smaller, if they be unequal.

“ When the distance a is so small that we may entirely neglect

“ the intensity on all the unopposed parts of the bodies, it is

" readily shown, from the mathematical theory, that (since the

“ difference of the potentials at the surfaces of A and B is o)

“ the intensity of the electricity produced by induction at any

“ point of the portion of the surface of B which is opposed to

. U

A is 41m

“ being insensible. Hence the attraction on any small element

“ w, of the portion S of the surface of B, will be in a direction

“ perpendicular to the plane and equal to 214%)293‘ Hence

“ the whole attraction on B is

v’S

81m’ .

“ This formula expresses all the laws stated by Mr. Harris

“ as results of his experiments in the case when the opposed

“ surfaces are plane.”'|'

359. After many trials to make an absolute electrometer

founded on the repulsion between two electrified spherical con

ductors for which I had given a convenient mathematical formula

in § 4 of the paper just quoted (§ 30, above), it occurred to me

to take advantage of the fact noticed by Harris, but easily seen

as an immediate consequence of Green’s mathematical theory,

that the mutual attraction between two conductors used as in

his experiments is but little influenced by the form of the un

opposed parts; and in 1853, in a paper “ On Transient Electric

Currents)’: I described a method for measuring differences of

electric potential in absolute electrostatic measure founded on

that idea. The “absolute electrometer,” which I exhibited to

the British Association at its Glasgow Meeting in 1855, was con

structed for the purpose of putting these methods into practice.

This instrument consists of a plane metal disc insulated in a

, the intensity at any point which is not so situated

* See Mathematical Journal, vol. iii. p. 275 (VII. above, 146, 147).

'l' “ On the Elementary Laws of Statical Electricity,” Cambridge and Dublin

Mathematical Journal, 1846 ; and Philosophical Magazine, July 1854 (II.

above, § 27).

I Philosophical Magazine, June 1853.
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fixed horizontal position with a somewhat smaller fixed metal

disc hung centrally over it, from one end of the beam of a

balance. In two papers * entitled “ Measurement of Electro

static Foroe produced by a Battery,” and “ Measurement of the

Electromotive Force required to produce a Spark in Air between

Parallel Metal Plates at Different Distances,” published in the

Proceedings of the Royal Society for February 1860, I described

applications of this electrometer, in which, for the first time I

believe, absolute electrostatic measurements were made. The

calculations of difl'erences of potential in absolute measure

were made according to the formula quoted above (§ 358)

from my old paper on “The Elementary Laws of Statical Elec

tricity.”

360. This formula is rigorous only if the distance between

the discs is infinitely small in comparison with their diameters;

and therefore, in my earliest attempt to make absolute electro

static measurements, I used very small distances. I found

great difficulty in securing that the distance should be nearly

enough equal between different parts of the plates, and in

measuring its absolute amount with sufficient accuracy; and

found besides serious inconveniences in respect of sensibility

and electric range: later I made a great improvement in the

instrument by making only a small central area of one of the

discs moveable. Thus the electric part of the instrument

becomes two large parallel plates with a circular aperture in

one of them, nearly filled up by a light circular disc supported

properly to admit of its electrical attraction towards the other

being accurately measured in absolute units of force. The disc

and the perforated plate surrounding it will be called, for

brevity, the disc and the guard-plate. The faces of these two

next the other plate must be as nearly as possible in one plane

when the disc is precisely in the position for measuring the

electric force upon it, which, for brevity, will be called its

sighted position. The space between the disc and the inner

edge of its guard-ring must be a very small part of the diameter

of the aperture, and must be very small in comparison with the

distance between the plates ; but the diameter of the disc may be

greater than, equal to, or less than the distance between the plates.

" XVIII. and XIX. above, §§ 310-340.

K
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361. Mathematical theory shows that the electric attraction

experienced by the disc is the same as that experienced by a

certain part of one of two infinite planes at the same distance,

with the same difference of electric potentials, this area being

very approximately the mean between the area of the aperture

and the area of the disc, and that the approximation is very

good, even should the distance between the plates be as much

as a fourth or fifth, and the diameter of the disc as much as

three-fourths of the diameter of the smaller of the two plates.

This conclusion will be readily assented to when we consider

that‘ the resultant electric force at any point in the air between

the two plates is equal numerically to the rate of conduction of

heat per unit area across the corresponding space in the follow

ing thermal analogue. Let a solid of uniform thermal conduc

tivity replace all the air between and around the plates; and in

place of the plates let there be hollow spaces in this solid. Let

these hollow spaces be kept at two uniform temperatures,

differing by a number of degrees equal numerically to the

difference of potentials in the electric system, the space corre

sponding to the disc and guard-ring being at one temperature,

and that corresponding to the opposite plate at the other tem—

perature ; and let the thermal conductivity of the solid be

unity. If we attempt to draw the isothermal surfaces between

the hollow corresponding to the continuous plate on the one

side, and that corresponding to the disc and guard-ring on

the other, we see immediately that they must be very nearly

plane, from very near the disc all the way across to the corre

sponding central portion of the opposite plate, but that there

will be a convexity towards the annular space between the disc

and guard-ring.

362. Thus we see that the resultant electric force will, to a

V

very close approximation, be equal to 5 for all points of the

air between the plates at distances from the outer bounding

edges exceeding two or three times the distance between the

plates, and at distances from the interstice between the guard

"' “ On the Uniform Conduction of Heat through Solid Bodies, and its

connexion with the Mathematical Theory of Electricity,” Cambridge Mathe

matical Journal, Feb. 1842 ; and Philosophical Magazine, July 1854 (I. above,

gs l-6).
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ring and disc not less than the breadth of this interstice.

Hence, if p denote the electric density of any point of the

plate or disc far enough from the edges, we have

_l
p_41r1) '

But the outward force experienced by the surface of the

electrified conductor per unit of area at any point is 2qrp2, and

therefore if F denote the force experienced by any area A

of the fixed plate, no part of which comes near its edge, we

have V!F_—- A ,

81rDl

which will clearly be equal to the attraction experienced by

. the moveable disc, if A be the mean area defined above. This

gives V: D,/girl?’ the formula by which difference of poten

tials in absolute electrostatic measure is calculated from the

result of a measurement of the force F, which, it must be

remembered, is to be expressed in kinetic units. Thus if W

be the mass in grammes to which the weight is equal, we have

F=gW2

where g is the force of gravity in centimetres per second per

second.

The difliculty which, in first applying this method about

twelve years ago, I found in measuring accurately the distance

D between the plates and in avoiding error from their not

being rigorously parallel, I now elude by measuring only defer

ences of distance, and deducing the desired results from the

difference of the corresponding differences of potentials. Thus

let V’ be the difference of potentials between the plates re

quired to give the same force F; when the difference of poten

tials is V’ instead of V, we have

V'-V=(D’-D)~/8%F

363. The plan of proceeding which I now use is as follows :

—Each plate (fig. 11, Plate II.) is insulated; one of them, the

continuous one, for instance, is kept at a potential differing

from the earth by a fixed amount tested by aid of a separate



286 On Electronwtm's and Electrostatic Measurements. [XX.

idiostatic‘ electrometer ;1' the other plate (the guard-ring and

moveable disc in metallic communication with one another) is

alternately connected with the earth and with the body whose

potential is to be measured. The lower plate is moved up or

down by a micrometer screw until the moveable disc balances

in a definite position, indicated by the hair (with background

of white with black dots) seen through a lens, as shown in

fig. 11. Before and after commencing each series of electrical

experiments, a known weight is placed on the disc, and a small

wire rider on the lever from which the disc hangs is adjusted

to bring the hair to its sighted position when there is no electric

force. This last condition is secured by putting the two plates

in metallic communication with one another. For the electric

experiments the weight is removed, so that when the hair is

in the sighted position the electric attraction on the moveable

disc is equal to the force of gravity on the weight. The electric

connexions suitable in using this instrument for determining

in absolute electrostatic measure the difference of potentials

maintained by a galvanic battery between its two electrodes are

indicated in fig. 11. No details as to the case for preventing

disturbance by currents of air, and for maintaining a dry atmo

sphere, by aid of pumice impregnated with strong sulphuric

acid, are shown, because they are by no means convenient in

the instrument at present in use, which has undergone so many

transformations that scarcely any part of the original structure

remains. I hope soon to construct a compact instrument con

venient for general use. The amount of force which is constant

in each series of experiments may be varied from one series to

another by changing the position of the small wire rider on the

lever.

The electric system here described is hetcrostatic (§ 385

below), there being an independent electrification besides that

whose difference of potential is to be measured.

* See § 385, below. '

+ [A Leyden jar with an idiostatic gauge and replenisher fitted to the

cover by which it is closed has been found very suitable for this purpose.

The gauge can be adjusted to a higher degree of sensibility than is attainable

in an electrometer for general purposes, as the Standard or the Portable

Electrometer, and the micrometer movements and graduations of these

electrometer! are not required.—ll[ay 1870.]
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NEW ABSOLUTE Emcrsoms'rsn

[a 364...367 added May 1870.]

364. Plate III. is a sketch in perspective of this instru

ment, one-third of the full size. As in the Absolute Electro

meter just described, the electric system is heterostatic ; with

this addition, that the potential of the auxiliary charge is

tested and maintained, not by a separate electrometer and

electric machine, but by an idiostatic arrangement forming

part of the instrument itself. This consists of a Leyden jar,

forming the case of the instrument; a gauge ; and a replenisher.

The Leyden jar is a white (flint) glass cylinder, coated inside

and outside with tinfoil to nearly the height of the circular

plate (A); apertures being left to admit the requisite light to

the interior, and allow the indications of the vertical scale (1-)

and divided circle (t) to be read. A brass mounting is cemented

round the upper rim of the jar, to which is screwed the cover

of stout sheet~brass (C), which closes the jar at the top. By

another brass mounting cemented round its lower rim, the jar

is fastened down to the cast-iron sole-plate (D) which closes

its lower end. The sole-plate is supported on three legs similar

to those shown in fig. 13, Plate II. The cover (0) supports

the replenisher (E), and the aluminium balance-lever of the

idiostatic gauge, which are identical in construction with those

described in 352, 353, but on a larger scale. The air inside

is kept dry by aid of pumice soaked with strong sulphuric

acid, contained in glass vessels placed in the bottom of the

Jar.

The moveable disc or balance (0) hangs in a circular aperture

in the plate (A), which rests on three fixed supports (z, z, .)

cemented to the interior surface of the jar, and in metallic con

nexion with the inside coating; the manner of support is that

of the hole, slot, and plane, described in § 380, (2), below.

This perforated plate or guard-plate supports on a brass pillar

the attracting plate (F) of the idiostatic gauge, which thus

tests the potential of the guard-plate, balance, and inside coat

ing. This potential is kept constant during any series of ex

periments by using the replenisher according to the indications
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of the gauge, which is made extremely sensitive by a proper

adjustment of the distance from the attracting plate (F) to

the balance-lever and of the torsion by which the electrical

attraction is balanced (see end of § 353). The replenisher has

metallic contact with the guard-plate through the spring (e).

The jar is charged by an insulated charging-rod let down for

the occasion through a hole in the cover.

365. The balance (0) is a light aluminium disc, about 46

millimetres in diameter, strengthened by an elevated rim and

radial ribs on its upper surface, but having its lower surface

plane and smooth. It nearly fills the aperture in the guard

plate, sufiicient clearance being left ('7 5 of a millimetre all

round) to allow it to move up and down without risk of fric

tion. It is supported by three delicate steel springs, each of

which consists of two parts; the upper end of the upper part

is attached to the lower extremity of a vertical insulating

stem (1) directly above the centre of the disc, where the cor

responding end of the lower part is fixed. The opposite ends,

which project considerably beyond the circumference of the

disc, are riveted together. One of these springs (s) is shown

in the figure. Their general form may be compared to that of

coach-springs. The point of attachment of their upper parts

is moved vertically by a kinematic arrangement precisely the

same as that employed in the Portable E1ectrometer(§ 369).

The insulating stem (1) is attached to a brass tube (a), which

slides up and down in V guides by the action of a micrometer

screw. This micrometer screw is worked by means of the

milled head projecting above the cover (0'); the guides for

the tube (a) and index which moves up and down with the

tube, are similar to those represented more fully in fig. 10,

Plate 11., and are rigidly attached to a strong brass plate (1))

lying across the mouth of the jar below the cover, and resting

upon the flange of the brass mounting, to which it is fastened

by screws. The plate (12) is so adjusted that the balance may

hang concentric with the perforation in the guard-plate. The

tube (a) is similar in construction to that represented in fig. 8,

Plate 11., and described in § 369, below. The micrometer

screw carries a horizontal circular disc (at) graduated by 100

equal angular divisions. An aperture is left in the cover
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through which its indications can be read off by reference

to a fixed mark on the sloping edge of the aperture. This,

together with the scale (f), each division of which corresponds

to one full turn of the micrometer screw, measures the vertical

distance through which the tube (a) and the points of attach

ment of the springs are moved.

Metallic communication between the balance and the guard

plate is maintained by a light spiral wire attached to the pillar

(g) and to the upper support of the springs, which is a brass

piece cemented to the insulating stem. An arm, not seen in

the figure, projects from the guard~plate over the disc so that

its extremity is between the centre of the disc and the upper

end, bent horizontally, of an upright fixed to the disc; thus

serving as a stop to confine the motion of the disc between

certain limits. A very fine opaque black hair (§ 363) is

stretched between two small uprights (one of which is seen in

the figure) standing in the centre of the disc. An achromatic

convex lens (h), fixed on the guard-plate, stands opposite, and

produces an image of the hair in the conjugate focus, which is

just over the outer edge of the guard-plate. The two opposed

screw-points (k) are adjusted to touch each side of the image

thus thrown by the lens, which, on the principle of the astro

nomical telescope, is observed through an eye-lens (I), attached

outside of the jar to the upper brass mounting. By this ar

rangement the error of parallax in observing the position of

the hair relatively to the two points is avoided; the position

of the eye may be varied in any direction without causing any

change in the apparent relative position of the hair (image) and

points. In adjusting these different parts, it is arranged that

when the image of the hair is exactly between the two points,

or in what is called the sighted position, the under surfaces of /

the balance and guard-plate may be as nearly as possible in one 1

horizontal plane.

The balance and springs are protected, in the use of the

instrument, from disturbing electrical forces, by a brass cover

in two halves (y, y), one of which is represented displaced in

the figure, to show the interior arrangements. The two halves,

.when placed together, form a circular box, with an aperture in

front in which the lens (It) stands, and another aperture behind

T
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to admit light from the sky or from a lamp placed outside of the

jar in the line of the hair, lens, and points.

366. The electrical part of the instrument is completed by the

continuous attracting plate (B), under and parallel to the guard

plate and spring-balance. This is a stiff circular brass plate

with parts out out to allow it to move freely past the fixed

supports (2, z, .) of the guard-plate. An electrode (11) project

ing through a hole in the sole-plate from an insulating stem (p)

is kept in metallic communication by a spiral wire with an arm

projecting from the centre of the continuous plate. The plate

(B) is supported by a brass pillar (g), from which it is insulated

by a short glass stem. It is moved vertically by the micro

meter screw (w) (step 111; of an inch) ; and this motion is

‘1 measured by a vertical scale (1') and horizontal graduated circle

(t) attached to the screw. The screw projects below the sole

plate, and is worked by the milled head (it), the nut ('12) being

fixed in the centre of the sole-plate. The pillar (q) moves in

V or ring guides, and rests upon the upper end of the screw in

the manner represented in fig. 14, Plate II.

367. Before this instrument is available for absolute electro

static measurements, the force required to move the balance

through any fixed vertical distance (the point of suspension being

unmoved) must be known. This is ascertained by weighings

conducted in the following manner :-—The cover (6') is removed,

and all electrical force upon the balance is guarded against by

g putting the electrode in metallic communication with the

‘-\\T guard-plate. The balance is then brought, by turning the

k micrometer circle (d), to the sighted position; and the reading

2‘ on the scale (f) and graduated circle is noted. A known

l\ weight is then distributed symmetrically over the disc (fl; of a

gramme has been used hitherto), which displaces it below the

sighted position. It is now raised to the sighted position by

turning the disc (d), and the altered micrometer reading is

noted. The difference between the two readings measures the

distance through which the given weight displaces the balance

in opposition to the tension of the springs; and conversely,

when the balance has been displaced through the same distance

by electrical attraction between it and the continuous plate

below it, this known weight is the measure of the force exerted
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upon it. It has been thus found by repeated weighings, that a

weight of 1%; of a gramme displaces the balance through a

distance corresponding to two full turns of the micrometer

screw and a. fraction of one division of the circle, in the instru

ment belonging to the Laboratory of the Glasgow University.

This distance having been ascertained with all possible care

and at different temperatures, in view of the possible effect of

temperature on the elasticity of the springs, the plan of pro

ceeding to absolute electrostatic measurements is as follows, the

Weights being removed and covers (y, y, 0) replaced.

All electrical influence having been removed by a wire led

from the electrode (n) through the hole in the cover (0) to the

guard-plate, the balance is brought to the sighted position.

Starting from this point, it is raised by the micrometer screw

through any distance which has been ascertained to correspond

to a known weight, ag. the distance just mentioned. This cor~_

responds exactly to the removal of the weight (§ 363) in the

use of the Absolute Electrometer already described. The jar

is then charged, and the potential is kept constant during the

experiments by using the replenisher according to the indica—

tions of the gauge, which, as already said, has been made

extremely sensitive for the purpose. The attracting plate (B)

is connected by its electrode (n) alternately with the outside

coating of the jar (which may be either connected with the

earth or insulated) and with the body the difference of whose

potential from that of the outside coating is to be measured.

In each case the balance is brought to the sighted position by

moving the plate (B) up or down by the micrometer screw (w),

and the reading on the vertical scale (7') and graduated circle (t)

is noted. The difference of the two readings gives the differ

ence of the two distances between balance and attracting

plate, from which the difference of potentials is deduced by

the formula at the end of § 362. In measuring the difference

of potentials between the poles of a voltaic battery, it is found

very convenient to connect the poles, through a Steinheil (or

double Bavarian) key, either with the outer coating of the jar

(or earth), the other with the insulated electrode (n). The

reading being taken and the key reversed, the difference of

readings, it is evident, measures a difference of potentials

/
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double that of the poles of the battery. Two observers are

convenient, one to watch the gauge and use the replenisher

accordingly, the other to take the readings.

PORTABLE ELECTROMETER.

368. In the ordinary use of the portable electrometer (figs.

8, 9, and 10, Plate 11.), the electric system is heterostatic and

quite similar to that of the absolute electrometer, when used in

the manner described above in § 363. But the balance is not

adapted for absolute measure of the amount of force of attrac

tion experienced by the moveable disc; on the contrary, it is

precisely the same as that described for the gauge of the quad

rant electrometer in § 353 above, only turned upside down.

Thus, in the portable instrument, the square disc (f) forming

part of the lever of thin sheet aluminium is attracted upwards

by a solid circular disc of sheet-brass (g), thick enough for

stiffness. Every part of the aluminium lever except this

square portion is protected from electric attraction by a fixed

brass plate (h h) with a square hole in it, as nearly as may be

stopped by the square part of the sheet aluminium destined to

experience the electric attraction, all other parts of the alumi

nium balance-lever being below this guard-plate. The alumi

nium lever (rile), as shown in figs. 8 and 10, is shaped so that

when the hair (I) at the end of its long arm is in its sighted

posit-ion, the upper surfaces of the fixed guard-plate (h) and

moveable aluminium square (f) are as nearly as may be in one

plane. The mode of suspension is precisely the same as that

described (§ 353) for the gauge of the quadrant electrometer.

In the portable instrument, careful attention is given by the

maker to balance the aluminium lever by adding to it small

masses of shellac or other convenient substance, so that its

centre of gravity may be in the line of its platinum-wire axis,

or, more properly speaking, in such a position that the instru

ment shall give, when electrified, the same “earth-readings"

when held in any positions, either upright, or inclined, or in

verted (§ 375 below). Thus the condition of equilibrium of

the balance, when the hair is in its sighted position, is that the

moment of electric attraction round the axis of suspension shall
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be equal to the moment of the couple of torsion, the latter

being as constant as the properties of the matter concerned

(platinum wire, brass stretching-springs, etc.) will allow.

369. The guard-plate carrying, by the platinum-wire suspeu—

sion, the aluminium balance, is attached to the bottom of a

small glass Leyden jar (m m), and is in permanent metallic

communication with its inside coating of tinfoil The outside

tinfoil coating of this jar is in permanent metallic communica—

tion with the outside brass protecting case. The upper open

mouth of this case is closed by a lid or roof, which bears on its

inner side a firm frame projecting downwards. This frame has

two V notches, in which a stout brass tube (0) slides, kept in

the Vs by a properly placed spring (p) [(May 1870) better two

springs, one pressing directly towards each V], giving it freedom

to slide up and down in one definite line.‘l Firmly fixed in the

upper end of this tube is a nut (a, fig. 8), which is made to

move up and down by a micrometer screw. The lower end

of the shaft of this screw has attached to it a convex piece of

polished steel (b, fig. 8), which is pressed upon a horizontal

agate plate rigidly attached to the framework above mentioned

by a stiff brass piece projecting into the interior of the brass

tube through a slot long enough to allow the requisite range of

motion. This arrangement will be readily understood from

the accompanying drawings. It has been designed upon obvi

ous geometrical principles, which have been hitherto neglected,

so far as I know, in all micrometer screw mechanisms, whether

for astronomical instruments or other purposes. The screw

shaft is turned by a milled head, fixed to it at the top outside of

the roof of the instrument; and the angles through which it is

turned are read on a circle divided into one hundred equal parts

of the circumference (or 3°‘6 each) by reference to a fixed mark

* In consequence of sugge'stions by Mr. Jenkin, it is probable that the

spring may be done away with, and the Vs replaced by rings approximately

fitting round the tube, but leaving it quite free to fall down by its own

weight. In consequence of the symmetrical position of the convex end of

the screw over the centre of the attracted disc, slight lateral motions of the

tube produce no sensible effect on the electric attraction. [(May 1870.

Various trials both on the portable and stationary instruments have but

very partially fulfilled this anticipation; and have confirmed the practical

value of the Vs. The constructional advantages of the rings and geometri

cal merits of the Vs are easily combined.]
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on the roof of the instrument. The hole in the roof through

which the screw-shaft passes is wide enough to allow the shaft

to turn without touching it, and the lower edge of the gradu

ated circle turning with the screw is everywhere very near the

upper side of the roof, but must not touch it at any point. A

second nut (c, fig. 8) above the effective nut fits easily, but

somewhat accurately, in the hollow brass tube, and is prevented

from turning round in the tube by a proper projection and slot.

Thus the screw is rendered sufficiently steady, with reference

to the sliding tube; that is to say, its axis is prevented from

any but excessively small deviations from the axis of the

sliding tube and fixed guides ; and when the nut is kept from

being turned round its proper axis, it forms along with the

sliding tube virtually a rigid body. A carefully arranged

spiral spring presses the two nuts asunder, and so causes the

upper side of the thread of the screw-shaft always to press

against the under side of the thread of the effective nut, thus

doing away with what is technically called in mechanics “lost

time.” In turning the micrometer screw, the operator presses

its head gently downwards with his finger, to secure that its

lower end bears firmly upon the agate plate. It would be the

reverse of an improvement to introduce a spring attached to

the roof of the instrument outside to press the screw head

downwards, inasmuch as however smooth the top of the screw

shaft might be made, and however smooth the spring pressing

it down, there would still be a very injurious friction impeding

the proper settlement of the sliding tube into its Vs. A still‘

fork (q) stretching over the graduated circle is firmly attached

to the roof outside, to prevent the screw from being lifted

up by more than a very small space; about 1:11; of an inch

at most. In using the instrument, the observer should oc

casionally pull up the screw_head and press it down again,

and give it small horizontal motions, to make sure that when

it is being used it is pressed in properly to its Vs and down

upon the agate-plate. A long arm (d, figs. 8 and 10) (or two

arms one above the other), firmly attached to the sliding—tube,

carries an index which moves up and down with it. Two fixed

guiding-cheeks on each side of this index prevent the tube

from being carried round too far in either direction when the
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screw is turned : one of these checks is graduated so that each

division is equal in length to the step of the micrometer screw ;

this enables the operator to ascertain the number of times he

has turned the screw. These two cheeks must never simul—

taneously press upon the sliding-pointer ; on the contrary, they

must leave it a slight amount of lateral freedom to move. If

this does not amount to '36 of a degree, the amount of "lost

time” produced by it will not exceed T'u of a division of the

micrometer circle, and will not produce any sensible error in

the use of the instrument. A glass rod cemented to the lower

end of the tube prolongs its axis downwards, and bears the

continuous attracting-plate of the electrometer at its lower end.

The object aimed at in the mechanism just described is to

prevent the nut and other parts rigidly connected with it from

any other motion than parallel to one definite line, and to leave

it freedom to move in this line, unimpeded by any other fric

tion than that which is indispensable in the arrangement for

keeping the sliding tube in its Vs.

370. If the inner tinfoil covering of the Leyden jar were

completed up to the guard-plate bearing the aluminium bal

ance-lever, the long arm of this lever being in the interior of a.

hollow conductor would experience no electric influence, and no

force from the electrification of the Leyden jar, or from separate

electrification of the upper attracting plate, or, more strictly

speaking, the electric density and consequent electric force on

the long arm of the lever would be absolutely insensible to

the most refined test we could apply, because of the smallness

of the gap between the moveable aluminium square and the

boundary of the square aperture in the guard-plate. But to

see the hair on the long end of the lever, and the white back

ground with black dots behind it, a not inconsiderable portion

of the glass under the guard-plate must be cleared of tinfoil

outside and inside. Thus the electric potential of the inner

coating of the Leyden jar will not be continued quite uni

formly over the inner surface of the bared portion of the glass,

and a disturbance affecting chiefly the most sensitive part of

the lever will be introduced. To diminish this as much as

possible without inconveniently impeding vision, a double

screen of thin wire fencing, in metallic communication with
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the inner tinfoil coating and the guard-plate, is introduced

between the end of the lever and the glass through which it is

observed.

371. A very light spiral spring (1') connects the upper attract

ing plate with a brass piece supported upon a fixed vertical

glass column projecting downwards from the roof of the instru

ment. This brass piece bears a stout wire (s), called the main

electrode, projecting vertically upwards along the axis of a

brass tube open at each end, fixed in an aperture in the roof

so as to project above and below, as shown in fig. 9.

372. The top of the main electrode bears a brass sliding

piece (t), which, when raised a little, serves for umbrella and

wind-guard without disturbing the insulation; and when pressed

down closes the aperture and puts the electrode in metallic

connexion with the roof of the instrument. When the instru

ment is to be used for atmospheric electricity (unless at a fixed

station), a steel wire, about 20 centimetres long, is placed in

the hole on the top of the sliding brass piece just mentioned,

and is thus held in the vertical position. A burning match is

attached to its upper end, which has the efl'ect of bringing the

potential of the chief electrode and upper attracting plate, etc.,

all to the potential of the air at the point where the match

burns.‘ The instrument is either held in the observer's hand,

or it is placed upon a fixed support, and care taken that its

outer brass case is in connexion with the earth. When the

difference of potentials between two conductors is to be tested,

one of these is connected with the brass case of the instrument,

and the other with the chief electrode, the umbrella being kept

up. If both of these conductors must be kept insulated from

the earth, the brass case of the electrometer must be put on an

insulating stand, and the micrometer screw turned by an insu

lating handle.

373. A lead cup (e e, fig. 8), supported by metal pillars from

the roof and carrying pieces of pumice-stone, held in their

place by India-rubber bands, completes the instrument. The

inner surface of the glass must be clean, and particles of dust,

* See Nichol’s Cyclopedia, article “Electricity, Atmospheric,” 2d edition,

1860 (§ 266, above); or “Royal Institution Lecture on Atmospheric Elec

tricity,” May 1860 (§§ 277, 278, above).
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minute shreds or fibres, etc., removed as carefully as possible,

especially from the lower surface of the upper attracting-plate,

and the upper surface of the guard-plate and aluminium square

facing it from below. The pumice is prepared by moistening

it with a few drops of strong pure sulphuric acid. Ordinary

sulphuric acid of commerce should be boiled with sulphate of

ammonia to free it from volatile acid vapours, and to strengthen

it sufficiently by removing water if the acid be not of the

strongest. There should not be so much acid applied to the

pumice as to make it have the appearance of being moist, but

there must be enough to maintain a sufficiently dry atmosphere

within the instrument for very perfect insulation of the Leyden

jar, which I find does not in general lose more of its charge

than five per cent. per week, when the pumice is properly im~

pregnated with acid. Thus there is no tendency of the liquid to

drop out of the pumice; and the pumice being properly secured

by the India-rubber bands, the instrument may be thrown about

with any force, short of that which might break the glass jar or

either of the glass stems, without doing any damage; but to

insure this hardiness the sheet aluminium of which the bal

ance is made must be very thin. After several weeks’ use the

pumice may begin to look moist, and even slight traces of

moisture may be seen on the outside of the lead cup, in conse

quence of watery vapour attracted by the sulphuric acid from

the atmosphere ; but the pumice should then be taken out and

dried. At all events this must be done in good time, before

enough of liquid has collected to give any tendency to drop.

In all climates in which I have hitherto tested the instrument,

I have found the pumice effective for insulation and safe

in keeping all the liquid to itself for two months. But

Mr. Becker having reported to me that many instruments

have been returned to him in a ruinous condition from drops

of sulphuric acid having become scattered through their metal

work, I now cause to be engraved conspicuously on the outer

case of the instrument “ rmncs DANGEROUS, IF NOT DRIED ones

A MONTH ;” also a frame carrying a card, on which the dates of

drying are inscribed, to be placed in a convenient position on

the roof of the instrument.

374. To prepare the instrument for use, the inner coating of
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the Leyden jar must be charged through a charging rod, insu

lated in a vulcanite or glass tube, and let down for the occasion

through a hole in the roof of the instrument, by aid of a small

electrophorus, which generally accompanies the instrument, or

by an electrical machine. I generally prefer to give a negative

charge to the inner coating, as I have not found any physical

reason, such as that mentioned in § 349 above, to prefer a posi—

tive charge to a negative charge; and the negative charge gives

increased readings of the micrometer, in the ordinary use of the

instrument, to correspond to positive charges of the principal

electrode, as will be presently explained. Before commencing

to charge the jar, the upper attracting-plate should be moved

to nearly the highest position of its range by the micrometer

screw, otherwise too strong a force of electric attraction may be

put upon the aluminium square; and besides, the jar will dis

charge itself between the upper plate and the extreme edge of

the aluminium square, when it is pulled very much above the

level of the guard-plate by the electric attraction. I have not

found any injury or change of electric value of the scale-divi

sions to arise from any such rough usage; but still, to guard

against such a possibility, I propose to add to the guard-plate

checks to prevent the corners of the aluminium from rising

much, if at all, above its level, and to conduct the discharge

and protect the aluminium and platinum from the shock,

in case of the upper plate being brought too near the lower.

“then the instrument is being charged, or when it is out of use

at any time, the umbrella should always be kept down ; but it

must be raised to insulate the principal electrode, of course,

before proceeding to apply this to a body whose difference of

potential from a body connected with the case of the instru

ment is to be measured.

375. In using the instrument the umbrella must very fre

quently be lowered, or metallic communication established in

any other convenient way between the chief electrode and the

outer brass case, the micrometer screw turned until the hair

takes its sighted position, and the reading taken, the hundreds

being read on the interior vertical scale, and the units (or single

divisions of the circle) on the graduated circle above. The

number thus found is called the earth-reading. It measures
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the distance from an arbitrary zero position to the position in

which the upper attracting-plate must be placed to give the

amount of electric force on the aluminium square which bal

ances the lever in its sighted position. A constant added to

the earth~reading, or subtracted from it, gives 341) a number

simply proportional to the difference of potentials between the

upper and lower plate; that is to say, between the two coat

ings of the Leyden jar. The vertical scale and micrometer

circle are numbered, so that increased distances between the

plates gives increased readings; and the zero reading should

correspond as nearly as may be to zero distance between them;

although in the instruments hitherto made no pains have been

taken to secure this condition, even somewhat approximately.

If it is desired to know the constant, an electrical experiment

must be made to determine it, which is done with ease; but

this is not necessary for the ordinary use of the instrument,

which is as follows :—

376. First, an earth-reading is taken, then the upper elec

trode is insulated by raising the umbrella, or otherwise break

ing connexion between the principal electrode and the outer

metal case of the instrument. The principal electrode and the

outer case are then connected with the two bodies whose differ

ence of potential is to be determined, and the micrometer screw

is turned until the hair is brought to its sighted position. The

reading of hundreds on the vertical scale and units on the circle

is then taken. Lastly, the principal electrode is again con

nected with the case of the instrument and another earth-read

ing is taken. If the second earth-reading difi'ers from the first,

the observer must estimate the most probable earth-reading for

the moment when the hair was in its sighted position, with the

upper plate and the metal case in connexion with the two

bodies whose difference of potential is to be measured The

estimated earth-reading is to be subtracted from the reading

taken in connexion with the bodies to be tested. This differ

ence measures (§ 362) the required difference of potentials be

tween them in units of the instrument. The value of the unit

of the instrument ought to be known in absolute electrostatic

measure; and the difi‘erence of reading found in‘ any experi

ment is to be multiplied by this, which is called (§ 341) the
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absolute coeflicient of the instrument, to give the required dif

ference of potentials in absolute measure. It so happens that,

in the portable electrometers of the kind now described which

have been hitherto constructed, the absolute coeflicient is some

where about '01, so that one turn of the screw, or one hundred

divisions of the circle, corresponds to somewhere about one

electrostatic unit, with a gramme for the unit of mass, a centi

metre for the unit of distance, and a second for the unit of

time; but the different instruments differ from one another by

as much as ten or twenty per cent. in their absolute coefli

cients. In all of these I have found between three and four

Daniell’s cells to correspond to the unit division; that is to

say, between three hundred and four hundred cells to a full

turn of the screw. \Vith great care, the observer may measure

small differences of potentials by this instrument to the tenth

part of a division (or to about half‘ a Daniell’s cell). With a

very moderate amount of practice and care, an error of as much

as half a division may be avoided in each reading.

377. But there are imperfections in the instrument itself

which make it diflicult or impossible to secure very minute

accuracy, especially in measurements through wide ranges.

(1.) In the first place, I am not sure that the end of the

needle carrying the hair is protected sufficiently by the wire

fences 370) from electric disturbance to provide against any

error from this source, which possibly introduces serious irre

gularities.

(2.) In the second place, the capacity of the jar in the small

portable instrument is not sufficient to secure that the potential

of its inner coating shall not differ sensibly with the different

distances to which the upper plate is brought, to balance the

aluminium lever with the hair in its sighted position. But on

this point it is to be remarked that the electric density on the

upper surface of the guard-plate is in its central parts always

the same when the hair is in its sighted position; and it is

therefore only the comparatively small difference of the quantity

of electricity on this surface, towards the rim, corresponding to

different distances of the attracted plate, that causes difference

of potential in the inner coating of the jar. But if the upper

attracting-plate be kept for several minutes at any distance,
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differing by a few turns of the screw, from that which brings

the hair to its sighted position, the electricity creeps along the

inner unconnected surface of the glass so as to diminish the

charge of the inner metallic coating, or increase it, according

as the distance is too great or too small. If then quickly the

screw be turned and the earth-reading taken, it is found smaller

or greater, as the case may be, than previously; but after a few

minutes more it returns to its previous value very approxi—

mately. Error from this source may be practically avoided by

taking care never to allow the hair to remain for more than a

few minutes far from its sighted position; never so far, for

instance, as above the centre of the upper, or below the centre

of the lower spot.

(3.) A third source of error arises from change of tempera

ture influencing the indications. In most of the instruments

hitherto made I have found that the warmth of the hand pro

duces in a few minutes a very notable augmentation of the

earth-reading (as it were an increased charge in the jar); but

in the last instrument which I have tested (\Vhite, No. 18) I

find the reverse effect, the earth-reading becoming smaller as

the instrument is warmed, or larger when it is cooled. I have

ascertained that these changes are not due to changes in the

electric capacities of the Leyden jars; and I have found that

the change, if any, of specific inductive capacity of glass by

change of temperature is excessively small, in comparison to

what would be required to account for the temperature errors

of these instruments, which probably must be due to thermo

elastic properties of the platinum wire, or of the stretching

springs, or of the aluminium balance~lever, or to a combination

of the effects depending on such properties; but I have en

deavoured in vain, for several years, and made many experi

ments, to discover the precise cause. It surely will be found,

and means invented for remedying the error, now when I have

an instrument in which the error is in the opposite ‘direction to

that of most of the other instruments. It is of course much

greater in some instruments than in others: in some it is so

great that the earth-reading is varied by as much as twenty

divisions by the warmth of the hand in the course of five or

ten minutes after commencing to use the instrument, if it has
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been previously for some time in a cold place. Its influence

may be eliminated, not quite rigorously, but nearly enough so

for most practical purposes, by frequently taking earth-readings

(§ 375) and proceeding according to the directions of 376.

(4.) A fourth fault in the portable electrometer is, that the

diameter of the guard-plate and upper attracting disc, which

ought to be infinite, are not sufficieutly great, in proportion to

the greatest distance between them, to render the scale quite

uniform in its electric value throughout. A careful observer

will, however, remedy the greater part of the error due to this

defect, by measuring experimentally the relative (or absolute)

values of the scale-division in different parts of the range.

There will, however, remain uncorrected some irregularity, due

to influence of the distribution of electricity over the uncoated

inner surface, in the instruments as hitherto made, in all of

which the inner surface of the jar is coated with tinfoil only

below the guard-plate, so that the upper surface of the guard

plate may be seen clearly, in order that the observer may

always 'see that all is in order about the aluminium square and

aperture round it; and particularly that there are no injurious

shreds or minute fibres. But the irregular influence of the

electrification of the uncoated glass, if found sensible, will be

rendered insensible by continuingr the tinfoil coating an inch

above the upper surface of the guard-plate.

378. All faults, except the temperature error, depend on the

smallness of the instrument; and if the observer chooses to

regard as portable an instrument of thirty centimetres (or a

foot) diameter, with all other dimensions, and all details of

construction, the same as those of the instrument described

above, he may have a portable electrometer practically free

from three of the four faults described. It is scarcely to

be expected that a small instrument (12% centimetres high,

and 8% centimetres in diameter) which may be carried about in

the pocket can be free from such errors. But they are so

far remedied as to be probably not perceptible, in the large

stationary instrument which I now proceed to describe.
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STANDARD ELECTROMETER.

379. This instrument (figs. 12, 13, and 14, Plate II.) difl'ers

from the port-able electrometer only in dimensions, and in

certain mechanical details, which are arranged to give greater

accuracy by taking advantage‘ of freedom from the exigencies

of a small portable instrument. It is at present called the

standard electrometer, in anticipation of either remedying, or

of learning to perfectly allow for, the temperature error, and of

finding by secular experiments on the elasticity of metals, that

their properties used in the instrument are satisfactory as re

gards the permanence from year to year, and from century to

century, of the electric value of its reading. It is an instru

ment capable of being applied with great ease to very accurate

measurements of differences of potential, in terms of its own

unit. The value of the unit for each such standard instrument

ought, of course, to be determined with the greatest possible

accuracy in absolute measure ; and until confidence can be felt

as to its secular constancy, determinations should frequently

be made by aid of the absolute electrometer.

380. The Leyden jar of the standard electrometer consists of

a large thin white-glass shade coated inside and outside to

within 6 centimetres of its lip, and placed over the instrument

as an ordinary glass shade, to protect against dust, currents of

air, and change of atmosphere. It may be removed at pleasure

from the cast-iron sole of the instrument, and then the interior

works are seen, consisting of-—

(1.) A continuous disc of brass supported on a glass stem, in

prolongation of a stout brass rod or tube sliding vertically in

Vs, in which it is kept by a spring [better by two springs

(§ 369)], and resting with its lower flat end on the upper end

of a micrometer screw shaft, shown in fig. 13, where the screw,

graduated circle, and stout brass rod are as seen in the instru

ment; the manner in which the lower end of the rod or tube

is constructed to keep the round upper end of the screw-shaft

in position is shown in section in fig. 14.

(2.) Resting on three glass columns, a guard-plate with a

square aperture in its centre, and carrying on its upper side the

stretching springs and thin platinum wire suspension of an
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aluminium balance-lever, shaped like those of the gauge (§ 353)

and the portable (§ 368) already described, but somewhat

larger. The tops of the three glass columns are rounded; a

round hole and a short slot in line with this hole are out in

the guard-plate, and receive the rounded ends of two of the

columns, which are somewhat longer than the third. The fiat

smooth lower surface of the guard-plate rests simply on the

top of the third glass column. The diameter of the round hole

and the breadth of the slot in the guard-plate may be about

1

J5 of the diameter of curvature of the upper hemispherical

rounded ends of the glass columns, so that the bearing portions

of the rounded ends in the round hole and in the slot respec

tively may be inclined somewhere about 45° to the plane of the

plate. This well-known but too often neglected geometrical

arrangement gives perfect steadiness to the supported plate,

without putting any transverse strain upon the supporting

glass columns, such as was almost inevitable, and caused the

breakage of many glass stems, before the mental inertia opposing

deviations from the ordinary instrument—maker’s plan (of screw

ing the guard-plate to brass mountings cemented to the tops of

the glass columns) was overcome. It has also the advantage

of allowing the guard-plate to be lifted off and replaced in a

moment.

(3.) Principal electrode projecting downwards through a hole

in the sole of the instrument, and rigidly supported from above

by a brass mounting cemented to the top of a thick vertical

glass column, connected by a light spiral spring with the lower

attracting plate moved up and down by the micrometer screw.

The aperture round the principal electrode may be ordinarily

stopped by a perforated column of well paraffined vulcanite

projecting some distance above and below the aperture, which

I find to insulate extremely well, even in the smoky, dusty,

and acidulated atmosphere of Glasgow. When an extremely

perfect insulation of the principal electrode and connected

attracting plate is required, the vulcanite stopper surrounding

it may be withdrawn from the aperture, so that the only com

munication between the electrode and the case of the instru

ment may be along the two glass columns in the artificially
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dried interior atmosphere of the case; but from day to day,

when the instrument is out of use, the aperture round the

principal electrode should be kept carefully stopped, if not by

a vulcanite insulator by a perforated cork; (although I find

but little loss of insulation, either along the inner glass surface

of the Leyden jar or along the three glass columns, when this

precaution is neglected).

(4.) Temporary charging-rod enclosed in and supported by a

vertical insulating column of paraflined vulcanite, or a glass

tube well varnished outside and thickly parafiined inside.

This insulating column bearing the charging-rod is turned

round till a horizontal spring projecting from its upper end

touches the inner coating of the jar, when this is to be charged

from an independent source, or when, for any other experimental

reason, it is to be put in connexion with a conductor outside

the case of the instrument.

(5.) A small replenisher of the kind described for the quad

rant electrometer (§ 352), but with much wider air-spaces to

prevent discharge by sparks.

(6.) A large glass or lead dish to hold as large masses of

pumice as may be, which are to be kept sufliciently impreg

mated with strong sulphuric acid.

381. A considerable portion of the jar above the guard-plate

is left uncoated to allow the observer to see easily the hair and

white background with black dots; also several other smaller

parts of the glass above the guard-plate are left unooated to

admit light to allow a small circular level on the upper side of

the guard-plate to be seen. The long arm of the aluminium

balance-lever is very thoroughly guarded by double cages and

fences of wire (§ 370), so that it can experience no sensible

‘influence from electric disturbing forces when the covering jar

is put in position and electric connexion is established between

its inner coating and the guard-plate by projecting flexible

wires or slips of metal.

382. The aluminium square plate is somewhat larger, and

the platinum bearing wire somewhat longer in this instrument

than in the portable electrometer, to render it sensible to smaller

differences of potential The step of the screw is the same as

in the portable (11a of an inch), and one division (111m of the

U
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circumference of the screw-head) corresponds to a difference .of

potentials which. roughly speaking, is equal to about that‘ of a

single cell of Daniell’s. The effective range of the instrument

is about sixty turns of the screw, and therefoie about 6000 cells

of Daniell’s. That of the portable electrometer is about 15

turns of the screw (equivalent to about 5000 cells). Neither

of these instruments has sufiicient range to measure the poten

tial to which Leyden jars are charged in ordinary electric

experiments, or those reached by the prime conductor of a

powerful electric machine. The stationary instrument with its

long screw and its large plates now described, would go far

towards meeting this want if its aluminium lever and platinum

suspension were made on the same scale as those of the port

able electrometer; but for an instrument never wanted to

directly measure differences of potentials of less than two or

three thousand cells, the heterostatic (§ 385) principle is in

general not useful, and therefore I have constructed the follow

ing very simple idiostatic (§ 385) instrument, which is adapted

to measure with considerable accuracy differences of potential

from 4000 cells upwards, to about 80,000 cells.

LONG-RANGE Enscraonsrss.

383. In this (fig. 15, Plate VI.) the continuous attracting

plate is above, and the guard-plate with aluminium balance

below, as in the portable electrometer; but, as in the standard

stationary electrometer, the upper plate is fixed and the lower

plate is moved up and down by a micrometer-screw. The

mechanism of the screw and slide has all the simplicity and

consequent accuracy of that of the standard electrometer. In

the only long-range instrument yet constructed the step of the

screw is the same as that of the others (111; of an inch). In

future instruments it would be well either to have a longer step

or to have a simple mechanism (which can be easily added) to

give a quick motion; as in the use of the present instrument,

the turning of the screw required for great changes of the

potential measured is very tedious. The guard-plate projects

by more than an inch all round beyond the rim of the upper

attracting-plate; partly to obviate the necessity of giving it a.
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thick rim, which would be required to prevent brushes and

sparks from originating in it, if it had only the same diameter as

the continuous plate above, and partly to guard the observer

from receiving a spark or shock in measuring the potential of

an electric machine or of a Leyden battery, and to prevent his

hair from being attracted to the upper plate. Thus the guard

plate is allowed to be no thicker than sufiices for stiffness, and

this allows the observer to see the hair at the end of the

aluminium balance-lever without the lever being made of a

dynamically disadvantageous shape, as would be necessary if

the guard-plate were thick, or had a thick rim added to it.

No glass case is required for this instrument. The smallness

of the needle and the greatness of the electric force acting on

it are such that I find in practice no disturbance to any incon

venient degree by ordinary currents of air; although it and all

these attracted disc instruments show the influence of sudden

change of barometric pressure, such as that produced by open

ing or shutting a door. If not kept under a glass shade when

out of use, the lower surface of' the upper attracting-plate, and

the lower surface of the guard~plate and attracted aluminium

square, should be carefully dusted by a dry cool hand. Gene

rally speaking, none of the vital electric organs of an electro—

meter should be touched by a cloth, as this is almost sure to

leave shreds fatal to their healthy action.

[(Addition, 1870) I intend to cover the whole instrument

with a glass shade, well varnished over a large space round an

aperture in its top, into which an insulated electrode for the

upper plate will be cemented: because with the instrument

open as it is at present great difiiculty has been experienced in

measuring high tension on account of dust and shreds which

impair the insulation]

384. The effective range of this instrument is about 200

turns of the screw. Rather greater force of torsion is given than

in the portable electrometer, and a rather smaller attracted disc

may be used, so that upwards of four cells may be the electric

value of one division. The instrument in its present state

measures nearly but not quite the highest potential I can

ordinarily produce in the conductor of a good Winter's electric

machine, which sometimes gives sparks and brushes a foot long.
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385. The classification of electrometers given above is founded

on the shape and kinematic relations of their chief organic

parts; but it will be remarked that another principle of classi

fication is presented by the different electric systems used in

them, which may be divided into two classes :—

I. Idiostatio, that in which the whole electric force depends

on the electrification which is itself the subject of the test.

II. Heterostatic, in which, besides the electrification to be

tested, another electrification maintained independently of it is

taken advantage of. .

Thus, for example, the long-range electrometer (§§ 383, 384)

is simply idiostatic, and is not adapted for heterostatic use; but

each of them may be used idiostatically. The absolute electro

meter was at first simply idiostatic (§§ 358 362) ; more recently

it has been used heterostatically, and is about to acquire (§ 363)

special organs adapted for heterostatic use; as yet, however, no

species of the absolute electrometer promising permanence has

come into existence. [See 364-367 describing a heterostatic

absolute electrometer of a species which (Jan. 1871) promises

to be permanent]

386. It is instructive to trace the origin of various hetero

static species of electrometers by natural selection. A body

hanging, or otherwise symmetrically balanced, in the middle

of a symmetrical field. of force, but free to move in one direc

tion or the other in a line tangential to a line of force, moves

in one direction or the opposite when electrified positively or

negatively. Bohnenberger’s arrangement of this kind has a

convenient and approximately constant field of force; and his

instrument was chosen in preference to others which may have

been equally sensitive, but were less convenient and constant,

and it became a permanent species. _

387. Bennet’s gold-leaf electroscope, constructed with care

to secure good insulation, electrified sufiiciently to produce a

moderate divergence, has been often used to test, by aid of this

electrification, the quality of the electrification of an electrified

body brought into the neighbourhood of its upper projecting

electrode, causing, if its electricity is of the same sign as that

of the gold leaves, increase of divergence; if of the opposite

sign, diminution. By connecting the upper electrode with the
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inner coating of a Leyden jar with internal artificially dried

atmosphere, the charge of the gold leaves may be made to last

with little loss from day to day; and by insulating Faraday’s

metal cage (§ 342) round the gold leaves, and alternately con

necting it with the earth and with a conductor whose difference

of potentials from the earth is to be tested, an increase or a

diminution of divergence is observed according as this differ

once is negative or positive, the gold leaves being positive.

Hence (through Peltier’s and Delmann’s forms) the heterostatic

stationary and portable repulsion electrometers, described

274-277, 263 above) in the Royal Institution Lecture

on “Atmospheric Electricity,” and in Nichol’s Cyclopwd'ia,

article “ Electricity, Atmospheric,” already referred to, of which

one species still survives in King’s College, Nova Scotia, and in

the Natural Philosophy Classroom of Edinburgh University.

The same form of the heterostatic principle applied to Snow

Harris’s attracted disc electrometer gave the portable and

standard electrometers described above.

388. A modification of Bohnenberger’s electroscope, in which

the two knobs on the two sides of the hanging gold leaf became

transformed into halves of a

circular cylinder, with its axis

horizontal and the gold leaf

hung on a wire insulated in

a position coinciding with its

axis ; producing a species de

signed for telegraphic pur

poses, but which did not ac»

quire permanence by natural

selection, and is only known

to exist in one fossil specimen.

In this instrument the wire

bearing the gold leaf was connected with a charged Leyden

jar, and the semi-cylinders with the bodies whose difference of

potential was to be tested. But various modifications of the

divided-cylinder or divided~ring class with the axis vertical

and plane of motion horizontal have done some practical work,

and one species, the new quadrant electrometer 346), pro

mises to become permanent.

Gulllrazf
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389. The heterostatic principle in one form or other is

essential to distinguish between positive and negative. As

remarked above (§ 387), the original type of this use of it is to

be found in the old system of testing the quality of the charge

taken by the diverging straws or gold leaves of the electroscopes

used for the observation of atmospheric electricity; which was

done by bringing a piece of rubbed sealing-wax into the neigh

bourhood, and observing whether this caused increase or diminu

tion of the divergence. A doubt which still exists as to the sign

(§ 252) of the atmospheric electricity observed by Professor

Piazzi Smyth on the Peak of Tenerifl'e, is owing to the imper

fection of this way of applying the principle. It is, indeed,

to be doubted in any one instance whether it is not vitreous

electricity that the rubbed sealing-wax acquires. And, again

(§ 342), it is not certain that the glass case enclosing the gold

leaves, especially if very clean and surrounded by a very dry

natural atmosphere, screens them sufiiciently from direct in

fiuence of the piece of sealing-wax to make sure that the

divergence due to vitreous electricity could not be increased

by the presence of the resinously electrified sealing-wax if held

nearer the gold leaves than the upper projecting stern.

390. The heterostatic principle has a very great advantage

as regards sensibility over any simple idiostatic arrangement,

inasmuch as, for infinitely small differences of potential to be

measured, the force is as the squares of the differences in any

idiostatic arrangement, but is simply proportional to the differ

ences in every heterostatic arrangement.
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NEW APPARATUS FOR OBSERVING ATMOSPHERIC ELECTRICITYC"

[Proceedings Literary and Philosophical Society ofManchester, March 8, 1859.]

391. Dr. Joule read an extract from a letter he had some time

ago received from Professor W. Thomson.—-“ I have had an ap

paratus for Atmospheric Electricity put up on the roof of my

lecture room, and got a good trial of it yesterday, which proved

most satisfactory. It consists of a hollow conductor supported

by a glass rod attached to its own roof, with an internal atmo

sphere kept dry by sulphuric acid: the lower end of the glass

rod is attached to the top of an iron bar, by which the hollow

conductor is held about two feet above the inclined roof of the

building. A can, open at the top, slides up and down on the

iron bar which passes through a hole in the centre of its bottom,

and, being supported by a tube with pulleys, etc. below, can

easily be raised or lowered at pleasure. A wire attached to the

insulated conductor passes through a wide hole in the bottom of

the can, and is held by a suitable insulated support inside the

building, so that it may be led away to an electrometer below.

To make an observation, the wire is connected with the earth,

while the can is up, and envelopes the conductor—its position

when the instrument is not in use. The earth connexion is

then broken, and the can is drawn down about eighteen inches.

Immediately the electrometer shows a large effect (from five to

fifteen degrees on my divided ring electrometer, in the state it

chanced to be in, requiring more than one hundred degrees of tor

sion to bring it back to zero, in the few observations I made).

When the surface of the earth is (as usual when the sky is cloud

* The two articles constituting this chapter were accidentally omitted

from Chapter XVL

'i' It was with the insulated conductor of an apparatus of this kind after

wards set up in the island of Arran that the observations described in Q 294

were made.
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less) negative, the electrometer shows positive electricity. But

when a negative cloud (natural, or of smoke) passes over, the

indication is negative. The insulation is so good that the

changes may be observed for a quarter of an hour or more, and

when the can is put up the electrometer comes sensibly to zero

again, showing scarcely any sensible change when the earth

connection is made, before making a new start.”

Dr. Joule stated that he had recently witnessed experiments

with Professor Thomson's new Atmospheric Electrometer, the

merit of which consisted in its extreme sensitiveness, and

the facility with which accurate observations could be made

with it.

NOTES ON ATMOSPHERIC ELECTRICITY?‘

[From the Philosophical Magazine, Fourth Series, Nov. 1860.]

392. Two water-dropping collectors for atmospheric elec

tricity were prepared, and placed, one at a window of the

Natural Philosophy Lecture-room, and the other at a window

of the College Tower of the University of Glasgow. A divided

ring-electrometer was used at the last-mentioned station; an

electrometer adapted for absolute measurement, nearly in the

form now constructed as an ordinary house electrometer, was

used in the lecture-room. Four students of the Natural Philo—

sophy Class, Messrs. Lorimer, Lyon, M‘Kerrow, and Wilson,

after having persevered in preliminary experiments and arrange—

ments from the month of November, devoted themselves with

much ardour and constancy during February, March, and

April to the work of observation. During periods of observa

tion, at various times of day, early and late, measurements

were completed and recorded every quarter minute or every

half minute,—the continual variations of the phaenomenon

rendering solitary observations almost nugatory. During

several hours each day, simultaneous observation was carried

on on this plan at the two stations. A comparison of the

* Read before the British Association, June 1860.
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results manifested often great discordance, and never complete

agreement. It was thus ascertained that electrification of the

air, if not of solid particles in the air (which have no claim

to exclusive consideration in this respect), between the two

stations and round them, at distances from them not very

great in comparison with their mutual distance, was largely

operative in the observed phaenqmena. It was generally found

that after the indications had been negative for some time at

both stations, the transition to positive took place earlier by

several minutes at the tower station (upper) than at the lecture

room (lower). Sometimes during several minutes, preceded

and followed by positive indications, there were negative in

dications at the lower, while there were only positive at the

upper. In these cases the circumambient air must have con—

tained negative (or resinous) electricity. A horizontal stratum

of air several hundred feet thick overhead, containing as much

positive electricity per cubic foot as there must have been of

negative per cubic foot of the air about the College buildings

on those occasions, would produce electrical manifestations at

the earth’s surface similar in character and amount to those

ordinarily observed during fair weather.

393. Beccaria has remarked on the rare occurrence of negative

atmospheric indications during fair weather, of which he can

only record six during a period of fifteen years of very persever

ing observation by himself and the Prior Ceca. On some, if

not all, of those occasions there was a squally and variable

wind, changing about rapidly between NE. and N.W. On

several days of unbroken fair weather in April and May of the

present year the atmospheric indication was negative during

short periods, and on each occasion there was a sudden change

of wind, generally from N.E. to N.W., W., or S.W. For instance,

on the 3d of May, after a warm, sunny, and very dry day, with

a gentle NE. breeze, and slight easterly haze in the air, I found,

about 8.30 P.M., the expected positive atmospheric indication.

After dark (nearly an hour later) it was so calm that I was able

to carry an unprotected candle into the open air and make an

observation with my portable electrometer.v To my surprise I

found a somewhat strong negative indication, which I observed

for several minutes. Although there was no sensible wind in
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the locality where I stood,‘ I perceived by the line of smoke

from a high chimney at some distance that there was a decided

breeze from W. or SW. A little later a gentle SNV. wind set

in all round, and with the aid of a lantern I found strong

positive indications, which continued as long as I observed.

During all this time the sky was cloudy, or nearly so. That

reversed electric indications shpuld often be observed about the

time of a change of wind may be explained, with a considerable

degree of probability, thus :—

394. The lower air up to some height above the earth must

in general be more or less electrified with the same kind of

electricity as that of the earth’s surface; and, since this reaches

a high degree of intensity on every tree-top and pointed

vegetable fibre, it must therefore cause always more or less of

the phaenomenon which becomes conspicuous as the “light of

Castor and Pollux ” known to the ancients, or the “ fire of St.

Elmo” described by modern sailors in the Mediterranean, and

which consists of a flow of electricity, of the kind possessed by

the earth, into the air. Hence in fair weather the lower air

must be negative, although the atmospheric potential, even

close to the earth’s surface, is still generally positive. But if

a considerable area of this lower stratum is carried upwards

into a column over any locality by wind blowing inwards from

different directions, its effect may for a time predominate, and

give rise to a negative potential in the air, and a positive elec

trification of the earth’s surface.

395. If this explanation is correct, a whirlwind (such as is

often experienced on a small scale in hot weather) must

diminish, and may reverse, the ordinary positive indication.

396. Since the beginning of the present month I have had two

or three opportunities of observing electrical indications with

my portable electrometer during day thunder-storms. I com

menced the observation on each occasion after having heard

thunder, and I perceived frequent impulses on the needle

which caused it to vibrate, indicating sudden changes of elec

tric potential at the place where I stood. I could connect the

larger of these impulses with thunder heard some time later,

i’ About five miles south of Glasgow.
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with about the same degree of certainty as the brighter flashes

of lightning during a thunder-storm by night are usually re

cognised as distinctly connected with distinct peals of thunder.

By counting time I estimated the distance of the discharge not

nearer on any occasion than about four or five miles. There

were besides many smaller impulses; and most frequently I

observed several of these between one of the larger and the

thunder with which I connected it. The frequency of these

smaller disturbances, which sometimes kept the needle in a

constant state of flickering, often prevented me from identify_

ing the thunder in connexion with any particular one of the

impulses I had observed. They demonstrated countless dis

charges, smaller or more distant than those that give rise to

audible thunder. On none of these occasions have I seen any

lightning. The absolute potential at the position of the burn

ing match was sometimes positive and sometimes negative;

and the sudden change demonstrated by the impulses on the

needle were, so far as I could judge, as often augmentations of

positive or diminutions of negative, as diminutions of positive

or augmentations of negative. This afternoon, for instance

(Thursday, June 28), I heard several peals of thunder, and I

found the usual abrupt changes indicated by the electrometer.

For several minutes the absolute potential was small positive,

with two or three abrupt changes to somewhat strong positive,

falling back to weak positive, and gathering again to a dis

charge. This was precisely what the same instrument would

have shown anywhere within a few yards of an electrical

machine turned slowly so as to cause a slow succession of

sparks from its prime conductor to a conductor connected with

the earth.

397. I have repeatedly observed the electric potential in the

neighbourhood of a locomotive engine at work on'a railway,

sometimes by holding the portable electrometer out at a window

of one of the carriages of a train, sometimes by using it while

standing on the engine itself, and sometimes while standing on

the ground beside the line. I have thus obtained consistent

results, to the effect that the steam from the funnel was always

negative, and the steam from the safety-valve always positive.

I have observed emtrcmely strong effects of each class from
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carriages even far removed from the engine. I have found

strong negative indications in the air after an engine had dis~

appeared round a curve, and its cloud of steam had dissolved

out of sight.

398. In almost all parts of a large manufactory, with steam

pipes passing through them for various heating purposes, I‘

have found decided indications of positive electricity. In

most of these localities there was some slight escape of high

pressure steam, which appeared to be the origin of the positive

indications.

399. These phaenomena seem in accordance with Faraday’s

observations on the electricity of steam, which showed high

pressure steam escaping into the air to be in general positive,

but negative when it carried globules of oil along with it.



XXII. NEW PROOF OF CONTACT ELECTRICITY.

[Proceedings Literary and Philosophical Society of Manchester, Jan. 21, 1862.]

THE following extract of a letter from Professor W. Thomson,

LLD., etc., to the President, was read :

400. “ About two years ago I wrote to you that a metal bar,

insulated so as to be moveable about an axis perpendicular to

the plane of a metal ring made up half of copper and half of

zinc, the two halves being soldered together, turns from the

zinc towards the copper when vitreously electrified, and from

the copper towards the zinc when resinously electrified. [See

diagram of§ 207

“ If the copper half and the zinc half of the ring are insu

lated from one another, and if they are connected by means of

wires with two pieces of one metal maintained at any stated

difference of potential by proper apparatus for dividing the

electro-motive force of the two plates of a Daniell’s element into

100 parts, from 60 to 70 of those parts are required to reduce

the zinc half ring and the copper half ring to such a state that

the moveable bar remains at rest whether it is electrified

vitreously or resinously.

“If the copper half ring is oxidized by heat, the amoimt of

electro-motive force then required to neutralize the two halves

is much increased. If, after oxidizing the copper one day by

heat, I leave the apparatus till the next day, the effect is

generally diminished, though something of it still remains.

After again heating the copper by laying it for some time on a

red-hot iron heater and allowing it to cool, I found the effect

almost exactly 100 parts. I have no doubt that by making the

coat of oxide very complete and thick enough, and by cleaning

the zinc perfectly, I shall be able to get considerably above the

electro-motive force of a single Daniell’s element. I remembered

perfectly what you told me a long time ago about heating the
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coppers of a battery and getting a strong efl'ect, for some time

equal to that of the Daniell’s cell, when I tried the effect of

oxidizing the copper plate by heat.

“I believe there are also electrical effects of heat itself; so

that if one half of a ring of one metal is hot and the other

is cold, the needle will show a difference according as it is

charged positively or negatively.

“ For nearly two years I have felt quite sure that the proper

explanation of voltaic action in the common voltaic arrange

ment is very near Volta’s, which fell into discredit because

Volta or his followers neglected the principle of conservation

of force. I now think it quite certain that two metals dipped

in one electrolytic liquid will (when polarization is done away

with) reduce two dry pieces of the same metals, when connected

each to each by metallic arcs, to the same potential.

“There cannot be a doubt that the whole thing is simply

chemical action at a distance. Zinc and copper connected by

a metallic arc attract one another from any distance. So do

platinum plates coated with oxygen and hydrogen respectively.

I can now tell the amount of the force, and calculate how great

a proportion of chemical aflinity is used up electrolytically,

before two such discs come within l-olb-o-th of an inch of one

another, or any less distance down to a limit within which

molecular heterogeneousness becomes sensible. This, of course,

will give a definite limit for the sizes of atoms, or rather, as I

do not believe in atoms, for the dimensions of molecular

structures.” [In an article on the “ Size of Atoms ” published

in “ Nature” for March 31, 1870, it has been shown, by the

principle of reckoning here proposed, that “ plates of copper

“ and zinc of a three-hundred-millionth of a centimetre thick,

“ placed close together alternately, form a near approximation

“ to a chemical combination, if indeed such thin plates could

“ be made without splitting atoms.”]



XXIII. ELECTROPHORIG APPARATUS, AND ILLUSTRATIONS

OF VOLTAIC THEORY.

ON A SELF-ACTING APPARATUS FOR MULTIPLYING AND MAINTAIN

ING ELECTRIC CHARGES, \VITH APPLICATIONS TO ILLUSTRATE

THE VOLTAIC THEORY.

[From the Proceedings of the Royal Society for June 20, 1867.]

401. In explaining the water-dropping collector for atmo

spheric electricity, in a lecture in the Royal Institution in 1860

(§ 285, above), I pointed out how, by disinsulating the water-jar

and collecting the drops in an insulated vessel, a self-acting elec

tric condenser is obtained. If, owing to electrified bodies in the

V neighbourhood, the potential in the air round the place where the

stream breaks into drops is positive, the drops fall away nega

tively electrified; or vice versa, if the potential is negative, the

drops fall away positively electrified. The stream of water

descending does not in any way detract from the charges of

the electrified bodies towhich its electric action is due, pro-

vided always these bodies are kept properly insulated; but by

the dynamical energy of fluid-motion, and work performed by

gravity upon the descending drops, electricity may be unceas

ingly produced on the same principle as by the electrophorus.

But, as in the electrophorus there was no provision except good

insulation for maintaining the charge of the electrified body

or bodies from which the induction originates, this want is

supplied by the following reciprocal arrangement, in which the

body charged by the drops of water is made the inductor for

another stream, the drops from which in their turn keep up

the charge of the inductor of the first.

402. To stems connected with the inside coatings of two

Leyden phials are connected metal pieces, which, to avoid cir

cumlocution, I shall call inductors and receivers. Each stem

bears an inductor and a receiver, the inductor of the first jar being
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vertically over the receiver of the second jar, and vice versa.

Each inductor consists of a vertical metal cylinder (fig. 1) open

at each end. Each receiver consists of a vertical metal cylinder

F101 open at each end, but partially stopped in its middle

by a small funnel (fig. l), with its narrow mouth

a pointing downwards, and situated a little above the

middle of the cylinder. Two fine vertical streams

of uninsulated water are arranged to break into

drops, one as near as may be to the centre of each

inductor. The drops fall along the remainder of the

axis of the inductor, and thence downwards, along the

upper part of the axis of the receiver of the other jar,

until they meet the funnel. The water re-forms into

drops at the fine mouth of the funnel, which fall along

the lower part of the axis of the receiver and are

carried off by a proper drain below the apparatus.

Suppose now a small positive charge of electricity be

given to the first jar. Its inductor electrifies nega

tively each drop of water breaking away in its centre

. from the continuous uninsulated Water above ; all

3mm?‘ these drops give up their electricity to the second jar,

‘ Emi'" when they meet the funnel in its receiver. The drops

falling away from the lower fine mouth of the funnel carry away

 

excessively little electricity, however highly the jar may be’

charged ; because the place where they break away is, as it were,

in the interior of a conductor, and therefore has nearly zero elec

trification. The negative electrification thus produced in the

second jar acts, through its inductor, on the receiver of the first

jar, to augment the positive electrification of the first jar, and

causes the negative electrification of the second jar to go on

more rapidly, and so on. The dynamical value of the electrifi

cations thus produced is drawn from the energy of the descend

ing water, and is very approximately equal to the integral work

done by gravity against electric force on the drops, in their path

from the point where they break away from the uninsulated

water above, to contact with the funnel of the receiver below.

In the first part of this course each drop will be assisted down

wards by electric repulsion from the inductively electrified

water and tube above it ; but below a certain point of its course
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the resultant electric force upon it will be upwards, and, ac

cording to the ordinary way of viewing the composition of

electric forces, may be regarded as being at first chiefly upward

repulsion of the receiver diminished by downward repulsion

-from the water and tube, and latterly the sum of upward re

pulsion of the receiver and upward attraction of the inductor.

The potential method gives the integral amount, being the ex

cess of work done against electric force, above work performed by

electric force on each drop in its whole path. It is of course equal

to m V, if m denote the quantity of electricity carried by each

drop, as it breaks from the continuous water above, and V the

potential of the inner coating of the jar bearing the receiver,

the potential of the uninsulated water being taken as zero. The

practical limit to the charges acquired is when one of them

is so strong as to cause sparks to pass across some of the

separating air-spaces, or to throw the drops of water out of

their proper course and cause them to fall outside the receiver

through which they ought to pass. It is curious, after com

Fin. 2.

 

mencing with no electricity except a feeble charge in one of

the jars, only discoverable by a delicate electrometer, to see in

x
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the course of a few minutes a somewhat rapid succession of

sparks pass in some part of the apparatus, or to see the drops

of water scattered about over the lips of one or both the

receivers.

403. The Leyden jars represented in the sketch (fig. 2) are

open-mouthed jars of ordinary flint glass, which, when very dry,

I generally find to insulate electricity with wonderful perfection.

The inside coatings consist of strong liquid sulphuric acid, and

heavy lead tripods with vertical stems projecting upwards above

the level of the acid, which, by arms projecting horizontally

above the lip of the jar, bear the inductors and receivers, as

shown in fig. 2. Lids of gutta percha or sheet metal close the

mouth of each jar, except a small air-space of from a} to i; of

an inch round the projecting stems. If a tube (fig. 3) he added

Fm. 8.

 

V H, SA Sulphuric Acid.

to the lid to prevent currents of air from circulating into the

interior of the jar, the insulation may be so good that the loss

may be no more than one per cent. of the whole charge in three

or four days. Two such jars may be kept permanently charged

from year to year by very slow water-dropping arrangements,

a drop from each nozzle once every two or three minutes being

quite sufficient.

404. The mathematical theory of the action, appended below",

is particularly simple, but nevertheless curiously interesting.

* Let c, c’ be the capacities of the two jars, l, 1’ their rates of loss per unit
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405. The reciprocal electrostatic arrangement now described

presents an interesting analogy to the self-sustaining electro

magnetic system recently brought before the Royal Society by

Mr. C. W. Siemens and Professor \Vheatstone, and mathemati

cally investigated by Professor Clerk Maxwell. Indeed it was

from the fundamental principle of this electromagnetic system

that the reciprocal part of the electrostatic arrangement occurred

to me recently. The particular form of self-acting electrophorus

condenser now described, I first constructed many years ago.

I may take this opportunity of describing an application of

it to illustrate a very important fundamental part of electric

theory. I hope soon to communicate to the Royal Society a

description of some other experiments which I made seven

years ago on the same subject, and which I hope now to be able

to prosecute further.

406. Using only a single inductor and a single receiver, as

shown in fig. 1, let the inductor be put in metallic communication

with a metal vessel or cistern whence the water flows; and let

the receiver be put in communication with a delicate electro

scope or electrometer. If the lining of the cistern and the inner

metallic surface of the inductor be different metals, an electric

effect is generally found to accumulate in the receiver and

electrometer. Thus, for instance, if the inner surface of the

with the corresponding symmetrical expression for the case in which the

second jar is charged, and the first at zero, in the beginning; the roots of

the quadratic

potential of charge, per unit of time, and D, D’ the values of the water

droppers influenced by them. Let + v and —v’ be their potentials at time t;

v and 1:’ being of one sign in the ordinary use of the apparatus described

in the text. The action is expressed by the following equations :—

d d 'c v - - c’ét=Dv-l'v'.

If 0, D, l, c’, D’, l' were all constant, the solution of these equations would be,

for the case of commencing with the first jar charged to potential 1, and the

second zero,

“MW”, '/=D§P¢—¢fl,

c (p — a‘) c (p _ a.)

(c.v+ l)(c':c+ l’) -DD'=0

being denoted by p and 0-. When ll’ > DD’, both roots are negative; and

the electrification comes to zero in time, whatever may he the initial charges.

But when ll'<DD’, one root is positive and the other negative, and ultimately

the charges augment in proportion to en! if p be the positive root.
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inductor be dry polished zinc, and the vessel of water above be

copper, the receiver acquires a continually increasing charge

of negative electricity. There is little or no effect, either posi

tive or negative, if the inductor present a surface of polished

copper to the drops where they break from the continuous water

above: but if the copper surface be oxidized bythe heat of a lamp,

until, instead of a bright metallic surface of copper, it presents

a slate-coloured surface of oxide of copper to the drops, these

become positively electrified, as is proved by a

continually increasing positive charge exhi

bited by the electrometer. WVhen the inner

surface of the inductor is of bright metallic

colour, either zinc or copper, there seems to be

little difference in the effect whether it be wet

with water or quite dry; also I have not found

a considerable difference produced by lining

the inner surface of the inductor with moist or

dry paper. Copper filings falling from a copper

funnel and breaking away from contact in the

middle of a zinc inductor, in metallic commu

nication with a copper funnel, as shown in fig.

4, produce a rapidly increasing negative charge

gfiiflfgigfl'g'zgfi; in a small insulated can catching them below.

"Receive" The quadrant divided-ring electrometer* in

dicating, by the image of a lamp on a scale, angular motions of

a small concave mirror (g; of a grain in weight) such as I use

in galvanometers, is very convenient for exhibiting these results.

Its sensibility is such that it gives a deflection of 100 scale

divisions (116 of an inch each) on either side of zero, as the

effect of a single cell of Daniell’s; the focusing, by small con

cave mirrors supplied to me by Mr. Becker, being so good that

a deflection can easily be read with accuracy to a quarter of a

scale-division. By adopting Peltier’s method of a small mag

netic needle attached to the electric moveable body (or “needle”),

and by using fixed steel magnets outside the instrument to give

directing force (instead of the glass-fibre suspension of the

Fin. 4.
 

* See Nichol’s Encyclopedia, 1860, article “ Electricity, Atmospheric ;”

or Proceedings of the Royal Institution, May 1860, Lecture on Atmospheric

Electricity [§§ 249,,_293, above].



XXIIL] and Illustrations of Volta’ic Theory. 325

divided-ring electrometers described in the articles referred to),

and by giving a measurable motion by means of a micrometer

screw to one of the quadrants, I have a few weeks ago succeeded

in making this instrument into an independent electrometer,

instead of a mere electroscope, or an electrometer in virtue of a

separate gauge electrometer, as in the Kew recording atmo

spheric electrometer, described in the Royal Institution lecture.

407. Reverting to the arrangement described above of a copper

vessel of water discharging water in drops from a nozzle through

an inductor of zinc in metallic connection with the copper, let

the receiver be connected with a second inductor, this inductor

insulated ; and let a second nozzle, from an uninsulated stream

of water, discharge drops through it to a second receiver. Let

this second receiver be connected with a third inductor used to

electrify a third stream of water to be caught in a third receiver,

and so on. We thus have an ascending scale of electrophorus

action analogous to the beautiful mechanical electric multiplier

of Mr. G. F. Varley, with which, by purely electrostatic induc

tion, he obtained a rapid succession of sparks from an ordinary

single voltaic element. This result is easily obtained by the

self-acting arrangement now described, with the important

modification in the voltaic element according to which no chemi

cal action is called into play, and work done by gravity is sub

stituted for work done by the combination of chemical elements.

ON A UNIFORM ELECTRIC CURRENT ACCUMULATOR

[From the Philosophical Magazine, January 1868.]

408. CONCEIVE a closed circuit, C T A B 0', according to the

following description :—One portion of it, T A, tangential to a

circular disc of conducting material and somewhat longer than

the radius; the continuation, A B, at right angles to this in

the plane of the wheel, of a length equal to the radius; and

the completion of the circuit by a fork, B 0, extending to an

axle bearing the wheel. If all of the wheel were cut away

except a portion, 0' T, from the axle to the point of contact at

the circumference, the circuit would form a simple rectangle,

C’ T A B, except the bifurcation of the side B G. Let a



326 On a Uniform Electric [XXIIL

fixed magnet be placed so as to give lines of force perpen

dicular to the wheel, in the parts of it between 0' the centre

and T the point of the circumference touched by the fixed

conductor; and let power he applied

to cause the wheel to rotate in the

direction towards A. According to

Faraday’s well-known discovery, a

current is induced in the circuit in

such a direction that the mutual

electromagnetic action between it and

the fixed magnet resists the motion of

the wheel. Now the mutual elec

tromagnetic force between the portions A B and C’ T of

the circuit is repulsive, according to the well-known elemen

tary law of Ampere, and therefore resists the actual motion

of the wheel; hence, if the magnet be removed, there will

still be electromagnetic induction tending to maintain the

current. Let us suppose the velocity of the wheel to have been

at first no greater than that practically attained in ordinary ex

periments with Barlow’s electromagnetic disc. As the magnet

is gradually withdrawn let the velocity be gradually increased

so as to keep the strength of the current constant, and, when

the magnet is quite away, to maintain the current solely by

electromagnetic induction between the fixed and moveable por

tions of the circuit. If, when the magnet is away, the wheel

be forced to rotate faster than the limiting velocity of our pre

vious supposition, the current will be augmented according to

the law of compound interest, and would go on thus increasing

without limit were it not that the resistance of the circuit would

become greater in virtue of the elevation of temperature pro

duced by the current. The velocity of rotation which gives by

induction an electromotive force exactly equal to that required

to maintain the current, is clearly independent of the strength

of the current. The mathematical determination of it becomes

complicated by the necessity of taking into account the diffusion

of the current through portions of the disc not in a straight line

between C and T; but it is very simple and easy if we prevent

this diffusion by cutting the wheel into an infinite number of

infinitely thin spokes, a great number of which are to be simul
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taneously in contact with the fixed conductor at T. The

linear velocity of the circumference of the wheel in the limiting

case bears to the velocity which measures, in absolute measure,

the resistance of the circuit, a ratio (determinable by the solu—

tion of the mathematical problem) which depends on the pro—

portions of the rectangle G T A B, and is independent of its

absolute dimensions.

409. Lastly, suppose the wheel to be kept rotating at any con

stant velocity, whether above or below the velocity determined by

the preceding considerations ; and suppose the current to be tem

porarily excited in any way (for instance, by bringing a magnet

into the neighbourhood and then withdrawing it) ; the strength

of this current will diminish towards zero or will increase to

wards infinity, according as the velocity is below or above the

critical velocity. The diminution or augmentation would fol~

low the compound interest law if the resistance in the circuit

remained constant. The conclusion presents us with this

wonderful result: that if we commence with absolutely no

electric current and give the wheel any velocity of rotation

exceeding the critical velocity, the electric equilibrium is un

stable : an infinitesimal current in either direction would aug

ment until, by heating the circuit, the electric resistance becomes

increased to such an extent that the electromotive force of in

duction just suflices to keep the current constant.

410. It will be difficult, perhaps impossible, to realize this

result in practice, because of the great velocity required, and the

difficulty of maintaining good frictional contact at the circum

ference, without enormous friction, and consequently frictional

generation of heat.

411. The electromagnetic augmentation and maintenance of a

current discovered by Siemens, and put in practice by him, with

the aid of soft iron, and proved by Maxwell to be theoretically

possible without soft iron, suggested the subject of this commu

nication to the author, and led him to endeavour to arrive at a

similar result with only a single circuit, and no making and

breaking of contacts; and it is only these characteristics that

constitute the peculiarity of the arrangement which he now

describes.
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ON VOLTA-CONVECTION BY FLAME.

[From the Philosophical Magazine, January 1868.]

412. IN Nichol’s Cyclopordia, article "Electricity, Atmo

spheric” (2d edition), and in the Proceedings of the Royal

Institution May 1860 (Lecture on Atmospheric Electricity),

249...293, above] the author had pointed out that the

effect of the flame of an insulated lamp is to reduce the

lamp and other conducting material connected with it to

the same potential as that of the air in the neighbourhood

of the flame, and that the effect of a fine jet of water from an

insulated vessel is to bring the vessel and other conducting

material connected with it to the same potential as that of the

  

 

air at the point where the jet

breaks into drops. In a recent

communication to the Royal

Society “On a Self-acting Ap

paratus for Multiplying and

Maintaining Electric Charges,

with applications to illustrate

the Voltaic Theory,” 401...

407, above,] an experiment was

described in which a water

dropping apparatus was em

ployed to prove the difference

of potential in the air, in the

neighbourhood of bright metallic

surfaces of zinc and copper

metallically connected with one

another, which is to be expected

from Volta’s discovery of contact

electricity. In the present com

munication a similar experiment

is described, in which the flame of

a spirit-lamp is used instead of a jet of water breaking into drops.

413. A spirit-lamp is placed on an insulated stand connected

with a very delicate electrometer. Copper and zinc cylinders,

in metallic connection with the metal case of the electrometer,

are alternately held vertically in such a position that the
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flame burns nearly in the centre of the cylinder, which is open

at both ends. If the electrometer reading, with the copper

cylinder surrounding the flame, is called zero, the reading

observed with the zinc cylinder surrounding the flame indicates

positive electrification of the insulated stand bearing the lamp.

414. It is to be remarked that the difl‘erential method here

followed eliminates the ambiguity involved in what is meant by

the potential of a conducting system composed partly of flame,

partly of alcohol, and partly of metal. In a merely illustrative

experiment, which the author has already made, the amount of

difference made by substituting the zinc cylinder for the copper

cylinder round the flame was rather more than half the difi‘er—

ence of potential maintained by a single cell of Daniell’s. Thus,

when the sensibility of the quadrant divided-ring electrometer

(§ 406) was such that a single cell of Daniell’s gave a deflection

of 79 scale divisions, the difference of the reading when the zinc

cylinder was substituted for the copper cylinder round the in

sulated lamp was 39 scale-divisions. From other experiments

on contact-electricity made seven years ago by the author, and

agreeing with results which have been published by Hankel, it

appears that the difference of potentials in the air in the neigh

bourhood of bright metallic surfaces of zinc and copper in

metallic connection with one another is about three-quarters of

that of a single cell of Daniell’s. It is quite certain that the

difference produced in the metal connected with the insulated

lamp would be exactly equal to the true contact difference of

the metals, if the interior surfaces of the metal cylinders were

perfectly metallic (free from oxidation or any other tarnishing,

such as by sulphur, iodine, or any other body); provided the

distance of the inner surface of the cylinder from the flame were

everywhere sufficient to prevent conduction by heated air be

tween them, and provided the length of the cylinder were

infinite (or, practically, anything more than three or four times

its diameter).

415. The author hopes before long to be able to publish a

complete account of his old experiments on contact-electricity,

of which a slight notice appeared in the Proceedings of the

Literary and Philosophical Society of Manchester [§ 400,

above].
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ON ELECTRIC MACHINES FOUNDED ON INDUCTION AND

CONVECTION.

[From the Philosophical Magazine, January 1868.]

416. To facilitate the application of an instrument, which I

have recently patented, for recording the signals of the Atlantic

Cable, a small electric machine running easily enough to be

driven by the wheelwork of an ordinary Morse instrument was

desired; and I have therefore designed a combination of the

electrophorus principle with the system of reciprocal induction

explained in [§§ 40l...407] a recent communication to the

Royal Society (Proceedings, June 1867), which may be briefly

described as follows :—

417. A wheel of vulcanite, with a large number of pieces of

metal (called carriers, for brevity) attached to its rim,is kept rotat

ing rapidly round a fixed axis. The carriers are very lightly

touched at opposite ends of a diameter by two fixed tangent

springs. One of these springs (the earth-spring is connected

with the earth, and the other (the receiver-spring) with an in_

sulated piece of metal called the receiver, which is analogous

to the “prime conductor” of an ordinary electric machine.

The point of contact of the earth spring with the carriers is

exposed to the influence of an electrified body (generally an in

sulated piece of metal) called the inductor. When this is

negatively electrified, each carrier comes away from contact with

the earth-spring, carrying positive electricity, which it gives up,

through the receiver-spring, to the receiver. The receiver and

inductor are each hollowed out to a proper shape, and are pro

perly placed to surround, each as nearly as may be, the point

of contact of the corresponding spring.

418. The inductor, for the good working ofthe machine, should

be kept electrified to a constant potential. This is effected by

an adjunct called the replenisher, which may be applied to the

main wheel, but which, for a large instrument, ought to be

worked by a much smaller carrier-wheel, attached either to the

same or to another turning-shaft.

419. The replenisher consists chiefly of two properly shaped

pieces of metal called inductors, which are fixed in the neighbour

hood of a carrier-wheel, such as that described above, and four
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fixed springs touching the carriers at the ends of two diameters.

Two of these springs (called receiver- springs) are connected

respectively with the inductors; and the other two (called con

necting springs) are insulated and connected with one another

(one of the inductors is generally connected with the earth, and

the other insulated). They are so situated that they are touched

by the carriers on emerging from the inductors, and shortly after

Section. Elevation.

a‘\

 

the contacts with the receiver-springs. If any difference of

potential between the inductors is given to begin with, the

action of the carriers, as is easily seen, increases it according to

the compound-interest law as long as the insulation is perfect.

Practically, in a few seconds after the machine is started running,

bright flashes and sparks begin to fly about in various parts of

the apparatus, even although the inductors and connectors have

been kept for days as carefully discharged as possible. Forty

elements of a dry pile (zinc, copper, paper), applied with one

pole to one of the inductors, and the other for a moment to the

connecting springs and the other inductor, may be used to de—

termine, or to suddenly reverse, the character (vitreous or
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resinous) of the electrification of the insulated inductor. The

only instrument yet made is a very small one (with carrier

wheel 2 inches in diameter), constructed for the Atlantic

Fro. 2.
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Telegraph application; but its action has been so startlingly

successful that good effect may be expected from larger machines

on the same plan. _

420. When this instrument is used to replenish the charge of

the inductor in the constant electric machine, described above,

one of its own inductors is connected with the earth, and the other

with the inductor to be replenished. When accurate constancy
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is desired, a gauge-electroscope is applied to break and make

contact between the connector-springs of the replenisher when

the potential to be maintained rises above or falls below a

certain limit. '

421. Several useful applications of the replenisher for scien

tific observation were shown by the author at the recent meeting

of the British Association (Dundee),-—among others, to keep up

the charge in the Leyden jar for the divided-ring mirror-elec

trometer, especially when this instrument is used for recording

atmospheric electricity. A small replenisher, attached to the

instrument within the jar, is worked by a little milled head on

the outside, a few turns of which will sufiice to replenish the

loss of twenty- four hours.

POSTSCRIPT, Nov. 23, 1867.

422. As has been stated, this machine was planned originally

for recording the signals of the Atlantic Cable. The small

“ replenisher” represented in the diagrams has proved perfectly

suitable for this purpose. The first experiments on the method

for recording signals which I recently patented were made more

than a year ago by aid of an ordinary plate-glass machine worked

by hand. This day the small “ replenisher” has been connected

with the wheelwork drawing the Morse paper on which signals

are recorded, and, with only the ordinary driving-weight as

moving power, has proved quite successful.

423. The scientific applications indicated when the communi

cation was made to the British Association have been tested with

in the last few weeks, and especially to-day, with the assistance

of Professor Tait. The small replenisher is now made as part

of each quadrant electrometer. It is permanently placed in the

interior of the glass Leyden jar ; and a few turns by the finger

applied to a milled head on the outside of the lid are found

suflicient to replenish the loss of twenty-four hours. A small

instrument has also been made and tested for putting in prac

tice the plan of equalizing potentials, described verbally in the

communication to the British Association, which consisted in a

mechanical arrangement to produce effects of the same char

acter as those of the water-dropping system, described several
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years ago at the Royal Institution."I The instrument is repre

sented in the annexed sketch (fig. 3). AT and AT’ are two

springs touching a circular row of small brass pegsf insulated

from one another in a vulcanite disc. These springs are insu

lated, one or both, and are connected with the two electrodes of

Fin. 3.

 

‘ ‘ mi

the electrometer—or one of them with the insulated part of the

electrometer, and the other with the metal enclosing the case,

when there is only one insulated electrode. One application is

to test the “pyro-electricity” of crystals; thus a crystal of tour

maline, PN, by means of a metal arm holding its middle, is sup

ported symmetrically with reference to the disc in a position

parallel to the line TT’, and joining the lines of contact of the

springs. \Vhen warmed (as is conveniently done by a metal

plate at a considerable distance from it), it gives by ordinary

tests, as is well known, indications of positive electrification to

*Lecture on Atmospheric Electricity, Proceedings of the Royal Institution,

‘May 1860. See also Nichol's Cyclopedia, article “ Electricity, Atmospheric ”

[5Q 249...?93].

'l' [I now find a smaller number of larger discs to be preferable, as consider

able disturbances are produced by the numerous breakings of contact unless

the two springs are in precisely the same condition as to quality and clean

ness of metal surface. Thin stiff platinum pins attached to the discs, and

very fine platinum springs touching them as they pass, will probably give

good and steady results if the springs are kept very clean. The smallest

quantity of the paraffin (with which, as usual in electric instruments, the

vulcanite is coated), if getting on either spring, would probably produce im

mense disturbance-December 23, 1867.]
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wards the one end P, and of negative electrification towards the

other end N. The wheel in the arrangement now described is

kept turning at a rapid rate; and the effect of the carrier is to

produce in the springs TA, T’A’ the same potentials, approxi

mately, as those which would exist in the air at the points T, T’

if the wheel and springs were removed. The springs being

connected with the electrodes of the divided-ring quadrant

electrometer, the spot of light is deflected to the right, let us

say. After continuing the application of heat for some time

the hot plate is removed, and a little later the spot of light goes

to zero and passes to the left, remaining there for a long time,

and indicating a difference of potentials between the springs, in

the direction A’T’ positive and AT negative. The electrometer

being of such sensibility as to give a deflection of about 100

scale-divisions to the right or left when tested by a single gal

vanic cell, and having a range of 300 scale-divisions on each

side, it is necessary to place the tourmaline at a distance of

several inches from the disc to keep the amount of the deflec

tion within the limits of the scale.

42 4. Another application of this instrument is for the

experimental investigation of the voltaic theory, according

to the general principle described [§ 406] in the communi

cation to the Royal Society already referred to.* In it two

inductors are placed as represented in fig. 4- The inner

 

surface of each of these is of smooth brass; and one of them

is lined wholly, or partially, with sheet zinc, copper, silver,

or other metal to be tested. Thus, to experiment upon

the contact difference of potentials between zinc and copper,

" Proceedings of the Royal Society, May 1867.



336 Applications of Potential-Eyualizcr. [XXIIL

one of the inductors is wholly lined with sheet zinc or

with sheet copper, and the two inductors are placed in me

tallic communication with one another. The springs are each

in metallic communication with the electrodes of the quadrant

mirror electrometer, and the wheel is kept turning. The spot

of light is observed to take positions differing, according as the

lining is zinc or copper, by 721} per cent. of the difference pro

duced by disconnecting the two inductors from one another and

connecting them with the two plates of a single Daniell’s cell,

when either the zinc or the copper lining is left in one of them.

These differences are very approximately in simple proportion

to the differences of potentials between the pairs of the opposite

quadrants of the electrometer in the different cases. The dif

ference between the effects of zinc and of copper in this arrange

ment is of course in the direction corresponding to the positive

electrification of the quadrants connected with the spring whose

point of contact is exposed to the zinc-lined inducing surface.

It must be remembered, however, as is to be expected from

Hankel’s observations, that the difference measured will be much

affected by a slight degree of tarnishing by oxidation, or other

wise, of the inner surface of either inductor. When the

copper surface is brought to a slate-colour by oxidation under

the influence of heat, the contact difference between it and

polished zinc amounts sometimes, as I found in experiments

made seven years ago, to 125, that of a single cell of Daniell’s

being called 100.

425. A useful application of the little instrument represented

in fig. 4 is for testing insulation of insulated conductors of small

capacity, as for instance, short lengths (2 or 3 feet) of submarine

cable, when the electrometer used is such that its direct appli

cation to the conductor to be tested would produce asensible

disturbance in its charge,whether through the capacity of the elec

trometer being too great, or from inductive effects due to motion

of the moveable part, or parts, especially if the electrometer is

“ heterostatic ” [§ 385]. In this application one of the induc

tors is kept in connexion with a metal plate in the water sur

rounding the specimen of cable to be tested; and the other is

connected with the specimen, or is successively connected with

the different specimens under examination. The springs are
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connected with the two electrodes of the electrometer as usual.

The small constant capacity of the insulated inductor, and the

practically perfect insulation which may with case be secured

for the single glass or vulcanite stem hearing it, are such that

the application of the testing apparatus to the body to be tested

produces either no sensible change, or a small change which

can be easily allowed for. It will be seen that the small metal

pegs carried away by the turning-wheel from the point of the

insulated spring, in the arrangement last described, correspond

precisely to the drops of water breaking away from the nozzle

in the water-dropping collector for atmospheric electricity.

426. A form bearing the same relation to that represented in the

drawings that a glass-cylinder electric machine bears to a plate

glass machine of the ordinary kind will be more easily made,

and will probably be found preferable, when the dimensions are

not so great as to render it cumbrous. In it, it is proposed to

make the carrier-wheel nearly after the pattern of a mouse

mill, with discs of vulcanite instead of wood for its ends.

The inductor and receiver of the rotatory electrophorus or

the two inductor-receivers of the replenisher, may, when this

pattern is adopted, be mere tangent planes; but it will probably

be found better to bend them somewhat to a curved cylindrical

shape not differing very much from tangent planes. When,

however, great intensity is desired, the best pattern will pro

bably be had by substituting for the carrier-wheel an endless

, rope ladder, as it were, with cross bars of metal and longitudinal

cords of silk or other flexible insulating material. This, by an

action analogous to that of the chain-pump, will be made to

move with great rapidity, carrying electricity from a properly

placed inductor to a properly shaped and properly placed re

ceiver at a distance from the inductor which may be as much

as several feet.

ON THE RECIPROCAL ELECTROPHORUS.

[From the Philosophical Magazine, April 1868.]

427. Having been informed by Mr. Fleeming Jenkin that he

had heard from Mr. Clerk Maxwell that the instrument which I

described under the name “ Replenisher,” in the Philosophical

Y
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Magazine for January 1868, was founded on precisely the same

principle as an instrument “for generating electricity” which

had been patented some years ago by Mr. C. F. Varley, I was

surprised; for I remembered his inductive machine which had

been so much admired at the Exhibition of 1862, and which

certainly did not contain the peculiar principle of the

“ Replenisher.” But I took the earliest opportunity of looking

into Mr. Varley’s patent (1860), and found, as was to be ex

pected, that Mr. Maxwell was perfectly right. In that patent

Mr. Varley describes an instrument agreeing in almost every

detail with the general description of the “ Replenisher” which

I gave in the article of the Philosophical Magazine already

referred to. The only essential difference is that no contacts

are made in Mr. Varley's instrument, but, instead, the carriers

pass, each at four points of its circular path, within such short

distances of four metallic pieces that when a sufficient intensity

of charge has been reached, sparks pass across the air-intervals.

Hence to give a commencement of action to Mr. Varley's instru

ment, one of the inductors must be charged from an indepen

dent source to a considerable potential (that of several thousand

cells for instance), to make sure that sparks will pass between

the carriers and the metal piece (corresponding to one ofmy con

necting springs) which it passes under the influence of that

inductor. In my “Replenisher,” however well discharged it

may be to begin with, electrification enough is reached after a

few seconds (on the compound interest principle, with an in

finitesimal capital to begin with) to produce sparks and flashes

in various parts of the instrument. In Mr. Varley’s instrument,

what corresponds to my connector is described as being con

nected with the ground; and the effect is to produce positive

and negative electrification of the two inductors. In this re

spect it agrees with the self-acting apparatus for multiplying

and maintaining electric charges, described in a communication

to the Royal Society last May.* From this arrangement I

passed to the " Replenisher ” by using a wheel with carriers as

a substitute for the water-droppers, and arranging that the

connectors might be insulated and one of the inductors con

"' Proceedings of the Royal Society, 1867 ; or, Phil. Mag, November 1867.
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nected with the earth, which, of course, may be done in Mr.

Varley’s instrument, and which renders it identical with mine,

with the exception of the difference of spring-contacts instead

of sparks. This difference is essential for some of the applica

tions of the “ Replenisher,” which I described, and have found

very useful, especially the small internal replenisher, for reple

nishing, when needed, the charges of the Leyden jar of my

heterostatic electrometers. But the reciprocal-electrophorus

principle, which seemed to me a novelty in the communication

to the Royal Society and in the Philosophical Magazt'ne article of

last January referred to, had, as I now find, been invented and

published by Mr. Varley long before, in his patent of 1860,

when it was, I believe, really new to science.

428. POSTSCRIPT.—GLASGOW COLLEGE, March 20, 1868.—In

looking further into Mr. Varley’s patent, I find that he describes

an arrangement for making spring-contacts instead of the narrow

air—spaces for sparks,—and that he uses the spring-contacts to

enable him to commence with a very small difference of poten

tials, and to magnify on the compound interest principle. He

even states that he can commence with such a difference of

potentials as can be produoedbyasingle thermo-electric element,

and by the use of his inductive instrument can multiply this in

a measured proportion until he reaches a difference of potentials

measurable by an ordinary electrometer. Thus it appears that his

anticipation of all that I have done in my “ Replenisher ” is even

more complete than I supposed when writing the preceding.

429. SECOND Posrscmrr(1870).-On having had myattention

called to Nicholson's “ Revolving Doubler," I find in it the same

compound interest principle of electrophoric action. It seems

certain that the discovery is Nicholson’s, and about one hundred

years old. Holtz’s now celebrated electric machine, which is

closely analogous in principle to Varley’s of 1860, is, I believe,

a. descendant of Nicholson’s. Its great power depends on the

abolition by Holtz of metallic carriers, and of metallic make

and-break contacts. Its inductive principle is identical with

that of Varley’s earlier and my own later invention. It differs

from Varley’s and mine in leaving the inductors to themselves,

and using the current in the “ connecting” arc (§ 419), which,

when sparks are to be produced, is broken.
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[Abstract from the Proceedings of the Royal Society, June 1849.]

430. THE theory of magnetism was first mathematically

treated in a complete form by Poisson. Brief sketches of his

theory, with some simplifications, have been given by Green

and Murphy in their works on Electricity and Magnetism. In

all these writings a hypothesis of two magnetic fluids has been

adopted, and strictly adhered to throughout. No physical

evidence can be adduced in support of such a hypothesis;

but on the contrary, recent discoveries, especially in electro

magnetism, render it extremely improbable. Hence it is of

importance that all reasoning with reference to magnetism

should be conducted without assuming the existence of those

hypothetical fluids.

431. The writer of the present paper endeavours to show that a

complete mathematical theory of magnetism may be established

upon the sole foundation of facts generally known, and Cou

lomb’s special experimental researches. The positive parts of

this theory agree with those of Poisson's mathematical theory,

and consequently the elementary mathematical formulae coin

cide with those which have been previously given by Poisson.

The paper at present laid before the Royal Society is re

stricted to the elements of the mathematical theory, exclusively

of those parts in which the phenomena of magnetic induction

are considered.

The author hopes to have the honour of laying before the

Society a continuation, containing some original mathematical

investigations on magnetic distributions, and a theory of induc

tion, in ferromagnetic or diamagnetic substances.
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[Transactions of the Royal Society for June 1849, and June 1850.]

Introduction.

432. THE existence of magnetism is recognised by certain

phenomena of force which are attributed to it as their cause.

Other physical effects are found to be produced by the same

agency; as in the operation of magnetism with reference to

polarized light, recently discovered by Mr. Faraday; but we

must still regard magnetic force as the characteristic of mag

netism, and, however interesting such other phenomena may

be in themselves, however essential a knowledge of them may

be for enabling us to arrive at any satisfactory ideas regarding

the physical nature of magnetism, and its connexion with the

general properties of matter, we must still consider the investi

gation of the laws, according to which the development and

the action of magnetic force are regulated, to be the primary

object of a Mathematical Theory in this branch of Natural

Philosophy.

433. Magnetic bodies, when put near one another, in general

exert very sensible mutual forces; but a body which is not

magnetic can experience no force in virtue of the magnetism of

bodies in its neighbourhood. It may indeed be observed that

a body, M, will exert a force upon another body A ; and again,

on a third body B; although when A and B are both removed

to a considerable distance from M, no mutual action can be

discovered between themselves; but- in all such cases A and B

are, when in the neighbourhood of M, temporarily magnetic;

and when both are under the influence of M at the same time,

they are found to act‘ upon one another with a mutual force.

All these phenomena are investigated in the mathematical

theory of magnetism, which, therefore, comprehends two dis—

tinct kinds of magnetic action~the mutual forces exercised

between bodies possessing magnetism, and the magnetization

induced in other bodies through the influence of magnets.

The First Part of this paper is confined to the more descriptive

and positive details of the subject, with reference to the former

class of phenomena. After a sufficient foundation has been

laid in it, by the mathematical exposition of the distribution of

magnetism in bodies, and by the determination and expression
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of the general laws of magnetic force, a Second Part will be

devoted to the theory of magnetization by influence, or magnetic

induction.

FIRST PART.—ON MAGNETS, AND THE MUTUAL FORCES

BETWEEN MAGNETS.

CHAPTER I.—Preliminary Definitions and Explanations.

434. A magnet is a substance which intrinsically possesses

magnetic properties.

A piece of loadstone, a piece of magnetized steel, a galvanic circuit,

are examples of the varieties of natural and artificial magnets at

present known; but a piece of soft iron, or a piece of bismuth tem

porarily magnetized by induction, cannot, in unqualified terms, be

called a magnet.

A galvanic circuit is frequently, for the sake of distinction, called

an “ electro-magnet;” but, according to the preceding definition of a

magnet, the simple term, without qualification, may be applied to

such an arrangement. On the other hand, a piece of apparatus con

sisting of a galvanic coil, with a soft iron core, although often called

simply “an electro-magnet," is in reality a complex arrangement

involving an electro-magnet (which is intrinsically magnetic as long as

the electric current is sustained) and a body transiently magnetized

by induction.

435. In the following analysis of magnets, the magnetism of

every magnetic substance considered will be regarded as ab

solutely permanent under all circumstances. This condition is

not rigorously fulfilled either for magnetized steel or for load

stone, as the magnetism of any such substance is always liable

to modification by induction, and may therefore be affected

either by bringing another magnet into its neighbourhood, or

by breaking the mass itself and separating the fragments.

When, however, we consider the magnetism of any fragment

taken from a steel or loadstone magnet, the hypothesis will be

that it retains without any alteration the magnetic state which

it actually had in its position in the body. The general theory

of the distribution of magnetism founded upon conceptions of

this kind, will be independent of the truth or falseness of any

such hypothesis which may be made for the sake of conveni
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ence in studying the subject ; but of course any actual experi

ments in illustration of the analysis or synthesis of a magnet

would be affected by a want of rigidity in the magnetism of

the matter operated on. For such illustrations electro-magnets

[without iron or other magnetic substance] are extremely

appropriate, as in them, except during the motion by which

any alteration in their form or arrangement is effected, no

appreciable inductive action can exist.

436. In selecting from the known phenomena of magnetism

those elementary facts which are to serve for the foundation of

the theory, all complex actions depending on the irregularities

of the bodies made use of should be excluded. Thus if we

were to attempt an experimental investigation of the action

between two amorphous fragments of loadstone, or between

two pieces of steel magnetized by ordinary processes, we

should probably fail to recognise the simple laws on which the

actions resulting from such complicated circumstances depend;

and we must look for a simpler case of magnetic action before

we can make an analysis which may lead to the establishment

of the fundamental principles of the theory. Much complica

tion will be avoided if we take a case in which the irregularities

of one, at least, of the bodies do not affect the phenomena to be

considered. Now, the earth, as was first shown by Gilbert, is

a magnet; and its dimensions are so great that there is no

sensible variation in its action on different parts of any

ordinary magnet upon which we can experiment, and conse—

quently, in the circumstances, no complicacy depending on the

actual distribution of terrestrial magnetism. We may therefore,

with advantage, commence by examining the action which the

earth produces upon a magnet of any kind at its surface.

437. At a very early period in the history of magnetic dis

covery the remarkable property of “pointing north and south ”

was observed to he possessed by fragments of loadstone and

magnetized steel needles. To form a clear conception of this

phenomenon, we must consider the total action produced by

the earth upon a magnet of any kind, and endeavour to dis

tinguish between the effects of gravitation which the earth

exerts upon the body in virtue of its weight, and those which

result from the magnetic agency.
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438. In the first place, it is to be remarked that the mag

netic agency of the earth gives rise to no resultant force of

sensible magnitude, upon any magnet with reference to which

we can perform experiments [that is to say, small enough to

be a subject for laboratory experiments], as is proved by the

following observed facts :—

(1.) A magnet placed in any manner, and allowed to move with

perfect freedom in any horizontal direction (by being floated, for

example, on the surface of a liquid), experiences no action which

tends to set its centre of gravity in motion, and there is therefore no

[directly observable] horizontal force upon the body.

(2.) The magnetism of a body may be altered in any way, without

affecting its weight as indicated by a balance. Hence there can be

no [directly observable] vertical force upon it depending on its mag

netism.

439. It follows that any magnetic action which the earth

can exert upon a magnet [of dimensions suitable for laboratory

experiments] must be [sensibly] a couple. To ascertain the

manner in which this action takes place, let us conceive a

magnet to be supported by its centre of gravity* and left per

fectly free to turn round this point, so that, without any con

straint being exerted which could balance the magnetic action,

the body may be in circumstances the same as if it were with

out weight. The magnetic action of the earth upon the magnet

gives rise to the following phenomena :—

(1.) The magnet does not remain in equilibrium in every position in

which it may be brought to rest, as it would do did it experience no

action but that of gravitation.

(2.) If the magnet be placed in a position of equilibrium, there is a

certain axis (which, for the present, we may conceive to be found by

trial), such that if the magnet be turned round it, through any angle,

and be brought to rest, it will remain in equilibrium.

" The ordinary process for finding experimentally the centre of gravity of

a body fails when there is any magnetic action to interfere with the effects

of gravitation. It isI however, for our present purpose, sufiicient to know

that the centre of gravity exists ; that is, that there is a point such that the

vertical line of the resultant action of gravity passes through it, in whatever

position the body he held. If it were of any consequence, a process, some

what complicated by the magnetic action, for actually determining, by ex

periment, the centre of gravity of a magnet might be indicated, and thus

the experimental treatment of the subject in the text would be completed.



XxIv.] A jllalhematical Theory of Magnetism. 345

(3.) If the magnet be turned through 180°, about an axis perpen

dicular to this, it will again be in a position of equilibrium.

(4.) Any motion of the magnet whatever, which is not of either of

the kinds just described, nor compounded of the two, will bring it

into a position in which it will not be in equilibrium.

(5.) The directing couple experienced by the magnet in any posi

tion depends solely on the angle of inclination of the axis described in

(1.) to the line along which it lies when the magnet is in equilibrium;

being independent of the position of the plane of this angle, and of

the different positions into which the magnet is brought by turning it

round that axis.

440. From these observations we draw the conclusion that a

magnet always experiences a directing couple from the earth

unless a certain axis belonging to it is placed in a determinate

position. This line of the magnet is called its magnetic axis.‘

441. The direction towards which the magnetic axis of the

magnet tends in virtue of the earth’s action, is called “ the line

of dip,” or “the direction of the total terrestrial magnetic force,"

at the locality of the observation.

442. No further explanation regarding phenomena which

depend on terrestrial magnetism is required in the present

chapter; but, as the facts have been stated in part, it may be

right to complete the statement, as far as regards the action

experienced by a magnet of any kind when held in different

positions in a given locality, by mentioning the following

conclusions, deduced in a very obvious manner from the

general laws of magnetic action stated below, and verified fully

by experiment :—

If a magnet be held with its magnetic axis inclined at any

angle to the line of dip, it will experience a couple, the moment

of which is proportional to the sine of the angle of inclination,

acting in a plane containing the magnetic axis and the line of

dip. The position of equilibrium towards which this couple

tends to bring the magnetic axis is stable, and if the direc

tion of the magnetic axis be reversed, the magnet may be left

balanced, but it will be in unstable equilibrium.

' Any line in the body parallel to this might, with as good reason, he

called a magnetic axis, but when we conceive the magnet to be supported by

its centre of gravity, the magnetic axis is naturally taken as a line through

this point. [See addition to § 444.]



346 A Mathematical Theory of Magnetism.

443. The directive tendency observed in magnetic bodies

being found to depend on their geographical position, and to

be related, in some degree, to the terrestrial poles, received the

name of polarity, probably on account of a false hypothesis of

forces exercised by the pole-star* or by the earth's poles upon

certain points of the loadstone or needle, thence called the

“ poles of the magnet." The terms “polarity” and “poles ” are

still retained, but the use of them, which has very generally

been made, is nearly as vague as the ideas from which they

had their origin. Thus, when the magnet is an elongated mass,

its ends are called poles if its magnetic axis be in the direction

of its length; no definite points, such as those in which the

surface of the body is out by the magnetic axis, being pre

cisely indicated by the term as it is generally used. If, how

ever, the body be symmetrical about its magnetic axis, and

symmetrically magnetized, whether elongated in that direction

or not, the poles might be definitely the ends of the magnetic

axis (or the points in which the surface is cut by it), unless

the magnet be annular and not cut by its magnetic axis (a ring

electro-magnet, for instance), in which case the ordinary con-7

ception of poles fails. Notwithstanding this vagueness, how

ever, the terms poles and polarity are extremely convenient,

and, with the following explanations, they will frequently be

made use of in this paper :—

444. Let 0 be any point in a magnet, and let NOS be a

straight line parallel to the line defined above as the magnetic

axis through the centre of gravity. If the point 0, however

it has been chosen, be called the centre of the magnet, the line

NS, terminated either at the surface, on each side, or in any

arbitrary manner, is called the magnetic axis, and the ends

N, S, of the magnetic axis are called the poles of the magnetfil'

* In the poem of Guiot de Provence (quoted in \Vhewell's Hiatory of the

Inductive Sciences, vol. ii. p. 46), a needle is described as being magnetized

and placed in or on a straw (floating on Water it is to be presumed)— -

"Puis se tome la. pointe toute

Contre l’estoile sans doute.”

1' A definition of poles at variance with this is adopted in some special

cases, especially in that of the earth considered as a great magnet, but the

manner in which the term will be used in this paper will be such as to pro

duce no confusion on this account.
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[Additiom 1871.—Later, § 494, a proper central axis, to be

called the magnetic axis, and a point in it which may be called

the magnetic centre, will be defined according to purely mag—

netic conditions]

445. That pole (marked N) which points, on the whole,

from the north, and, in northern latitudes, upwards, is called

the north pole, and the other (S), which points from the south,

is called the south pole.

446. The sides of the body towards its north pole and south

pole are said to possess “northern polarity” and "southern

polarity” respectively, an expression obviously founded on the

idea that the surface of a magnet may in general be contem

plated as a locus of poles.

447. If a magnetic body be broken up into any number of

fragments, each morsel is found to be a complete magnet,

presenting in itself all the phenomena of poles and polarity.

This property is generally contemplated when, in modern

writings on physical subjects, polarity is mentioned as a

property belonging to a solid body ; and a corresponding idea

is involved in the term when it is applied with reference to the

electric state which Mr. Faraday discovered to be induced in

non-conductors of electricity ("dielectrics ”) when subjected to

the influence of electrified bodiesfl‘ However different are the

physical circumstances of magnetic and electric polarity, it

appears that the positive laws of the phenomena are the same-I‘

and therefore the mathematical theories are identical. Either

subject might be taken as an example of a very important

branch of physical mathematics, which might be called “A

Mathematical Theory of Polar Forces.”

448. Although we have seen that any magnet, in general,

experiences from the earth an action subject to certain very

simple laws, yet the actual distribution of the magnetism

which it possesses may be extremely irregular. We may

certainly conceive that if the magnetized substance be a

regular crystal of magnetic iron ore, the magnetism is distri

* Faraday’s Experimental Researches in Electricity, Eleventh Series.

+ See a paper “On the Elementary Laws of Statical Electricity,” published

in the Cambridge and Dublin Mathematical Journal (vol. i.) in December

1845.
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buted through it according to some simple law ; but by taking

an amorphous and heterogeneous fragment of ore presenting

magnetic properties, by magnetizing in any way an irregular

mass of steel, by connecting any number of morsels of magnetic

matter so as to make up a complex magnet, or by bending a

galvanic wire into any form, we may obtain magnets in which

the magnetic property is distributed in any arbitrary manner,

however irregular. Excluding for the present the last-men

tioned case, let us endeavour to form a conception of the

distribution of magnetism in actually magnetized matter, such

as steel or loadstone, and to lay down the principles according

to which it may in any instance be mathematically expressed.

449. In general we may consider a magnet as composed of

matter which is magnetized throughout, since, in general, it is

found that any fragment cut out of a magnetic mass is itself a

magnet possessing properties entirely similar to those which

have been described as possessed by any magnet whatever. It

may be, however, that a small portion cut out of a certain

position in a magnet, may present no magnetic phenomena;

and if we cut equal and similar portions from different posi

tions, we may find them to possess magnetic properties difl‘ering

to any extent both in intensity and in the directions of their

magnetic axes.

450. If we find that equal and similar portions, cut in

parallel directions, from any different positions in a given

magnetic mass, possess equal and similar magnetic properties,

the mass is said to be uniformly magnetized.

451. In general, however, the intensity of magnetization

must be supposed to vary from one part to another, and the

magnetic axes of the different parts to be not parallel to one

another. Hence, to lay down determinately a specification of

the distribution of magnetism through a. magnet of any kind,

we must be able to express the intensity and the direction of

magnetization at each point. Before attempting to define a

standard for the numerical expression of intensity of magneti

zation, it will be convenient to examine the elementary laws

upon which the phenomena of magnetic force depend, since it

is by these effects that the nature and energy of the magnetism

to which they are due must be estimated.
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CHAPTER II.—On the Laws of Magnetic Force, and on the

Distrflmtion of Magnetism in Magnetized Matter.

452. The object of the elementary magnetic researches of

Coulomb was the determination of the mutual action between

two infinitely thin, uniformly and longitudinally magnetized

bars. The magnets which he used were in strictness neither

uniformly nor longitudinally magnetized, such a state being

unattainable by any actual process of magnetization; but, as

the bars were very thin cylindrical steel wires, and were

symmetrically magnetized, the resultant actions were sensibly

the same as if they were in reality infinitely thin, and longi

tudinally magnetized; and from experiments which he made,

it appears that the intensity of the magnetization must have

been very nearly constant from the middle of each of the bars

to within a short distance from either end, where a gradual

decrease of intensity is sensible.*

453. These circumstances having been attended to, Coulomb

was able to deduce from his experiments the true laws of the

phenomena, and arrived at the following conclusions :—

(1.) If two thin uniformly and longitudinally magnetized

bars be held near one another, an action is exerted between

them which consists of four distinct forces, along the four

lines joining their extremities.

(2.) The forces between like ends of the two bars are re

pulsiverf'

(3.) The forces between unlike ends are attractive.

(4.) If the bars be held so that the four distances between

their extremities, two and two, are equal, the four forces

between them will be equal.

(5.) If the relative positions of the bars be altered, each

force will vary inversely as the square of the mutual distance

of the poles between which it acts.

" See note on § 469, below.

+ Hence we see the propriety of the terms north and south applied to the

opposite polarities of a magnet, as explained above. Thus we designate the

polarity, or the imaginary magnetic matter of the northern and southern

magnetic hemispheres of the earth, as northern and southern respectively;

and since the poles of ordinary magnets which are repelled by the earth’s

northern or southern polarity must be similar, these also are called northern

or southern, as the case may be.
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454. To establish a standard for estimating the strength of a

magnet, let us conceive two infinitely thin bars to be placed so

that either end of one may be at unit of distance from an end

of the other. Then, if the bars be equally magnetized, each

uniformly and longitudinally, to such a degree that the force

between those ends shall be unity, the strength of each bar

magnet is unity.*

455. If any number, m, of such unit bars, of equal length,

be put with like ends together, so as to constitute a single

complex bar, the strength of the magnet so formed is denoted

by m.

If there be any number of thin bar-magnets of equal length,

and each of them of such a strength that q of them, with like

ends together, would constitute a unit-bar; and if p of those

bars be put with like ends together, the strength of the complex

magnet so formed will be

456. If a single infinitely thin bar be magnetized to such a

degree that in the same positions it would produce the same

effects as a complex bar of any strength m (an integer or

fraction), the strength of this magnet is denoted by m.

457. If two complex bar-magnets, of the kind described

above, be put near one another, each bar of one will act on

each bar of the other with the same forces as‘if all the other

bars were removed. Hence, if the distance between the two

poles be unity, and if the strengths of the bars be respectively

m and m’ (whether these numbers be integral or fractional),

the force between those poles will be mm’. If, now, the

relative position of the magnets be altered, so that the distance

between two poles may be f, the force between them will,

according to Coulomb’s law, be

mm’

f’ .

" The Royal Society, in its Instructions for making observations on Terres

trial Mngnetism, adopts one foot as the unit of length ; and that force which,

if acting on a grain of matter, would in one second of time generate one foot

per second of velocity, as the unit of force; which is consequently very

nearly 5% of the weight, in any part of Great Britain or Ireland, of one

grain. [N0te, 1871.—The British Association's Committee on Electric

Measurement have recently adopted the centimetre as unit of length, and

the gramme as unit of mass, instead of the foot and grain]
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According to the definition given above of the strength of a

simple bar-magnet, it follows that the same expression gives

the force between two poles of any thin uniformly and longi

tudinally magnetized bars, of strengths m and m’.

458. The magnetic moment of an infinitely thin, uniformly

and longitudinally magnetized bar, is the product of its length

into its strength.

459. ‘If any number of equally strong, uniformly and longi

tudinally magnetized rectangular bars of equal infinitely small

sections, be put together with like ends towards the same

parts, a complex uniformly magnetized solid of any form may

be produced. The magnetic moment of such a. magnet is equal

to the sum of the magnetic moments of the bars of which it is

composed.

460. The magnetic moment of any continuous solid, uni

formly magnetized in parallel lines, is equal to the sum of the

magnetic moments of all the thin uniformly and longitudinally

magnetized bars into which it may be divided.

It follows that the magnetic moment of any part of a uni

formly magnetized mass is proportional to its volume.

461. The intensity of magnetization of a uniformly magnetized

solid is the magnetic moment of a unit of its volume.

It follows that the magnetic moment of a uniformly mag

netized solid, of any form and dimensions, is equal to the

product of its volume into the intensity of its magnetization.

462. If a body be magnetized in any arbitrary regular or

irregular manner, a portion may be taken in any position, so

small in all its dimensions that the distribution of magnetism

through it will be sensibly uniform. The quotient obtained by

dividing the magnetic moment of such a portion, in any posi

tion P, by its volume, is the intensity of magnetization of the

substance at the point P; and a line through P parallel to its

lines of magnetization, is the direction of magnetization, at P.

CHAPTER III.-—On the Imaginary Magnetic Matter by means of

which the Polarity of a Magnetized Body may be represented.

463. It will very often be convenient to refer the phenomena.

of magnetic force to attractions or repulsions mutually exerted
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between portions of an imaginary magnetic matter, which, as

we shall see, may be conceived to represent the polarity of a

magnet of any kind. This imaginary substance possesses none

of the primary qualities of ordinary matter, and it would be

wrong to call it either a solid, or the “magnetic fluid” or

“fluids”; but, without making any hypothesis whatever, we

may call it “magnetic matter,” on the understanding that it

possesses only the property of attracting or repelling magnets,

or other portions of “matter” of its own kind, according to

certain determinate laws, which may be stated as follows :—

(1.) There are two kinds of imaginary magnetic matter,

northern and southern, to represent respectively the northern

and southern magnetic polarities of the earth, or the similar

polarities of any magnet whatever.

(2.) Like portions of magnetic matter repel, and unlike por

tions attract, mutually.

(3.) Any two small portions of magnetic matter exert a

mutual force which varies inversely as the square of the dis

tance between them.

(4.) Two units of magnetic matter, at a unit of distance from

one another, exert a unit of force, mutually.

464. If quantities of magnetic matter be measured numeri

cally in such units, and if the positive or negative sign be

prefixed to denote the species of matter, whether northern

(which, by convention, we may call positive) or southern, all

the preceding laws are expressed in the following proposi

tion :-—

If quantities, m and m’, of magnetic matter be concentrated

respectively at points at a distance, f, from one another, they will

repel with a force algebraically equal to

mm’

_f_s_ .

465. It appears from the explanations given above that the

circumstances of a uniformly magnetized needle may be repre

sented if we imagine equal quantities of northern and southern

magnetic matter to be concentrated at its two poles, the

numerical measure of these equal quantities being the same as

that of the “ strength ” of the magnet.

The mutual action between two needles would thus be
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reduced to forces of attraction and repulsion between the portions

of magnetic matter by which their poles are represented.

466. Any magnetic mass whatever may, as we have seen, be

regarded as composed of infinitely small bar-magnets put

together in such a way as to produce the distribution of mag

netism which it actually possesses ; and hence, by substituting

imaginary magnetic matter for the poles of these magnets,

we obtain a distribution of equal quantities of northern and

southern magnetic matter through the magnetized substance,

by which its actual magnetic condition may be represented.

The distribution of this matter becomes very much simplified,

from the circumstance that we have in general unlike poles of

the elementary magnets in contact, by which the opposite

kinds of magnetic matter are partially (or in a class of cases

wholly") destroyed through the interior of the body. The

determination of the resulting distribution of magnetic matter,

which represents in the simplest possible manner the polarity

of any given magnet, is of much interest, and even importance,

in the theory of magnetism, and we may therefore make this

an object of investigation, before going further.

467. Let it be required to find the distribution of imaginary

magnetic matter to represent the polarity of any number of

uniformly magnetized needles, S, T,, 821V2, S"N,, of strengths

m, [1.2, pm respectively, when they are placed together, end

to end (notnecessarily in the same straight line).

If A denote the position occupied by S, when the bars are

in their places; if N, and S2 are placed in contact at K, ; N2

and S3, at K,; and so on until we have the last magnet, with

its end S,,, in contact with N,,_,, at K,,_,, and its other end,

. N", free, at a point B; we shall have to imagine

IL, units of southern magnetic matter to be placed at A ;

IL, units of northern, and p, units of southern matter at K, ;

m units of northern, and p, of southern matter at K,;

;:.,,_, units of northern, and 1a,, of southern matter at I\',,_, ;

and lastly,

II." units of northern matter at B.

* In all cases when the distribution is “solenoi(lal." See below, Chap. v.

§ 499; communicated to the Royal Society, June ‘24), 1850.

Z
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Hence the final distribution of magnetic matter is as follows :

—p.l . . . . . . . . . at A

p, -,u-, . . . . . . . . K1

‘up-p3 . . . . . . . . K,

[Ln_l--/I-" . . . . . . . . K,L_l

and ,un . . . . . . . . . . B.

468. The complex magnet AK1 K,...K,,_1B consists of a

number of parts, each of which is uniformly and longitudinally

magnetized, and it will act in the same way as a simple bar of

the same length, similarly magnetized; and hence the magnetic

matter which represents a bar-magnet AB of this kind is con

centrated in a series of points, at the ends of the whole bar, and

at all the places where there is a variation in the strength* of

its magnetization.

469. If the length of each part through which the strength

of the magnetism is constant, be diminished without limit, and

if the entire number of the parts be increased indefinitely, a

straight or curved infinitely thin bar may be conceived to be

produced, which shall possess a distribution of longitudinal

magnetism varying continuously from one end to the other

according to any arbitrary‘ law. If the strength of the magnet

ism at any point P of this bar be denoted by [1,, and if [p] and

(,u) denote the values of ,u. at the points A and B, the investi

gation of § 467, with the elementary principles and notation of

the differential calculus, leads at once to the determination of

the ultimate distribution of magnetic matter by which such a

bar-magnet may be represented. Thus if AP be denoted by s;

y. will be a function of s, which may be supposed to be known,

and its differential coefficient will express the continuous dis

tribution of magnetic matter which replaces the group of

material points at K1, K2, etc; so that the entire distribution

of polarity in the bar and at its ends will be as follows :—in

* This expression is equivalent to the product of the intensity of magnetiza

tion into the SL’CUOH of the bar ; and by retaining it we are enabled to include

cases in which the bar is not of uniform section.
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any infinitely small length, a, of the bar, a quantity of matter

equal to (In

._Z; . 0-,

and, besides, terminal accumulations, of quantities

—-[/1.] at A,

and (1*) at B

It follows that if, through any part of the length of a bar,

the strength of the magnetism is constant, there will be no

magnetic matter to be distributed through this portion of the

magnet; but if the strength of the magnetism varies, then,

according as it diminishes or increases from the north to the

south pole of any small portion, there will be a distribution of

northern or southern magnetic matter to represent the polarity

which results from this variation.

Corresponding inferences may be made conversely, with re

ference to the distribution of magnetism, when the distribution

of the imaginary magnetic matter is known. Thus Coulomb

found that his long thin cylindrical bar-magnets acted upon

one another as if each had a symmetrical distribution of the

two kinds of magnetic matter, northern within a limited space

from one end, and southern within a limited space from the

other, the intermediate space (constituting generally the greater

part of the bar) being unoccupied; from which we infer that

no variation in the magnet-ism was sensible through the middle

part of the bar, but that, through a limited space on each side,

the intensity of the magnetization must have decreased gradu

ally towards the ends.*

* This circumstance was alluded to above, in § 452. Interesting views on

the subject of the distribution of magnetism in bar-magnets are obtained by

taking arbitrary examples to illustrate the investigation of the text. Thus

we may either consider a uniform bar variably magnetized, or a thin bar of

varying thickness, out from a uniformly magnetized substance ; and, accord

ing to the arbitrary data assumed, various remarkable results may be ob

tained. We shall see afterwards that any such data, however arbitrary, may

be actually produced in electro-magnets, and we have therefore the means

of illustrating the subject experimentally, in as complete a manner as can

be conceived, although from the practical non-rigidity of the magnetism of

magnetized substances, ordinary steel or loadstone magnets would not afford

such satisfactory illustrations of arbitrary cases as might be desired. The

distribution of longitudinal magnetism in steel needles actually magietized
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470. The distribution of magnetic matter which represents

the polarity of a uniformly magnetized body of any form, may

be immediately determined if we imagine it divided into in

finitely thin bars, in the directions of its lines of magnetization;

for each of these bars will be uniformly and longitudinally

magnetized, and therefore there will be no distribution of

matter except at their ends. Now the bars are all terminated

on'each side by the surface of the body, and consequently the

whole magnetic effect is represented by a certain superficial

distribution of northern and southern magnetic matter. It

only remains to determine the actual form of this distribution;

but, for the sake of simplicity in expression, it will be con

venient to state previously the following definition, borrowed

from Coulomb's writings on electricity :~—

471. If any kind of matter be distributed over a surface, the

superficial density at any point is the quotient obtained by

dividing the quantity of matter on an infinitely small element

of the surface in the neighbourhood of that point, by the area

of the element.

47 2. To determine the superficial density at any point in the

case at present under consideration, let up be the area of the

perpendicular section of an infinitely thin uniform bar of the

solid, with one end at that point. Then, if i be the intensity

of magnetization of the solid, iw will be, as may be readily

shown, the “strength” of the bar-magnet. Hence at the two

ends of the bar we must suppose to be placed quantities of

northern and southern imaginary magnetic matter each equal

to im. In the distribution over the surface of the given magnet,

these quantities of matter must be imagined to be spread over

the oblique ends of the bar. Now if 6 denote the inclination

of the bar to a normal to the surface through one end, the area

of that end will be —-w~, and therefore in that part of the

cost?

surface we have a quantity of matter equal to 'L'a) spread over

an area cguw- Hence the superficial density is

1' cos 0.

in different ways, and especially “magnetized to saturation," has been the

object of interesting experimental and theoretical investigations by Coulomb,

Biot, Green, and Ricss.
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This expression gives the superficial density at any point, P, of

the surface, and its algebraic sign indicates the kind of matter,

provided the angle denoted by 0 be taken between the

external part of the normal, and a line drawn from P in

the same direction as that of the motion of a point carried

from the south pole to the north pole, of a portion close to

P, of the infinitely thin bar-magnet which we have been con

sidering.

473. Let it be required, in the last place, to determine the

entire distribution of magnetic matter necessary to represent

the polarity of any given magnet.

We may conceive the whole magnetized mass to be divided

into infinitely small parallelepipeds by planes parallel to three

planes of rectangular co-ordinates. Let a, ,8, 7 denote the

three edges of one of these parallelepipeds having its centre at

a point P (w, y, z). Let 1' denote the given intensity, and l, m, n

the given direction cosines of the magnetization at P. It will

follow from the preceding investigation that the polarity of this

infinitely small uniformly magnetized parallelepiped may be

represented by imaginary magnetic matter distributed over its

six faces in such a manner that the density will be uniform

over each face, and that the quantities of matter on the six

faces will be as follows :—

—il.By, and iLB-y; on the two faces parallel to YOZ ;

—im.ya, and im.ya; on the two faces parallel to ZOX ;

—in.a/3, and in.a,B; on the two faces parallel to XOY.

Now if we consider adjacent parallelepipeds of equal dimen

sions, touching the six faces of the one we have been consider

ing, we should find from each of them a second distribution of

magnetic matter, to be placed upon that one of those six faces

which it touches. Thus if we consider the first face By, or that

of which the distance from YOZ is x— Q1; we shall have a

second distribution upon it derived from a parallelepiped, the

co-ordinates of the centre of which are a:— a, y, z; and the

quantity of matter in this second distribution will be

{ a+",§;’)<-¢> }B~/
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This, added to that which was found above, gives

d 'l d 'l

gee-By, or "gay

for the total amount of matter upon this face. Again, the

quantity in the second distribution on the other face, [37, is

e ual to _ d ‘l

and therefore the total amount of matter on this face will be

el '1

— lggafly.

By determining in a similar way the final quantities of matter

on the other faces of the parallelepiped, we find that the total

amount of matter to be distributed over its surface is

a it
Now as the parallelepipeds into which we imagine the whole

mass divided are infinitely small, we may substitute a con~

tinuous distribution of matter through them, in place of the

superficial distributions on their faces which have been de

termined ; and in making this substitution, the quantity of

matter which we must suppose to be spread through the in

terior of any one of them must be half the total quantity on its

surface, since each of its faces is common to it and another

parallelepiped. Hence the quantity of matter to be distributed

through the parallelepiped afiry is equal to

(1' {Z (1 I'm (1 in-{ at
Besides this continuous distribution through the interior of the

magnet, there must be a superficial distribution to represent

the neutralized polarity at its surface. If p denote the density

of this distribution at any point; [I], [m], [n] the directi0n~

cosines, and the intensity of the magnetization of the solid

close to it; and 7\., n, v the direction-cosines of a normal to the

surface, we shall have, as in the case of the uniformly magnet

ized solid previously considered,

p=[i]c0s6=[il].)t-l-[imlfe-i-[z'nlv (ll.

If according to the usual definition of “ density,” k denote the
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density of the magnetic matter at P, in the continuous distri

bution through the interior, the expression found above for the

quantity of matter in the element a, B, 7, leads to the formula

<2»
These two equations express respectively the superficial distri

bution, and the continuous distribution through the solid, of

the magnetic matter which entirely represents the polarity of

the given magnet. The fact that the quantity of northern

matter is equal to the quantity of southern in the entire distri

bution, is readily verified by showing from these formulae, as

may readily be done by integration, that the total quantity of

matter is algebraically equal to nothing.

47 4. If there be an abrupt change in the intensity or direc

tion of the magnetization from one part of the magnetized sub

stance to another, a slight modification in the formulae given

above will be convenient. Thus we may take a case differing

very little from a given case, but which, instead of presenting

finite differences in the intensity or direction of magnetization

on the two sides of any surface in the substance of the magnet,

has merely very sudden continuous changes in the values of

those elements : we may conceive the distribution to be made

more and more nearly the same as the given distribution, with

its abrupt transitions, and we may determine the limit towards

which the value of the expression (2) approximates, and thus,

although according to the ordinary rules of the differential

calculus this formula fails in the limiting case, we may still

derive the true result from it. It is very easily shown in this

way, that, besides the continuous distribution given by the

expression (2) applied to all points of the substance for which

it does not fail, there will be a superficial distribution of mag

netic matter on any surface of discontinuity; and that the

density of this superficial distribution 'will be the difference

between the products of the intensity of magnetization into

the cosine of the inclination of its direction to the normal, on

the two sides of the surface.

475. This result, obtained by the interpretation of formula

(2) in the extreme case, might have been obtained directly

from the original investigation, by taking into account the
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abrupt variation of the magnetization at the surface of dis

continuity, as 472) We did the abrupt termination of the

magnetized substance at the boundary of the magnet, and re

presenting the un-neutralized polarity which results, by a super

ficial distribution of magnetic matter.

CHAPTER IV.—Dcterminatz'0n of the Mutual Actions between any

Given Portions of Magnetized Matter.

476. The synthetical part of the theory of magnetism has

for its ultimate object the determination of the total action

between two magnets, when the distribution of magnetism in

each is given. The principles according to which the data of

such a problem may be specified have been already laid down

459...62), and we have seen that, with suflicient data in

any case, Coulomb’s laws of magnetic force are sufficient to

enable us to apply ordinary statical principles to the solution

of the problem. Hence the elements of this part of the theory

may be regarded as complete, and we may proceed to the

mathematical treatment of the subject.

477. The investigations of the preceding chapter, which

show us how we may conventionally represent any given mag

net, in its agency upon other bodies, by an imaginary magnetic

matter distributed on its surface and through its interior;

enable us to reduce the problem of finding the action between

any two magnets, to the known problem of determining the

resultant of the attractions 0r repulsions exerted between the

particles of two groups of matter, according to the law of force

which is met with so universally in natural phenomena. The

direct formulae applicable for this object are so readily obtained

by means of the elementary principles of statics, and so well

known, that it is unnecessary to cite them here, and we may

regard equations (1) and (2) of the preceding chapter (§ 473)

as sufficient for indicating the manner in which the details of

the problem may be worked out in any particular case. The

expression for the “ potential,” and other formulae of importance

in Laplace’s method of treating this subject, are given below

(§ 482), as derived from the results expressed in equations (1)

and
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478. The preceding solution of the problem, although ex

tremely simple and often convenient, must be regarded as very

artificial, since in it the resultant action is found by the com

position of mutual actions between the particles of an imaginary

magnetic matter, which are not the same as the real mutual

actions between the different parts of the magnets themselves,

although the resultant action between the entire groups of

matter is necessarily the same as the real resultant action

between the entire magnets. Hence it is very desirable to

investigate another solution, of a less artificial form, in which

the required resultant action may be obtained by compounding

the real actions between the different parts into which we may

conceive the magnets to be divided. The remainder of the

chapter, after some preliminary explanations and definitions,

will be devoted to this object.

479. The “resultant magnetic force at any point” is an

expression which will very frequently be employed in what

follows, and it is therefore of importance that its signification

should be clearly defined. For this purpose, let us consider

separately the cases of an external point in the neighbourhood

of a magnet, and a point in space which is actually occupied

by magnetic matter.

(1.) The resultant force at a point in space, void of magnet—

ized matter, is the force that the north pole of a unit-bar (or a

positive unit of imaginary magnetic matter), if placed at this

point, would experience.

(2.) The resultant force at a point situated in space occupied

by magnetized matter, is an expression the signification of which

is somewhat arbitrary. If we conceive the magnetic substance

to be removed from an infinitely small space round the point,

the preceding definition would be applicable; since, if we

imagine a very small bar-magnet to be placed in a definite

position in this space, the force upon either end would be

determinate. The circumstances of this case are made clear

by considering the distribution of imaginary magnetic matter

required to represent the given magnet, without the small

portion we have conceived to be removed from its interior;

which will difi‘er from the distribution that represents the

entire given magnet, in wanting the small portion of the con
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tinuous interior distribution corresponding to the removed

portion, and in having instead a. superficial distribution on the

small internal surface bounding the hollow space. If we con

sider the portion removed to be infinitely small, the want 'of

the small portion of the solid magnetic [imaginary] matter will

produce no finite effect upon any point ; but the superficial

distribution at the boundary of the hollow space will produce

a finite force upon any magnetic point within it. Hence the

resultant force upon the given point round which the space was

conceived to be hollowed, may be regarded as compounded of

two forces, one due to the polarity of the complete magnet, and

the other to the superficial polarity left free by the removal of

the magnetized substance."b The former component is the force

meant by the expression “ the resultant force at a point within

a magnetic substance,” when employed in the present paperfl‘

480. The conventional language and ideas with reference to

the imaginary magnetic matter, explained above 463...7 5),

enable us to give the following simple statement of the defini

tion, including both the cases which we have been considering.

" 1f the portion removed be spherical and infinitely small, it may be

proved that the force at any point within it, resulting from the free polarity

of the solid at the surface bounding the hollow space, is in the direction of

the lines of magnetization of the substance round it, and is equal to 4:2 -

3

This theorem (due to Poisson) will be demonstrated at the commencement of

the Theory of Magnetic Induction, because we shall have to consider the

“magnetizing force” upon any small portion of an inductively magnetized

substance as the actual resultant force that would exist within the hollow

space that would be left if the portion considered were removed, and the

magnetism of the remainder constrained to remain unaltered.

+ If we imagine a magnet to be divided into two parts by any plane pass

ing through the line of magnetization at any internal point, P, and if we

imagine the two parts to be separated by an infinitely small interval, and a

unit north pole to be placed between them at P, the force which this pole

would experience is “ the resultant force at a point, P, of the magnetic sub

stance.” This is the most direct definition of the expression that could have

been given, and it agrees with the definition I have actually adopted; but I

have preferred the explanation and statement in the text, as being practically

more simple, and more directly connected with the various investigations in

which the expression will be employed.

[Nole added June 15, 1850.-—Some subsequent investigations on the com

parison of common magnets and electro-magnets have altered my opinion,

that the definition in the text is to be preferred; and I now believe the

definition in the note to present the subject in the simplest possible manner,

and in that which, for the applications to be made in the continuation of

this Essay, is most convenient on the whole]



XXIV.] A Mathematical Theory of Illagnetism. 363

The resultant magnetic force at any point, whether in the

neighbourhood of a magnet or in its interior, is the force that

a unit of northern magnetic matter would experience if it were

placed at that point, and if all the magnetized substance were

replaced by the corresponding distribution of imaginary mag

netic matter.

481. The determination of the resultant force at any point

is, as we shall see, much facilitated by means of a method first

introduced by Laplace in the mathematical treatment of the

theory of attraction, and developed to a very remarkable extent

by Green in his “Essay on the Application of Mathematical

Analysis to the Theories of Electricity and Magnetism” (Not

tingham, 1828), and in his other writings on the same and on

allied subjects in the Cambridge Philosophical Transactions,

and in the Transactions -of the Royal Society of Edinburgh.

Laplace’s fundamental theorem is so well known that it. is

unnecessary to demonstrate it here; but for the sake of re

ference, the following enunciation of it is given. The term

“potential,” defined in connexion with it, was first introduced

by Green in his Essay (1828). It was at a later date intro—

duced independently by Gauss, and is now in very general

use.

Theorem (Laplace).-—The resultant force produced by a body,

or a group of attracting or repelling particles, upon a unit

particle placed at any point P, is such that the difference be—

tween the values of a certain function, at any two points 17 and

p’ infinitely near P, divided by the distance pp’, is equal to its

component in the direction of the line joining p and p’.

Dqinitz'on (Green).—This function, which, for a given mass,

has a determinate value at any point P, of space, is called the

potential of the mass, at the point P.

It follows from laplace’s general demonstration, that, when

the law of force is that of the inverse square of the distance,

the potential is found by dividing the quantity of matter in

any infinitely small part of the mass, by its distance from P,

and adding all the quotients so obtained.

482. The same demonstration is applicable to prove, in

virtue of Coulomb's fundamental laws of magnetic force, the

same theorem with reference to any kind of magnet that can
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be conceived to be composed of uniformly magnetized bars,

either finite or infinitely small, put together in any way, that

is, of any magnet other than an electro-magnet; and the in

vestigation, in the preceding chapter, of the resulting distribu

tion of magnetic matter that may be imagined as representing

in the simplest possible way the polarity of such a. magnet,

enables us to determine at once, from equations (1) and (2) of

§ 473, its potential at any point. Thus if V denote the poten

tial at a point P, whose co-ordinates are E, 7), Q‘, and if dS

denote an element of the surface of the magnet, situated at a

point whose co-ordinates are [m], [y], [2], we have, by the pro

position enunciated at the end of § 480,—

£I:(L)+d(im)+d(in)

V=ff[zl])~+DE1g]F-i-[m]vdS_f//'dx (1X dz duh/(1H3),

where A and [A] are respectively the distances of the points x, y, z

and [:v, y, z] from the point P, and are given by the equations

A’=(é—x)’+(n—y)’+(£—z)’

[A]’=(£—[w])’+(v—[y])’+(£—[=])'

The double and triple integrals in the first and second terms

of this expression are to be taken respectively over the whole

surface bounding the magnet, and throughout the entire mag

netized substance. ~Since, as is easily shown, the value of that

portion of the triple integral in the second member which cor

responds to an infinitely small portion of the solid contain

ing (E, a), Q, when this point is internal, is infinitely small,

it follows that the magnetic force at any internal point, as

defined in 479, is derivable from a potential expressed by

equation (3).

483. The expressions for the resultant force at any point,

and its direction, may be immediately obtained when the

potential function has been determined, by the rules of the

differential calculus. Thus, if V has been determined in terms

‘of the rectangular co-ordinates, E, 17, g, of the point P, the

three components, X, Y, Z, of the resultant force on this point

will be given, in virtue of Laplace’s fundamental theorem

enunciated in § 481, by the formulae,

av av dV
X_-@, Y_—-d;, z_-d§- (4),
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where the negative signs are introduced, because the potential

is estimated in such a way that it diminishes in the direction '

along which a north pole is urged. If we take the expression

(3) for V, and actually differentiate with reference to f, 17, {

under the integral signs, we obtain expressions for X, Y, and

Z which agree with the expressions that might have been

' obtained directly, by means of the first principles of statics

(see § 477), and thus the theorem is verified. Such a verifi

cation, extended so as to be applicable to a body acting accord

ing to any law of force, constitutes virtually the ordinary de

monstration of the theorem.

484. The formulae of the preceding paragraphs are appli

cable to the determination of the potential and the resultant

force, at any point, whether within the magnetized substance

or not, according to the general definition of § 480. The case

of a point in the magnetized substance, according to the con

ventional second definition of § 479, cannot present itself in

problems with reference to the mutual action between two

actual magnets. This case being therefore excluded, we may

proceed to the investigations indicated in § 478.

485. In the method which is now to be followed, the mag

netized substances considered must be conceived to be divided

into an infinite number of infinitely small parts, and the actual

magnetism of each part will be taken into account, whether in

determining the potential of the magnet at a given external

point, or in investigating the mutual action between two mag

nets. In the first place, let us determine the potential due to

an infinitely small element of magnetized substance, and for

this purpose we may commence by considering an infinitely

thin, uniformly magnetized bar of finite length. If m denote

the strength of the bar, and if N and S be its north and south

poles respectively, its potential at any point, P, will be accord

ing to 465 and 481, m m

NP‘S'P'

Let A denote the distance of the point of bisection of the bar

from ‘P, and 0 the angle between this line and the direction of

the bar measured from its centre towards its north pole. Then,

if a be the length of the bar, the expression for the potential

becomes
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1 1

m{ (A‘-aAcos0+}a‘)§_(N-f-aAcosQ-i-ia'fi

By expanding this in ascending powers of a, and neglecting all

the terms after the first, we find for the potential of an infinitely

small bar-magnet, mucosa

A!

If now we suppose any number of such bar-magnets to be

put together so as to constitute a mass magnetized in parallel

lines, infinitely small in all its dimensions, the values of 0 and

A, and consequently the value of 5:76 ’ will be infinitely nearly

the same for all of them, and the product of this into the sum

of the values of ma for all the bar-magnets will express the

potential of the entire mass. Hence, if the total magnetic

moment be denoted by p, the potential will be equal to

peas 0

A’ '

Now if we conceive the bars to have been arranged so as to

constitute a uniformly magnetized mass, occupying a volume

if), we should have (§ 461), for the intensity of magnetization,

1' :£- Hence if ¢ denote the volume of an infinitely small

¢

element of uniformly magnetized matter, and t the intensity of

its magnetization, the potential which it produces at any point

P, at a finite distance from it, will be

i¢.cos0

A’ ’

where A denotes the distance of P from any point, E, within

the element, and 6 the angle between EP and a line drawn

through E, in the direction of magnetization of the element,

towards the side of it which has northern polarity.

486. Let us now suppose the element E to be a part of a

magnet of finite dimensions, of which it is required to deter

mine the total potential at an external point, P. Let E, 17, Q’ be

the co-ordinates of P, referred to a system of rectangular axes,

and let 2:, y, z be those of E. We shall have

A’= (£—I)’+(v—.1/)’+((—Z)';
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and, if 1, m, n denote the direction-cosines of the magnetization

t E, __ _ _a cos0=z€-Ai'+m"-A~’J+n§;

Hence the expression for the potential of the element E be—

60m“ i¢{l(€—~'v)+m(n—y)+"(§-Z)},

{(€—w)’+(1'I—.'/)'-t-({—Z)’}g

Now the potential of a whole is equal to the sum of the poten

tials of all its parts, and hence, if we take qbzdxdg/dz, we have,

by the integral calculus, the expression

[7: il-(E_x)+im-(’7_3/l‘ting-Adm‘; d (5),M {(€—w)’+(n—y)'+(£—1)’}‘ ” z

for the potential at the point P, due to the entire magnet.‘

487...494 added September 1871.]

n s‘
[487. The expansion of this in ascending powers of —, —— I — 7

l 7" 7‘ 1‘Wm“ r=ae+a+ot

is necessarily convergent for allspace outside the least spherical

surface with the origin of co-ordinates for centre, enclosing the

whole magnet. To find it, we have first to expand

ag—e+mo—w+aa:a

{(£'-x)’+('l-3/)'+ (fi-d’l‘i

by Taylor’s Theorem, in a series of ascending powers of a’, 3/, 2,

which is necessarily convergent or divergent according as

1\/ (x2 + 3/2 + z’) is less or greater than M (E2 + 172 + 8). Thus,

for the part of V depending on it, we find

i i‘. i 5

mrae‘rfiwti1753513....1/I"dream" (6»

where 222 denotes summation from 0 to co relatively to

. . d 1
integers s, t, u. Hence, remarking that i = — (T57, and

7-3

putting

“ From the form of definition given in the second footnote on § 479, for

the magnetic force at an internal point, it may be shown that the expression

(5), as well as the expression (3), is applicable to the potential at any point,

whether internal or external. The same thing may be shown by proving, as

may easily be done, that the investigation of § 487 does not fail or become

nugatory when (E, 1], f) is included in the limits of integration.



368 A .ZlIHflLZMHZ/[Cll] Throry/ 0f filaymhls-m. [XXI\'.

‘ff/(‘954431+u%)r'_y'z"dxdydz=[s,t, u] (7)

subject to the exception that terms of the first member involv~

ing m“, or y“, or 2*‘, are to be omitted, we have

(1* d‘ cl" 1

F 217 m “V:Em‘UWWS’ ” “1fzi% (8)‘

Each term of this expansion is a solid harmonic function of

f, 1;, Q’ [Thomson and Tait’s Natural Philosophy, App. B. (b),

and (g), (14) <15) (21)]

488. Neglecting all terms of higher orders than the second,

and putting w, y, z for E, '17, 2;, we have, as an approximate ex

pression for the potential at a very distant point (z, 1 , 2),

V: In:4-1Uy+

(1’+zf+ z’fl

+A(wfiuzfl) +B(-2;,¢_z=-¢=)+ cue-aw’) +3(ayz+bzt+ easy) (9)

(x’+y’+z°)i

where L, M, N, A, B, C', a, b, c are constants (depending on the

magnetism of the magnet, and the position relatively to'it of

the axis of co-ordinates) given by the equations

L =fffildmdydz, 1H=flfimdxdydz, N=flfindxdydz (10),

A =_miila:dzdydz, B :flfimydxdydz, C=/_'finzd:cdydz, I (11)

a=j'[/‘(imz+iny)‘da:dydz, b=f[f(inn'+ilz)dmdydz, o=j_'[/‘(ily+im)dxdydz J i

489. If we put

K=~/(L"+M*+N*> (12),

L 1P1 N z

and cos 6:22-17? %+F 7 (13),

in the first term of (9) it becomes

K 0
(14),

which is the first approximate expression for the potential of

the magnet at a very distant point, and agrees with the rigorous

expression (§ 485) for the potential of an infinitely small uni

formly magnetized magnet at the origin of co-ordinates, having

its magnetic moment equal to K, and its direction of magnetiza

tion specified by the direction-cosines

L M N l

r’ r’ 1?" (

llence K, given by (12) and (I0), is defined as the mngm'tic

C}! ).
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o

moment of the given magnet; and the direction (1 5) is readily

proved to fulfil the condition stated in 439, 440 as the

definition of a magnetic axis, determinate in direction but

(§ 444) left till now indeterminate as to its position in the

magnet. It is to be remarked that the values of L, M, N given

by (10) are independent of the position of the origin of co

ordinates, and depend only on the positions of the co-ordinate

axes relatively to the magnet.

490. Let now the axes of co-ordinates be turned to bring one

of the three into parallelism with the direction of the magnetic

axis (15). Calling this OX, and using the same symbols ac, y, z,

I, m, n, for co-ordinates and direction-cosines relatively to the

new axes, we have, instead of (9) and (10),

V: Km

(.c'+y'+z')i

+A(2r‘—y'—z‘)+B(‘2y'-z'—a:_')+CQz'-x'~f)+2(ayz+bzx+cxg) (m

(a:'+y’+z')l

K=[[/ildxdydz; flfimdxdydz=0; _/_'/_'/'inda:dydz=0 (17),

with equations (11) unchanged.

491. Secondly, let the axis of a: be transferred from OX to

the parallel line through any point for which

b

1:? y=% . (18)

The values of the integrals for the new axes corresponding to

b and c are each zero, as is readily seen from (1 l) and (17).

Hence, altering the notation y, z to correspond to the new axes,

we have

V_ Ka: A(2x'—y'—z’)+B(2y'—z'—a'-’)V+C(2z’—x'—g')+2ay§ l0

_(:c’+y’+z’)l+ (:c'+y'+z')l ( i)’

with f_//(in:c+ilz)dzdydz=0; _/7f(il_y+imx)dxdydz=0 (20),

and (11) in other respects unchanged. Now for

2y'—z'—x’, and 2z’—:z:'—y',

we may write (20)»

—l(2r'—y'—z’)+%(y'—z'), and —e(2w=—y*-z*>—%e'—z')

a transformation which, simple as it is, has an important signi

ficance in “ spherical harmonics.” Hence if we put

u=:}jf/(2ilx—imy—inz)dxdydz, and ,3:1?jf/(z'my—inz)drdydz (21),

(19) becomes

2A
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Q

V: Ks: “+11(2x'—y‘—z’)+,3(y'-—z’)+2ayz (22)

(xa+yn+za), (xs+yu+z:)i

492. Thirdly, shift the origin from O to the point

35:11; (23)

in OX; that is to say, for w substitute x+%- By (21) and

(17) we have

. _/_ZY'(2ilz-imy—in2)dzdydz=0; B=§mimy—inz)dxdydz (24);

and (22) becomes

Km fi(y'--z')+2ayz

V=-——-— _-——-- 25 .

(w*+o+z->*+ (x'wwa‘ ( )

493. Lastly, turn the axes OY, OZ, round OX through an

angle equal to “and? (26).

Relatively to OX, OY, OZ in this final position we have (17)

and (24) unchanged, and

jjflimz+iny)dzdydz=0, fl/(inx+r1z)d:cdydz=0, [/flfly+inw)dcdydz=0 (27);

and (25) becomes reduced to

V: K‘ ,Lfl9'_"L (28).
(x: +3]: +32); (1;: +ys+zs)f

494. This is the simplest expression to the second degree of

approximation for the distant potential of a magnet having any

irregular distribution of magnetism. The axis determined by

§489 (l5) and § 491 (18) is the magnetic axis, and the point

in it determined by § 492 (23) is the magnetic centre, of which

definitions were promised in the addition to 444.]

495. The expression (5) of § 486 is susceptible of a very

remarkable modification, by integration by parts. Thus we

may divide the second member into three terms, of which

the following is one :

[if made.

Integrating here by parts, with reference to ac, we obtain

m
where the brackets enclosing the double integral denote that
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the variables in it must belong to some point of the surface.

If A, ‘u, 1: denote the direction- cosines of a normal to the surface

at any point [8, 1;, f], and d5’ an element of the surface, we may

take dydz=7tdS, and hence the double integral is reduced to

Hgiggles;

and, as we readily see by tracing the limits of the first integral

with reference to m, for all possible values of y and z this double

integral must be extended over the entire surface of the mag

net. By treating in a similar manner the other two terms of

the preceding expression for V, we obtain, finally,

_ . . d_(il_)+d(im)+d(in)

V:H['l1*+[_'[";l]__"+["']"as-ff]————”‘‘11 d‘ dzdydz.

The second member of this equation is the expression for the

potential of a certain complex distribution of matter, consisting

of a superficial distribution and a continuous internal distribu~

tion. The superficial density of the distribution on the surface,

and the density of the continuous distribution at any internal

point, are expressed respectively by [17]). + [im]y. + [in] v, and

d(il) d(im d in

— { afiTy)+ it)

the complete magnet upon any external point is the same as

would be produced by a certain distribution of imaginary mag

netic matter, determinable by means of these expressions, when

the actual distribution of magnetism in the magnet is given.*

The demonstration of the same theorem, given above (§ 473),

illustrates in a very interesting manner the process of integra

tion by parts applied to a triple integral.

496. The mutual action of any two magnets, considered as

the resultant of the mutual actions between the infinitely small

elements into which we may conceive them to be divided, con

sists of a. force and a couple of which the components will be

expressed by means of six triple integrals. Simpler expres

}- Hence we infer that the action of

" This very remarkable theorem is due to Poisson, and the demonstration,

as it has been just given in the text, is to be found in his first memoir on

Magnetism. The demonstration which I have given in § 473 may be re

garded as exhibiting, by the theory of polarity, the physical principles

expressed in the analytical formulae.
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sions for the same results may be obtained by employing a

notation for subsidiary results derived from triple integration

with reference to one of the bodies, in the following manner :—

497. Let us in the first place determine the action exerted

by a given magnet upon an infinitely thin uniformly and longi

tudinally magnetized bar, placed in a given position in its

neighbourhood.

We may suppose the rectangular co-ordinates, E, 17, L; of the

north pole, and f’, 17', L” of the south pole of the bar to be given,

and hence the components X, Y, Z and X’, Y’, Z’, of the re

sultant forces at those points due to the other given magnet

may be regarded as known. Then, if B denote the “strength ”

of the bar-magnet, the components of the forces on its two

poles will be respectively

BX: BY: BZ; on the point‘ (gt ‘'7: ()1

and “HEX/7 _pY,r _IBZI: on the Point‘ (5', '1,’The resultant action due to this system of forces may be deter

mined by means of the elementary principles of statics. Thus

if we conceive the forces to be transferred to the middle of the

bar by the introduction of couples, the system will be reduced

to a force, on this point, whose components are

Bur-X’), B(Y— Y’), mZ-Z'),

and a couple, whose components are

{fi(z+z'is<n-n'>—mr+ Y')-1}(§—§’)},

{B(X+X')-%(§—§')—B(Z+Z')-%(£-£’)},

{B(Y+ r'>s<e—s'>—fl(unto-1m

498. Let l, m, n denote the direction-cosines of a line drawn

along the bar, from its middle towards its north pole, and if a

be the length of the bar, we shall have

€_£I= a]; 71-77,: am? (_ (I: an

Hence, if the bar be infinitely short, and if x, y, z denote the

co-ordinates of its middle point, we have

, dX dX dX

X—X=Zi5-al+—8;-am+-d£-an,

, dY dY dY

Y--Y=;I;-al+—dy-am+—d;-an,

, (12
Mid Z-—Z=IIE-aI+V%-am+%€-an.
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Multiplying each member of these equations by B, we obtain

the expressions for the components of the force in this case;

and the expressions for the components of the couples are found

in their simpler forms, by substituting for f- E’, etc., their

values given above; and, on account of the infinitely small

factor which each term contains, taking 2X, 217, and 2Z, in

place of X+X', Y+ Y’, and Z+ Z’.

499. Let us now suppose an infinite number of such infinitely

small bar-magnets to be put together so as to constitute a mass,

infinitely small in all its dimensions, uniformly magnetized in

the direction (I, m, n) to such an intensity that its magnetic

moment is a. We infer, from the preceding investigation, that

the total action on this body, when placed at the point x, y, z,

will be composed of a force whose components are

dX dX dX

"(WW/Med’

dY dY d)’

"(H’+e7"'+E")"

dZ dZ dZ

"(dfiamtad'

acting at the centre of gravity of the solid supposed homo

geneous; and a. couple of which the components are

,u(Zm— Yn),

,u.(Xn-Zl),

].L( Y! —Xm).

500. The preceding investigation enables us, by means of the

integral calculus, to determine the total mutual action between

any two given magnets. For, if we take X, Y, Z to denote the

components of the resultant force due to one of the magnets,

at any point (x, y, z) of the other, and if 1' denote the intensity

and (t, m, n) the direction of magnetization of the substance

of the second magnet at this point, we may take p.=i.dxdydz

in the expressions which were obtained, and they will then

express the action which one of the magnets exerts upon an

element dxdydz of the other. To determine the total resultant

action, we may transfer all the forces to the origin of co-ordi

nates, by introducing additional couples; and, by the usual pro

cess, we find, for the mutual action between the two magnets,
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a force in a line through this point, and a couple, of which

the components, F, G, H, and L, M, N, are given by the equa

tions

F=If](il%+im%+in%)dxdydz l

G=fjj<ilg+hg+ inda; dxdydz

dZ dZ
11=fff<il££+imfi+in$)dxdydz

L=/:H’{ imZ—inY+3/(il%+'im%§+ in%)

—2 (itg-l-z'm ig-i- in } dxdydz

Z)

d

M=Hf { z'nX- ilZ-l-z (ad_+im3:+ in?

' d

w

l

dy

X

a:

—x(il%+im%+ hi2?) )dxdydz

.2:

d

N=Hf { izY-imX+w(a‘;_Y+im%+in%)

—_1/(it £f€€+ imiiéY-k infill-:7) }dxd_i/dz

501. If, in the second members of these equations, we em

ploy for X, Y, Z respectively their values obtained, as indicated

in equations (4) of § 483, by the differentiation of the expres -

sion (5) for V in § 486, we obtain expressions for F, G, H, L,

M, N, which may readily be put under symmetrical forms with

reference to the two magnets, exhibiting the parts of those

quantities depending on the mutual action between an element

of one of the magnets, and an element of the other. Again,

expressions exhibiting the mutual action between any element

of the imaginary magnetic matter of one magnet, and any

element of the imaginary magnetic matter of the other, may

be found by first modifying by integration by parts, as in § 495,

from the expressions which we have actually obtained for F,

G, H, L, M, N; and then substituting for X, Y, and Z their

values obtained by the differentiation of the expression (3)

of § 482, for V.
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It is unnecessary here to do more than indicate how such

other formulae may be derived from those given above; for

whenever it may be required, there can be no difficulty in

applying the principles which have been established in this

paper to obtain any desired form of expression for the mutual

action between two given magnets.

§§ 502 and 503.‘—On the Expression of Mutual Action between

two Magnets by means of the Dijfere'ntial Coqfiicients of a

Function of their relative Position.

502. By a simple application of the theory of the potential,

it may be shown that the amount of mechanical work spent or

gained in any motion of a permanent magnet, effected under

the action of another permanent magnet in a fixed position,

depends solely on the initial and final positions, and not at all

upon the positions successively occupied by' the magnet in

passing from one to the other. Hence the amount of work

requisite to bring a given magnet from being infinitely distant

from all magnetic bodies into a certain position in the neigh

bourhood of a given fixed magnet, depends solely upon the dis

tributions of magnetism in the two magnets, and on the relative

position which they have acquired. Denoting this amount by

Q, we may consider Q as a function of co-ordinates which fix

the relative position of the two magnets; and the variation

which Q experiences when this is altered in any way will be

the amount of work spent or lost, as the case may be, in effect

ing the alteration. This enables us to express completely

the mutual action between the two magnets, by means of dif

ferential coetficients of Q, in the following manner :—

If we suppose one of the magnets to remain fixed during

the alterations of relative position conceived to take place,

the quantity Q will be a function of the linear and angular

co-ordinates by which the variable position of the other is

expressed. Without specifying any particular system of co

ordinates to be adopted, we may denote by dtQ the augmenta

* Communicated June 20, 1850.



376 A Mathematical Theory of Magnetism. [xxIv.

tion of Q when the moveable magnet is pushed through an

infinitely small space d5 in any given direction, and by d¢Q

the augmentation of Q when it is turned round any given axis,

through an infinitely small angle 11¢. Then, if F denote the

force upon the magnet in the direction of d5, and L the moment

round the fixed axis of all the forces acting upon it (or the

component, round the fixed axis, of the resultant couple ob

tained when all the forces on the difl‘erent parts of the magnet

are transferred to any point on this axis), we shall have

—Fd€=d£Q, and —Ld¢v=d¢Q,

since a force equal to —F is overcome through the space (if

in the first case, and a couple, of which the moment is equal to

—L, is overcome through an angle d¢ in the second case of

motion. Hence we have

503. It only remains to show how the function Q may be

determined when the distributions of magnetism in the two

magnets and the relative positions of the bodies are given.

For this purpose, let us consider points P and P’, in the two

magnets respectively, and let their co-ordinates with refer

ence to three fixed rectangular axes be denoted by z, y, z and

a’, 5/, z’ ; let also the intensity of magnetization at P be denoted

by i, and its direction-cosines by l, m, n; and let the correspond

ing quantities, with reference to P', be denoted by i', l’, m’, n’.

Then it may be demonstrated without difficulty that

1 l l

w- m_ w_
Q=flflfldxdydzdx’dy'dz’ii'{ 12’ i *A > + lm'—A + In’ A

dxdw' dxdy' dxdz'

l. 1 1

0- m_ m_
I A I A I A+"Il fizz; ,

w% m% all
I I / A

+ "1 aas'flm airy/"tn" (173l- i
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where, for brevity, A is taken to denote {(a:—-z’)’+ (y- 302+

l

(z—z')2}*, and the difi'erentiations upon K are merely indicated.

Now, by any of the ordinary formulae for the transformation of

co-ordinates, the values of x, y, z, and :c', y’, 2', may be expressed

in terms of co-ordinates of the point P with reference to axes

fixed in the magnet to which it belongs, of the co-ordinates of

the point P’ with reference to axes fixed in the other, and of the

co-ordinates adopted to express the relative position of the two

magnets : and so the preceding expression for Q may be trans

formed into an expression involving explicitly the relative

co-ordinates, and containing the co-ordinates of the points P

and P’ in the two bodies only as variables in integrations, the

limits of which, depending only on the forms and dimensions

of the two bodies, are absolutely constant. Thus Q is obtained

as a function of the relative co-ordinates of the bodies, and the

solution of the problem is complete.

There is no difficulty in working out the result by this

method, so as actually to obtain either the expressions of § 500,

or the expressions indicated in § 501, although the process is

somewhat long. [Additiom Dec. 11, 1871.—If in the formula

for Q we suppose the integration with respect to as’, y’, z’ to be

performed, we have

abflaadzca'wn'wz') (2)

where a, B, 7 are put for z'l, 11m, in; and <5’, E’, g’ denote the

components of the force at (x, y, 2) due to the second magnet,

to be taken according to the definition of § 480 when (w, y, z)

is in the magnetized substance of this magnet. For simplicity,

without loss of generality, suppose a, B, 'y to vary continuously

from finite values in the magnet to zero in space void of mag

netized substance : and, putting -

'=_;', 1:111’, ghee?
dz: dy dz (3)’

integrate by parts in the usual manner (§ 495). Thus

Q= -fffdxdydz (3&4. +%z’_)~fl'_
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But [§ 474 (2) and Poisson's Theorem]

da dB d-y_ 1 a; dll dz

dx+dy+dz__41r(dx+dy+dz)

Hence, by a reverse integration by parts,

1 no no Q I I I

a=,;f_mf%[_wdwdyd=(;ié we +zz) <5)

This is a very important result, as we shall see in Chapter

VII. Compare § 555.]

The method just explained for expressing the mutual action

between two magnets in terms of a function of their relative

position, has been added to this chapter rather for the sake of

completing the mathematical theory of the division of the

subject to which it is devoted, than for its practical usefulness

in actual problems regarding magnetic force, for which the

most convenient solutions may generally be obtained by some

of the more synthetical methods explained in the preceding

parts of the chapter. There is, however, a. far more important

application of the principles upon which this last method is

founded which remains to be made. The mechanical value of

a distribution of magnetism, although it has not, I believe,

been noticed in any writings hitherto published on the mathe

matical theory of magnetism, is a subject of investigation of

great interest, and, as I hope on a later occasion‘i to have an

opportunity of showing, of much consequence, on account of its

maximum and minimum problems, which lead to demonstra

tions of important theorems in the solutions of inverse problems

regarding magnetic distribution.

CHAPTER V.—On Solenoidal and Lamcllar Distributions of

Magmtz'sm'f'

504. In the course of some researches upon inverse problems

regarding distributions of magnetism, and upon the comparison

" [Chap. VII. ...X. below; Dec. 1871.]

'i' Communicated to the Royal Society June 20, 1850.
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of electro-magnets and common magnets, I have found it

extremely convenient to make use of definite terms to express

certain distributions of magnetism and forms of magnetized

matter possessing remarkable properties. The use of such

terms will be of still greater consequence in describing the

results of these researches, and therefore, before proceeding to

do so, I shall give definitions of the terms which I have adopted,

and explain briefly the ~principal properties of the magnetic

distributions to which they are applied. The remainder of

this chapter will be devoted to three new methods of analysing

the expressions for the resultant force of a magnet at any point,

suggested by the consideration of these special forms of mag

netic distribution. A Mathematical Theory of Electro-Magnets,

and Inverse Problems regarding magnetic distributions, are the

subjects of papers which I hope to be able to lay before the

Royal Society on a subsequent occasion. [They are published

for the first time in this volume : Chaps. VI....X.]

505. Definitions and explanations regarding Magnetic Sole

mnlds.

(1.) A magnetic so1enoid* is an infinitely thin bar of any

form, longitudinally magnetized with an intensity varying in

versely as the area of the normal section in different parts.

The constant product of the intensity of magnetization into

the area of the normal section, is called the magnetic strength,

or sometimes simply the strength of the solenoid. Hence the

magnetic moment of any straight portion, or of an infinitely

small portion of a curved solenoid, is equal to the product of

the magnetic strength into the length of the portion.

(2.) A number of magnetic solenoids of different lengths may

be put together so as to constitute what is, as far as regards

magnetic action, equivalent to a single infinitely thin bar of

any form, longitudinally magnetized with an intensity varying

* This term (from o'mhr‘lv, a tube) is suggested by the term “ electro

dynarnic solenoid ” applied by Ampere to a certain tube-like arrangement of

galvanic circuits which produces precisely the same external magnetic effect

as is produced by ordinary magnetism distributed in the manner defined in

the text. The especial appropriateness of the term to the magnetic distribu

tion is manifest from the relation indicated in the foot-note on § 513 below,

between the intensity and direction of magnetization in a solenoid, and the

velocity and direction of motion of a liquid flowing through a tube of con

stant or varying section.
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arbitrarily from one end of the bar to the other. Hence such

a magnet may be called a complex magnetic solenoid.

The magnetic strength of a complex ‘solenoid is not uniform,

but varies from one part to another.

(3.) An infinitely thin closed ring, magnetized in the manner

described in (1.), is called a closed magnetic solenoid.

506. Definitions and explanations regarding Magnetic Shells.

(1.) A magnetic shell is an infinitely thin sheet of any form,

normally magnetized with an intensity varying inversely as the

thickness in difl'erent parts.

The constant product of the intensity of magnetization into

the thickness is called the magnetic strength, or sometimes

simply the strength of the shell. Hence the magnetic moment

of any plane portion, or of an infinitely small portion of a

curved magnetic shell, is equal to the product of the magnetic

strength, into the area of the portion.

(2.) A number of magnetic shells of different areas may be

put together so as to constitute what is, as far as regards mag

netic action, equivalent to a single infinitely thin sheet of any

form, normally magnetized with an intensity varying arbitrarily

over the whole sheet. Hence such a magnet may be called a

complex magnetic shell.

The magnetic strength of a complex shell is not uniform, but

varies from one part to another.

(3.) An infinitely thin sheet, of which the two sides are

closed surfaces, is called a closed magnetic shell.

507. Solenoidal and Lamellar Distributions of Magnetism.—

If a finite magnet of any form be capable of division into an

infinite number of solenoids which are either closed or have

their ends in the bounding surface, the distribution of magnet

ism in it is said to be solenoidal, and the substance is said to

be solenoidally magnetized.

If a finite magnet of any form be capable of division into an

infinite number of magnetic shells which are either closed or

have their edges in the bounding surface, the distribution of

magnetism in it is said to be lamellar,* and the substance is

said to be lamellarly magnetized.

‘I’ The term lamellar, adopted for want of a better, is preferred to

" laminated”; since this might be objected to as rather meaning composed
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508. Complex Lamellar Distributions of Magnetism-If a

finite magnet of any form be capable of division into an infinite

number of complex magnetic shells, it is said to possess a com

plex lamellar distribution of magnetism

509. Complex Solenoidal Distributions of Magnetism.—Since,

by cutting it along lines of magnetization, every magnet of finite

dimensions may be divided into an infinite number of longitu

dinally magnetized infinitely thin bars or rings, any distribu

tion of magnetism which is not solenoidal might be called a

complex solenoidal distribution; but no advantage is obtained

by the use of this expression, which is only alluded to here,

on account of the analogy with the subject of the preceding

definition.

510. PROP.—The action of a magnetic solenoid is the same as

if a quantity of positive or northern imaginary magnetic matter

numerically equal to its magnetic strength were placed at one end,

and an equal absolute quantity of negative or southern matter at

the other end.

The truth of this proposition follows at once from the in

vestigation of Chap. III. 467, 468, 469.

Cor. l.—The action of a magnetic solenoid is independent of

its form, and depends solely on its strength and the positions

of its extremities.

Cor. 2.—A closed solenoid exerts no action on any other

magnet.

Cor. 3.—The “resultant force” (defined in Chap. IV. 480)

at any point in the substance of a. closed magnetic solenoid

vanishes.

511. PROP.—If i be the intensity of magnetization, and a) the

area of the normal section at any point P, at a distance s from one

extremity of a complex solenoid, and if [ice] and {ice} denote the

values of the product of these quantities at the eactremity from

which s is measured, and at the other extremity respectively; the

magnetic action will be the same as there were a distribution of

imaginary magnetic matter, through the length of the bar of which

the quantity is an infinitely small portion ds, of the length at the

0! plane plates, than composed ofshelh whether plane or curved, and is besides

too much associated with a mechanical structure such as that of slate or mica,

to be a convenient term for the magnetic distributions defined in the text.
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point P, would be —qi((%ds, and accumulations of quantities

equal to — [iw] and {i0} ‘respectively at the two extremities.

The truth of this proposition follows immediately from the

conclusions of Chap. III. § 469.

512. PROR-TIW potential of a magnetic shell at any point is

equal to the solid angle which it subtends at that point multiplied

by its magnetic strength.*

Let dS denote the area of an infinitely small element of the

shell, A the distance of this element from the point P, at which

the potential is considered, and 0 the angle between this line,

and a normal to the shell drawn through the north polar side

of dS. Then if 7t denote the magnetic strength of the shell,

the magnetic moment of the element dS will be )\ dS, and

(§ 485) the potential due to it at P will be

)uiS. cos 0

A’

Now ds'Acfsa is the solid angle subtended at P by the element

dS, and therefore the potential due to any infinitely small

element is equal to the product of its magnetic strength, into

the solid angle which its area subtends at P. But the poten

tial due to the whole is equal to the sum of the potentials due

to the parts, and the strength is the same for all the parts.

Hence the potential due to the whole shell is equal to the pro

duct of its strength into the sum of the solid angles which all

its parts, or the solid angle which the whole, subtends at P.

do‘ . cos 0

AI

ceding demonstration, being positive or negative according as

0 is acute or obtuse, it appears that the solid angle subtended

by different parts of the shell at P must be considered as posi—

tive or negative according as their north polar or their south

polar sides are towards this point.

001'. 1.—The expression , which occurs in the pre

* This theorem is due to Gauss (see his paper “ On the General Theory of

Terrestial Magnetism,” § 38 ; of which a translation is published in Taylor’s

Scientific filemoirn, vol. ii.) Ampere’s well-known theorem, referred to by

Gauss, that a closed galvanic circuit produces the same magnetic effect as a

magnetic shell of any form having the circuit for its edge, implies obviously

the truth of the first part of Cor. 2 below.
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001'. 2.—The potential at any point due to a magnetic shell

is independent of the form of the shell itself, and depends solely

on its bounding line or edge, subject to an ambiguity, the

nature of which is made clear by the following statement :—

If two shells of equal magnetic strength, 7t, have a common

boundary, and if the north polar side of one, and the south

polar side of the other be towards the enclosed space, the

potentials due to them at any external point will be equal;

and the potential at any point in the enclosed space, due to

that one of which the northern polarity is on the inside, will

exceed the potential due to the other by the constant 410.

(701'. 3.——Of two points infinitely near one another on the two

sides of a magnetic shell, but not infinitely near its edge, the

potential at that one which is on the north polar side exceeds

the potential at the other by the constant 410‘.

Cor. 4.—The potential of a closed magnetic shell of strength

7t, with its northern polarity on the inside, is 411-)», for all points

in the enclosed space, and 0 for all external points; and for

points in the magnetized substance it varies continuously from

the inside, where it is 4vr7t to the outside, where it is 0.

Cor. 5.—-A closed magnetic shell exerts no force on any other

magnet.

Cor. 6.—The “resultant force” as defined at §§ 479, 480

41:’).

1'

[polar definition], is equal to , at any point in the sub

stance of a closed magnetic shell, if 'r be the thickness, or to

411-11, if 'i be the intensity of magnetization of the shell in the

neighbourhood of the point, and is in the direction of a normal

drawn from the point through the south polar side of the shell.

[The “ resultant force ” as defined‘ below in § 517, by the electro

magnetic definition, is zero at any point in the substance of a

closed magnetic shell, or of a lamellar distribution consisting

of closed shells]

Cor. 7.—If the intensity of magnetization of an open shell be

finite, the resultant force at any external point not infinitely

near the edge is infinitely small; but the force at any point in

the substance not infinitely near the edge is finite, and is equal

to 4m’, if t‘ be the intensity of the magnetization in the neigh

bourhood of the point, and is in the direction of a normal

through the south polar side.
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513. PROP.—A distribution of magnetism eapressed by

{(a, B, 'y) at (m, y, z)}* is solenoidal if, and is not solenoidal

unless, £+g€+g=0 _

The condition that a given distribution of magnetism, in a

substance of finite dimensions, may be solenoidal, is readily

deduced from -the investigations of § 473, by means of the pro

positions of 510 and 511. For, if the distribution of mag

netism be solenoidal, the imaginary magnetic matter by which

the polarity of the whole magnet may be represented will be

situated at the ends of the solenoids, according to § 510, and

therefore (§ 507) will be spread over the bounding surface. On

the other hand, if the distribution be not solenoidal, that is, if

the magnet be divisible into solenoids, of which some, if not

all, are complex ; there will, according to § 511, be an internal

distribution of imaginary magnetic matter in the representa

tion of the polarity of the whole magnet. Hence it follows

from § 473 that if a, B, 7 denote the components of the

intensity of magnetization at any internal point (x, y, z), the

equation d0; d8 d7 _

F; 'i' a; ‘PE —

expresses that the distribution of magnetism is solenoidal-I‘

* Where a, B, 7, which may be called the components, parallel to the

axes of co-ordinates, of the magnetization at (z, y, z), denote respectively the

products of the intensity into the direction cosines of the magnetization.

1' The analogy between the circumstances of this expression and those of

the cinematicnl condition expressed by “the equation of continuity” to

which the motion of a homogeneous incompressible fluid is subject, is so

obvious that it is scarcely necessary to point it out. when an incom

pressible fluid flows through a tube of variable infinitely small section,

the velocity (or rather the mean velocity) in any part is inversely pro

portional to the area of the section. Hence the intensity and direction of

magnetization, in a solenoid, according to the definition, are subject to the

same law as the mean fluid velocity in a tube with an incompressible fluid

flowing through it. Again, if any finite portion of a mass of incompressible

fluid in motion be at any instant divided into an infinite number of solenoids

(that is, tube-like parts), by following the lines of motion the velocity in any

one of these parts will at difl'erent points of it be inversely proportional to

the area of its section. Hence the intensity and direction of magnetization

in a solenoidal distribution of magnetism, according to the definition, are

subject to the same condition as the fluid-velocity and its direction, at any

point in an incompressible fluid in motion. It may be remarked, that by

making an investigation on the plan of § 473 to express merely the condition

time there may be no internal distribution of imaginary magnetic matter, the

.4‘
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514. PROP.-—A distribution ofmagnetism {(a, B, 7) at (x, y, z)}

is lamellar if, and is not lamellar unless (2(1)! + Bdy+7dz is the

difi'erential of a function of three independent variables.

Let ‘\I}‘ be a variable which has a certain value for each of

the series of surfaces by which the magnet may be divided

into magnetic shells ; so that, if ‘p be considered as a function

of 2:, y, 2, any one of these surfaces will be represented by the

equation .11, Z)=H (a) i

and the entire series will be obtained by giving the parameter

II, successively a. series of values each greater than that which

precedes it by an infinitely small amount. According to the

definition of a magnetic shell (§ 506), the lines of magnetiza

tion must out these surfaces orthogonally; and hence, since

a, ,8, 7 denote quantities proportional to the direction cosines

of the magnetization at any point, we must have

a ,3

are??? c)
Z; 357 7d?

Let us consider the magnetic shell between two of the con

secutive surfaces corresponding to values of the parameter of

which the infinitely small difference is w. The thickness

of this shell at any point (2:, y, z) will be

___—w.

Now the product of the intensity of magnetization, into the

thickness of the shell, must be constant for all points of the

equation :—:+:—Z+:ll—‘zy=0 is obtained in a manner precisely similar to a

mode of investigating the equation of continuity for an incompressible fluid,

now well known, which is given in Duhamel’s Cours dc Mécaniq-u-e, and in

the Cambridge and Dublin Mathematical Journal, vol. ii. p. 282. The

following very remarkable proposition is an immediate consequence of the

proposition that “ a closed solenoid exerts no action on any other magnet”

(Q 510, Cor. 2 above), in virtue of the analogy here indicated.

“ If a closed vessel, of any internal shape, be completely filled with an in

compressible fluid, the fluid set into any possible state of motion, and the

vessel held at rest; and if a solid mass of steel of the same shape as the

space within the vessel be magnetized at each point with an intensity pro

portional and in a direction corresponding to the velocity and direction of

the motion at the corresponding point of the fluid at any instant ; the magnet

thus formed will exercise no force on any external magnet.”

23
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same shell; and hence, since w is constant, and since a, B, 7

denote quantities such that (042+ B2 + 72y is the intensity of

magnetization at any point, we must have

(“'+B’+7’)*
T1\/§’——d¢’ do’ i: (‘l’) (°)’

((firl-dyfi‘l'" 2)
dz

where F(1’r) denotes a quantity which is constant when ‘\Ir

is constant. This equation, and the two equations (12), express

all the conditions required to make the given distribution

lamellar. By combining them we obtain the following three,

which are equivalent to them :—

use??? B=F<¢)%’ 7=F('|b)%b ;

and hence, iffF(\p)d\p be denoted by ¢, we have

‘2”’ B- "t "4’ (IL),
a=—, _-—, 'y=—~—

da': dz

where ¢ is some function of x, y, and 2. Hence the condition

that a magnetic distribution (a, B, ry) may be lamellar, is simply

that adx+ Bdg/ +7112 must be the differential of a function of

three independent variables. The equations to express this are

obtained in their simplest forms by eliminating the arbitrary

function 95 by differentiation; and are of course

fi_fl=o
dz dy

d_“_fl'__o

dy dz:

Cor.-—-It follows from the first part of the preceding in

vestigation that equations (b) express that the distribution, if

not lamellar, is complex-lamellar. By eliminating the arbitrary

function or from those equations (which merely express that

adw+ fidy+vydz is integrable by a factor), we obtain the well

known equation

¢(%§-Z—Z)+B(%—%)+Y(d—“—i)=<>as the simplest expression of the condition that a, 6, ry must
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satisfy, in order that the distribution which they represent may

be complex-lamellar; and we also conclude that if this equa

tion be satisfied the distribution must be complex-lamellar,

unless each term of the first number vanishes by equations

(111.) being satisfied, in which case the distribution is, as we

have seen, lamellar.

515. The resultant force at any point external to alamellarly

magnetized magnet will, according to 512 (Cors. 2 and 4),

depend solely upon the edges of the shells into which it may be

divided by surfaces perpendicular to the lines of magnetization

(or the hands into which those surfaces cut the bounding

surface), and not at all on the forms of these shells, within the

bounding surface, nor upon any closed shells of which part of

the magnet may consist; and the resultant force at any

internal point may (§ 512 Cors. 2, 4, and 7) be obtained by

compounding a force depending solely on those edges, with a

force in the direction contrary to that of the magnetization

of the substance at the point, and equal to the product of 411

into the intensity of the magnetization. For either an external‘

or an internal point, the resultant force may be expressed by

means of a potential, according to § 480 ; and the value of this

potential may be obtained by means of the theorems of § 512,

in the following manner :—

Let us suppose all the open shells, that is to say all the

shells cut by the bounding surface of the given magnet,

to be removed, and a series of shells having the same edges,

and the same magnetic strengths, and coinciding with the

bounding surface, substituted for them; and, for the sake

of definiteness, let us suppose each of these shells to have its

north polar side outwards, and to occupy a part of the surface

for which the value of ¢ is greater than at its edge. The whole

surface will thus be occupied by a series of superimposed

magnetic shells, constituting a complex magnetic shell which

will produce a potential at any external point the same as that

due to the whole of the given magnet; and, at any internal

point a potential, which, together with the potential due to

the closed shells round it, if there are any, and (§ 512, Cor.

2) together with the product of 47r into the sum of the

strengths of any open shells having it between them and their
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superficial substitutes, will be the potential due to the whole

of the given magnet at this point.

Now if d¢ denote the difference between the values of qb at

two consecutive surfaces of the series, by which we may con

ceive the whole magnet to be divided into shells, it follows,

from the investigation of § 514, that the magnetic strength of

the shell is equal to d¢. Hence if A denote the least value

of cp at any part of the bounding surface, and ¢ be supposed to

correspond to a point in the surface, the strength of the com

plex magnetic shell, found by adding the strengths of all of

the imagined series of shells superimposed at this point, will

be qS-A ; and if P be an internal point, and the value of ¢

at it be denoted by the sum of the strengths of all the

shells between that which passes through P and that which

corresponds to A, will be (¢)—A, from which it may be

demonstrated,* that, whether (gt) be > or <A, and whatever

be the nature of the shells, whether all open or some open and

some closed, the quantity to be added to the potential due to

the imagined complex shell coinciding with the surface of the

magnet to find the actual potential at P, is 47r{ (4)) —A Now,

from what we have seen above, it follows that the potential at

any point P, due to an element, d5’, of this complex shell

isw: if 0 denote the angle which an external normal,

or a normal through the north polar side of dS, makes with a

line drawn from dS to P; and A the length of this line. Hence

the total potential at P, due to the whole complex shell, is

equal t0 f {4>—A}cos0dS

.A—i,

in which the integration includes the whole bounding surface

of the magnet. Hence, if Vdenote the potential at P, we have

the following expression, according as P is external or internal,—

V:U1‘4125s 94s,

or hilwjlfiisqdfisu<¢>-A}.

* See second footnote on § 479 above, and Core. 2, 3, § 515 below.
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These expressions may be simplified if we remark that, for any

external point, cos 6dS

U1"=°’

and that, for any internal point, “

cos 0118

(since 0 is the angle between the line A and the external

normal through (15'). We thus obtain, for an external point,

(1» cos Oa'S _

A‘ ’

and for an internal point, (V.)

V=ff¢.cp;6dS+4r(¢),

Cm‘. l.—The potentials at two points infinitely near one

another, even if one be in the magnetized substance and the

other be external, differ infinitely little; for the value of

95 . cos 9dS

fT’
at a point infinitely near the surface and within it, is found

by adding --41r(4>) to the value of the same expression at an

external point infinitely near the former.

Cm‘. 2.-—If the value of

f 4>.cos 0dS

V:

be denoted by — Q for any internal point, a‘, y, z; and if

(a), (B), (ry) denote the components of the intensity of magneti

zation, and X, Y, Z the components of the resultant magnetic

force at this point (that is, according to the definition in the

second foot-note on § 479, the force at a point in an infinitely

small crevass tangential to the lines of magnetization at w, y, 2),

we have dV dQ.

_ dV_dQ

Y__;I?_Eg_41r(B) (VI.)

__ dV_dQ
Z—_FZ_7E_4"(7)

The resultant of the partial components, -—47r(0z), — 47r(,8),

— 41r('y), is a force equal to 41r(z) acting in a direction contrary
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to that of magnetization, and this, compounded with the re

sultant of dQ (1Q (1Q '

dz: dy dz

which depends solely on the edges of the shells, gives the total re

sultant force at the internal point. We thus see precisely how

the statements made at the commencement of § 515 are fulfilled.

Car. 3.——It is obvious, by the preceding investigation, that

dQ dQ dQ

E ’ E ’ T1?

are the components of the force at a point in an infinitely small

crevass perpendicular to the lines of magnetization at at, y, z.

516. An analytical demonstration of these expressions may

be obtained by a partial integration of the general expression

for the potential in the case of a lamellar distribution, in the

following manner :—

In equation (5) of § 486, which, as was remarked in the foot

note, expresses the potential for any point, whether internal or

external, let 5i) 1 (~12, and (i be substituted in place of it, im,

.1: dy dz

and in respectively; and, for the sake of brevity, let

{(E—.I)’+(a—y)’+(§—z)’}*

l

d

be denoted by A: then observing that ez'x=d—i, and so for

the similar terms; we have

1 l l

d—- d— d

_ (14> A 11¢ A dqt A
ILf/(m El'dy dy dz dz)dxd-"dz W‘

Dividing the second member into three terms, integrating the

first by parts commencing with the factor 5121.7), and so for the

other terms; we obtain J:

(1i d-l- di 1

A A A
V=[//¢ gi-dydz+-ydzdx+-Jz—dxdy ]

dal dag dsl

—M at?)
where the brackets which enclose the double integral denote

(b),
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that it has reference to the surface of the body. Now, for any

set of values of w, y, z, for which i is finite, we have, as is well

known, 1 1 1

wK wK $3
:0 (c);E'Adk dy’ +idx‘l

and consequently, if the point 5,17, t,’ is not in the space in

cluded by the triple integral in the expression for V, each

element of this integral, and therefore also the whole, vanishes.

In the contrary case, the simultaneous values (1:: E, 31:17, and

z: § will be included in the limits of integration, and, as these

values make % infinitely great, the equation (0) will fail for one

element of the integral, although it still holds for all elements

corresponding to points at a finite distance from (E, n, L’). Hence,

if (¢) denote the value assumed by the function qb at this point,

we have

1 1
(Pl d'l ml (1% d'K (PK

/ff¢( (13+ dfi+$>dwdydz=<¢>ffl< dx, + dy, + dz,)dwdydz,

where the limits of integration may correspond to any surface

whatever which completely surrounds the point (E, 17, Q‘). Now

it is easily proved (as is well known) that the value of .

m1 ml wl
A A A

//f( dz. dy;+ dxi>dxdydz

is — 4w, when (E, 1;, L’) is included in the limits of integration;

and therefore the value of the triple integral, in the expression

for V, is —47r(¢). Hence, according as the point (E, 97, 2;) is

external or internal with reference to the magnet, the potential

at it is given by the expressions

0,: ,1 dl
A A A

(1.) ILUfqb. %dydz+7l;dzdx+-d7dxdy:l

m dl 'dl di

(2.)* V=Uf¢<£ dydz+ d3 dzdx+ 'dzA dacdy)]+ 41r(4>)

* It may be proved that the force derived from a potential having the

Wu»
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These agree with the expressions obtained above in 515 ; the

same double integral with reference to the surface being here

expressed symmetrically by means of rectangular co-ordinates.

517. The value of ¢ at any point in the surface of the magnet,

which, as appears from the preceding investigations, is all that

is necessary for determining the potential due to a lamellar

magnet at any point not contained in the magnetized substance,

may, according to well-known principles, be determined by

integration, if the tangential component of the magnetization at

every point of the magnet infinitely near its surface be given.

It appears therefore that, if it be known that a magnet is

lamellarly magnetized throughout its interior, it is sufficient

to know the tangential component of its magnetization at

every point infinitely near the surface, or to have enough of

data for determining it, without any further specification re

garding the interior distribution than that it is lamellar, to

enable us to determine completely its external magnetic action.

This conclusion is analogous to a conclusion which may be

drawn, for the case of a solenoidal distribution, from the ex

pression obtained in § 482, for the potential of a magnet of any

kind. For, from this expression, we have, according to § 513,

the following in the case of a solenoidal distribution :—

. V=[://(la+mg; n7) dS] (vml);

from which we conclude, that without further data regarding

the interior distribution than that it is solenoidal, it is sufiicient

to know the normal component of the magnetization at every

point infinitely near the surface to enable us to determine

the external magnetic action. Yet, although analogous con

clusions are thus drawn from these two formulae, the formulae

themselves are not analogous, as the former (that of 482) is

applicable to all distributions, whether solenoidal or not, and

shows precisely how the resultant magnetic action will in

general depend on the interior distribution besides the normal

same expression (VII.) (1.) as for external points, is, for any internal point,

the force at a point within an infinitely small crcvass perpendicular to the

lines of magnetization ; as it is easily shown that the differential coefficients

of 41r(¢) are the rectangular components of the force at such a point due

[§ 7 (5)] to the free contrary polarities on the two sides of the crevass.
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magnetization near the surface, according to the deviation from

being solenoidal which it presents; while the formulae of § 515

merely express a fact with reference to lamellar distributions,

and being only applicable to lamellar distributions, do not

indicate the effect of a deviation from being lamellar, in a

distribution of general form. Certain considerations regard

ing the comparison between common magnets and electro

magnets, suggested by Ampere’s theorem that the magnetic

action of a closed galvanic circuit is the same as that of a

“ magnetic shell” (as defined in § 506) of any figure having its

edge coincident with the circuit, led me to a synthetical in

vestigation [§ 554 below] of a distribution of galvanism through

the interior and at the surface of a magnet magnetized in

any arbitrary manner, from which I deduced formulae for the

resultant force at any external or internal point, giving the

desired indication regarding effect of a deviation from being

lamellar, on expressions which, for lamellar distributions, de

pend solely on the tangential component of magnetization at

points infinitely near the surface. These galvanic elements

throughout the body, from the action of which the resultant

force at any external point is compounded, produce effects

which are not separately expressible by means of a potential,

and therefore, although of course when the three components

X, Y, Z of the total resultant force have been obtained, they

will be found to be such that Xda: + Ydy + Zdz is a complete

differential, the separate infinitely small elements of which these

forces are compounded by integration with reference to the

elements of the magnet, do not separately satisfy such a con

dition. Hence the investigation does not lead to an expression

for the potential; but by means of it the following expressions

for the three components of the force at any external point, or

at a point within any infinitely small crevass perpendicular to

the lines of magnetization, have been obtained :*—

* The expression Xda: + Ydy + Zdz will not be a complete difl'erential for

internal points unless the distribution of magnetism be lamellar, since, for

any internal point, X, Y, Z differ from the rectangular components of the

"resultant force," as defined in § 479, by the quantities 41m, 41rB, 41r-y,

respectively, and since (§ 483) the “resultant force," for all points, whether

internal or external, is derivable from a potential. [See Postscript to § 517.]
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X=fffdxdydz{ "Z,'J(Z—;—Z—€)_ }

S

l

11..
ngay(1na— 1B) — (Z'zQ-y — nu)

{ d

{ d

{

S

l

‘g.’ <nB—mv>-£,§f<m- 1m }

}

z=fffdzdydz gg,x(%_tg)_ng'y( l

d
' i£Lx<lv—M>—’1§.yoB-m7>} SJJ

[Postscript to § 517, Nov. 17, 1871.]—These expressions, to

be proved in § 518 for external points, may be taken as a

definition for “resultant force” at points in the magnetized

substance. They are simplified by putting

d'y d,8_ do. d'y___v (13-070. '

_dx_ , }
d2: ?y_=w

and nfl-m-y=U, Zy-na: V, ma—l,B=.-W

(a),

which, with x’, y',z' substituted for 00, y, z; u’, v’, w’ for u, v, w ;

and w, y, z for E, 1;, f ; reduces them to

dx’dyldzl (z""z’)v’ZSy_l/)w'+[/ (‘z-z’) VIZBQI-Z/I) W'dSwith the symmetrical forms for Y and Z. Now observe that

U/dx'dy'dz' (LAFIa )w

is the y-component of the resultant force at (x, y, 2) due to a

distribution of imaginary matter through the magnet and over

its surface, having w for density at any interior point (x, y, z),

and Wfor surface density at [00, 1, z] ; and for the other terms of

(b), etc., consider corresponding distributions (1;, V), and (u, U) ;

and therefore instead of (b), etc., write

(IN (MI (IL (IN 11M dL

X=git ’ her-a’ has-‘J; ("l

denoting "' by

‘1" This notation has been introduced to agree with that used by Helmholtz

in corresponding formula with reference to Vortex Motion. It is to be re
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L the potential of distribution (a, U)

M 1’ ll 71 (v) } (d)

N )1 n :7 (w;so that L:ff["d””§”»di+ flu/fig], M=ew., N=etc- (e);

and, by Poisson's theorem,

V'L: —41ru, V'M=—41rv, V'N: —41rw (f),

a‘ d’ d’ . ,
, ‘7,+3y—,+3; 1s denoted by V . The

second members of (f) vanish for all points external to the

magnet, because there u: 0, v: 0, w: 0. Now for simplicity

suppose the magnetization to diminish gradually, not abruptly,

to zero at the boundary of the magnet. The second terms of

the expressions (d) for L, M, N will disappear, and by diffe

rentiations and summation we have

do’ do’ dw , , ,

where, as is now usual

dL+dM dN_

a Ti will—D
But (a) show that %+g—;-+Z—l:=0 (.9);

and therefore d1; dM dN

Ed- dj+2Lj=0

However quick the gradation from finite values of u, v, w

within the magnet, to zero through external space, this equa

tion holds, and therefore it holds in the limit, when the mag

netization comes to an end abruptly at the boundary. To

prove (h) directly from the expressions (c), with the surface

terms included, will be found a good exercise for the student.

From (c) by difl'erentiations, and application of (f) and (h),

we find %'+%+%=0 (k)

d—€—lZZ=4n-u (E—¢—i—Z—=41rv -(-IZ—l-i§=41rw

dy dz ’ dz dz ’ dx dy ’

or in virtue of (a) (l)

dZ dY=h_(jZ (3:), (1X dZ (do. (by) dY dX (d3 do.)

EFT-3 -—=4-r —— ~—=41r ————

‘5 do: dz (To ' H_ dy

marked that the quantities u, v, w, U, V, W thus introduced fufil the equa

tions (1) and (2) of § 539. They represent the components of the internal

and superficial distributions of electric currents, in the electrO-magnetic

representative (§ 554) of the given polar magnet.
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The corresponding properties of 5, I), 1%, if these denote

the components of the “ resultant force ” as defined in 47 9

480, are [see § 473 (2) and 483]

,

d; an dz_ d dB <1

¢Y+E+ dz —_4"<F:E+E+d_:) ("0'

as an_ age dz_ JD d5

71775-0’ ‘1775*’, any” (">

These equations, as well as (k) and (I), hold through all space,

the values of a, ,8, 7 being zero in every part of space not con

taining magnetized matter. Some if not all of the differential

coefficients appearing in them become infinite when the mag

netization varies abruptly from one side to the other of any

surface, but the interpretation presents no difiicnlty. Taking

for instance the case when the magnetization, finite up to the

boundary of the magnet, comes to an end abruptly there, let

X, and X” denote the values of X at points infinitely near

one another outside and inside the boundary; and similarly

for Y, Z, <5, I}, Z. We have by § 7 (5), § 517 (c) and (e), and

§ 473 <1),
X,—X,,=4r(nv-mW), Y,-Y,,=4r(lW—nv), z-aflflw-W) (o)

and §l_<_,£n= 47ft)’: 111-1)”: 41'7""! z/_za= 47rpn } (p).

where p: lu + m'v-l-nw

By (a) we have

n V-m W=l(m,B+n-y) —(m'+n')a=l(la+mfl +n-y)— a.

Hence, with the notation of (p), (0) becomes

XI_XII=41r(IP_a>7 Y_ }7u=47r(mP_B)7
I

In a foot-note to § 517 above it was stated that the values of

X, Y, Z differ from what in this postscript I call j, 38, % by

quantities equal to 4770,, 47/3, 471-7, respectively; a statement

which is no doubt to be proved directly by carefully examining

the meaning of the integrals of § 518 for internal points. We

may now verify it by taking the difference between (k) and

(m), and the differences between (I) and (n). If in these we put

X-5-41ra: P, Y-fi-dnrfi: Q, Z—g—47r'y=R,

they give dP +12?
ZE-‘I-dy =0
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dR do dP dR_ dQ dP
_____—() __.___ __-—-—=O

dy dz _ ’ dz d1: ’ da: dy

These last three equations show that

_.,
_

d1: 73;’ dz

where \[r if not zero is a function of as, y, z: and the first then

becomes lia¢+ds¢+fl=o

dy2 dz2 'dz;

This equation must hold through all space when there is no

abrupt variation of magnetization; and, as \{r must vanish at

an infinite distance from the magnet in any direction, we must

(§ 206 above) therefore (whether there are abrupt variations

or not) have #120. The proof may be illustrated for abrupt

variations, by taking the differences of equations (q) and (p),

which show that

(X—-,_,£—41ra)/—(X—c¥—41ra)”= 0; (Yetc., Z etc.) ;

or PI—PII=O, QI— (211:0! RI_RII=O;

which prove that l//l—-¢”=O,

the suifixed accents denoting values for infinitely near points

on the two sides of the surface of abrupt change.

We conclude that through all space

X=§+41ra, Y=Z3+41r,3, Z=Z+41ry (1*);

which, for space unoccupied by magnetized matter, give (what

we knew before) X=g Y=ZJ Z=z.

For space within the magnet, it was shown in § 479 that

the force (g, 3}, 1%) is the resultant force experienced by a unit

pole in a crevass tangential to the lines of magnetization. From

this, and (r), it follows that, as was asserted in § 517, the force

(X, Y, Z) is the resultant force experienced by a unit pole in

a crevass perpendicular to the lines of magnetization. Of these

two definitions of “ resultant force ” for space within a magnet,

the former, as suitable to a polar magnet (§ 549), will some

times be called the “ polar definition,” and the latter, as suit
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able for an electromagnet, the “ electromagnetic definition,” for

the sake of brevity.]

518. The investigation by which I originally obtained the

expressions (IX. of § 517) is, with reference to galvanism,

precisely analogous to the investigation in 473 with refer

ence to imaginary magnetic matter. It cannot be given with

out explanations regarding the elements of electro—magnetism

which would exceed the limits of the present communication ;*

but when I had once discovered the formulae I had no diffi

culty in working out the subjoined analytical demonstration of

them for the case of an external point, which is precisely analo

gous to Poisson's original investigation (given in 495 of this

paper) of the formula of § 482.

Equations (3) and (4) of §§ 482 and 483 lead to expres

sions for the components of the resultant force at any point

in the neighbourhood of a magnet. Taking X only (since

the expressions for the three components are symmetrical),

we have

1 1
a- d-- dl

Ira-‘(i811 dxdydz{aa_i~+,87j-+yd_g}'

Now if the factor of dwdydz in the second member of this equa

tion be differentiated with reference to 5, an expression is

obtained which does not become infinitely great for any values

of x, y, z included within the limits of integration, since the

point (E, 1], g) is considered to be external in the present in

vestigation. Hence the differentiation with reference to '5 may

be performed under the integral sign; and, since

1 1

dK_ dK

?1'g“"715’

we thus obtain

1 1 l
da_ d2__ d2__

X=ff dacdydz{a A... _A. +7dx’ dxdy dacdz

* [Note, Nov. l87l.—It is given in Q 554, below.]

'I' If the point (§, 1], Q be either within the magnet or infinitely near it,

the factor of dmdydz in this integral is infinitely great for values of (x, y, z)
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Now, for all points included within the limits of integration,

we have, from Laplaoe’s well-known equation,

1 l l

d'z_ ‘1's+d’z

dx’__ dy' dz’ ’

and therefore 1 1
l 1

dz__ ds_ dz_ ds____

A A A A
X=Hjdxdydz —“ d’ + dz“ +Bdxdy+7drd_z

Dividing the second member into four terms, and applying an

obvious process of integration by parts, we deduce

6% di- di 0%
X=l:/[ —aHydxdz—¢EEdxdy-l-fifidydz-l-yadydz

dl d l d 1 d 1

,mAggKdpKdyK
+fffdxdyd~ dy dy d: dz__drd—y_dx dz

Modifying the double integral by assuming, in its different

terms, dydz = M8; dzdz: = mdS; dxdy = ndS,

and altering the order of all the terms, we obtain

included within the limits of integration ; and it may be demonstrated that

the value of a part of the integral corresponding to any infinitely small

portion of the magnet infinitely near the point (5, 1;, O is in general finite,

and that it depends on the form of this portion, on its position with reference

to the line of magnetization through (5, 1;, f), and on the proportions of the

distances of its different parts from this point. It follows that if the point

5, q, { be internal, and if a portion of the magnet round it be omitted from

the integral, the value of the integral will be afl‘ected by the form of the

omitted portion, however small its dimensions may be, and consequently the

complete integral has no determinate value if the point (5, 7], Q be internal.

Hence although, as we have seen above (§§ 482, 483),

'-d dzddzi 0% 51% 2}

défff ”' “H+ WWW

has in all cases a determinate value, which, by the definition (§ 479), is called

the component parallel to OX of the resultant force at (5, 1;, Q, the expression

1 l l

l— d— ll-—(1 t A A A}

__fffd;ulydzt-lz{a-d_z-+flw+yfiz

has no meaning when (5, 1;, Q is in the substance of the magnet.
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dd“ a“ dB ‘1% dy da

X=H/d”d-""‘ Maid-fibre)

11

—l:f/{:—3(ma— lfl)-Z§(ly—na)

This expression, when the indicated difi'erentiations are actually

performed upon l, becomes identical with the expression for

X at the end of § 517, and the formulae which it was required

to prove are therefore established.

519. The triple integrals in these expressions vanish in the

case of a lamellar distribution, in virtue of the equations (111.)

of 514 ; and we have simply

-;?( ly- na)}dS]

dl

Hill 13>
1 _

Y: -[ff{g(nfl—my)—g(ma— 15)}:15‘]

d1dl _
Z=—[://{ l-y- na.)— —A—(nB—my)}dS:|

d2: dy

To interpret these expressions, let us assume, for brevity,

U=nB—m-y; V=ly—naz; lV=ma-—l,3 (XL)

From these we deduce

mW-n V =0: —-l (la+mB+ny =u,

} (XIL);

all

1

no —lW =,B—m(la+mB+n7)=/3,

lV —mU='y—n(l¢+"1B+”7)=7,

where a,, B” 7, denote the rectangular components Of the

tangential component of the magnetization at a point infinitely

near the surface. Conversely, from these equations we deduce

U=nfil-—m'yl; V=lyl—nal; W=mal—l,Bl (XIII)

Now the direct data required for obtaining the values of

X, Y, and Z, by means of formulae (X), are simply the values

of U, V, W at all points of its surface. Equations (XIL) show

that with these data the values of a’, B’, 7/ may be calculated;

and again, equations (XIIL) show conversely that if a’, [9,, (y,
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be given the required data for the problem may be immediately

deduced. We infer that the necessary and sufficient data for

determining the resultant force of a lamellar magnet, at any

external point, by means of formula: are equivalent to a

specification of the direction and magnitude of the tangential

component of the intensity of magnetization at every point

infinitely near the surface of the magnet; and we conclude,

as we did in § 517 from a very different process of reasoning,

that besides these data, nothing but that it is lamellar through

out need be known of the interior distribution.

‘520. The close analogy which exists between solenoidal and

lamellar distributions of magnetism having led me to the new

formulae which have just been given, it occurred to me that a

formula (or formulae, if it were necessary here to separate the

cases of internal and external points), for solenoidal distribu

tions analogous to the formulae (VII.) of 516 for lamellar

distributions might be discovered. Taking an analytical view

of the problem (the synthetical view, although itself much

more obvious, not showing any very obvious way of arriving

at a formula of the desired kind), I observed that the formula

[ ‘figiaig is deduced from the general expression for the

potential by a partial integration performed upon factors

involving a, ,3, 'y, and depending on the integrability of the

function adw+ Bdy+ ydz, insured by the equations

fi__dl_o .d_Y_££ @ZJ’B
dz i '_ 7

for a lamellar distribution; and I endeavoured to find a corre

sponding mode of treatment for solenoidal distributions, to

consist of a partial integration, commencing still with factors

involving a, B, 7, but depending now upon the single equation

Z—:+ (a):

instead of three equations required in the former process.

After some fruitless attempts to connect this equation with

the integrability of some function of two independent variables,

I fell upon the following investigation, which exactly answered

my expectations :—

2 C
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521. In virtue of the preceding equation (a), we may assume

d1] dG (1F 0”] JG dF
a—dyf—7lz’ '8_dz-dx, 7—Hx_d§ (XIVJ’

where F, G, H are three functions to a certain extent arbitrary,

These functions I have since found, have for their most general

expressions d3 d7 d5‘,

F=§ffdydz< dy --d;)+g§

G=§jIdzdw(%-%)+fl (Xv);

a: dy

karate-ate:

where \Ir denotes an absolutely arbitrary function; and the

indicated integrations are indefinite, with the arbitraries which

they introduce subject to the equations (XIV.)

The demonstration of these equations follows immediately

from the results obtained by differentiating the three equations

(XIV.) with reference to x, y, and z respectively. The simplest

final forms for F, G, and H are the following, which are de

duced from the preceding by integration :— '

F=if(fldz—vdy)+j—i

G=§f(ydz—adz)+j—j (XVL)

H=sf<ady— Bdw)+5i

Making substitutions according to the formula: (XIV.) for

a, ,8, 7 in the general expression for the potential, we have

all di d1
‘Ly/[d dd til_dq A+ dF_d_I{ A+ dG'_dF A .
— “y” at dzda: dzdxdy do: dydz

Dividing the second member into six terms, and integrating

each by parts, commencing upon the factors such as (215013],

we obtain an expression, with a triple integral involving six

terms which destroy one another two and two because of
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properties such as 1 d1

d T’Li K.
d—y d1‘ _d.7: a; '

and besides, a double integral, which may be reduced in the

usual manner to a form involving (18', an element of the surface.

\Ve thus obtain, finally,

d—l- dl dl

V: [low-"G)§+("F-ZH>§+(IG—'HF)a? }dS:] (xvii)

522. The second member of this equation expresses the

potential of a certain distribution of magnetism in an infinitely

thin sheet coinciding with the surface of the body; the total

magnetic moment of the magnetism in the area dS being

{(mH-nG)’+(nF-lH)’+(lG—mF)' yes,

and its direction cosines proportional to

mH-nG, nF-lll, lG-mF.

Now we have identically,

l(mH—nG)+m(nF—lH)+n(lG—mF)=0;

and hence the direction of this imaginary magnetization at

every point of the surface is perpendicular to the normal. It

follows that we have found a distribution of tangential mag~

netism in an infinitely thin sheet coinciding with the bounding

surface which produces the same potential at any point, in

ternal or external, as the given solenoidal magnet. [It is re

markable that the imaginary tangential magnetization thus

found depends (§ 523) upon the normal component of the

actual magnetization infinitely near the surface ; so that, besides

this normal component, nothing need be known of the actual

magnetization except that it is solenoidal. Compare conclu

sion of§ 519.]

523. The conclusion of § 522 may be arrived at syntheti

cally in a very obvious manner, by taking into account the

property of a solenoid stated in § 510, according to which

it appears that any two solenoids of equal strength, with the

same ends, produce the same force at any point whether in the

magnetized substance of either, or not. For it follows from
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this, that when a magnet is divisible into solenoids with their

ends on its surface, we may by joining the two ends of each

solenoid by any arbitrary curve on this surface, and laying a.

solenoid of equal strength along this curve, obtain a series of

solenoids, constituting by their superposition, a tangential

distribution of magnetism in an infinitely thin sheet coinciding

with the bounding surface, which produces the same resultant

force at any internal or external point as the given magnet.

It is not, however, easy to deduce from this synthesis a formula

involving the requisite arbitrary functions to express a super

ficial distribution satisfying the existing conditions in the

most general manner. The analytical investigation given above,

supplies, in reality, a complete solution of this problem.

It may be remarked that the sole condition which F, G, andH

considered as functions of the coordinates, at, y, z, of some point

in the surface of the magnet, and therefore functions of two

independent variables, must satisfy in order that (XVIL) may

express correctly the potential at any point, is—

an dG dF (111 dG' dF
l(W—(-i;)+m(a——fi)+n(a-g—zy)=la+mfl+ny (XVIIL),

x, y, and z of course being supposed to satisfy the equation to

the surface; and it may be proved, by a demonstration inde

pendent of the investigation which has been given, that the

second member of (XVIL) has the same value for any func

tions F, G, H whatever, which are subject to this relation.

[Postsm'pt, Dec. 7, 1871, and Jan. 6, 1872.—Inasmuch as the

second member of (XVIIL) is (§ 473 (1)) the surface density of

the imaginary magnetic matter, representing the polarity of- the

given solenoidal magnet, we may eliminate the idea of magne

tization, and so arrive at the following remarkable theorem :—

Let p be the density at any point of a superficial distribution

of matter on a surface S, which may be either a closed surface

or an open shell, there being as much negative matter as posi

tive in the whole distribution. And let F, G, H be any three

quantities such that

£111 (16' (1F clH (16 (1F
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The potential of this distribution, that is to say1 P29’,

correctly expressed by the formula (XVII). When S is a

closed surface this expression holds for the space within S, as

well as for external space. From the remark with reference to

(XVII) and (XVIII) at the conclusion of the section in the

original now numbered 523, it appears that the values of

F, G, H given by (XVI), although expressing the most general

solution of (XIV.), are not the most general expressions for

functions F, G, H to satisfy (XVII); and that instead of

F, G, H in (XVII) we may substitute

F-i-F’, G+ G’, H+H’

where F, G, H are given by (XVI) and F’, G’, H’ are any

three functions of w, y, z, which, over the whole surface S,

satisfy the equation

dH' dG' dF' dH' dG' 1”"

1i da _715 )+m( d? _ dz )+n( 4” _di)=0 (XX)

The surface distribution of tangential magnetization specified

by F', G’, H’ in accordance with the explanations of § 522,

consists of closed solenoids lying on the surface S.]

is

CHAPTER VI.*— On Electromagnets.

524. Oersted’s discovery of the mutual forces between

magnets and conductors containing electric currents gave rise

to the science of electromagnetism. It was soon found that

there are also mutual forces between different conductors and

between different parts of the same conductor conveying

electric currents : and various very remarkable eleotro-magnetic

phenomena were observed by different experimenters, of which

the most remarkable are the continuous rotations of portions

of conductors round magnets and of magnets round conductors,

‘I’ [Note, October lS7l.—This chapter was written twenty-two years ago,

and has lain in manuscript ever since, because I had not succeeded in finding

time to write a sequel on inverse problems. It is now printed from the

original manuscript with only a. few verbal alterations, and it will be followed

in this volume (Chap. IX.) by the long-projected article on inverse problems,

of which something was communicated to the British Association at its

Oxford Meeting of 1847, but not published except in the very short abstract

contained in the Report of that meeting]
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discovered by Faraday to result, in certain circumstances, from

their mutual actions. The laws to which all these actions are

subject were first completely investigated by Ampere. His

experiments are the foundation, and the conclusions which he

deduces from them constitute the elements, of the Mathematical

Theory of Electromagnetism. As a complete and satisfactory

account of these researches is to be found in Ampere’s

original papers,* and a succinct exposition of the mathema

tical part of the investigations in Murphy's Treatise on Elec

tricity, the results will be considered as fully established, and

those of them which are required in the present essay will be

quoted.

525. Let P and P’ he points in two conductors, of which the

lateral dimensions are very small compared with the distance

PP’; let a- and a’ be the length of infinitely small elements

of these conductors, with their centres at the points P and P’

respectively, and terminated by planes perpendicular to the

directions of the conductors; let PP’ be denoted by r; let 6

and 0’ denote the angles at which the directions of the con

ductors at P and P’ are inclined to the line PP’; and let ¢ be

the angle between two planes each passing through PP’, and

respectively containing the directions of the conductors. Thus,

if there be electrical currents in the two conductors, they will

mutually act and react with a system of force which is the

same as would result from mutual forces in lines, joining all

the infinitely small arcs 0' of the one, and a" of the other, given

in amount (attractions reckoned positive and repulsions nega_

tive) by the following formula :—

7i): a 2 sin 0 sin 0’ cos ¢—cos 0 cos O'H

* “Sur la Théorie Mathématique des pliéuomenes electro-dynamiques.”

Collection of six “ Mémoires" of dates 4th and 20th December 1820, 10th

June 1822, 22d December 1823, 12th September and 21st November 1825.

Published in the Illémoires of the French Academy, 1827.

1' [Note, Oct. l87l.—ln the original manuscript the formula stands

. '0"
ug- (sin 9 sin 0’ cos cos 6 cos 0’).

I have doubled its second member to avoid the inconvenient distinction

between “eleetro-dynamic” and “electro-magnetic" units to which in its

original form, (the form in which Weber used it in his system of absolute units,)

it leads. See below, § 531.]
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where y and '7' denote quantities invariable in value for the

same two conductors, with the same electrical currents flow

ing through them. These quantities (7, 7') are the numerical

measures of the strengths of the currents.

526. Again, let N be the north pole of an infinitely thin uni

formly and longitudinally magnetized bar, and S its south pole:

let P be a point in a conductor, and let a- and 7 denote the same

as before, with reference to this conductor. Let NP and SP

be denoted by A and A’ respectively; and let the angles

between NP and o’ and between NSF and a- be denoted by ¢

and ¢' respectively. There will be such a mutual action

between the magnet and the galvanic are a- that each will

experience a force the resultant of two forces through P per

pendicular respectively to the planes of NP and a‘, and of SP

and 0', given in amount by the following expressions respec

tively :——

, mxyo'

A sin 4:, and

myo

7i’;
sin 4>’.

The directions of these forces, upon the element, if the direction

of the current be from east to west, and if N and S be each

north of P, will be ;—the former obliquely or directly down

wards, and the latter,—upwards. [For mnemonic principle see

below, § 547.] The magnet will be acted upon as if a point

in the position of P, rigidly connected with it, experienced two

forces equal and opposite to the forces of which the action

on a- is compounded.

527. Let (x, y, 2) denote the middle point of the element ('1,

and (2!, 3/, 2’) the middle point of the element 0'', according

to ordinary rectangular co-ordinates. Let also I, m, n be the

direction cosines of the former element, and l’, m’, n’ those of

the latter; quantities which will be all positive when the

current in each element is in a similar direction to that of

a point moving from the origin towards the space between the

positive parts of the co-ordinate planes. The expression for

the force between the elements in terms of these data, will be

717.751’{2(ll’+mm’+nn’)[(z-x7=l+(y-y')!+(z- n11-suu-zHwKy-a/HW- lI')][l'(1= —w§+m’(i/—u)+n'(z—z')1}

{(I—=’)’+(u—u’)’+(z—z’)’}'

528. Again, if E, 1;, { denote the co-ordinates of a unit north



403 A Mathematical Theory of lllagnctism. |_XxIv.

pole, and x, y, z those of an infinitely small element a of an

electric current of strength 7, in a direction (I, m, n), the mutual

action will be

70'. sin <1) yonsiu d)

(E—w)’+"('1—.1/)‘+(§—z)”or A’

and will be in a line of which the direction cosines are

m(f-z)—n(a—y) n(£—e);£(£—¢) l(a-.1/)—m(§—1>)

Asin¢ ’ Asind: ’ Asin¢

529. Hence the components of the force experienced by the

element of electric current are given in magnitude and direc

tion by the following expressions :—

whflt-Q-fly-a) ,W["(€-1)—l((-—z)1 ~/¢T[l(a—y)—m(£—w)]

A‘ Al ’ A:

If the axes of co-ordinates be so chosen that when OX is

from south to north, and OY from east to west, OZ will be

vertically upwards, these expressions will be applicable, as

far as regards signs, to the direction of the action which the

electric arc experiences; and it would be necessary to change

the sign of each, to make them applicable to the direction of

the force upon the pole.

530. These expressions, since they involve l, m, n only line~

arly, show that a galvanic are 0', of strength 7, in the direction

I, m, n, produces the same effect either upon another arc, or

upon a magnet, as three arcs parallel to the axes of co-ordinates,

each of the same strength, 7, and of lengths respectively equal

to at, can, an.

531. The factor 7 being taken as the numerical measure of

the strength of the current in the circuit of which a' is an arc,

the unit of strength for an electric current may be defined in

the following manner :—

If a galvanic current, in a. conductor of infinitely small

section, be such that the mutual action between any infinitely

small arc of it, and a unit magnetic pole held in a direc

tion perpendicular to the length of the are, at a unit of dis

tance, is numerically equal to a' the infinitely small length

of the element, the strength of the current is unity.
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Or in the following manner :—

If a galvanic current in a conductor of infinitely small

section be such that the action between two infinitely small

portions of it in line with one another and at a distance

unity from one another, is numerically equal to the product of

the length of the elements, the strength of the current is unity.

532. If what is called “an electric current” be in reality

the transference of matter along the conductor in which it exists,

the “ strength of the current” numerically measured in the

manner which has been explained, will depend upon the quantity

of this matter transmitted in a given time ; and a unit of time

may be chosen, according to the unit of electrical quantity

which is adopted, so that the quantity 7, measured as above

explained by the electro-magnetic action of the conductor, may

be numerically the quantity of electricity which flows across

any section of it in a unit of time.

533. In a continuous current, this quantity is of course the

same for every section; and, as it is impossible that a. continu

ous stream of electricity can emanate from one body, and be dis

charged into another, the clu'rent must be res-entering, or every

continuous current must form what is termed “ a closed circuit.”

It is found by experiment that whatever be the dimensions or

material of the different parts of the conductor along which

the current flows, provided always the dimensions of the section

be small compared with the distances through which the

electro-magnetic action is observed, the quantity 7 has the same

value for all parts of it; and even in the places where the

electro-motive force operates, as has been shown by Faraday,

as in the liquid of any ordinary galvanic battery, or in a con

ductor in motion in the neighbourhood of a magnet, the electro

magnetic efi'ects are observable and probably to exactly the

same degree; so that it would probably be found that a gal

vanic circuit consisting of a battery of small cells arranged in

a circular arc, and a wire completing the circuit by joining the

poles, would produce the same electro-magnetic effects at all

points symmetrically situated with reference to the circle,

irrespectively of the part of the circuit, whether the cells or

the wire; provided always that the distances considered be

great compared with either the dimensions of a section of the
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wire, or of any of the cells made by planes perpendicular to

the place of the circle, through its centre.

534. Hypothesis of Matter flmmlng.—In the theory of electro

magnetism it is quite unnecessary to adopt any such hypothesis

as this, however probable or improbable it may be as an ulterior

theory; and all that we could introduce as depending upon it

is that, for a linear circuit of varying section or material, the

quantity 7 is the same throughout the circuit, and that all

finite circuits possessing continuous currents are necessarily

closed; two facts which cannot be assumed a prim-z’, but which

are in reality established by satisfactory experimental evidence.

535. of Electromagnets into three Classes-Linear,

Superficial and Solid-If all the dimensions of any section of

the conductor along which the current is communicated be.

infinitely small, the complete circuit constitutes what will be

called a linear electromagnet.

When the electric currents are confined to a shell of which

the thickness is infinitely small, and when they are continu

ously distributed through it, or distributed through it in such

a manner as not to satisfy the condition by which a linear

electromagnet is defined, the entire group of the complete

circuits constitutes what is called a superficial electromagnet

[or surface-electromagnet].

When electric currents are so arranged as to fill any solid

portion of space, the group of the complete circuits constitutes

a solid electromagnet.

It is clear that, in practice, electromagnets may be treated as

linear, or superficial if the quantities which ought to be in

finitely small, are merely very small compared with the dimen

sions of the magnets, and with the distances at which the

electro-magnetic action are to be observed; and again, if wires,

or linear currents of any kind, be disposed upon any surface

or through any space, so that the distances between those

which are adjacent are small compared with the dimensions

of the circuits, or of the curves, or with the distances at

which the magnetic actions are to be observed, the group may

be considered as constituting practically a superficial electro

magnet; and a solid electromagnet may be composed of a group

of galvanic wires similarly arranged through a solid space.
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536. Linear Elcctromagncts.—-A linear electromagnet is com

pletely specified when the form of the closed curve of the

current, and 7, the strength, are given.

Irrespectively of any theory, the term “ electric current” will

often be made use of; but as the terms, literally interpreted,

imply a theory which, to say the least, is doubtful, it must be

borne in mind that they are not to be interpreted literally, and

that they are only used in this essay occasionally for conveni

ence; and especially because of the almost universal use which

is made of them by writers on the same subject. The term

“ galvanism” will often be used to denote the agency to which

the phenomena presented by continuous electric currents are

due, and quantity of galvanism in a linear conductor will be

measured according to the following standard :—

The strength of the current in a linear electromagnet into

the length of any part of the conductor in which it exists, is

the quantity of galvanism in that portion.

The term intensity will be used with reference to linear

currents, according to the following definition :—

The intensity of the galvanism in any part of a linear electro

magnet is equal to the strength of the current, divided by the

area of the section of the conductor.

Hence in a linear conductor of which the section is not uniform

throughout, the intensity of the galvanism will vary inversely

as the section from one part to another of the conductor.*

537. Superficial Electromagnets-Def. The quantity of gal

vanism on any small portion of the surface, divided by its

area, is the superficial intensity of the galvanism at that point.

If the superficial intensity'l' and the direction of the galvanism

is given at every point of a given surface, the specification of the

superficial electromagnet is complete. There are, however,

certain conditions to which such a specification is subject, and

an arbitrary specification, not satisfying them, will not corre

spond to any possible superficial electromagnet. The founda

' [Note Oct. 25, l87l.-—-I leave this section exactly as I find it in the old

manuscript, under protest that I do not now approve of the mode in which

the word “ galvsnism " is used in the terms which it proposes. Where these

terms occur henceforth it is because I have not invariably altered the manu

script to substitute more convenient modes of expression.]

‘t [In 1871 we should rather say surface-intensity than superficial intensity.]
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tion of these conditions is the fact that no incomplete circuit

can exist permanently, from which it follows that all the

currents, or the continuous superficial flux of electricity, con—

stituting a superficial electromagnet, must be resolvable into a

group of closed galvanic currents.

This will lead to a condition which must be satisfied at every

point of a purely superficial electromagnet, and again, a con

dition which must be satisfied at the boundary, if the surface

be not closed. The mathematical expression of these conditions

will be given later.

538. Solid Electromagmts.—D0f The intensity of the gal

vanism at any point within a solid electromagnet is the quan

tity of galvanism in a space of infinitely small dimensions

round that point, divided by the volume of the space.

The complete specification of a solid electromagnet will be

the expression of the intensity and direction of the galvanism

at every point of it.

Here again there will be conditions to be satisfied by the

specification, to express the fact that all the galvanism consists

of a group of closed circuits.

539. After these preliminary explanations we may enter upon

a regular analytical treatment of the subject; commencing with

investigations of the conditions to which the distribution of

galvanism in solid and in superficial electromagnets is subject.

Let u, o, w denote the components of the flux at any point

(av, 31, 2) within a solid electromagnet; and, if there be besides

a superficial distribution of galvanism on the bounding surface,

let U, V, Wbe the components of the superficial fiux at the

point (133/, 2) when this point belongs to the surface. These

quantities must satisfy the following conditions, in order that

the galvanism expressed by u, v, 10, U, V, W may consist of a

group of closed circuits :—

du dv dw

E+8j+E_° (1)

for every point (ac, y, z) of the magnet, and

'%+%+%r+(g§-%)(mW-nm +(g-:_g)(nU-zW)+(W_mU)(‘ZS-g)

=lu+ mv+ 12w (2)
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for every point (as, y, z) of the surface of the magnet, the direc

tion-cosines of a normal to the surface being denoted by Z, m, n.

540. To demonstrate these conditions, let us consider an in

finitesimal tubular portion of the magnet bounded by stream

lines,* and by the surface of the magnet, if any of these lines cut

it. Let the stream-lines thus considered be infinitely near one

another, so that the portion of the magnet contained by them

may be a ring of infinitely small section, cut or not as the case

may be, by the surface of the magnet. The conditions to be

satisfied with reference to this portion of the magnet are, that

the intensity of the galvanic stream at each point must be

inversely proportional to the area of section perpendicular to

the stream-lines of galvanism; and that if the ring he cut by

the surface of the magnet, the incomplete galvanic are thus

existing within the magnet must be completed along the sur

face. Since the whole body may be divided into portions of this

kind, we have a condition for every internal point, and by ex

pressing that the superficial distribution U, V, W must be such

as to complete circuits for the galvanic arcs, of which the ends

are in the surface, the condition to which U, V, W are subject

is obtained.

To investigate the condition for u, v, w, consider an infinitely

small parallelepiped a. ,8 'y, of which the centre is at x, y, z,

and the edges respectively parallel to OX, OY, OZ, and let

the galvanic arcs into which the whole magnet is divided be

supposed to be of sections so small that an infinite number

of them will pass through this parallelepiped. The condition

to be expressed will be that the sum of the products of the

intensities into the sections at one set of the ends of these

arcs shall be equal to the sum of the corresponding products

at the other set of ends. The sums of these products for all

the ends which lie on the two faces [8 'y, of which the distances

from YOZ are ac---- la, a: + %a are respectively equal to

(u— % dizzy?’ and (u + laggfiv

* [Note, Oct. 25, l87l.—-This term (its introduction I believe due to Ban

kine) is now much used in writings on hydrokinetics. It is substituted

for “ lines of galvanism,” which I find in my old manuscript]
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and similarly, for the faces 'ya we obtain the sums

(U—%BgZ>YG-, and (v+§flj—:)ya

and, for 11/3, ( dw)

Now when u, o, and w are all positive, one set of the ends of

the galvanic arcs will lie on the three faces of the parallele

piped of which the distances from the co-ordinate planes are

respectively z-la, _1/— £8, z- ivy; and the other three faces

will contain the other set of ends, and we must therefore have

=(u+i¢§§)m+(v+ifi%)w+(w+iv%)afl

whence* d“ dv dw

ag+fii+dz=o _ [(1) of§ 539]:

541. To investigate the conditions for the surface of the

body, it may be remarked that if there were no galvanic arcs

from within, terminated at the surface, there might be no

superficial galvanism, and that any superficial galvanism there

could be must constitute a group of closed circuits; but that

when there are interior galvanic arcs of which the ends lie

on the surface, the superficial distribution must complete the

circuits for them, besides containing any arbitrary distribution

of closed circuits. Hence, if P and P’ be two points on a

band of the surface between two lines of superficial galvanism

infinitely near one another, B and B’ the breadths of the band

at these points, and I and I’ the superficial intensities of the

* It is scarcely necessary to remark that this is the same as the “equa

tion of continuity,” for the motion of an incompressible fluid, of which the

velocity at any point z, y, z is the resultant of u, v, w. The condition that

as much fluid leaves the parallelepiped a, B, y as enters it, in a unit of time

would lead to precisely the same investigation as that of the text (see

Duhamel’s Cours dc Mécrmique, or Cambridge and Dublin Mathematical

Juumal, 1847, p. ‘282. The electrical matter which may be imagined to be

flowing through the body, must not become accumulated, nor leave a de

ficiency in any part.

[When this was written, upwards of twenty years ago, the investigation

of the " equation of continuity " here referred to, adapted from Fourier, was

but little known]
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galvanism ; the values of the products 1.3 and I’ must differ

by an amount equal to the sum of the strengths of the interior

arcs of which the ends lie on the hand between P and P’.

Now if (ls denote the length of an element of the band, the

sum of the strengths of all the interior arcs having their ends

on this part of the band will be

(lu+mv+nw).,3.ds

and therefore if P and P’ be situated at the two extremities

of (Is, we must have

I’B'—I,B=(lu+mv+nw),3ds (l);

or, if the symbol 1! denote differentiation performed with refer

ence to variations along the superficial stream~line through P,

b(lfl)=(lu+mv+nw),3dsNow let ¢ be such a function of z, y, z that the equation

¢=k (3),

with different constant values given to k, shall represent any

set of surfaces cutting the surface of the magnet along the

stream-lines; that is to say, (as the direction cosines of the

stream-line are proportional to U, V, W), let ¢ be any function

satisfying the equation

aa aa d¢__
QE+V@+V$_0 (Q

And, because the stream-line lies on the surface, we have

lU+mV+nW=O

If x be the difference of the values of k for the two bounding

stream-lines on the two sides of the band through P which we

have been considering, we readily obtain, for the breadth of the

band, the following expression :—

K

Equations (4) and (5) with

W+W+W=P (n

resolved for U, V, W, give
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,,_("‘%-m%f)1

d<l>_ (14>

VJZEJE) (8),

11¢ 11¢
W=(mE; 7!)

where, in virtue of (6) ,=,__ K (9)

And from (8) we have

EWW-W)=(m'+1103’;-l(m—+n§?)—‘§-z(z§§+m%+»§’)

and therefore, if we put

01¢ 11? ¢_¢_
lai+mdy+ndz_fl

we have ‘

3%:1'11 +E1(mW— 11V)

Z—;=Hm+E(nU - ZW) (10)

I§G=H1¢+E<ZV —mU)

Differentiating (9) along the stream-line, we have

R(IE>__L “5

d8 _ ~ ‘ ds

Hence

b(IB)__-I n21_ 1 as: m dEJ by dEBz
nag-E 75__IE(2Z E+Ty 78+ a; F; ' (11*

Now [IE- U 13h V IE5 W (12)

(f8- ’ d8— ’ ds_ '

'7'

Using these in (11) and then putting for U etc., the equi

valent formulae (Kg?) —15' , etc., and making use of equations

(8) we find

+5

Il(IB)_d_l_7 dV dW 1 @(dn dm)+d4>(dl dn) d¢(dm dl)}(13).

Ba.’ -¢¢+d_y+HZ+E' dasdy dz Ed; da: da: dy
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For g, 1%’, g’ , substitute their values by (10): then, if we

remark that

dn dm dl dn dm dl

'(o-E)+'"(Fz-a)+"(*e-a)-° “4”

since this is the condition that a factor, 7t, may be found

such that 7t(ldx+mdy+ndz) is a. complete differential; we

obtain

lg%=%g+ ‘%'+‘%'+ (MW-RV) (fig-53”‘) + ("U- W) (%-Z§)+ (IV-mU) (‘g-g) (15)_

Hence equation (2) becomes

_w M’ aw dn dm a: dn _ {ILL it
lI+flI+1W7-E+d—” +7‘ +(nW-nV)(z-a—z) +("U-lW) (El-a +(W MU) d”) [(2) 0H 5391

542. Coroll. The condition to be satisfied by the quantities

U, V, W which express the distribution of galvanism in a

superficial electromagnet is the following :—

o=“g+ ‘1% + ‘%'+ (mW-nV)(‘dl;'_§-:)-(nl7-zW)(£-Z£)+(zV_mU)(‘g-%)

543. The second member of these equations is brought to

another symmetrical form (simpler for some applications), by

grouping in order of U, V, W, adding to it six balancing terms,

dl dm dn dl dm dn

0183+ 17m?! + Wfla — W712i 7

and observing that

dl

‘21;

Thus for (2) of§ 539 we have

(1 d

+ma2+n£=0, etc.

|

11l+mv+mv=g+%+%+ U(l‘%l:+m%+ng)+ V(l%+mii;+n%)+ W(l%:+m(;—;+flg) (16)

544. The mutual actions between electromagnets and com

mon magnets, or between any part of an electromagnet and other

partial or complete electromagnets or common magnets, may

be determined by means of the expressions of 525...529 ;

and when the data are suflicient, the application of elementary

statical principles leads to the solution of any problem that

can be proposed. The mode of specifying the distribution

of galvanism in an electromagnet, explained in 531-539,

2D
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leads immediately, by means of Ampere’s formula given above,

§§ 525, 527, to proper expressions for the mutual action

between any two solid electromagnets by means of four

definite integrals representing the parts of that component

due to the mutual actions of the solid and superficial parts of

their distributions of electric current.

545. A similar synthetical solution of the problem of deter

mining the mutual action between an electromagnet and a

common magnet, is obtained by first investigating a formula

for the mutual action between an element of a galvanic circuit,

and an infinitely small magnet, which may be done at once

by means of the formulae of §§.-526, 529, and the synthesis

of a magnet explained in 461, 462, and then applying

statical principles to derive formulae for the components (both

of force and couple) of the mutual action. It is sufficient

here to indicate the method of proceeding, for such problems;

and unnecessary to write down the formulae, which, in fact,

may always, when wanted, be written down at once from the

formulae of the preceding chapters, according to the principles

which have been now explained. Thus, write down the

formula: for the rectangular components of the force exerted

by the electromagnet (u, v, w, U, V, W, § 539), upon a positive

unit pole, according to the formula: of 529 ; and for the com

ponents of couple which would be given by transferring the con—

stituent forces from their supposed lines through the elements

of electric current, to parallel lines through the magnetic pole.

It will be found that in the integrals the components of couple

disappear, and thus is proved Cor. 5 of § 549; that the

resultant force is in a line through the pole. The expressions

for the components of this force are, as mere inspection of the

formulae of § 529 proves, identical with those of § 517, (b). I

proceed to propositions regarding electromagnetic force, the

importance of which will appear from the application made of

them in subsequent investigations.

546. Proposition.—The action of an infinitely small plane

closed circuit on an element of another circuit, or on another

complete electromagnet or magnet of any kind, is the same

as would be produced by an infinitely small magnet, in the

same position, with its axis perpendicular to the plane of the
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circuit.* [The proof is easily worked out from the formulm of

483, 485, 529.]

* [Note added Jan. 1872.]—Hence Ampere’s theory of magnetism, accord

ing to which magnetimtion of steel or load-stone, or soft iron, or any other

polar magnet (§ 549) consists of electric currents circulating round the mole

cules of the magnetized substance in planes perpendicular to the directions of

magnetization. From twenty to five-and-twenty years ago, when the materials

of the present compilation were worked out, I had no belief in'the reality of

this theory (compare § 602) ; but I did not then know that motion is the very

essence of what has been hitherto called matter. At the I847 meeting of

the British Association in Oxford, I learned from Joule the dynamical theory

of heat, and was forced to abandon at once many, and gradually from year

to year all other, staticul preconceptions regarding the ultimate causes of

apparently statical phenomena. In a paper communicated to the Royal

Society of London, 10th May 1856, under the title “ Dynamical Illustrations

of the Magnetic and the Heligoidal ltotatory effects of Transparent Bodies

on Polarized Light,” after proving that the helicoidal property shown by

syrup, oil of turpentine, quartz crystals, etc., is due to a right or left-handed

asymmetry in the constituent molecules, I made the following statement re

garding the nature of magnetism :—

“ The magnetic influence on light discovered by Faraday depends on the

“ direction of motion of moving particles. For instance, in a medium pos

“ sessing it, particles in a straight line parallel to the lines of magnetic force,

“ displaced to a helix round this line as axis, and then projected tangentially

“ with such velocities as to describe circles, will have different velocities

“ according as their motions are round in one direction (the same as the

“ nominal direction of the galvanic current in the magnetizing coil), or in

“ the contrary direction. But the elastic reaction of the medium must be

“ the same for the same displacements, whatever he the velocities and direc

“ tions of the particles; that is to say, the forces which are balanced by

“ centrifugal force of the circular motions are equal, while the luminiferous

“ motions are unequal. The absolute circular motions being therefore either

“ equal or such as to transmit equal centrifugal forces to the particles initially

“ considered, it follows that the luminiferous motions are only components of

“ the whole motion ; and that a less luminiferous component in one direction,

“ compounded with a motion existing in the medium when transmitting no

“ light, gives an equal resultant to that of a greater luminiferous motion in

“ the contrary direction compounded with the same non-luminous motion.

“ I think it is not only impossible to conceive any other than this dynamical

“ explanation of the fact that circularly polarized light transmitted through

" magnetized glass parallel to the lines of magnetizing force, with the same

“ quality, right-handed always, or left-handed always, is propagated at

“ different rates according as its course is in the direction or is contrary to

“ the direction in which a north magnetic pole is drawn; but I believe it

“ can be demonstrated that no other explanation of that fact is possible.

“ Hence it appears that Faraday's optical discovery affords a demonstration

“ of the reality of Ampcre’s explanation of the ultimate nature of magnetism ;

“and gives a definition of magnetization in the dynamical theory of heat.

“ The introduction of the principle of moments of momenta (‘the conserva

-“ tion of areas ’) into the mechanical treatment of Mr. Rankine’s hypothesis

“ of ‘ molecular vortices,’ appears to indicate a line perpendicular to the plane

‘_‘ of resultant rotatory momentum (‘the invariable plane’) of the thermal

“ motions as the magnetic axis of a magnetized body, and suggests the
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001'. 1. The magnetic moment of the infinitely small mag

net which produces the same magnetic effects as an infinitely

small plane closed circuit is equal to the galvanic strength

of the circuit, multiplied into the plane area which it encloses.

547. Rule for Directions-The magnet must be so held

relatively to the current which it represents, that if the circuit

and it be placed at the centre of the earth, with its plane in

the earth's equator, and with the current going round from

east to west, the north polar side of the magnet ‘shall be to_

wards the earth's North Pole. [Mnemonic principle :—Remem

ber that if terrestrial magnetism were due to currents in the

earth’s crust, their general direction would be "the way of the

sun ;” that is to say, from east to west] ‘

548. C01‘. 2. The magnetic action of a linear electromagnet

(§ 535) [that is to say, a galvanic circuit in an infinitely thin

conducting ring] of any form is the same as that of a uniform

magnetic shell (§ 506) of any shape having its edge coincident

with the circuit, and having its magnetic strength numerically

equal to the galvanic strength of the circuit. The rule for

directions is, that if the circuit be held so that in any part

of it the current is from east to west, then a point carried in

a circle round that part of the galvanic arc northwards above

it and southwards below it, will cut the shell through from

its north polar to its south polar side.

549. Cor. 3. A common magnet [or a polar magmt as I shall

henceforth call anything magnetized after the manner of a load

stone or a steel magnet] may be found which shall produce

the same action as any given complete electromagnet, upon

other magnets of either kind, or upon any portion of an electro

magnet [or are of an electric circuit].

C07‘. 4. The distribution of ordinary [or polar] magnetism

“ resultant moment of momenta of these motions as the definite measure of

“ the ‘magnetic moment.’ The explanation of all phenomena of electro

“ magnetic attraction or repulsion, and of electro-magnetic induction, is to

“ be looked for simply in the inertia and pressure of the matter of which

“ the motions constitute heat. \Vhether this matter is or is not electricity,

“ whether it is a continuous fiuid interpermeating the spaces between mole

“ cular nuclei, or is itself molecularly grouped ; or whether all matter is con

“ tinuons, and molecular heterogeneousness consists in finite vertical or other

“ relative motions of contiguous parts of a body; it is impossible to decide,

“ and perhaps in vain to speculate, in the present state of science.”
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which produces the same force, according to the “ electro

magnetic definition” (§ 517), as a given electromagnet is

indeterminate. [Because any lamellar distribution consist

ing of closed shells may (§ 512, Cor. 6) be superimposed on

a distribution of magnetism without altering the resultant

force electromagnetically defined in § 517. Compare below

§§ 584...588.]

Car. 5. The mutual action between a magnetic point or pole,

that is, an end of an infinitely thin uniformly and longitudin

ally magnetized bar, and a complete electromagnet, is in a

line through that point. [Compare §§ 526, 545.]

550. Car. 6. The definition (1.) of § 479 and the definition

of the potential with the propositions on which it is founded,

as set forth in 481, 483 may be applied without alteration

to an electromagnet, as far as regards points external to the

conducting matter through which the electric currents pass.

551. With regard to internal points, the definition given in

§ 517 for the resultant force requires no conventional under~

standing of an analogous character to that which was made in

the case of points in the substance of common magnets, and set

forth in the text and in the second foot-note of § 479. “la can

not, as in the case of a common magnet, suppose a portion to be

cut from the substance of an electromagnet, without deranging

the magnetic condition of the remainder. If we imagine a.

space hollowed out in the substance of an electromagnet,

we must suppose such arrangements made that the vacancy

shall only deflect, not interrupt the electric currents. If a

small spherical portion, for example, he cut from an electro

magnet, there may be either a gradual deflection of the current

through some space round the part out out; or the interrupted

circuits may be completed by a condensation of electric cur

rent on the surface bounding the hollow. But it is satisfac

tory to know that the resultant magnetic force at any point

within such a hollow space is infinitely little affected by the

supposed deflection of the currents, when the space is infinitely

small. This follows from the comparison of similar circum

stances for similar hollows of different dimensions, which

shows that the disturbing influence is in simple proportion to

the linear dimensions of the hollow. Or, simply taking the
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triple integrals of 545, 517 (b) or (c), and using them for a

point, P, within the conducting substance, we see in a moment

that the part of each integral belonging to any small space round

P diminishes in proportion to the linear dimensions of this _

space when made infinitely small without change of shape

or of position relatively to P. Hence there is no necessity

for hollowing out a space in the electmmagnet or of further

considering the complicated circumstances referred to above,

and the resultant force at any point within or without an

electromagnet is the force which may be simply defined as

the force expressed by the formulae of § 528, according to the

modes of specification and principles explained in 536, 537,

538, 545 ; [that is to say, simply the formulae (1)) of § 517.]

552. If an electromagnet consist of a number of conductors

which when put together fit close to one another, without

touching, or of a single wire of a rectangular or hexagonal

section, rolled up with the different parts of the wire not

touching one another, but lying close together so as to be

separated by spaces infinitely small compared with the lateral

dimensions of the wire; the preceding definition of the re

sultant forceat any point of the magnet considered as a single

solid electromagnet will give sensibly the same resultant force

at neighbouring points whether in the substance of the con

ductor or in the interstitial space. '

[Addition and cm'rcction, Oct. 27, 1871.—But even if the

spaces between the difl'erent circuits, or the neighbouring por

tions of one circuit constituting an ordinary artificial electro

magnet, be not infinitely small or be infinitely great compared

with the sections of the conductors, the variation of force from

point to point between two neighbouring portions of circuit will

be small in comparison with the whole force generally, pro

vided that the ratio of space occupied to whole space within the

bounds of the electromagnet be great in comparison with the

ratio of the diameter of the wire to the diameter of a section

of the electromagnet across all the circuits or wires. This is

easily proved from (c) of § 517. Consideration of the corre

sponding gravitational case is instructive. In the first place

for simplicity ; consider a great spherical space, S, of radius R

with a great number, n, of equal homogeneous spheres of very
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small radius r and density p distributed with average homo

geneousness through it, so as to give an average density equal

8

to At the boundary of S the resultant force will be

approximately towards the centre and equal to

41r nr‘p _

Y —R? R’

and at distance a: from the centre, it will be approximately

towards the centre and equal to

4 1
1r 711' pm

3 R‘

The greatest deviation from these approximations would be

produced by taking one of the small constituent spheres from

a great distance, and bringing it into contact with the point

attracted, which would introduce a force amounting to

41r

3P";

and therefore would produce but a small difference on either

the magnitude or the direction of the resultant force if 1 is

l 1'

small in comparison with Generally, for any group of

molecules attracting according to the Newtonian law, if the pro-‘

duct of the density into the diameter of a molecule be very small

in comparison with the product of mean density into diameter '

of the whole; the masses of the molecules might be expanded

into the interstices so as to continuously occupy the whole

volume of the whole group, without producing anywhere more

than a very small change in the resultant force]

553. A superficial distribution of electric currents gives the

same normal component, but different tangential components,

for the resultant magnetic force at points infinitely near it on

its two sides. The tangential component at one side is found

by compounding with a force equal and parallel to the tangen-'

tial component force at ‘the other side, a force perpendicular to

the stream lines and equal to 4-n-I, if I denote the surface

intensity of the electric stream. [These propositions are easily‘

proved from the surface term of the expression (b) of § 517,

applied to the present subject according to § 551. They are

in fact proved by equations (0) of § 517. Equations (p) of the
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same section express in symbols the well-known corresponding

proposition in respect to a superficial distribution of matter

acting according to the inverse square of the distance, which in

words is,—that the tangential component is the same, for

points infinitely near one another on the two sides of the sur

face, but the normal components differ by 41rp, if p denote the

surface density]

554. Original investigation of § 517 referred to in § 518.

“ Glasgow College, 7th November 1849.—Yesterday I fell upon

“ a train of synthesis and analysis of galvanic distributions

“ which I think will add much consistence and symmetry to

“ the whole first part of my paper on magnetism (a portion of

“ the first part was communicated on the 21st of June last, by

“ Colonel Sabine, to the Royal Society), and it will help me in

“ getting to work to write out the matter I have had so long

“in hands. It occurred to me to treat galvanic distributions

“ according to the analogy of Chapter III., ‘ On the imaginary

“ magnetic matter by which the polarity of a magnet may be

“ represented ;’ thus, a, ,8, 7, being the components of the in

“ tcnsities of magnetization at m, g, 2, consider Ampere’s ima

“ ginary currents round dmdydz. We have strength of

“ current round OX, along faces dxdg, dwdz, dwdg, and dxdz,

“ :adm.

“ Consider all the partial currents parallel to OX. We have

“ —Bdyolr, along one of the dgdz faces (that which corresponds

“ to av, 31, z+ dz), and ydzclx along one of the dzda: faces (that

“ which corresponds to x, y + dg, z).

“ The coincident face, dydw, of a contiguous elementary

“ parallelepiped has

+(B+i:£dZ)d1/dz

“ and the coincident face dzda: of another contiguous parallel

“ epiped has d

"(7+;l%dy)dzdm.

"' Hence (as in Chapter III.) the share for‘ the element

“ dxdydz, of galvanism parallel to OX, is,

dB (17
(E- I])da'dgdz.
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“ S0 for shares parallel to CY and OZ we find

‘17 ‘i‘ d a(Jz_:_dz)dr y z

" and (3%_Z_€)dxdydz.

“ But at the surface of the magnet there is unneutralized

“ galvanism. Hence, besides the internal distribution we have

“ a superficial distribution; and the share to a superficial ele

“ ment ds has, I find, for its components parallel to OX, CY,

“ OZ, the following :—

—(Bn — 7"")‘18

— <11 — mods

—(am -- B0118

“ and we verify that these are the components of a current in

“ the surface by observing that '

1(Bn-ym)+m(7l—an)+n(am-Bl)=0;

“ l, m, n being the direction cosines of a normal.

“ This concludes the analogue of Chapter III.

“ Let X, Y, Z be the components of the force at an external

“ point P. We have,” [formula IX. of § 517, which need not

be repeated here].

“ Since the potential method cannot be applied where gal

“ vanic elements or incomplete circuits are considered, the fol

“ lowing is the analogue of [§ 495] the section in Chapter IV.,

“ where a second or analytical (Poisson’s original) demonstration

“ of the equivalence of a certain determined distribution of ima

“ ginary magnetic matter to the given distribution of magnetism.”

[Here follows in the manuscript memorandum, the investigation

(§ 518 above), which was communicated to the Royal Society,

June 20, 1850, and published in the Transactions.]

XXV. On the Potential of a Closed Galvanic Circuit ofany Form.

[From the Cambridge and Dublin Mathematical Journal, 1850.]

The object of the following note is to point out an extremely in—

teresting application of the principles explained by Professor De

Morgan in the preceding paper [“ Extension of the “lord A'rca”],

which occurred to me in connexion with the determination of the

potential ofan electro-magnet in terms of the solid angle of a cone.
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555. It has been shown by Ampere that a closed galvanic

circuit in a rec-entering curve of (my form produces the same

magnetic action as any infinitely thin sheet of steel, having

this curve for its edge, would produce if uniformly and nor-,

mally magnetized. Now the resultant force of a magnet at any

point may be expressed, after the manner of Laplace, in terms

of the differential coefficients of a “potential function,” and

therefore the same proposition is true for a closed galvanic

circuit." When this is known to be true, for either a common or

an electro~magnet, the following definition may be laid down :—

556. The potential at any point in the neighbourhood of a

magnet is the quantity of work necessary to bring a unit north

pole (or the north-pole of an infinitely thin uniformly and

longitudinally magnetized unit-bar) from an infinite distance

to that point. To determine the potential at any point due to

a given closed galvanic circuit, let us imagine a magnetized

sheet of steel (the form of the sheet is arbitrary, provided only

that its edge coincide with the curve of the galvanic circuit),

which according to Ampere produces the same magnetic action,

and consequently the same potential, as a given closed circuit,

to be divided into infinitely small areas. Then it is easily

demonstrated, on the most elementary principles of the theory

of magnetism, that the potentials at any point, P, produced by

* In other words, the quantity of work necessary to bring a magnetic pole

from any position in the neighbourhood of a closed galvanic circuit to any

other position does not vary with the form of the curve along which it is

drawn from one point to the other. There is however one remarkable

difference between the ease of an electro-magnet and that of any given steel

magnet. In the case of an eleetro-magnet, although the quantity of work

does not vary with the path, yet it has determinately different values accord

ing as the path lies on one side, or on another of any part of the galvanic

wire circuit, or according to the convolutions round any part of the wire

which it may be arbitrarily chosen to make. Hence arises the multiplicity

of values of the potential at any point in the neighbourhood of an electro

magnet noticed below. Yet for any one form of a magnetized sheet of steel

of the kind described in the text, agreeing, in the action which it produces

on all points not in its own substance, with the electro-magnet, the potential

is perfectly determinate without a multiplicity of values; and the difference

in the two cases is accounted for when we consider that the magnetic poten

tials at any two points infinitely near one another, on two sides of the sheet

of steel, differ by 41ry, where 1 is a constant such that ‘yo: is the magnetic

moment of any infinitely small area a: of the sheet. The agreement in the

magnetic circumstances of the two cases fails for all points in the substance

of the magnetized steel. [Compare § 515, Cor. 2.]
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these areas, are proportional to the solid angles which they

subtend at P; the true sign of the potential of any small area

being obtained by considering the solid angle as positive, if the

side of the area containing north poles, or negative, if the other

side, he towards P. Hence the potential of the whole sheet of

steel, at any point P, is proportional to the entire solid angle

which it subtends at P; and consequently the potential of a

closed galvanic circuit, at any point P, is equal to a constant

(which may be taken as a measure of the strength of the gal

vanism, or as it is often termed, the “ quantity ” of the current)

multiplied into the solid angle of the cone described by a

straight line always passing through P, and carried round the

circuit. In all cases, except those in which the galvanic circuit

is contained in one plane, there will be positions of P for which

this cone will be “ autotomic”; and in many cases, especially

the most common practical case of an electro-magnet, in which

the circuit consists of double or multiple concentric helices,

with their ends connected, or of a single wire wrapped in a

complex manner round a body of some irregular shape, so as

to constitute most complicated curves of double curvature,

there will be no position of the point P for which the cone is

not excessively autotomic. The solid angle of such a cone, or

the area enclosed by its intersection with a spherical surface

of unit radius, having for centre its vertex, may be determined

in a manner precisely similar to that which has been explained

by Professor De Morgan for plane self-cutting curves, without

any ambiguity as to the circuit by which the curve, when self

cutting,’‘ is to be described, since the actual galvanic current

is in a. determinate circuit, and its projection, by the conical

surface, on the surface of the sphere is to be described by the

projection of a point moving along the electric conductor, either

in the same direction as the current, or in the opposite, accord

ing to the convention we please to make. There is however a

source of ambiguity which really affects the evaluation of the

solid angle of a cone, or of the area of any given circuit de

scribed in a determinate manner on a spherical surface, and

gives rise to a multiplicity of solutions of the problem, arising

* See note on the word “circuit " in the preceding paper [of the Cambridge

unpl Dublin Mathematical Journal, year 1850, p. 140].
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from the circumstance that of all the "primary parts” (only

two in number if the circuit be not self-cutting) into which the

spherical surface is divided by the curve, there is no reason for

choosing one, more than another, as a zero space (or a space corre

sponding to the space exterior to a closed circuit in a plane)‘

557. When the value of the area, according to any one of

these solutions, has been obtained, all the others may be de

duced, by adding to it or subtracting from it any number of

times the area of the whole spherical surface. Hence the most

general expression for the solid angle of a cone described in a

determinate manner, is

0' = a,+ 41's‘,

where 0-1 denotes any one value and i any positive or negative

integer. If too great a positive or too small a negative value

be given to i, all the "primary spaces” of the spherical surface

will be positive or all will be negative; and therefore if we

wish to obtain only those solutions according to which some

portion of the spherical surface is considered as zero or eazte'mal

to the circuit, a limited number only (not exceeding the number

of primary parts into which the spherical surface is divided by

the circuit) of values for 'i are to be admitted. The physical

problem, however, requires no limitation to the range of values

that may be given to 'i : for, if we take any two paths to the

point P from an infinite distance, such that the space between

them is once crossed by the galvanic circuit, the potential at P

will differ by 4m according as it is estimated by one path or

by the other; and therefore, by taking (for the sake of sim

plicity in the conception) different paths to the point P which

go round a certain portion of the galvanic circuit once, twice,

three times, four times, etc., in one direction, and again differ

ent paths which go round the same portion of the wire once,

* Thus, if the given curve be a circle of the sphere, described in a given

direction, and if 0 denote the angular radius measured from that pole O,

which would be north if the direction of describing the circle were from west

to east; the area of the circuit is 21r(l—cos0) if the space on the other

side of the circle from 0 be considered as the zero space, but it would be

—‘21r(l + cos 0) if the space in which 0 is situated were taken as zero, or ex

ternal to the circuit. In general, the area of a circuit not self-cutting, on a

spherical surface, will be either one of the two parts into which the spherical

surface is divided, with the sign + , or the other part, with the sign —.
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twice, three times, four times, etc, in the contrary direction,

we obtain, according to the definition, an infinite number of

values of the potential at the point P, which are successively

expressed by the formula

12 = v,+ 4i1r'y,

when we give i the values 1, 2, 3, 4, etc., and again the values

—1, —2, —3, —4, etc.; '01 being the potential estimated by

a path, which makes none of those convolutions.

558. Hence we see that, to find the general expression for

the potential at a point in the neighbourhood of an electro

magnet, we may first choose some determinate path from an

infinite distance to the point P, and investigate the value of

the potential for it, which may be used as the value of v, in

the preceding expression. If an infinite straight line in any

direction, terminated at the point P, be the path chosen, the

determinate potential will be found by considering, as the por

tion external to the circuit, the primary portion of the spherical

surface described from P as centre, which is cut by this line.

Hence, if we mark this primary portion with a zero, the number

with which any other primary part is to be marked, according

to Professor De Morgan’s rule, will be got by drawing a line to

any point within it, from any point 0, in the external primary

part, and counting the number of times it is cut by the curve;

every time it is cut from right to left (with reference to a person

walking from 0, along it, on the convex surface of the sphere)

being counted as +1, and every time it is cut in the other

direction, as — l ; and the algebraical sum taken. When the

number for each primary part has been thus determined, the

sum of the areas of the different primary parts, each multi

plied by its number (positive or negative, as the case may bel,

will be the required area of the circuit; and the potential at

the centre of the sphere will be obtained by multiplying this

by 7, the strength of the galvanic current. The absolute sign

of the potential thus determined may be readily shown to be

correct, if we agree to consider the potential due to terrestrial

magnetism as on the whole positive for positions north, and

negative for positions south of the magnetic equator; since,

as is well" known, currents round the earth, proceeding on the
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whole from east to west, would produce phenomena similar to

the actual phenomena of terrestrial magnetism.

559. As an example, let us consider a conducting circuit

which consists of twelve complete spires of a helix, and a

line along the axis with two perpendicular portions connecting

its extremities with those of the helix. The accompanying

diagrams represent the projections, by radii, of the circuit, on

a spherical surface in two different positions, viewed in each

case from the interior of the sphere.

In the case illustrated by fig. (l), the centre of the sphere is

nearly in a line with the axis of the helix, on the side towards

the north pole* of the helix, and distant from it by about half

 

Fro. 1.

WWW"

 it“
8

' FIG. 9.

the length of the axis. In the case illustrated by fig. (2), the

centre of the sphere is in a perpendicular through a point of

the axis, distant by about one-fourth of its length from the

" The ends of the helix which would be repelled from the north and from

the south respectively by the earth’s magnetic action are, in 'the ordinary

vague use of the term “ pole,” called the north and south poles of the electro

magnet.
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north pole of the helix, and is at about the same distance from

the nearest part of the helix, as in the case of fig. (1) ; and the

curve on the spherical surface is shown in the diagram, accord

ing to Mercator’s projection with the great circle containing

the axis of the helix as equator.* In each diagram the inner

side of the spherical surface is shown.

560. The radii of the spheres being supposed to be equal in

the two cases, if we denote their common value by 1', and if

A1 and A2 be the areas of the spherical curves represented in

the diagrams, the zero or external portions on the spherical

surfaces being taken as those which become infinite in the plane

diagrams, the values of the potential at the centre of the sphere

will be

73:7‘ 1 and 7%,

respectively, for any paths from an infinite distance which do

not lie round any portion of the galvanic wire, nor between any

of the spires.

The area A1 will be determined (in accordance with Pro

fessor De Morgan's rule-I‘) by finding the areas of the “primary

parts,” marked successively with the numbers 1, 2, up to 12,

multiplying each area by the corresponding number, and taking

the sum of the products. The area A, will be similarly de

termined by finding the areas of the primary parts in fig. (2),

multiplying each by the positive or negative number with which

it is marked, and taking the algebraic sum of the products.

Gmscow Comma, March 25, 1850.

* The diagram was actually drawn by tracing upon a cylindrical surface

the shadow of a helix of twelve spires, { in. in diameter and 4 in. in length,

produced by a luminous point in the axis of the cylindrical surface ; the axis

of the helix being held in the plane through the luminous point perpendicular

to the axis of the surface. On account of the narrowness of the band occupied

by the diagram, the cylindrical surface very nearly coincided with the spheri

cal surface, which in strictness ought to have received the shadow. After the

shadow was thus traced, the cylindrical surface was unbent into a plane.

'I' In fig. (1), all the arrow-heads which are necessary for rendering deter

minate the “balances” for the primary parts are given; and the numbers

expressing the balances are marked for the first six primary parts, commenc

ing with the outermost. In fig. (2), all the arrow-heads which are necessary

to make the diagram represent determinately a closed circuit are indicated,

except in a few places where the spaces are too confined for admitting of this

being done in a clear manner ; and the “ balances ” of all the primary parts

are marked with numbers, except in the instance of a very small triple

primary part, which is marked with three dots (...) instead of + 3.
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XXVI. [JANUARY 1872.]

CHAPTER VII.—On the Mechanical Values of Distributions

of Matter,* and of Magnets.

561. Preliminary prq7osition.—The work against mutual

repulsions according to the inverse squares of the distances,

required to ‘produce any change in a distribution of matter, is

equal to the augmentation which it produces in the value of

the integral

as so no R!

l.../../_.arda <1>

where R denotes the resultant force at an, y, z.

This is an obvious conclusion from the following investiga

tion for the mutual potential energy (§ 503, Addition of date

11th December 1871) of two distributions of matter; or, as for

brevity we may call them, two bodies.

Let p be the density at any point x, y, z of one of these

bodies M; and let V’ be the potential at the same point, due

to the other body M’. Then denoting by Q the mutual poten

tial energy of the two, we have

a: pV’drdydz (2).

‘I’ “ Matter ” is here used conventionally and merely for brevity, to denote

a substance fulfilling the conditions by which “imaginary magnetic matter "

(§ 463) is defined; that is substance of which any two small portions repel

one another mutually with a force equal to the product of their quantities

divided by the square of the distance between them. Either or both quan

tities may be negative, and the negative product of unlike masses indicates

attraction. Not being in any way occupied with Kinetics at present, we

suppose this imaginary matter to remain where it is placed until we please to

move it ; so that a “distribution ” of it may be supposed to be either a rigid

body or a flexible body, or a flexible and compressible body, held at rest by

the necessary force, except when we suppose it to move ; and then we per

form work, positive or negative, upon it to whatever amount is necessary to

produce, irrespectively of inertia, the supposed motion against or with the

forces resulting from attraction or repulsion, which the portions of the matter

moved experiences. All the formulae and conclusions are applicable to real

matter, gravitating according to the Newtonian law, if we substitute attrac

tion for repulsion, that is to say, change the signs of each formula. for force

or work, and exclude negative matter. In applications of gravity, therefore,

instead of the “mechanical value ” or “ potential energy” of a distribution

of the imaginary magnetic matter, we have an “exhaustion of energy”

(Thomson and Tait’s Natural Philosophy, § 549) in a distribution of real

matter.
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We have by Poisson’s theorem,

1 (IX dY dZ
F'ziiaitafiai

where X, Y, Z denote the components of the force at (w, y, 2,)

due to the body M. This equation (as it also expresses

Laplaee's theorem for space containing none of the matter of

M, since there p=0 ;) holds throughout space. Hence for (2)

we may write

1 °” "5 °° dX d1’ (1 ,
Q=-‘F/-J_J.M(HW+£)Vdwdy‘” (3)‘

Hence by integration by parts

1 an an no ’

Q=GLLJJXX+ YY'+ZZ')¢Zrd3/olz (4),

where X’Y'Z' denote the components of the force at (w, y, 2,)

due to M'.

Let now the second body consist of a distribution of .

matter coincident with the first and similar to it throughout,

but let the whole quantity of matter in the second body be

infinitely small and be denoted by dm, that of the first being

denoted by m : we shall have

X'=‘i'lX, Y'=‘fi"-Y, z'= ‘522
in m 7"

Instead of Q write now (115'. We have

dE=4i ‘Bf °° f” f” dxdydz(X'+ Y'+Z*) (5).
1r m _co m m

This formula expresses the quantity of work required to add

dm similarly distributed to a distribution m already made.

Our supposed matter being not subject to the law of impenetra

bility, we might simply suppose the distribution of dm, precisely

similar to that of m, to be given at an infinite distance and to be

moved against the repulsion of m into coincidence: the work

required is that which is denoted by dE. So far it is not

necessary to suppose d'm infinitely small. But if dm be in

finitely small, the work required to bring it in infinitely smaller

parts from infinite mutual distances into the supposed position

of coincidence with the distribution of m, would involve only

an infinitely small amount of the second degree of infinitesimals,

on account of the mutual influences of the different parts of

2 E
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dm. Hence the formula (5) represents the work required to

augment the supposed distribution from m to m-l-dm, by

bringing altogether from a state of infinite diffusion the in

finitesimal portion of matter dm; and therefore the integral of

this formula from 0 to m is the whole work required to build

up the distribution m from infinitely diffused matter. Now,

with reference to the variation of m, each of X, Y, Z varies in

simple proportion to m, and therefore the triple integral may

be denoted by Gm’, so that we have '

l

h' h 'w 10 gives E=l 0m’.

81:‘

Finally eliminating C we have

E=8i1rfldxdydz(X’+Y'-{-Z”) (6).

The preceding deduction of the formula (4) from (2) mutatz's

mulandis allows us to come back to the following important

alternative formula ’

E=22 f” fmpVdxdg/dz _(7).

The direct proof of this formula by integration with reference

to m, commencing with an expression for dE derived from (2)

is obvious.

562. The forces at points similarly situated relatively to

similar bodies, are proportional to the linear dimensions of the

bodies, and to their densities in corresponding places.

The values of (1) for similar bodies are therefore as the fifth

powers of the linear dimensions, and as the squares of the

densities. Hence if a homogeneous rectangular parallelepiped

be divided into i3 equal and similar parts, and these parts be

separated to infinite distances from one another, the whole

value of the integral (1) for the scattered parts is equal to of

its value for the undivided body. It follows‘that if a finite

body be divided into an infinite number of infinitely small

parts, and these parts be separated to infinite distances from

one another, the value of the integral (1) for all the parts he
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- comes an infinitely small quantity of the same order as the

square of the diameter of one of the parts. Hence the integral

(1) relatively to a finite body or distribution of matter, composed

of ultimately homogeneous continuous substance, expresses the

work required to build it up out of infinitely small parts having

the same density (or any other density not too infinitely great)

and given at infinitely great distances from one another.

563. A complete analytical view of the circumstances con

templated in § 562 is, as is generally the case, easier than the

quasi-elementary method, involving intricacies of language and

perplexities of “compound proportion,” to which, as the only

alternative to utter vagueness, “ popular” expositions are com—

mouly restricted. At any point (z, y, 2,) let V be the potential

and X, Y, Z the components of force due to a body M ; and let

m be its mass. Consider a similar distribution of matter of

q-fold density at corresponding points, and of p-fold linear

' dimensions. The mass of this body will be pagm, and its

potential and force-components at the point corresponding to

(eat) will be p'qV, PqX, MY, PqZ

Hence if we put

E=$J [flaw Y’+Z‘)d.rdydz,

that is to say, if E denote the mechanical value of the distri

bution M, the mechanical value of the supposed similar dis—

tribution of altered dimensions will be

p‘q’E

564. Considering now similar magnets of different dimen

sions, whether polar magnets or electromagnets, we see from the

fundamental formulae (§§ 482, 483, 486, 545, 518) that the forces

at corresponding points are independent of the linear dimensions,

and are simply proportional to the intensities of magnetization,

when polar magnets are compared, and to the intensities of the

electric currents when electro-magnets are compared. Hence the

values of the integral (1) of § 561 for similar magnets are simply

proportional to their volumes; provided that, when polar magnets

are compared their intensities of magnetization are equal, and

when electro-magnets the intensities of their electric currents

are equal. Farther when polar magnets are compared, the pro

position holds whether the polar or the electro-magnetic defini
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tion (§ 517) of resultant force through interiors is adopted.

But an electro-rnagnet cannot be simply divided into parts

infinitely small in all their dimensions each of which is an

independent electro-magnet ; and therefore the further con

sideration of electro-magnets must be deferred, while we use

the divisibility of a polar magnet asserted in § 447, to inves

tigate the mechanical value of a distribution of polar mag

netism, after the manner of § 562.

565. At any point (x, y, z,) let 3 denote the resultant force

due to a polar magnet; the definition of § 480 being adopted

when (x, y, 2,) is in the substance of the magnet. The prelimi

nary proposition (§ 561) is immediately applicable, and shows

that the work required to produce any change in the relative

position of a set of magnets is equal to the augmentation of

lg-Igdxdydz

Hence (§ 564) when a uniformly magnetized magnet is of

such a shape that it can be divided into similar parts, the

mechanical value of the whole is simply equal to the sum of

the mechanical values of the parts; [a remarkable contrast to

the corresponding proposition (§ 562) relative to a homo

geneous distribution of matter]. In other words, the work

required to separate to infinitely great mutual distances any

number of parts, each similar to the whole, of a uniformly mag

netized magnet, is zero. v It follows that if an infinite number

of infinitely small magnets, each distributed through a finite

volume of space, with their magnetic axes parallel and with

equal sums of magnetic moments in equal finite portions of

that space, no work will be required to condense or rarefy the

distribution Without altering the proportions of mutual dis

tances, or the direction of the magnetic axes relatively to the

lines of these distances; provided that the condensation is

never pushed so far as to bring the constituents within dis

tances not infinitely great in comparison with the linear dimen

sions of the constituent magnets. This last proviso is unne

cessary when the constituents are uniformly magnetized, all with

the same intensity of magnetization, and. are so shaped that

when brought into contact in the supposed condensation they

fit together and form a whole, similar in shape to each part.
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566. Consider now a bar or cylinder of uniformly and longi

tudinally magnetized substance, terminated by planes perpen

dicular to its length; and let 1' denote the intensity of the

magnetization. This limit is approximately reached when the

length of the bar is very great in comparison with its greatest

transverse diameter. The corresponding distribution of imagi

nary magnetic matter consists (§ 473) of distributions of

positive and negative matter, of surface densityi on the two

terminal planes. The resultant force at points infinitely near

the edge of either of these planes is infinite; but notwith

standing this, it is easily proved that the value of the integral

(1) is finite. If we suppose the bar to be at first infinitely

short and to be gradually increased in length, the value of the

integral (1), expressing the work required to draw the two

terminal planes asunder against their mutual attraction,

increases continuously from zero‘ to a limiting value equal to

twice the value of the corresponding integral for either of the

terminal planes alone. Hence, because for similar bars the

values of the integral are (§ 565) as the volumes of the bars, it

follows that for bars of similar cross sections the integral has

values proportional to the cubes of transverse dimensions and

independent of the lengths, provided only that the length of

each bar considered is very great in comparison with its

greatest transverse diameter. Hence, if any polar magnet be

divided into infinitely thin bars ' along its lines of magnetiza

tion, and if these bars be separated to infinite distances from

.one another, the whole value of the integral (1) becomes in

finitely smallrl'

567. Hence if magnetized substance given in infinitely thin

bars at infinitely great distances from one another be put to

gether so as to form a polar magnet, the value of integral (1)

for this magnet expresses the amount of work which was spent

in thus building it up. Neglecting then the (unknown) mecha

* By an infinitely thin bar, I mean a bar of which the transverse diameters

are all infinitely small in comparison with the length.

1' But if each of these bars be divided into lengths comparable with its

transverse dimensions, and if these parts be separated to distance: from one

another infinitely great in comparison with their dimensions, the integral (1)

‘acquires a finite value which is equal to the amount of Work necessary to

produce this separation. - .
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nical value of the material supposed, given in infinitely thin

permanently magnetized bars at infinitely great distances from

one another, and defining the mechanical value of a magnet as

the amount of work required to build it up of such materials,

we see that this is expressed by the integral (1) of § 565.

568. The value of the integral (1) (§ 565) is zero, when the

magnet consists of closed solenoids ; because, in this case (§ 510

Core. 2 and 3) 3= 0 for every point. This result might at first

sight appear erroneous, because a finite positive amount of work

is required to'cut up a finite closed solenoid into bars and

separate them to infinite distances from one another. But it is

verified by remarking that if each such bar, being of finite

transverse dimensions, is split up into infinitely thin bars, work

is gained by allowing these infinitely thin bars to repel one

another to infinite mutual distances ; and that the whole

amount of work thus gained is exactly equal to what was spent

in reducing the solenoid to separate finite bars. Or vary the

process by supposing a finite solenoid to be first split up into

an infinite number of infinitely thin solenoids; then the sum

of the infinitely great number of infinitely small amounts of

work required to break these infinitely thin solenoids into bars

and separate the bars to infinite mutual distances, is infinitely

small. In short the explanation of the apparent difiiculty is

contained in § 566.

569. It is only for a magnet consisting of closed solenoids

that I! is everywhere zero. For every other magnet, the

integral (1) of § 565 has consequently a finite positive value.

This I shall now prove to be always less than

21rfwfw/w i'dxdydz

(where 'i denotes the intensity of magnetization), except in the

extreme case of a magnet consisting of closed shells, when the

‘limiting value is reached.

As in the postscript to § 517, let, for any point (a, y, 2), R

denote the resultant force according to the electro-magnetic

definition, and X, Y, Z its components; a, 18, 'y the com

ponent intensities of magnetization ; @ (still as in § 565) the

resultant foreraccording to the polar definition; and 6%, I2. Z.

B, its components and its potential, so that
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_ am _ 1m _ an it

5H3? a“? zflfi <1)

Let 6 denote the value of the integral (1) of § 565 ; and E

the corresponding integral of the electro-magnetic resultant

force; that is to say, let

esiii/iw
1 Q m) on

E=g;’/_Qf-Qf_mli’dxdydz (4).

The formulae (1') of the postscript to § 517, with (2) of the

present section give

R'=Zi’—81r(u(%6+ -$-|-'y%?)+161r'i'.

Use this in (4) ; follow the usual process of integration by

parts, which gives

lifi/;<e+e+e>dxdm=fli/bczeeem

remark that [§ 473 (2)]

§+j—f+ifg=-p, _ (6),

where p denotes the density of the imaginary magnetic matter

which we substitute for the given magnet (when the polar

definition is used for the force through the space occupied by

it); and remark that according to the alternative formula (7)

of § 561, ‘

®=§fljl1lpfidmdyda (7).

S0 we find E=@—2®+21r/Qfjoffi'davdydz;

and therefore @+E=21rfmjwfwi’dxdydz (8).

Now E has always a positive finite value except for the extreme

case of a magnet consisting of closed shells, when it is zero,

because 512 cor. 6), R= 0 in this case for every point whether

in the substance of the magnet or not. Hence the proposition

is proved. '
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570. For X2+ 172+ Z2 take, in virtue of (0), § 517,

(IN dM dL dN dM dL

‘Tare )+Y(F1?)+Z("_)’

and integrate by parts after the manner of § 518, but with

infinities for limits. \Ve thus find I .

flflfledydzfllttfltihfl <9»

or by 517 (l)

E=if°° f” /wdxdydz(Lu+Mv-i-Nw), (10).

This, which is the analogue to (7) of § 569, was discovered for

fluid motion by Helmholtz, and given in his paper on Vortex

Motion (Crelle’s Journal, 1858, or, translation by Tait, Philo

sophical Magazine, 1867, second half year). Lastly, substitut

ing for u, '0, w their values by (a) of § 517, and integrating

again by parts as before, we find

‘E:if °° f °° / ‘7° dxdydz(aX+BY+ 'yZ) (11).

The analogue to this is [compare § 503 (2)],

e=~if [” fmdxdydzeswawa (12)

The addition of these two formulae verifies (8) of § 569.

571. In a memorandum-book under date Oct. 16th, 1851, I

find the following statement :—“ I concluded that the value of

“ a current in a closed conductor, left without electromotive

“force, is the quantity of work that would be got by letting

“ all the infinitely small currents into which it may be divided

“ along the lines of motion of the electricity come together

"from an infinite distance, and make it up. Each of these

“ ‘infinitely small currents’ is of course in a circuit which is

“ generally of finite length. It is the section of each partial

“ conductor and the strength of the current in it that must be

“ infinitely small” A memorandum of principles and formulae

proving this statement had been written a few days previously,

(Oct. 13th, 1851). A somewhat amplified statement of the

principle was first published, but without the formulte, in 1860,

in the second edition of Nichol’s Cyclopwdia (Article f‘ Magnet~
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ism, Dynamical Relations of ”). Though the subject does not

belong properly to the present volume, I append in foot

notes the original memorandum,* and an extract from Nichol’s

* Me'nwram'lum, Oct. 13, l851.-—Refers first to an erroneous temporary

conclusion which led me to think “ that the value of a current in a closed

“ conductor will be affected by steel magnets in its neighbourhood.” “From

“ this I was shaken a little by Faraday’s finding (Exp. Res. § 1100) that steel

“ does not do so well as soft iron,” etc. [in respect to electro-mag'netic induc

tion], “and I soon saw that I must have fallen into some mistake. . . .

“ I made out the true state of the case. This is the explanation. Let

“ be the quantity of work done in time dt, by bringing a steel

“ magnet towards a galvanic current, kept up, say, by a battery. Then G,

“ the electromotive force due to the chemical action, will be incrcasml by

“ - Hence if k be the resistance in absolute measure

dE dc

‘7+ 3.5 E_
7=—k— I

“ so that if wdt denote the work

dE do dE de

2; ah’*a a)
w!”= d‘,

“ and if Mdt be the mechanical equivalent of the chemical action (increased

“ on account of the increased current), we have

0(0+ ‘g 3%)
M11! = o'yllt=—k_ .

“ Lastly, if Hdt be the heat developed, we have

(119‘ do a

O+a (‘E

JHdt=kfdt=T11! ;

“ and therefore JHdt=wdt + Mdt.

“ We conclude that the work actually spent, together with the mechanical

“ equivalent of the chemical action altogether produce exactly an equivalent

“ of heat, and therefore no other effect. Hence the mechanical values of the

“ current and of the magnet together are not altered. On the other hand,

“ let two pure electro-magnets be brought towards one another. Adopting

“ a notation corresponding to the former we have

dEds , dEds

Jae . filmy ,_"'+J~ a’

“We dtfi’ "/- k ’ 7- k’

‘d.c (7+dgg'y' 0’(0’+g ly)

(ls dt _ , ds (It

M=Cy= k , M= L,

2 i

(0J3? 2117/) (avg-2'53»

JII=L72+‘J7'2=: —~~ — =M+M/+ 2w.

k + k’
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Cyclopwdz'a,* containing the amplified statement. Defining then

the dynamical value of an electro-magnet as the quantity of

work specified in the statement quoted above in the text, we

have in equation (5) a proof the first hitherto published, of the

assertion in the extract from Nichol’s Cyclopwdia quoted in the

foot-note, that the dynamical value of a current in a closed

circuit may be calculated by the formula (4). For let open

magnetic shells (§§ 548, 506) be substituted for the “infinitely

small currents” referred to in the preceding statement, sup

posed first to be in their actual positions in the electro-magnet

composed of them ; and let these shells be separated to infinite

distances from one another. It is easily proved by considera

tions of infinitesimals analogous to those fully set forth in

“ Hence [J denoting Joule’s equivalent] there is more heat evolved than

“‘-l]-(H+M’+w) by %w, and therefore the mechanical value of two cur

“rents is diminished by éwdt in the time dt.”

* “Electricity in Mot1‘0n.—If an electric current be excited in a conductor,

“ and then left without electro-motive force, it retains energy to produce heat,

“ light, and other kinds of mechanical effect, and it gradually falls in strength

“ until it becomes insensible, as is amply demonstrated by the initial experi

“ ments of Faraday and Henry, on the spark which takes place when a gal

“ vanic circuit is opened at any point, and by those of \Veber, Helmholtz, and

“ others on the electro-magnetic effects of varying currents. Professor W.

“ Thomson has shown how the mechanical value of all the effects that a cur

“ rent in a closed circuit can produce after the electro-motive force ceases,

“ may be ascertained by a determination, founded on the known laws of

“ electro-dynamic induction, of the mechanical value of the energy of a cur

" rent of given strength, circulating in a linear conductor (a bent wire, for

“ instance) of any form. To do this, it may be remarked, in the first place,

“ that a current, once instituted in a conductor, and circulating in it after

“ the electro-motive force ceases, does so just'as if the electricity had inertia,

“ and will diminish in strength according to the same, or nearly the same,

" laws as a current of water or other fluid, once set in motion and left with

“ out moving force, in a pipe forming a closed circuit. But according to

“ Faraday, who found that an electric circuit consisting of a wire doubled on

“ itself, with the two parts close together, gives no sensible spark when

“ suddenly broken, in comparison with that given by an equal length of wire

“ bent into a coil, it appears that the effects of ordinary inertia. either do not

“ exist for electricity in motion, or are but small compared with those which,

“ in a suitable arrangement, are produced by the ‘ induction of the current

“ ‘ upon itself.’ In the present state of science it is only these efl‘ects that

“ can be determined by a mathematical investigation ; but the effects of elec

“ trical inertia, should it be found to exist, will be taken into account by

“ adding a7 term of determinate form to the fully determined result of the

“ present investigation which expresses the mechanical value of a current in

" a linear conductor as far as it depends on the induction of the current on

“ itself.

“ The general principle of the investigation is this—-If two conductors,
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§ 566, that when the shells are brought to infinite distances from

one another, the value of E becomes zero; and, therefore, as

the second member of (5) remains constant, the value of E

before the circuits were separated, is equal to the addition of

value which @ experiences during the process of separation,

that is to say, is equal to the work spent in effecting this

process.

572. Equation (5) expresses the following very remarkable

proposition. The sum of the dynamical values of an electro

magnet and of any corresponding lamellar polar magnet is

equal to 21:- multiplied into the sum of the squares of the

intensities of magnetization of all parts of the latter; the two

species of dynamical value understood, being those defined in

§ 571 and § 567.

“ with a current sustained in each by a constant electro-motive force, be

“ slowly moved towards one another, and there be a certain gain of work on

“ the whole, by electro-dynsmic force, operating during the motion, there

“ will be twice as much as this of work spent by the electro-motive forces

“ (for instance, twice the equivalent of chemical action in the batteries, should

“ the electro-motive forces be chemical) over and above that which they

“ would have had to spend in the same time, merely to keep up the currents,

“ if the conductors had been at rest, because the electro-dynamic induction

“ produced by the motion will augment the currents; while on the other

“ hand, if the motion be such as to require the expenditure of work against

“ electro-dynamic forces to produce it, there will be twice as much Work

“ saved off the action of the electro-motive forces by the currents being dimin

“ ished during the motion. Hence the aggregate mechanical value of the

“ currents in the two conductors, when brought to rest, will be increased in

“ the one case by an amount equal to the work done by mutual electro

“ dynamic forces in the motion, and will be diminished by the corresponding

“ amount in the other case. The same considerations are applicable to

“ relative motions of two portions of the same linear conductor (supposed

“ perfectly flexible). Hence it is concluded that the mechanical value of a

“ current of given strength in a linear conductor of any form, is determined

" by calculating the amount of work against electro-dynamic forces, required

“ to double it upon itself, while a current of constant strength is sustained in

“it. The mathematical problem thus presented leads to an expression for

“ the required mechanical value consisting of two factors, of which, one is

“ determined according to the form and dimensions of the line of the con

“ ductor in any case, irrespectively of its section, and the other is the square

“ of the strength of the current. The mechanical value of a current in a

“ closed circuit, determined on these principles, may be calculated by means

“ of the following simple formula, not hitherto published :—

1
25],”a" dulydz,

“ where R denotes the resultant eleetro-magnetio force at any point (r, y, z).

“ This expression is very useful in the dynamical theory of magneto-electric

“ machines and electro-magnetic engines.”—From Article “ Magnetism,

“ Dynamical Relatio us of," Nichol’s Cyclopcedia, edit. 1860.
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XXVII. [Jam 1872.]

CHAPTER VIII.—-Hydro—kinetic Analogy.

573. The hydro-kinetic analogy for the force of a polar

magnet seems to have been first perceived by Euler. It re

quires the supposition of generation and annihilation of fluid

in places of positive and negative magnetic polarity, if we

adopt for “ the resultant force” in the magnetic substance the

definition proper for a polar magnet laid down in § 479 ; unless

we limit the field of force considered, to places void of mag—

netized matter, whether external to the magnet or in hollows

within it. Thus, if we consider all space as filled with an

incompressible frictionless liquid initially at rest, and if at

certain points, lines, surfaces, or volumes, we assume more

liquid of the same density to be continuously generated, and

at the same time in other places liquid in equal quantity to be

continuously annihilated, the velocity of the resulting fluid

motion would be the same in direction and magnitude as the

resultant magnetic force due to a distribution of magnetism

presenting unneutralized polarity, positive (or northern) in the

places of the fluid analogue where there is generation, and

negative (or southern) in the places where there is annihilation.

There is, however, no interest in pursuing the consideration of

this extension of the hydro-kinetic analogy through spaces

occupied by magnetized matter, involving as it does the strained

supposition of the generation and annihilation of matter in

spaces through which the liquid is perfectly free to move.

574. On the other hand, the hydro-kinetic analogy limited to

spaces unoccupied by magnetized matter is perfectly satisfactory,

as far as it goes. Let all these spaces be occupied by incom

pressible liquid, and let the magnetized matter be replaced by

a rigid body perforated so as to constitute an infinitely numer

ous group of infinitely fine tubes fulfilling the following con

ditions :—Divide the whole surface of the magnet into infinitely

small areas inversely proportional to the magnitudes of the

normal component forces across them whether outwards or

inwards. Because the surface integral of the normal com

ponent force for the whole surface of the magnet is zero, the
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number of these infinitesimal areas in that part of the surface

where the normal component force is outwards must be equal

to the number in the remainder of the surface. Now to pass

to the fluid analogme; instead of the magnet substitute a

rigid body perforated from each of the infinitesimal areas in

the part of the surface where the normal component force

is positive, by a single tunnel through to one of the areas in

the other part of the surface. Let there be in the first place

a piston in each of these tunnels or tubes, and apply force to

it until it moves with such a velocity that the velocity of efflux

at one end and influx at the other is numerically equal to the

normal component of the magnetic force to be represented:

and when this condition has been once reached let the pistons

become dissolved into perfect liquid homogeneous with the

rest. The solid with its perforations remaining a rigid tubular

system, the liquid will continue for ever circulating through

the tubes and the free external space : and its motion through

all external space will be such that the velocity is everywhere

of the same magnitude and in the same direction as the re

sultant magnetic force in the corresponding position relatively

to the magnet. The proof of this proposition” is ;—that accord~

ing to a well-known hydro-kinetic theorem, the motion of the

liquid must be everywhere “irrotationa ” [Vortex Motion,

§ 59 (e)], and that if the normal component fluid velocity, or

normal component force in the magnetic analogue, be given

over the whole surface, the fluid motion or magnetic force is

determinate through all external space (§ 591, Theorems 1

and 2). The permanence of the fluid motion fulfilling the

same condition follows at once from the constancy of the

circulation through each perforation [Vortex Motion, § 59 (d)]

consequent upon the frictionless character which we assume

the fluid to possess.

575. In the preceding statement no condition has been

* All the hydro-kinetic terminology and propositions used in the remainder

of this volume are fully explained, with demonstrations when necessary, in

the portion already published (in the Transactions of the Royal Society of

Edinburgh, April 1867 and Dec. 1869) of a paper on “ Vortex Motion," with

the continuation of which I am at present occupied. References to it are

given when necessary to justify any of the assertions in hydro-kinetic sub

jects made henceforward.
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imposed as to the pairs of apertures in the surface of the rigid

body substituted for a magnet, which are to be connected

through the internal tubes; no such condition having been

necessary, because we supposed the apertures over the whole

surface to be inversely proportional to the magnitude of the

normal component force. The statement may be varied thus :

take all that part of the surface for which the normal component

force is outwards, and divide it in any manner into infinitesimal

areas. From each point in the boundary of any one of these

areas, draw a line through external space till it meets again,

as it will meet again, the surface of the magnet. By doing

this for every infinitesimal area of the boundary traversed

outwards, a corresponding area, where the normal component

force is inwards, is found, and the whole remainder of the

surface is thus divided‘ into areas corresponding to those chosen

in the first part. Let the pairs of corresponding areas be con

nected by internal tubes. The remainder of the statement

may be applied without alteration to this tubular arrange

ment. The fluid analogue thus constructed, will have the

peculiarity, that each portion of fluid circulates for ever along

one circuit (that is to say, closed curve).

576. The hydro~kinetic analogy is both more complete and

more simple, it is in fact perfectly complete, and therefore per

fectly simple, if instead of as in § 479 adopting the definition

proper for a polar magnet (§ 549), we adopt the “electro

magnetic definition” (§ 517 and postscript to § 517), for the

resultant force at any point in the substance of the magnet,

whether it be a polar magnet or an electro-magnet. The

resultant force “ electromagnetically ” for the space

occupied by the magnet, and the resultant magnetic force accord

ing to the unambiguous definition for space not occupied by the

magnet, agree everywhere in magnitude and direction with the

velocity in a possible case of motion of an incompressible liquid

filling all space. To prove this it is only necessary to remark

that the sole condition that X, Y, Z, may be the velocity-com

ponents in a possible case of motion of an incompressible fluid,

is that they fulfil the equation of continuity

(7X dY dZ

5+7}, + dz =
0;
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and we have seen (§ 517) that

dX dY dZ

7E+E+E=

throughout the substance of the magnet as well as through

external space, if X, Y, Z denote components of the magnetic

force. The component intensities of electric current in the

electro-magnet producing this force are [§§ 517 (a), (l)]

LZ_Q’ .1, Qua a H d_
41:- dy dz ’ 41r dz dx,41r%_dy .

577. This proposition, which I found more than twenty

years ago as an obvious deduction from my formulze for electro

magnetic force, published in the Transactions of the Royal

Society for June 1850 515...518 above), is purely kine

matical. Since that time it has acquired an interest which it

did not then possess for me, in virtue of Helmholtz’s splendid

discovery of the dynamical laws of vortex motion.“l I had not

known more than that the distribution of “electro-magnetic"

force through the substance of the magnet, as well as through

external space, corresponded to a possible distribution of motion

in a continuous incompressible fluid filling all space, and had

no clue to the consequences of leaving a frictionless liquid to

itself, with such a motion once established in it. By Helm

holtz’s theory, it is demonstrated that the fluid motion alters so

as to always remain the representative of the electromotive force

due to an electro-magnet continuously varied according to the

following law. Lines of fluid matter which initially coincided

with the lines of electric current in the electro-magnet initially

replaced by the fluid, however they change in the subsequent

motion, always mark the lines of electric current which must

be constituted to produce the altered electro-magnet; and the

whole amount of the intensity of the electric current crossing

any area bounded by any closed curve passing always through

the same fluid particles remains constant. It is unnecessary,

however, to enter now on the wide hydro-kinetic subject thus

indicated ; although I cannot but refer to Helmholtz’s theorem

of vortex motion, not merely on account of its intrinsic beauty,

0

" Crelle’s Journal, 1858, and (Tait’s translation) Philosophical Magazine,

July 1867.
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but because I have found it of great value in assisting me to

realize the purely kinematic representation of electro-rnagnetic

force which fluid motion affords. The general hydro-kinematic

analogy, and the dynamics of the irrotationally moving portions

of the fluid, as they served me primarily twenty-four years ago

in investigating the inverse problems, will be further considered

in the following chapter.

578. The hydro-kinetic analogy is valuable in the mathe

matical theory of electro-rnagnetism as leading to a set of

theorems respecting magnetic forces produced by electric cur

rents, precisely analogous to those theorems of Green's respect

ing forces due to centres acting according to the Newtonian

law, which I deduced in 1841 from an analogy with the

“Uniform motion of heat in homogeneous bodies,” by the in

vestigation forming the first part of this volume (§ 1 to 24

above). The following theorems I...III. are particular cases

of the general proposition of § 576, and require no further

demonstration.

579. Theorem I.--—(Compare § 594 below.)—Considering all

space as occupied by an incompressible frictionless liquid, let

S be a closed surface, which (to facilitate conceptions) may be

supposed to be constituted of a perfectly flexible and extensible

membrane. At first let there be no motion of the liquid in

any part of space, and then let any motion whatever he arbi

trarily given to S, subject only to the condition of not altering

the volume enclosed by it. The motion which is given to the

liquid will be everywhere irrotational (“ Vortex Motion,” § 16

and § 60), and will therefore be continuously expressible

throughout external space by a potential; and continuously

expressible, likewise, through the internal space: but there

will be a discontinuity at S; on the two sides of which the

velocity-potential must differ by an amount equal to P, the

impulsive pressure which would have to be applied to S to pro

duce the actual motion instantaneously from rest. Divide S

into infinitely narrow hands by lines corresponding to equal

values of P, and in each of these bands let an electric current

circulate of strength equal to 31; where 8P denotes the differ

ence of the values of P at its two boundaries. The magnetic
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force produced by the distribution of electric currents thus con

stituted, will agree in magnitude and direction with the fluid

velocity in the hydro-kinetic analogue. This proposition I used

in a communication to the British Association at Oxford, in

June 1847, “ On the Electric Currents by which the Phenomena

of Terrestrial Magnetism may be produced ;” and it is referred

to in the abstract of that communication (now reprinted in

§§ 602, 603 below), which appeared in the yearly volume. It

was probably one of five propositions which I wrote to Liou

ville in the September following (see § 589 below).

580. Corollary.—ln the electro—magnetic analogue the direc

tion of the electric current is perpendicular to the relative

tangential motion of the liquid on the two sides of S, and the

surface intensity of the electric current is equal to the relative

tangential velocity divided by 4-rr.

581. Example.—Let S be kept of constant figure, and let the

motion given to it be purely translatory. The liquid within

it will move as if it were a rigid body. Hence the interior

velocity-potential will be Ux, if U be the velocity, and if its

direction be parallel to the axis of z. Hence if we consider a

solid carried along through a frictionless liquid ; determine the

velocity and direction, relatively to the solid, of the liquid

gliding along each part of its surface; and construct the ana—

logous surface electro-magnet according to the rule of § 579 ;

this distribution of electric currents will produce a uniform

field of force, of intensity U throughout the space enclosed by

the surface on which they are distributed, and will produce a

resultant force at every external point, agreeing in magnitude

and direction with the absolute velocity which the liquid is

compelled to take in making way for the solid. The analytical

expression of this very interesting theorem is contained in (IX.)

of § 517, applied to the case in which

6:42”, 3:0’ 7:0,

582. Tlwov'em II. (Includes the case § 581 of Theorem I.)—

Let any motion of rotation be given to a rigid body in an in

finite incompressible liquid. The magnetic analogue consists

of a uniform current traversing the volume of the rigid body

in lines parallel to the axis of rotation, and of intensity equal

2 F
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to twice the angular velocity; with the circuit completed

superficially by the surface distribution constructed according

to the rule of § 581. The resultant force of the completed solid

and superficial electro-magnet (§ 535) thus formed will agree

everywhere in magnitude and direction with the absolute velo

city of the matter, whether solid or liquid, in the kinematic

analogue. The analytical expression of this theorem (if we

take the axis of the solid’s rotation for the axis of an) is had by

putting in (IX.) of § 517

“=0: B=_(z1 Y=gy

583. Theorem [IL-Consider a fixed rigid ring, having, for

simplicity, but one perforation, and therefore giving duplex

continuity to the space external to it. Let the whole of the

external space be occupied by an incompressible frictionless

liquid in a state of cyclic motion, with the ring for core. Take

any surface S bounded by stream lines. This is necessarily a

surface of duplex continuity enclosing the ring. On one of

the stream lines forming a. circuit of S, take i point-s corre- ,

sponding to infinitely small differences of the velocity potential,

each an exact sub-multiple;- of the “cyclic constant,” or

“whole circulation” (1:). Through these points draw equi

potential lines on S, which therefore will each cut perpendicu

larly all the stream lines on S. In each of the infinitely

narrow hands into which S is thus divided (constituting a

geometrical circuit which crosses all the stream line circuits),

let an electric current of strength L. circulate. The resulting

4m

elcctro-magnetic ,force will be zero at every point within S, and

will be equal to, and in the same direction as, the fluid velocity

in the space external to S. This interesting and important

proposition is perfectly analogous to that which is given by

Green for surface distribution of electricity and the resulting

electric force in Article 12 of his Essay (to which reference is

made in Thomson and Tait’s Natural Philosophy, § 507, under

the designation “ reducible case of Green's problem).”
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XXVIII. [Non 1871.]

CHAPTER IX.—Invcrse Problenw.

584. Inverse problems of magnetism are problems in which

the data are of magnetic force, and it is required to find distri

butions of magnetism or of electric currents by which the given

force can be produced. They fall under two classes :—I. Those

in which the force is given for every point of space, and II.

Those in which the force or some component of the force is

given through some portion of space, whether volume, surface,

or line, and it is required, under certain limitations or condi

tions, to find distributions of magnetism or of electric currents

by which the given force can be produced. A complete and

unconditional solution of every problem of Class I. is, as we

shall immediately see, always easily found.

585. Class I.—First case, polar definition (§ 479 and Post

script to § 517) of resultant force adopted. In this case the

magnetic force is expressible by means of a potential, and

' therefore the most general form of data is ;—given the potential

at every point of space. Let V be its value at w, y, z, so that

if 35, §, 2 denote the components of the magnetic force,

g=§gy, _§%K,z_;£Y (u

If a, ,8, 7 denote the rectangular components of the required

magnetization, we have

1%: _%5-+%Z-= ‘ii/F413;’) [§ 517 (m) repeated].

and a, ,8, ry may be any functions whatever which fulfil this

equation. Then as a particular solution we have

, _1 av 1 av 1 dV (2)_
a: ~__,s=-_-.y=__-_

41r dx 41r dy 41:- dz

Let now a", ,8", 7' denote any three functions whatever fulfilling

the following equation :—

da" as” dy"_-J;+;,e+E_o (3)

The complete solution of the problem is,

a=a'+a", B=B'+fl", ~/=~/+1" <4)

The arbitrary part a", B", 7", of this solution consists of any

distribution of magnetization agreeing everywhere in intensity
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and direction with the velocity and direction of a possible

motion of an incompressible fluid through all space. When

the given function V is such that its first and second diffe

rential coefficients

Lil’ d'V dV d’V dV d’V

7 --7 7—_7 ——‘

as’ dz." dy dy dz dz’

are everywhere finite, there is nothing more to be said in respect

to the preceding solution; but when the first differential co

eflicients %,, etc., though themselves everywhere finite, vary

anywhere abruptly in their values, an interpretation of a suffi

ciently obvious character becomes necessary to deduce the

solution from the preceding formulae. Or the form of solution

may be varied by introducing the proper formulae [§ 473 (1)]

for surface-distributions of the imaginary magnetic matter at

the surfaces of discontinuity.

586. Class I.—Second case, electro-magmtic definition adopted.

In this case the force, though expressible by means of a poten

tial throughout every portion of space free from magnetized

matter, is not so expressible through the substance of the magnet.

Hence the data must be the intensity and direction of the re

sultant force at every point of space; but these data are not

altogether arbitrary inasmuch as if X, Y, Z denote the three

rectangular components of the force,

%+%+-fl_f=0 [§ 517 (k) repeated].

Hence the problem is ;—given X, Y, Z, each any function

(as, y, z), but subject to equation (k) of § 517 ; it is required to

find three quantities a, ,8, 7 such that

"(d7 as __dZ av’ “(2,: d7 _ax dZ as do. _dY axnmahcpcaml
—-— —~—— — —-——r41r --~ _~--
dydz_dyrlz (ix-‘dads: dandy dmdy

Of this problem the general solution is

_ l d¢ _ 1 11¢ _ 1 dl/I _

¢—FX+%’ B—GY+W; ‘lb-52+}; (5),

where 1]» denotes any arbitrary function of (ac, y, z). For sim

plicity we have supposed that there is no abrupt variation in

the given values of X, Y, Z. The proper formulze to suit the

case of abrupt variations from one side to another of any sur

face, are easily found.
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587. Remark that the arbitrary functions a", B", 7", in the

solution (4) of § 585 express any solenoidal distribution what

ever with the solenoids all closed ; and that the arbitrary part

‘\P in the solution (5) of § 585 expresses any lamellar distribu

tion whatever with the shells all closed.

588. Remark also that the distribution of imaginary magnetic

matter derivable (§ 473) from the solution of § 584, and of

electric current derivable (§ 554) from the solution of § 585,

are each determinate, and that it is only the distribution of

magnetization which is affected by the arbitrary part of the

solution in either case.

589. Class II.—For the present it is enough to consider the

following typical problems of this class. Given the force

through space external to a given closed surface S: required

the distribution of imaginary magnetic matter, or of electric

currents, or of magnetization; each distribution confined to an

infinitely thin layer of matter coincident with this surface : and

to investigate the determinacy of the solution in each case.

With reference to these problems, I find a leaf of manuscript

written in French, indorsed :——“ Fragment of draft of letter

“ to M. Liouville, written on the Faulhorn, Sunday, September

“ 12, 1847, and posted on the Monday or Tuesday week after,

“ at Maidstone. The letter has not been published yet, although

“ in Sept. 1848 I understood from M. Liouville in Paris, that he

“ had it for publication. Probably it has fallen aside and is

“ lost ['4' in consequence of the disturbed state of Paris at that

“ time], which I should regret, as it contains my first ideas,

“ and physical, especially hydro-dynamical, demonstrations of

“ the theorems I am now about to write out for publication in

“ my paper on magnetism for the Royal Society, from rough

“ drafts written in August 1848. \V. T. Oct. 29th, 1849.”

The “ now” has been deferred until the present time,

November 20th, 1871. I am obliged to write from memory, as

I have not been able to recover any of those rough drafts. I

have added important details involving new ideas regarding

polycyclic" fluid motion, for much of which, as for the whole

terminology of multiple continuity, I am indebted to Helm

holtz’s paper on Vortex Motion.

* “ Vortex Motion,” § 60 (z).
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590. First, with reference to the data, it must be remarked

that the force being by hypothesis due to polar magnets or

electro-magnets altogether within S, cannot be given arbitrarily

through the whole space external to that surface. It may

indeed be readily proved from a. remarkable and important

proposition due to Gauss, to be found in Thomson and Tait’s

Natural Philosophy, § 497, that if the potential were given for

any closed surface, lying altogether external to S, whether

enclosing S or not, and if not enclosing S, enclosing any portion

of external space however small, the force would be determinate

throughout the whole space external to S. The same may be

proved if (instead of the potential) the normal component force

were given over any surface whatever, external to S, and not

enclosing it, or over any simply continuous surface enclosing S.

At present, however, two cases only shall be considered :—

the potential given over the whole surface of S (Case 1), and

the normal force given over the whole of S (Case 2).

591. Preliminary Theorems 1...5.— Theorem 1 (Discovered

by Green). The potential being given arbitrarily over S, the

resultant force is determinate through all ewternal space, and a

determinate distribution of matter over S, acting according to the

inverse square of the distance, may befound which shall produce it.

Theorem 2.—The normal component force being given for S,

the force is determinate through all external space, and a determi

nate distribution of matter over S acting according to the inverse

square of the distance may be found which shall produce it, pro

vided that S is simply continuous. [Compare § 207.]

Theorem 3.—The potential being arbitrarily given for S, sub

ject to the condition that its integral amount for the whole surface

is zero; or the normal component force being arbitrarily given

for S, subject to the condition that its integral amount for the

whole surface is zero ,' theforce in each case is determinate through

all external space, and a determinate distribution of electric

currents over S may be found which shall produce it, provided

that in the case in which the normal component force is given,

the surface S is simply continuous.

Theorem 4.—If S be complexly continuous, let 6'1, 0,, G8, etc.,

be mutually irreconcilable closed curves encircling it, whether

in contact with it, or in the space external to it. If the con
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tinuity is n—fold, there are n such circuits. The normal com

ponent force being given arbitrarily for S, subject only to the

condition that its integral amount for the whole surface

is zero; and an arbitrary value x1, x2, etc., being given for the

integral of the tangential component force round each of the

circuits C1, G2, etc.: the resultant force is determinate through

the whole space external to S, and a determinate distribution of

electric currents over S may be found which shall produce it.

Theorem 5.—When S is complexly continuous, no distribu

tion of matter over it can be found to produce force through ex

ternal @ace fulfilling the conditions of Theorem 4, when the

values of the cyclic constants x1, x2, are all finite ; but if infin

itelg thin sheets of matter be introduced as barriers closing all the

apertures of S, a determinate distribution of matter on these sheets

and over S may be found which shall produce that force through

all the space external to S, except the infinitely small parts of it

occupied by the barriers. '

592. Dcmonstratums of Theorems 1...4.—T0 prove Theorem

1, let the whole space within S and the wholespace external to

S, be occupied by homogeneous incompressible liquid, but let

there be an infinitely thin vacuous space separating the external

from the internal fluid. Let equal impulsive pressures be ap

plied in opposite directions, to the liquid surfaces on the two sides

of this vacuous space, equal everywhere to the given value of

the potential at the corresponding position in S, of the magnetic

problem, the pressure being reckoned as positive when it is

outwards from S on the external liquid, and inwards from S on _

the internal liquid. The motion will be irrotational throughout

each portion of the fluid; and the initial velocity-potentials in

portions of the fluid infinitely near one another on the two

sides of S, will be equal to the given magnetic potential.

Hence (§ 7) the given potential over S would be produced

by a distribution of matter over S, having its surface density

everywhere equal to the velocity of separation (reckoned

negative when there is approach) of the two fluid surfaces

divided by 4-1r.* By “velocity of separation” is meant the

* This is merely a hydrodynamical proof of Green’s celebrated theorem

that a distribution of matter, acting according to the inverse square of the

distance, over a surface S may be found determinately, which shall produce

any arbitrarily given potential over the whole of S.
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difference of the normal component velocities on the two sides

of S.

593. Demonstration of Theorem 2.—-VVith the same hydro

kinematic arrangement as in § 592, let the boundary of the

fluid external to S be impulsively pressed so as to produce

instantaneously a normal component velocity equal to the

given normal component magnetic force. And let the bounding

surface of the fluid within S be simultaneously acted on, with

a pressure equal and opposite to that which produces the speci

fied effect on the external fluid. The motion generated is

irrotational through each portion of the fluid, and the potentials

on the two sides of S, are each equal to the potential at S of

the distribution of force through external space, which has for

its normal component the given value for every point of S, the

density of the determinate distribution of matter over S which

would give that external distribution of force is, as in § 592,

equal to the velocity of separation of the liquid surface,

divided by 471-.

594. Demonstration of Theorem 3 (compare 579, 580).—

Let the whole of space be continuously occupied by homo

geneous incompressible liquid, without any vacuous space at S;

and, as immediate recipient for the action of force, imagine S

to consist of a perfectly flexible and extensible membrane,

separating the internal from the external fluid. Apply per

pendicularly to this membrane an impulsive pressure which

shall produce a normal component velocity equal to the ex

ternal normal component force determinable from the given

potential according to Theorem 1, when it is potential that is

given, or equal to the given normal component force when

it is force that is given. The motion is irrotational through

out each portion of the fluid; and the normal component

velocities on the two sides of S, are everywhere equal to one

another; but the tangential motions of the fluids, and therefore

the velocity potentials, are unequal on the two sides. In the

former case the velocity potential in the external fluid infinitely

near S or in the latter case, the normal component velocity of

the fluid on each side of S has specified values. In either

case the determinate distribution of external force fulfilling the

specified condition at S, whether as to potential or as to normal
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component, is produced 579, 580) by a determinate dis—

tribution of electric currents on S, fulfilling the following

specification. The direction of the electric current is to be

everywhere perpendicular to the direction of the slip in the

fluid analogue ; and the surface intensity of the current is to be

equal to the velocity of the slip divided by 4w.

595. Demonstration of Tlworem 4.—Let the same hydro

kinematic arrangements as those in the demonstration of

Theorem 3 he made, and in addition let each aperture of S be

temporarily stopped by a perfectly flexible and extensible

membrane, introduced merely as a recipient for the action

of force. Let S be impulsively pressed so as to produce

a normal component velocity equal to the given normal

component force, and let uniform impulsive pressures equal

respectively to x1, x2, x3, etc, be simultaneously applied to the

barriers. The constancy of the difference, 1c, of the potentials

between contiguous portions of fluid on the two sides of each

barrier, secures equality in the tangential component velocities,

and therefore no “slip” between them. Suppose then the

barriers annihilated. The determinate motion thus produced

is irrotational throughout each portion of the fluid, and it fulfils

in the space external to S precisely the conditions which, when

magnetic force is substituted for fluid velocity, are those speci

fied in the enunciation of Theorem 4. Hence a determinate

distribution of currents over S, answering to the same speci

fication as that of Theorem 3, produces force in the space

external to S which fulfils our present conditions, and thus

Theorem 4 is demonstrated.

596. Demonstration of Theorem 5.—Let the apertures of S be

stopped by material sheets of finite thickness. Imagine the

matter of these sheets to be liquid, homogeneous with that

occupying the rest of space, and continuous with the liquid sup

posed to occupy the interior of S. The boundary of the whole

of this liquid is a simply continuous closed surface, consisting

of the part of S not covered by the addition of the supposed

barriers, and the two surfaces of each of these barriers. Let S’

denote that part of the surface of S; and let B1, B1’, B2, B2’,

etc., denote the surfaces of the barriers. As in the demonstra

tions of Theorems 1 and 2, let the external fluid be separated
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from the internal by an infinitely thin vacuous space over the

whole bounding surface, and let pressure act so as to produce

a given normal component in the external fluid next to S’; zero

potential in the external fluid next to B1, B2, etc.; potentials

equal to K], 1:2, etc., in the external fluid next to B1’, B2’, etc. ;

and everywhere equal potentials in portions infinitely near

one another, of the external and internal fluids. As in the

demonstrations of Theorems 1 and 2, it is seen that there

is a determinate distribution of matter over the whole bound

ing surface which shall produce the given normal component

force over 8', potential zero for B1, B2, etc., and potentials

- x1, x3‘, etc., for B1’, B2’, etc. If now the barriers be made

infinitely thin, so that B1 and B1’ shall be infinitely near one

another, and B2, B2’ infinitely near one another, and so on;

the prescribed conditions are fulfilled by the distribution of

matter determined for the limiting case thus reached. The

distribution of imaginary magnetic matter on B1, B1’, B2, B2’,

' etc., may be explicitly determined by the following simple con

siderations. Consider an infinitely small column of the fluid

between B1 and B1’, bounded by any cylindrical or prismatic

surface cutting the surfaces B1, B1’, at right angles, and enclos—

ing equal infinitely small areas on these surfaces. The density

of the fluid being unity, the mass of this column will be At,

if t denote the thickness of the space between B1 and B1’, and

A the area of either end of the column. This mass is acted

on by an impulse K111, because by hypothesis one end of it

experiences, during the initiating impulse, an impulsive pres

sure equal to K, per unit area, and the other, zero pressure.

Hence the velocity acquired by the infinitesimal column is

"i

T .

ternal fluid, which is equal for points infinitely near one another

on the two sides of the barrier supposed infinitely thin. The

velocity of separation of the fluid surfaces on each side of B2, and

the velocity of approach of the fluid surfaces on each side of B1’

Let n denote the normal component velocity of the ex

will be each equal to n+%- Hence the matter to be dis

tributed over the two surfaces 3,, B1’ will be respectively,

iéV-t?) AS % is infinitely great, the finite term n may
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be neglected, and therefore the densities on the two surfaces

are :bfiz- These are (§ 472) precisely the densities of the

positive and negative magnetic matter representing the free

polarities on the two sides of a magnetic shell (§ 506) of strength

"1

3;.

parts of the shell, as is allowed in the general definition

[§ 506 (1)] of a magnetic shell. The prescribed difference of

potentials, K1, reckoned from B,’ through the external fluid to

B1, is verified by § 512, cor. 3. .

597. Purely analytical proofs of theorems, including Theorem

1 and Theorem 2 above, are to be found in Thomson and Tait’s

Natural Philosophy, Appendix A. (e), and § 317, Example (3),

and are included in 206, 207 above [compare 709...7l6

below]. These references supply also all that is necessary to

eliminate all hydro-dynamical considerations from the preced

ing proofs of Theorems 3, 4, and 5. I therefore confine myself.

on the present occasion to the hydro-dynamical proofs now

given; but remark that the analytical proofs are valuable in

respect to physical science as showing that in each case the

integral _/[/(X’+ Y’+z') dxdydz,

extended through external space is an absolute minimum [com

pare § 758 below] subject to the conditions prescribed in the

enunciations of the several cases, and that the value of the same

integral for the internal space is also a minimum subject to the

conditions specified in the several demonstrations given above.

From this, with 567, 571 above, it follows that the dynamical

value of the determinate distribution of imaginary magnetic

matter on the surface S, which produces at that surface the

prescribed potential of Theorem 1, or the given normal com

ponent force of Theorem 2, is less than that of any distribution

of imaginary magnetic matter not confined to that surface, but

still producing over it the same potential or the same normal

component force ; and that the electro-magnetic dynamical

value of the determinate distribution of currents on S which

produces at that surface the ‘prescribed potential or the pre

scribed normal component force of Theorem 3, is less than that

of any distribution of currents not confined to S, but still pro

The thickness t may, of course, be different in different
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ducing the same potential or the same normal component force

over that surface.

598. To pass from a determinate distribution of imaginary

magnetic matter, or a determinate distribution of electric

currents, to a distribution of magnetization which shall pro

duce the same resultant force, is as we have seen (§ 587) an

indeterminate problem, even if the force is given throughout

space Still more is the problem indeterminate if the force be

given in only one part of space, and it is required to find a dis

tribution of magnetization in the remainder of space which

shall produce that force. To find the complete solution of this

problem with the proper arbitrary functions, we may proceed

either from the determinate distribution of imaginary magnetic

matter of § 591, Theorems 1 and 2, or from the determinate

distribution of electric currents of § 591, Theorems 3 and 4, on

the bounding surface. Our first step towards the complete

solution shall be to find, from a determinate distribution of

imaginary magnetic matter, or from a determinate distribu

tion of electric currents, on a surface S, distributions of

magnetization confined to this surface which shall produce the

given external force. ‘

599. Divide the whole superficial distribution of imaginary

magnetic matter into an infinite number of equal parts, irre

spectively of sign. As in § 523, join positive and negative

parts in pairs chosen arbitrarily, by arbitrary curves all in the

surface S, and lay solenoids of equal strengths along these

curves. Thus on the surface S a distribution of tangential

magnetization to a certain degree arbitrary is obtained, which

shall produce through external space a determinate distribution

of magnetic force fulfilling the prescribed surface condition.

A complete representation of what is arbitrary in this solution

consists of any distribution whatever of closed solenoids, each

wholly coincident with S. Any such distribution of magneti

zation may (§ 510, Cor. 2) be superimposed on one fulfilling the

prescribed condition without violating this fulfilment.

600. To proceed from surface distribution of currents to

surface distribution of magnetism; (which if S is simply

continuous can be done always, but if S is complexly con

tinuous can only be done when every stream line bounds
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an area on S ;) divide S by electric stream lines into an

infinite number of bands of such breadths as to give equal

strengths of current in them. This division must begin and

end in points which for the present I call poles. There

must therefore be at least two poles, and there may be any

number, odd or even, greater than two. These poles I call

north or positive when the electric currents in the bands en

circling them are in the direction in which the hands of a

watch, placed upon them facing outwards, would move. All

the poles may be north poles or all south poles, or some may

be north and some south. Commencing with any one of the

poles, substitute a. magnetic shell passing through it and lying

altogether on S, for each band encircling it. If the whole sur

face can be thus exhausted the thing is done. If not, take

next a pole on the unexhausted portion of surface and follow

again the same rule; and so on until for each infinitely thin

band of current, a magnetic shell has been substituted. Thus

we have (§ 508) a complex magnetic shell instead of the distri

bution of currents. Unlike the result of § 599, this result is

determinate, involving, however, one arbitrary constant. The

solutions thus obtained, differing according to the order in which

the two or more poles have been taken, are, each of them, fully

determinate. The difference between any two of them is

clearly a uniform magnetic shell of determinate strength coin

cident with the whole of S. The general solution comprehend

ing them all, or any combination of them, is had by taking any

one of them and superimposing upon it a uniform magnetic

shell of arbitrary strength, coincident with the whole of S.

This arbitrary part of the general solution being a "closed

shell” (§ 512, Cor. 5) exercises no resultant force through

either external or internal space.

601. Consider lastly, the general problem of finding magne

tization on and within any closed simply continuous surface S,

which shall produce the determinate external distribution of

force (§ 591,Theorems1 and 2) due toany arbitrarilygiven poten

tial or arbitrarily given normal component force, for every exter

nal point infinitely near S, with, of course, the condition that the

surface integral over the whole of S of the given potential or of

the given normal component force is zero. In Theorems 1, 2,
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and 3 of§ 591, proved in 592, 593, and 594, we have seen

that a determinate distribution of imaginary magnetic matter,

or a determinate distribution of electric currents, over S, may

be found which shall produce the specified external distribution

of force. And in 599 and 600 We have seen how in any

case when a surface distribution, either of magnetic matter or

of electric currents has been found, we can find synthetically a

surface distribution of magnetization which shall produce the

same external force; this magnetization being purely tangential,

involving an arbitrary function when derived from imaginary

magnetic matter, and being purely normal, involving an arbi

trary constant when derived from distribution of currents.

The complete solution of the present problem is obtained by

first assuming arbitran'ly any distribution of magnetization

whatever within S, which may be altogether bodily magne

tization spread through the interior, or altogether surface mag

netization, whether tangential or normal or oblique, infinitely

close to the inside of S, or in part bodily magnetization, and

in part surface magnetization; then finding the external

potential or normal component force at points infinitely

near S, due to this magnetization, according as it is poten

tial or normal component force that is given; then subtract

ing from the given potential or normal component force the

potential or normal component force due to the arbitrarily

assumed magnetization; and lastly, finding (at pleasure either)

a tangential or a normal distribution of magnetization on S

which shall produce potential or normal component force

equal to the difference. The surface-magnetization thus found,

compounded with the arbitrarily assumed magnetization, is

the most general distribution of magnetization within S which

can produce, at external points infinitely close to S, the given

potential or the given normal component force.

XXIX. On the Electric Gurrents by which the Phenomena of

Terrestrial Magnetism may be produced.

[From the Report of the British Associationfor the Meeting of 1867 in Oxford]

602. It is a well-known theorem, first demonstrated by

Green, that the action of a mass of any nature in attracting
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an external point, may be represented by means of a distribu

tion of matter of the same kind over the surface of the body;

that is to say, that a certain distribution of matter over the

surface of a body may be determined, which will produce

exactly the same force, whether of gravitation, of magnetism,

or of electricity as results from the body itself. Thus, by

applying this theorem to the case in which the force considered

is that of terrestrial magnetism, we see that a certain distribu

tion of imaginary magnetic matter may be found which would

produce all the phenomena of terrestrial magnetism observed

at the surface of the earth or above it, except those which are

due to atmospheric or external sources of magnetism, if any

such exist. This proposition, although of great theoretical

interest, cannot be entertained as expressing a physical fact;

for there are only two ways in which we can conceive internal

sources of terrestrial magnetism to exist. We may either

imagine, as Gilbert did, the earth to be wholly or in part a

magnet, such as a magnet of steel, or we may conceive it to be

an electro-magnet with or without a core susceptible of in

duced magnetism. In the present state of our knowledge this

second hypothesis seems to be the more probable [? Feb. 4,

1872]; and indeed we have now many reasons for believing

that the existence of terrestrial currents, producing wholly or

in part the magnetic phenomena, is a physical fact. [The

“earth currents” which render the localization of a fault in a

submarine cable so difiicult, certainly contribute to the result

ant magnetic force observed at the earth’s surface] Connected

with this it becomes an interesting question, whether mere

electric currents could produce the actual phenomena observed.

Ampere’s electro-magnetic theory leads us to an affirmative

answer, but an answer which must be regarded as merely

theoretical; for it is absolutely impossible [compare § 546,

footnote] to conceive of the currents which ‘he describes

round the molecules of matter, as having a physical exist

ence. The idea of an electro-magnet is what naturally pre

sents itself when we endeavour to imagine a possible elec

trical theory of terrestrial magnetism; and the question which

now occurs is this :—Can the magnetic phenomena at the

earth’s surface, and above it, be produced by an internal dis
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tribution of closed galvanic currents occupying a certain limited

space below the surface ? The answer is, that whatever be the

form and magnetic contents of the earth, the same force as that

which it exerts upon any exterior point may actually be pro

duced by means of a distribution of closed electric currents

on the surface. I have arrived at this result with the aid of

Ampere’s theory of the closed circuit, by means of the theorem

of Green already mentioned, and by an analogous theorem of

which a physical demonstration may be given by considerations

connected with fluid motion. The steps in the analytical pro

cess of determining the required distribution of closed currents

are as follows :—

603. Let Vbe the magnetic potential, according to Green’s

definition, at any exterior point P; da an element of the sur

face; A the distance from do‘ to P; l, m, n the direction-cosines

of the normal at do‘.

I. Find p, so that /‘1'5: V.

11. Find (7* so the §§+$+§d§= o for internal points,

m'% n%l=p at the surface, or fig: p.

III. Construct on the surface a “map of the values of U.”

If wires be laid along the lines round the surface correspond

ing to suificiently close equidifl'erent values of U, as indicated

by this map, and if currents of equal intensity be made to

circulate through them (each being a closed curve), the electro

magnetic force that will result, upon external points, will be

the same as the force of terrestrial magnetism.

The explicit solution of this problem is very easy, when the

body considered is a sphere; as is actually the case, to a suffi

cient degree of approximation, with reference to the Earth.

Thus, if the potential at the surface be given by the equation

V=yi+ys+ys+etcw

where Y1, Y2, etc, may be calculated for any latitude, by means

of the Gaussian constants [and a denote the radius of the

dU
and ZH+

’ [Note, Jan. 17, 1872.—This function is such that its surface value is

equal to the superficial function 1’ of § 579, multiplied by 4m]
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spherical surface], we readily find [Thomson and Tait’s Natural

Philosophy, App. B. (52)]

1
‘3:11;:

=—I1;{V+(Y,+§Y,+§Y,etc.)}

Hence we have the means of constructing an electro-magnetic

model of the earth, which would exhibit all the peculiarities

that can be expressed in a map constructed upon Gauss’s

theory.

{sY,+5Y,+7Y,+em.}

CHAPTER X.——MAGNETIC INDUCTION.

On the Theory of Magnetic Induction in Crystalline and Non

Crystalline Substances.

XXX. [From the Philosophical Magazine, March 1851.]

604. Poisson, in his mathematical theory of magnetic induc

tion, founded on the hypothesis of " magnetic fluids” moveable

within the infinitely small “magnetic elements” of which he

assumes magnetizable matter to be constituted, does not over

look the possibility of these mgnetie elements being non

spherical and symmetrically arranged in crystalline matter;

and he remarks, that a finite spherical portion of such a sub

stance would, when in the neighbourhood of a magnet, act

differently according to the difl'erent positions into which it

might be turned with its centre held fixed.* But “ such a cir

cumstance not having yet been observedj’T he excludes the

* [“ The substance of a homogeneous solid is called isotropic when a spheri

“ cal portion of it tested by any physical agency exhibits no difl'erence in

“ quality however it is turned. Or, which amounts to the same, a cubical

“ portion cut from any position in an isotropic body exhibits the same

“ qualities relatively to each pair of parallel faces. Or two equal and similar

“ portions cut from any positions in the body not subject to the condition of

“ parallelism (§ 675) are undistinguishahle from one another. A substance

“ which is not isotropic but exhibits differences of quality in different direc

“ tions is called molotropic.”-Thomson and Tait’s Natural Philosophy,

§ 676.]

'i‘ “ Mémoire sur le Magnétisme en Mouvement.” (Mém. de l’Institut,

1823, vol. vi. Paris, 1827.) For quotations from this and the two preceding

memoirs of Poisson, showing his theoretical anticipation of the discovery of

magnecrystallic action, see the Appendix to this article. _ /

2G
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consideration of the structure which would lead to it from his

researches, and confines himself in his theory of magnetic in

duction to the case of matter, consisting either of spherical

magnetic elements, or of non-symmetrically disposed elements

of any forms. It is easy to conceive the modification which he

would have introduced into his formula: to make them applic

able to a crystalline structure such as he describes; but, so

far as I am aware, no writer has hitherto attempted to make

this extension of Poisson’s mathematical theory of magnetic

induction. Now, however, when a recent discovery of Pliicker’s

has established the very circumstance, the observation of which

was wanting to induce Poisson to enter upon a full treatment

of the subject, the importance of .working out a mathematical

theory of magnetic induction is obvious. On the other hand,

in the present state of science, no theory founded on Poisson’s

hypothesis of “two magnetic fluids” moveable in the “mag

netic elements” could be satisfactory, as it is generally admitted

that the truth of any such hypothesis is extremely improbable.

Hence it is at present desirable that a complete theory of mag

netic induction in crystalline or non-crystalline matter should

be established independently of any hypothesis of magnetic

fluids, and, if possible, upon a purely experimental foundation.

With this object, I have endeavoured to detach the hypothesis

of magnetic fluids from Poisson’s theory, and to substitute

elementary principles deducible from it as the foundation of a

mathematical theory identical with Poisson’s in all substantial

conclusions. In the present communication I shall state these

principles, and point out what modifications of them may be

required by a more complete experimental investigation of the

subject than has yet been made; and, adopting them tem

porarily as axioms of magnetic induction, I shall give an

account of some important practical conclusions deduced from

them, by mathematical reasoning which I propose to publish

on a future occasion.

Some explanations and definitions are prefixed to show the

signification in which certain extremely convenient terms and

expressions, occasionally employed by Faraday and other

writers, will be used in what follows.

605. Definition-The force at any point due to a magnet is
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the force which it would exert on the north pole of an infinitely

thin, uniformly and longitudinally magnetized bar of unit

strength placed at that point,* if it experienced no inductive

action from the latter magnet.

Dcfinition.—The total magmatic force at any point is the force

which the north pole of a unit bar-magnet would experience

from all magnets which exert any sensible action on it, if it

produced no inductive action on any magnet or other body.

Or,

The total magneticforcc at anypoint is the quotient obtained

by dividing the force experienced by either pole, placed at that

point, of an infinitely thin bar, uniformly and longitudinally

magnetized to a finite degree of intensity, by the infinitely

small numerical measure of the magnetic strength of the bar;

and its direction is that of the force experienced by the north

pole of the bar.

Definition-Any space at every point of which there is a

finite magnetic force is called “ a field of magnetic force ;” or,

magnetic being understood, simply “ a field of force ;" or, some

times, “a magnetic field."

Dcfinitton.—A “line of force” is a line drawn through a mag

* “ If two infinitely thin bars be equally, and each uniformly and longi

tudinally, magnetized, and if, when an end of one is placed at a unit of dis

tance from an end of the other, the mutual force between these ends is unity,

the magnetic strength of each is unity.” (Philosophical Magazine, Oct. 1850,

pp. 241, 242.) The definition of magnetic force in the text will agree pre

cisely with the definition of “ magnetic force in absolute measure ” adopted

by the Royal Society, in its Instructions for making observations on

terrestrial magnetism, if, in the definition of a unit bar, the unit of length

understood be one foot, and the unit of force, a force which, if acting on

a grain of matter, would in one second of time generate one foot per second

of velocity. (See Admiralty Manual of Scientific Inquiry, pp. 16, 33, 37.)

It may be remarked, that this unit of force will be the fraction 1 of tho

9

weight, in any locality, of one grain of matter, if 9 denote the velocity

acquired in one second by a falling body in that locality; and that it is

therefore very nearly of the weight, in any part of Great Britain or

Ireland, of a grain. [Ar-ld‘iliun, May 30, 1872.—The units of mass and length

now adopted are the gramme and the centimetre. As 32'2 feet is equal to

.981'6 centimetres, we may take 982 as the number of absolute kinetic units

of force, in the apparent force of gravity on one gramme of matter in these

latitudes]
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netic field in the direction of the force at each point through

which it passes; or a line touched at each point of itself by the

direction of the magnetic force.

Dcfinition.—A “uniform field of magnetic force” is a space

throughout which the lines of force are parallel straight lines,

and the intensity of the force is uniform.

Dq/init1km.—A substance magnetized so that the intensity

and direction of magnetization at each point (§ 462) are repre

sented by the diagonal of a parallelogram, of which the sides

represent the intensities and directions at the same point in

two other distributions, is said to possess a distribution of

magnetism which is the resultant of these two superimposed,

one on the other.

It is demonstrated by Poisson, that the force at any point

due to a resultant distribution of magnetism is the resultant of

the forces that would be produced at the same point if the

component distributions existed separately.

606. Axioms of Magnetic Force.

I. All mechanical action which a magnet experiences in virtue

of its magnetism is due to other magnets.‘

II. The action between any two magnets is mutual.

III. The whole action experienced by any magnet is the

mechanical resultant of the actions which it would experience

from all the magnets in its neighbourhood, if each acted on it

as if the others were removed, the distributions of magnetism

in the two remaining unaltered.

607. Laws of Magnetic Induction according to Poisson's Mary.

I. When a given body, susceptible of inductive magnetization

(whether it be ferromagnetic or diamagnetic), is placed in the

neighbourhood of a magnet, it becomes magnetized in a manner

dependent solely on the field of force which it is made to occupy.

II. Supcmosition of Magnetic Inductions.-—Difl‘erent magnets

placed simultaneously in the neighbourhood of an inductively

magnetizable (ferromagnetic or diamagnetic) body induce in it

a distribution of magnetism which is the resultant of the

different distributions that would be induced by the separate

' This principle appears, from his discovery that the phenomena of terres

trial magnetism are produced by the earth acting as a great magnet, to have

been first recognised by Gilbert.
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influences of the different magnets, each in its own position,

with the others removed.

608. The first of these two propositions merely implies that

any magnet, whether an electro-rnagnet, or a magnet consisting of

magnetized substance, which produces at each point of a certain

space the same “force” as another magnet of any kind, would

produce the same inductive effect on a magnetizable substance

occupying that space. Everything that is known of inductive

action is consistent with it; and it is, I believe, universally

admitted as an axiomatic principle.

609. The second proposition, which asserts the mutual inde

pendence of superimposed magnetic inductions, is equivalent to

an assertion that, if the force at every point of a magnetic field

be altered in a certain ratio, the magnetization of a substance

placed in it will be altered proportionately. This is undoubtedly

not a principle of universal application. It is not applicable

to steel, nor to the substances of which natural magnets are

composed ; nor, in general, to substances possessing in any

degree that property of resisting magnetization or demagnetiza

tion, called by Poisson "coercive force,” in virtue of which they

can permanently retain magnetism. Neither is it, as Joule’s

experiments, and the more recent experiments of Gartenhauser

and Muller demonstrate, applicable to soft iron, except as an

approximate law of the magnetization when the magnetizing

force does not exceed certain limits of intensity. But, that it

is very approximately, if not rigorously, fulfilled in the mag

netization of all homogeneous substances of very feeble inductive

capacity, and destitute of “ coercive force” (as all known diamag

netics and all ferromagnetics which contain no iron or nickel,

or only very small proportions in chemical combination, appear

to be), is, I think, extremely probable. The foundation of a

complete theory of magnetic induction requires an experimental

investigation of the laws according to which the “ coercive

force” acts in various substances, and of the variation of induc

tive capacity produced in soft iron, and it may be in other sub

stances, by actual magnetization. The following conclusions,

being mathematical deductions-from the laws stated above, are

liable to modification, according to the deviations from those

laws which actual experiments may point out :—
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610. 1. The determination of the conditions of magnetic in

duction in a body of any kind in any circumstances may be

made to depend on a knowledge of the state of magnetization

induced in a homogeneous sphere of the same substance, placed

in a uniform field of magnetic force. .

2. A homogeneous sphere of any substance placed in a

uniform field of force becomes uniformly magnetized in parallel

lines with an intensity which is independent of the radius of

the sphere.

[To prove this, imagine a uniformly magnetized sphere of

substance having infinite “ coercive power.” Let a spherical

portion be removed from its interior. The resultant force

at any point in the hollow will be (§§ 479, 473) that due

to “imaginary magnetic matter " or free polarity, as it may be

properly called, on the outer and inner spherical surface bound

ing the magnetized matter which is left. The surface density

of the polarity at any point of either surface will be equal to

11 cos 0, if i denote the intensity of the magnetization and 0 the

angle between the direction of magnetization and the radius

through the point considered. The distribution on one alone of

the spherical surfaces, according to a very elementary result of

spherical analysis stated above in a foot-note on §479 (and proved

in the appended foot-note‘), is parallel to the direction of mag

 

1’ To find the resultant due to one such distribution of matter on a spheri

cal surface, imagine first a solid material globe of uniform volume-density 9

throughout. By Newton's theorems for the attraction of a uniform spheri

cal mass, acting according to his law of the inverse square of the dis

tance, the resultant force at any point within the substance will be towards

the centre, and equal to ___ multiplied by the distance of the attracted point

from the centre of the globe. Consider now two equal globes, one of uni

form positive matter and the other of uniform negative matter of the same

density, the former repelling and the latter attracting a unit of positive

matter (as in the electric and magnetic applications of the Newtonian law).

Let them be placed with their centres C and O’, at any distance apart less
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netization, and equal to 197 ; and therefore the‘two balance one

another for every point within the supposed hollow space.

The resultant force is therefore zero throughout this space.

than the sum of their radii, and first imagine their materials to co-exist in

the space common to the two spherical volumes, each acting as if the other

were away. The resultant force at any point P within this space will be

4%’0? with a force 339 GP, in

the direction from P towards C’, and therefore, according to the parallelo~

gram of forces, will be in the direction PD parallel to 0'0’, and will be equal

to 41B

3

to the two spheres neutralize one another) is therefore the resultant force at

P, due to uniform distribution of positive and negative matter in the two

meniscuses formed by the non-coincident portions of the two spheres. Now

let CC’ become infinitely small, and p infinitely large, and denote byi the

product p0 ", which we may suppose to have any value we please. The two

meniscuses become a continuous superficial distribution of matter over a

single spherical surface, having for surface-density 2' cos 0, at any point where

the inclination of the normal to the diameter through CC’ is 0. The re

sultant force is parallel to this diameter and of constant value equal to

throughout the entire spherical space. 3

A similar investigation gives the resultant magnetic force at any point in

the interior of a uniformly magnetized ellipsoid ; but in this case it is con~

venient to consider components of magnetization and of force in the direc

tions of the three principal axes. Thus if a, B, 7 be the components of

magnetization, and j, 1}, 8 the components of the magnetic force according

to the polar definition, we find

where bgt, Q9, “If denote the three elliptic integrals which appear in (6) of

§ 23, above, each with the factor x/(l ——e2)~/(l —e'2) retained. These expres

sions depend only on the proportions of the axes, and therefore the resultant

force is zero in the hollow space left, when from a uniformly magnetized

ellipsoid any similar ellipsoidal portion with principal axes in the same direc

tions is removed. Hence the demonstration of the text proves that an

ellipsoid of homogeneous substance, susceptible of magnetic induction, becomes

uniformly magnetized when placed in a uniform field of force. An obvious

extension of § 626, below, gives the following equations for determining

a, B, ‘y, the components of the magnetization, in terms of F, G, H, the com

ponents of the force of the field, p, ', p." the principal susceptibilities, and

(l, m, n), (l’, m’, n’), (l", m", n") tfie three principal inductive axes, all

specified with reference to the directions of the three principal axes of

figure

found by compounding a force equal to

00'. This (as the positive and negative matters in the space common

0+9?‘ )1“ +(1+4'g#)mfl +(l+%#)1w =1‘ (Fl +01" +Hn)
T

o+"—’§?rm +(1+—‘?'*'W+‘1+4?" )nw =r<F1'+Gm'+H1-'>

(1+9§§3~ow1+o+23%)m"s+(1+9;I ")""v=n"(Fl”+Gm"+H"”)
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Replacing now the magnetized material in the hollow space, let

the uniformly magnetized hollow sphere be placed in a. uniform

field of force, and instead of “ coercive power,” let its substance

be endowed with such inductive susceptibility in each part

of it, that by induction it shall remain uniformly magnetized.

The magnetizing force actually experienced by any spherical

portion of it is the same as if the surrounding substance were

removed. Hence different equal spherical portions of the

whole require equal inductive susceptibilities to keep them

equally magnetized; and as we may suppose these spherical

portions to be as small as we please, it follows that the induc

tive susceptibility must be equal throughout, and that if the

substance be aaolotropic its quality must be throughout similarly

related to the force of the field Conversely, the inductive

magnetization experienced by a globe of homogeneous substance

devoid of "coercive power” when placed in a uniform field of

force, must be uniform and in parallel lines]

3. If the sphere be of isotropic substance, the lines of its

magnetization are in the same direction as the lines of force

in the field into which it is introduced, and the intensity of

magnetization is equal to the product of a constant (which may

be called the inductive capacity of the substance) into the inten

sity of the magnetizing force.

[For obvious reasons I now prefer a different definition of

inductive quality; and for the sake of brevity I prefer the one

word susceptibility to the two “inductive capacity.” Instead

of the preceding definition, therefore, I shall henceforth adopt

the following :—

Definition 1.—The magnetic susceptibility of an isotropic sub

stance is the intensity of magnctizatibn acquired by an infinitely

thin bar of it placed lengthwise in a uniybrm field of unit may

nctic force. And I add ;—

Definition 2.—The magnetic susceptibility, in any direction of

an wolotropic substance is the longitudinal component intensity of

magnetization experienced by an infinitely thin bar cut from the

substance in that direction, and placed lengthwise in a uniform

field of unit force]

4. If the sphere be of crystalline substance, the lines of its

magnetization may not in general be in the same direction as
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the lines of force of the field into which it is introduced; and

they are not so if the sphere, when free to turn round its centre,

is observed to be not in equilibrium.

611. Definition.—A principal axis of magnetic induction of a

substance is a line in it, such that a spherical portion when in

troduced, with that line parallel to the lines of force, into a I

uniform magnetic field, becomes magnetized in the direction of

those lines.

Definition.—A principal inductive capacity of a substance, or

the inductive capacity of a substance in the direction of aprincipal

axis, is the coefficient by which the intensity of the magnetiz

ing force must be multiplied to obtain the intensity of mag

netization when a spherical portion is introduced into a. uniform

magnetic field, wit-h a principal axis parallel to the lines of

force.

612. 5. Any substance has through every point of it, three

principal axes at right angles to one another; and if the induc

tive capacities with reference to three such axes be different,

no other line through the same point is a principal axis.’

6. If the inductive capacities with reference to two principal

axes through any point of a homogeneous substance be equal,

every line in the plane of these two, or parallel to it, is a prin

cipal axis, and the inductive capacities with reference to all

these principal axes are equal.

7. If the inductive capacities with reference to three principal

axes through any point of a substance be equal, every line

through the substance is a principal axis, and the inductive

capacities with reference to all directions are equal; or the

substance is destitute of magnecrystallic properties.

613. 8. A spherical portion of any homogeneous substance,

supported in a uniform magnetic field in such a manner that it

can turn freely in any manner round its centre which is immova

able, cannot be in equilibrium unless a principal axis be in the

direction of the lines of force. If the three principal inductive

' Such, it may be expected, will be the magnetic circumstances in the case

of any transparent substance which belongs to the optical class of “biaxal

crystals;" and its three principal axes of magnetic induction will be the

three rectangular axes deduced by Sir David Brewster from the “ optic axes,”

and known in the undulatory theory as the principal axes of elasticity of the

medium in which the undulations are propagated.
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capacities be unequal, the body will be in stable""1 equilibrium

with the principal axis of greatest inductive capacity, or in un

stable equilibrium with either of the two other principal axes, in

the direction of the lines of force. If the two less principal in

ductive capacities be equal to one another, the body will be in

stable* 2 equilibrium with the principal axis of greatest inductive

' capacity in the direction of the lines of force‘, or in unstable

equilibrium with the same axis perpendicular to the lines of

force. If the two greater principal inductive capacities be equal

to one another, the body will be in stable-1- equilibrium with the

plane of the corresponding principal axes parallel to the lines

of force, or in unstable equilibrium with that plane perpen

dicular to the lines of force.

614. 9. If a spherical portion, of volume 0', of a substance of

which the three principal inductive capacities are A, B, and C’,

be held in a uniform magnetic field where the intensity of the

force in absolute measure is R, with the three principal axes of in

duction inclined to the direction of the force at angles of which

the cosines are respectively I, m, n, it will receive a state of

magnetization which is the resultant of three states of uniform

magnetization; one of intensity A.Rl, in the direction of the

first principal axis; a second of intensity B.Rm, in the direction

of the second principal axis ; and a third, of intensity C.Rn, in

the direction of the third principal axis; and it will experience

a turning action, of which the mechanical definition is a couple,

of moment

02R‘. {m’n’(B-- C')’+n“l'(C-A)’+l’m'(A-B)‘}i (1),

in a plane of which the direction cosinesi with reference to the

three principal axes are respectively

mn(B-C') nl(C—-A) lm(A-B)

T’ "D—’ —i)—"' (2)’

*1 2 In one respect the equilibrium might be said to be neutral rather than

stable, since every position into which the body may be turned round the

stable axis is a position of equilibrium.

i‘ In two respects the equilibrium might be said to be neutral ; since every

position into which the body may be turned round the direction of the lines

of force is a position of equilibrium, and every position into which it may be

turned in the plane of the stable principal axes is a position of equilibrium.

x 01' the cosines of the inclinations of a perpendicular to the plane, to the

three axes.
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where D denotes the square root of the sum of the squares of

the numerators of these three fractions, or the third factor of

the preceding expression.

615. 10. If the sphere be infinitely small, and if it be put into

a uniform or non-uniform field of force, the entire action which

it experiences, whether directive tendency or tendency to move

from one part of the field to another, is defined by the following

proposition :—

The quantity of mechanical work which is required to bring

the body from a position where the intensity of the force is R,

and its direction cosines with reference to the three principal

inductive axes l, m, n, to a position where the intensity of the

force is R’, and its direction cosines with reference to the three

principal inductive axes in their new positions I’, m’, n’, is

equal to

;¢{(Az"+Bm"+one)R'= —(AZ'+Bm’+C'n')R=} (3).

11. If A = B = 0', this expression becomes simply éa-A

(Rm-R’), and the proposition is equivalent to the mathe

matical expression of Faraday’s law regarding the tendency to

places of stronger or of weaker force, of ferromagnetic or dia

magnetic non-crystalline substances, on which some remarks

[reprinted, 647...668 below] are published in the Philoso

phical Magazine for October 1850.

616. 12. If, without moving its centre, the ball be turned so

that its three principal axes shall successively be in the direction

of the lines of force (the field being non-uniform, but the body

infinitely small), it will in each position experience a force in the

line of most rapid variation of the "force of the field ;” but the

magnitude of the force will in general differ in the three posi

tions, being proportional to A, B, and C’ respectively.* If

* Thus a ball out out of a crystal of pure calcareous spar, which tends to

turn with its optic axis perpendicular to the lines of force, and which tends

as a whole from places of stronger towards places of weaker force, would

experience this latter tendency less strongly when the optic axis is perpen

dicular to the lines of force than when it is parallel to them ; since, accord

ing to § 612 of the text, the crystal must have greatest inductive capacity or

(the language in the text being strictly algebraic when negative quantities

are concerned) least capacity for diamagnetic induction perpendicular to the

optic axis. I am not aware that this particular conclusion has been verified

by any experimenter; but I am informed (Oct. 25, 1850) by Mr. Faraday,

that he finds a piece of crystalline bismuth to experience a different “ repul
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each of these quantities be positive, the force on the ball in

each position will be in the direction in which the force of the

field increases ; if any one of these quantities be negative, the

force on the ball when the corresponding principal axis is in the

direction of the lines of force, will be in the contrary direction,

or that in which the force of the field decreases most rapidly.

617. 13. If A, B, and 0' be all positive, the body is called ferro

magnetic; if they be all negative, it is called diamagnetic. No

substance has as yet been found to have some of the quantities

A, B, 0' positive, and others negative.

618. 14. If the inductive capacities be very small, all the pre

ceding conclusions will be applicable to the actions experienced

by bodies in air (ferro-magnetic), or in any magnetizable fluid

of either ferromagnetic or diamagnetic inductive capacity, pro

vided, instead of the absolute inductive capacities of the sub

stance in each case, we use for A, B, and C’, or for the

“ principal inductive capacities” in the verbal enunciations,

the excesses of the absoluteprincipal inductive capacities of

the substance, above the inductive capacity of the fluid.

619. Curious experiments might be made by means of a vary

ing field of force occupied by a magnetizable fluid, and a ball of

sion” according as it is held with its magnecrystallic axis along or perpen- _

dicular to the lines of force in a non-uniform field ; the repulsion being less

in the former case than in the latter, which agrees perfectly with the conclu

sions of the text, since, as a ball of bismuth would tend to place its magne

crystallic axis along the lines of force, that axis must, according to § 612, be

the principal axis of greatest inductive capacity, or, bismuth being diamag

netic, the axis of least diamagnetic capacity.

It is right to add, that what, according to the theory explained in the

text, must be the correct explanation of the peculiar pluenomena of magnetic

induction depending on magnecrystallic properties, was clearly stated in the

form of a conjecture by Faraday in his 22d Series (2588) in the following

terms :—“ Or we might suppose that the crystal is a little more apt for mag

" netic induction, or a little less apt for diamagnetic induction, in the direc

“ tion of the magnecrystallic axis than in other directions. But, if so, it

" should surely show ' s e in the case of diamagnetic bodies, as bismuth, a

“ difl'erence in the degree of repulsion when presented with the magne

“ crystallic axis parallel and perpendicular to the lines of magnetic force

“ (2552); which it does not do.” (Read before the Royal Society, Decem

ber 7, 1848.) The failure of the first experiment (2552) to detect this

difl'erence of action need not be wondered at, when we consider how minute

it must probably be; and the conjecture, apparently abandoned at the time

by the author for want of experimental support, may be considered as fully

established by his own subsequent experimental researches.

[The following appeared in the Philosophical Magazine for 1851, second

half-year, under the title " Magnecrystallic Property of Calcareons Spar ”:—]
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crystalline substance allowed to move freely in the line of most

rapid variation of the force. If the inductive capacity (whether

positive or negative) of the fluid be intermediate between the

greatest and the least of the absolute principal inductive capa

cities of the substances, the ball will be urged from places of

weaker towards places of stronger force when its axis of

greatest inductive capacity is placed along the lines of force,

and in the contrary direction when the axis of least inductive

capacity is placed in the same direction.

It would be easy to adjust the strength of a solution of sul

phate of iron so as to satisfy this condition for a ferromagnetic
crystalline substance; but there vinight be great ditficulty in

demonstrating by experiment the existence of the forces, on

account of their feebleness.

APPENDIX.

Quotations from Poisson regarding Magneorystallic Action.

620. “ . . . . . . la forme des élémens pourra aussi influer

“ sur cette intensité; et cette influence aura cela de particulier,

Extractfrom letter to the Editors.

Glasgow College, Nov. 7, l85l.—" " ’ " In the passage, as originally

published (line 4 from beginning of foot-note), the word “ more ” occurred in

the place of “less.” The mistake was pointed out to me last April by Pro

fessor Stokes, and I immediately requested you to correct it, which you

accordingly did by an intimation in the “Errata.” “'hen the perplexity

occasioned by the mistake is removed, it is obvious to any one reading the

passage carefully, that the mistake itself was only a slip of the pen, as at the

conclusion of the sentence it is asserted that a crystal of pure calcareous

spar must have the “least capacity for diamagnetic induction, perpendicular

to the optic axis."

This conclusion is verified by Dr. Tyndall, who describes experiments, in

a paper published in your September Number, by which it appears that the

diamagnetic inductive capacity of calcareous spar in a direction parallel to

the optic axis is to its diamagnetic inductive capacity perpendicular to the

optic axis as 57 to 5l.—l remain, gentlemen, your obedient servant,

WILLIAM Tnomson.

[We have also received a communication on this subject from Mr. Tyndall,

who in reference to a note received by him from Prof. Thomson, writes as

follows :—“ I have only to say that the facts are precisely what they are

“ here stated to be. Previous to writing the remarks in question, I looked

“ to the Errata, but not it seems with suflicient attention, for Professor

“ Thomson’s correction escaped me. Not only do our results agree in prin

“ ciple, but the some substance and form of substance which Professor Thom

“ son had referred to in illustration of his theory was unwittingly examined

“ by me in Berlin, and the exact result which he had theoretically predicted

“ arrived at by way of expcriment."—Eorr.]
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“ qu'elle ne sera pas la même en des sens difl‘érens. Supposons,

“ par exemple, que les élémens magnétiques sont des ellipsoides

“ dont les axes ont la même direction dans t'oute l'étendue d'un

“ même corps, et que ce corps est une sphère aimantée par

“ influence, dans laquelle la force coercitive est nulle ; les

“attractions ou répulsions qu’elle exercera au-dehors seront

“ différentes dans le sens des axes de ses élémens et dans tout

“ autre sens ; en sorte que, si l’on fait tourner cette sphère sur

“ elle même, son action sur un même point changera, en général,

“ en grandeur et en direction: mais, si les élémens magnétiques

“ sont des sphères de diamètres égaux ou inégaux, ou bien s’ils

“ s'écartent de la forme sphérique, mais qu’ils soient disposés

“ sans aucune régularité dans l’intérieur d'un corps aimanté par

“ influence, leurs formes n’influeront plus sur les résultats qui

“ dependront seulement de la somme de leurs volumes, comparée

“ au volume entier de ce corps,* et qui seront alors les mêmes en

“ tout sens. Ce dernier cas est celui du fer forgé, et sans doute

“ aussi des autres corps non cristallisés dans lesquels on a

“ observé le magnétisme : mais il serait curieux de chercher si

“le premier cas n'aurait pas lieu lorsque ces substances sont

“ cristalisées ; on pourrait s’en assurer par l’expérience, soit en

“ approchant un cristal d’une aiguille aimanté, librement sus

“ pendue, soit en faisant osciller de petites aiguilles taillées

“ dans des cristaux en toute sorte de sens et soumises à l'action

“ d’un très fort aimantŸ-Pp. 258, 259, Me'moire sur la marie

du Magnétisme, par M. Poisson. Lu à. l’Académie des Sciences

le 2 Fevrier, 1824. Me'm. de Z’Inst. 1821-22. Paris, 1826.

“ . . . . . la forme des élémens et leurs positions par rapport

“ aux plans fixes des coordonnées ac, 3/, z, peuvent influer sur

“ l’état magnétique de A, et sur les attractions ou répulsions

“ qu’il exerce au dehors. Il pourrait même arriver que cette

“ influence ne fût pas la même en tout sens, en sorte que, si A

“ était une sphère homogène, et qu'on fît tourner ce corps sans

“ déplacer son centre et sans rien changer aux forces extérieures

" ou à. la fonction V, les actions magnétiques de A changeraient

“ néanmoins en grandeur et en direction. Ce cas singulier,

“ que nous avons déjà indiqué dans le préambule de ce Mémoire,

" [This error was corrected by Poisson himself in a subsequent memoir-.1
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“ ne s’étant pas encore présenté a l’observation, nous l’exclurons

“ de nos recherches, quant a présent, et nous allons, en consé

“ quence, determiner les relations qui doivent exister entre a’,

“ l8’, 7',‘ et les quantités aI, ,8’, 79,1‘ pour qu’il n’ait pas lieu.”

-—Ibid. p. 278.

621. The following explanation may serve to give an idea of

Poisson’s mode of treating the subject of the last quotation, and

to show the relation it bears to the theory of which an outline

has been given above.

A sphere of any homogeneous magnetizable substance being

placed in a uniform field of force, intensity R, let the direction

of the force make angles whose cosines are l, m, n with three

rectangular axes fixed relatively to the substance; and let

a, ,8, 7 be the components of the induced magnetization. Pois

son deduces, from his hypothesis of magnetic fluids, equationsi

which are equivalent to the following :—

a.=(Al +B'm+C”n)R

p=(.4"z+Bm + 09012}

-y=(A'l+B"m+C'n )R

where A, B, etc., are coefficients depending solely on the nature

of the substance. These equations are deducible from the

axioms and the hypothetical principle of the superposition of

magnetic inductions, stated above, without the necessity of re

ferring at all to the hypothesis of “ fluids.” All that remains

of Poisson’s theory is confined to the case of non-crystalline

matter, with reference to which it is proved that A, B, and 0'

must be equal to one another, and that each of the other six

coefficients must vanish; and there is nothing to indicate the

possibility of establishing any relations among the nine co

eflicients which must hold for matter in general. I have found

that the following relations, reducing the number of independent

(4)

* Component intensities of magnetization.

'l‘ Components of the magnetizing force.

I The products of the first members of Poisson’s three equations in p. 278

of his first Mémoire, into 1:, the ratio of the sum of the volumes of the mag

netic elements to the whole volume of the body, are respectively equal

to the three components of the intensity of magnetization (a, B, y) ; and if

A, B, etc., be taken to denote the values of the products of 1: into Poisson’s

coefiicients P, Q, etc., respectively, the equations in the text coincide with

those of Poisson.
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coefficients from nine to six, must be fulfilled, whatever be the

nature of the substance ;—

B": C', C”=A', A"=B' (5),

the demonstration [added below, 621] being founded on no

uncertain or special hypothesis, but on the principle that a

sphere of matter of any kind, placed in a uniform field of force,

and made to turn round an axis fixed perpendicular to the lines

of force, cannot be an inexhaustible source of mechanical efi‘ect.

All theconclusions with reference to magnecrystallic action enun

ciated in the preceding abstract are founded on these relations.

[622. Demonstration: January 1872.—-—Because the field of

force is uniform the dynamical action experienced by the mag

netized sphere if of unit -volume consists simply of a couple

(§ 499) whose components are

(fin-Will?’ ("ll-“10R, (am-B0B (6),

expressions which show that the axis of the resultant couple is

perpendicular to (l, m, n). Now remembering that the axes of

co-ordinates are fixed relatively to the substance, suppose it to

be turned, carrying OY and OZ with it round the axis OX,

through an infinitesimal angle dqb ; and let ¢ denote the angle

between the plane YOX and the plane of OX and (l, m, n).

The work done by the magnetized substance during this motion

will be (m'y—nB)Rd<I> (7),

which, if we put l=cos0, m=sin0cos¢, n=sin0sin¢, and

use (4), becomes

B{ain 0cos0(A'cos¢— A"sin ¢) + sin'0 C'—B)sin ¢cos¢+ B"coa'¢— C'sin'¢]}d¢Integrating this expression from (p:- 0 to qb: 211', We find

Rsin'0(B"— C')1r,

for the integral amount of work done during a revolution round

OX. But this must be zero, for avoidance of the “ perpetual

motion,” * since the body is brought back to its primitive position

and physical condition at the end of the motion; and therefore

B"=C'. Similarly, by turning the body once round the axis

OY, we prove that C"=A’, and by turning it round OZ we

prove that A”:B'. Thus are established the three relations

between the co-eflicients expressed by equations (5) above.

623. To find a symmetrical expression for the work done in

* See below, § 670, footnote.
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any infinitesimal rotation, remark that whenl is constant we

have d4):_%=1”? _

Hence (m'y—n,B)d¢=-ydn+fldm.

Hence by (7) and corresponding expressions for the work done

in infinitesimal rotations, round 0}’ and OZ, we find for the

whole work, dQ, done by any infinitesimal rotation whatever

dQ=R(adl+/3dn+'ydm)Using in this for a, ,8, 7, their expressions by (4), as linear

functions of l, m, n, and looking to the relations (5) established

between the coefficients, we see that dQ is a complete differ

ential of a quadratic function of l, m, n, as if these were three

independent variables; and therefore by integration

Q: l’ +Bm'+ C'n’ +2amn+2bnl+2clm)R’ (10),

where a, b, 0 denote respectively the value of either members of

the three equations (5). Hence by differentiation and compari

son with (4),

_ 1 dQ _ 1 do _ 1 do
“'"ndT’ B-mn’ PM? (11)’

and Q=§(aI+Bm+7n)R (12).

This is necessarily equal to the exhaustion of energy (Thomson

and Tait’s Natural Philosophy, § 549) in letting the globule

come from any place of zero magnetic force, into its actual

position in the supposed magnetic field. Compare § 732, and

§ 722 (70) his, and § 503 (2). I

624. The elementary theory of the transformation of quad

ratic functions shows how, when A, B, C, a, b, c are known for

any one set of three rectangular axes in the substance, we can

find determinately by aid of the solution of a cubic equation, a

set of three rectangular axes such that if we take them for axes

of X, Y, Z, the coefficients of mm, nl, lm will vanish in the

transformed quadratic function, and we should have simply

Q=}(AZ“+Bm’+Cn‘)R” (13),

and . . a=AlR, B=BmR, y=CnR . - (14).

Hence the propositions of 612, 613, 614.]

2 u
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XXXI. Magnetic Permeability, and Analogues in Electra-static

Induction, Conductwn of Hcat, and Fluid Motion.

March 1872.

625. Supposing the coeflicients A, B, O’, and a, b, c of

§§ 62!...624, (5) and (10), to be known for a particular set

of axes in a substance susceptible of magnetic induction, let it

be required to find its susceptibility for magnetization in any

given direction. Let a sphere of the substance be placed in a

uniform field of force having components F, G, H parallel to

the axis of co-ordinates. By § 623 (11) We have for the com

ponents of magnetization

a =AF+CG +bH

,B=cF +BG-l-aH

y=bF +aG +OH

and denoting by i the intensity of the resultant magnetization,

and l, m, 12 its direction-cosines,

(1);

i=~/(¢'+B’+7’) (2)’

l=-fT7 772:7, 7l=%'

Conceive now an infinitely thin bar of the substance of any

length along the lines of magnetization to be removed. The

magnetic force in the hollow space will be compounded of the

force of the field (F, G, H) and the force due to the free surface

polarity of the sphere; and therefore (§ 610, 2, foot-note) if we

denote by X, Y, Z its components, we have

_ __4_1:a _ 4TB __ 41ry

X_-F a, Y-_ --3‘, Z_lI--'8' (4)

It is this which is the magnetizing force actually experienced

by the bar in its position as part of the sphere. The magnet

ization induced by it is of intensity 1\/ (03+ [82+ 7’), and is in

the direction of the bar's length. Hence the magnetic suscep

tibility of the substance in the direction (3) of this bar is

.i/ii‘tllfifll (a)

#(X1+ Y’+2 ) ‘

To find the magnetic susceptibility in any direction (I, m, n)

explicitly in terms of l, m, n and the co-efiicients A, B, G, a, b, c,
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all that is necessary is to eliminate a, ,8, y, X, Y, Z, F, G, H

from (5) by means of the nine equations (1), (3), (4). The

algebraic process required involves only the solution of the

three linear equations (1) for F, G, H. The simplified solution

given in the following section may be regarded as algebraically

equivalent to an expression of the preceding direct solution in

terms of symmetrical functions of the roots of a cubic equation.

626. To simplify let the axes of co-ordinates be chosen in

the direction of the three principal axes (§ 611) of magnetic

susceptibility. This makes a = 0, b : 0, c = 0, and we have

a=AF, fi=BG, 1:011 (6),

X=(1_%)F, Y=(1_4_’;E)G, Z=(1-i’::_C)H (7).

Hence by (5), (3), and (2) we have, for the magnetic suscepti

bility in the direction I, m, n,

1

_— (8),
12 ml n!

v/(fil'i' +F)

A B C

where 1‘: 41rA , F=_—4;B ’ y: 411-01-_—_ 1-— 1-_

3 3 8

627. The coefiicients denoted in (9) by 7\, ‘u, v are the three

principal magnetic susceptibilities, as we see by considering

the cases in which (l, m, n) coincides with the axes of co

ordinates. By equations (9), conversely, for the inductive mag

netization of a sphere when its principal susceptibilities 7x, a, v

are given, we find

A=_l\-_, B: I‘ ,0: " (10).

1 +431“ 1 +€3Ip 1 +€§v

628. In the exposition of Faraday’s great electro-static dis

covery, given above 36...50), I pointed out a perfectly close

analogy between the mathematical theories of the electro-polar

induction which he found to be experienced by insulators in a

field of electric force, of the inductive magnetization of ferro~

magnetics, air, and dia-magnetics, and of the conduction of

heat through a heterogeneous solid. This volume will end

with a fourth analogy (§§ 751...7 63, below), in which it will

be shown that precisely the same laws and mathematical ex
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pressions are applicable to the flow of a frictionless incom

pressible liquid, through a porous solid of infinitely fine texture,

when the motion of the liquid is throughout irrotational (or

such as may be produced from rest by any motion given to the

boundary of the liquid). The singular combination of mathe

matical acuteness, with experimental research and profound

physical speculation, which Faraday, though not a “mathe

matician,” presented, is remarkably illustrated by his use of

the expression, conducting power of a magnetic medium for lines

of force, referred to in the foot-note to § 44, above. The ana

logue corresponding to conducting power of a solid for heat, or,

as it is shortly called, “thermal conductivity,” is, in electro

static induction, the “ specific inductive capacity ” of the

(ii-electric; in magnetism it is not what has hitherto been

called magnetic inductive capacity,——a quality which is negative

in dia-magnetics, but it is Faraday’s “conducting power for

lines of force ;” and in hydrokinetics it is (§ 753, below) flux

per unit area, per unit intensity of energy. The common word

“permeability” seems well adapted to express the specific

quality in each of the four analogous subjects. Adopting it

we have thermal permeability, a synonym for thermal con

ductivity; permeability for lines of electric force, a synonym

for the electro-static inductive capacity of an insulator; mar;

netic permeability, a synonym for conducting power for lines

of magnetic force; and hydrokinetic permeability, a name for

the specific quality of a. porous solid, according to which, when

placed in a moving frictionless liquid, it modifies the flow.

629. To find the relation between what has been called above

magnetic susceptibility and magnetic permeability, consider a

body with no intrinsic magnetization (§ 698, below) surrounded

by air in a magnetic field. Let A be any infinitesimal area of

its surface cutting perpendicularly one of the three principal

inductive axes of the substance in its neighbourhood. Let %

be the normal component of the magnetization induced in the

substance infinitely near A; and let N, N’ be the values of

the normal component force at external and internal points

infinitely near A, the latter according to the polar definition

(§ 517, Postscript). We have [§ 47 3 (l), and § 7]

N’=N-41r8 (11).
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Let now ;1, be the magnetic susceptibility in the direction of the

normal, so that (§ 610, 3, definition 2) we have

s=t1v' (12).

Eliminating S from this by (11), we have N’: N— 47:‘;LN',

and therefore §=1+Mp (13).

Hence (compare § 44, above) 1 + 4m‘. is the magnetic permea

bility of the substance in the direction of its principal axis

perpendicular to A. Thus we see that if ,a, p’, ,a” denote the

three principal magnetic susceptibilities of a substance, and

w, w’, a" its principal magnetic permeabilities, we have

m=l+41rp., m'=1+41r‘u.', w"=1+41ry." (14).

630. Experiment has hitherto given but little accurate know

ledge of the magnetic susceptibilities of different substances.

Comparisons of the susceptiblities of dia-magnetics and feeble

ferro-magnetics with one another and with that of iron have

been attempted; but the only determination in absolute measure

hitherto made or even attempted is that of Thalén" for iron.

He found the magnetic susceptibilities of different specimens

to be very different. The greatest susceptibility which he found

was in some specimens of the best soft iron, and amounted to

about 45. “ Coercive force,” the laws of which are at present

wholly unknown, exists to a great degree in all varieties of

iron and steel, including the softest iron; and varies very much

in the same specimen with its state of temper. It complicates

excessively every investigation regarding the inductive quali

ties of iron and steel. On the other hand (and particularly

now that the British Association has given to experimenters

standards of electric resistance in absolute electro-magnetic

measure-1‘ and important contributions towards the general

practice of the absolute system) it is a very easy thing to

measure, with some degree of accuracy, the absolute value of

* “ Recherches sur les propriétés magnétiques du fer.” Par T. R. Thalén.

Extrait des actes de la Société Royals des Sciences d’Upsal. Série iii’. T.

iv. Upsal, 1861.

+ British Association Committee on Electric Measurement, appointed first

in the year 1860, and reappointed after that from year to year. A reprint

of its successive Reports collected is being made by the Committee, with

permission of the Council of the British Association, and will soon be ready

for publication in a separate form.
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the inductive quality of substances destitute of coercive force.

(All fluids are necessarily so; and, as stated in § 609, it is pro

bable that all dia-magnetics, and all homogeneous substances

of feeble ferro-magnetic quality, are nearly so.) As yet no

such measurement has been made, but it is to be hoped that

before long some experimenter will take up the subject.

631. Thalén’s number, 45, gives, according to (14), 1 + 471' x 45,

or about 566 for the permeability of the best soft iron. It has

been stated that the inductive susceptibility of cobalt is greater

than that of soft iron, but this seems to be by no means certain ;

and I believe it is certain that all other substances hitherto

experimented on are less susceptible than iron. The permea

bilities of all ferro-magnetics exceed unity, but only by very

small fractions, except the few so-called magnetic metals, or

substances containing them in large proportion. It is also

remarkable that no substance has been discovered for which

the permeability falls short of unity by more than a very

minute fraction, as is shown by the extreme feebleness of the

forces due to dia-magnetic induction in all cases which have

been hitherto observed. If we knew something instead of

nothing of the molecular theory of magnetic induction, we

should probably see that the permeability of every substance

must be positive.

XXXII. Diagrams of Lines of Force ; to illustrate Magnetic

Permeability. [May 29, 187 2.]

632. The differential equation for lines of force in void space

resulting from the Newtonian law is always integrable when

the distribution is symmetrical round an axis, as was first

shown in an article “ On the Equations of Motion of Heat

referred to Curvilinear Co-ordinates ” in the Cambridge Mathe

matical Journal thus :—In the case of symmetry round an axis,

take for co-ordinates a: along the axis of symmetry, and g per

pendicular to it in any plane through it. Laplace and Poisson’s

equation becomes

d‘V d‘V 1 dV

Hgi + gg— _4"'P

Therefore through void space,

d ’ V d’ V 1 dV

(w + are ya:
0. (1).



XXXIL] Examples of Lines of Force. 487

The differential equation of the lines of force is

dV dV

2.9 dm-Edy:0.

This, in virtue of (I), is rendered integrable by the factor 3], and

therefore the integral equation of the lines of force is

¢ = const., l

av W 2 '
where f(.'lggdx-3l(jdy)=¢j ( )

For example 181; V:i_F1,- (3)

(r’+y’.)‘

so that the distribution of force is that of a uniform field, of

intensity F, disturbed by the presence of an infinitesimal

magnet, of magnetic moment ‘a, placed with its magnetic axis

parallel to the lines of the undisturbed force. We find

=_w’_ 4 '
lb (m'+yi)i+%F'y’ (),

h' h, 'fw 10 1 We Put 2F/_"=aa, and =b' (5)’

gives “all,
a=bi__—— 6 ;

1 d f 3’ (x’+y“) ( )

or, reso ve or w, ' '

w={(.f_”.1)’—y'}* ‘”

On account of the double sign of the radical in (6) we may,

without loss of generality, suppose a always positive; and the

branches of the curves corresponding to negative values of the

radical will then correspond to the case in which the magnet

is placed in the position in which, if it were rigidly magnetized,

and free to turn, its equilibrium would be unstable. In these

branches, which for brevity will be called cscfiectcd, 3/2 is every

where greater than b’2 ; while in the branches corresponding to

a magnet placed in position of stable equilibrium, which will

be called inflected, y’ is everywhere less than 122. Of the

annexed woodcuts,* fig. 1 represents the entire series of both

sets of branches for all positive values of I12; fig. 2 the whole

‘ From photographs of large-scale diagrams calculated from equation (7),

and drawn for the Natural Philosophy Class in the University of Glasgow

about twenty-three years ago by Mr. D. Macfarlane, to illustrate fluid motion

and the allied subjects of physical mathematics.
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series of inflected branches; fig. 3 the whole series of exfleoted

branches; and figs. 4, 5, 6, 7 selections from the two sets to

Radius of Circle =a.

11:1'6

p-l
:5

X:

hull-IF.‘H .nréé-occ'aslwoléaléo'oo'

H 6.

illustrate inductive influences of spherical bodies of various

qualities, placed in a uniform current of incompressible friction

b=1'6xa

:14 ” 1-5:m ,, l ' \s »=1-0 ., V

-8 .,

<101¢‘)

llll

pap-‘papa

c'aslrao'cbdaéréaiéao
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less liquid, or in uniform fields of electric or magnetic force.

The two double points shown in figs. 1, 2, and 4 correspond to

Radius of Circle =a.
 

‘a

u‘
= '6

= .4 'P

= .2 n

= 0 i’

= '3 n

= '4 ,,

= '6 n

= '3 ..

:1'0 ,,

:1‘2 ,,

:1‘4 ,,

:16 n

<
""""""""

"->

0

F10. 3

za=oo

a

1‘=2/—§='794Xa

b=l'6Xa

:1'4 ,, :1315 .

:1‘2

=1'0 n

= '8 ,,

= '5 n

= '4 n

= a .,

= '0 v

= '2 n

= .4 ',

= -6 ..

= '8 n

<-----d------>

Fro. 4.

the pairs of equal roots y: :2, '1 z —;2, which the two

quintics y, (y,_ bay d: as) ____ 0
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have when b = = 1-375. A circle (fig. 4) described from the

origin as centre through these double points, and therefore

fi=2'8

r=l'lxa.

Fro. 5.

having 375 for radius, cuts perpendicularly each of the inflected

curves, except the one given by bZE/TZ , which it cuts through

the double points at angles of :l: tan‘1 -

Radius of Circle =a.
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Of the exflected curves (fig. 3), that given by b = 0 consists

of a circle of radius a, having its centre at the origin, together

with the parts of the axis of a: external to that circle, each

doubled; or the same circle, together with the part of the axis

of 0: within it, doubled.

Fig. 4 represents the lines of electric force in the neighbour

hood of an uncharged insulated metal globe placed in a uniform

field of electric force. It also represents (§ 631) without

sensible distinction the lines of magnetic force in the neigh

fl= '48

1-=I'34Xa.

b=1-6xa———————’/‘\—

=11 .
=1'2 » -

="° "
_

= '8 ,,

= -o ,. _

= 1.. _

= ‘I ‘i —

= 0 ,,

= ‘2 ,,

= 1.. _

= '8 .. —

= '8 ' _

:1‘0 ,, '

=11 ,,V

:1‘0 ,,V

<--—a-—->

FIG. 7.

bourhood of a globe of soft iron in a uniform magnetic field.

Fig. 6 represents the stream lines of a frictionless incom

pressible liquid passing a fixed spherical obstacle.

633. To investigate the relation of the lines of force in the

neighbourhood of a solid globe of any ferromagnetic or die

magnetic homogeneous material destitute of intrinsic magnet

ism, put into a uniform magnetic field, with one of the three

principal axes (§ 611) if the substance be not isotropic, placed

parallel to the lines of force :—-Let er be the permeability of the

substance (§ 629) and r the radius of the globe. The induced

magnetization being (§ 610) uniform, and parallel to the lines

of force of the field, its action through external space will

(§ 610, foot—note) be the same as that of an infinitely small
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magnet at its'centre. Hence, using the notation of (5) in (3),

and instead of admitting the negative sign for the radical,

taking the proper diamagnetic formula by itself, we have

V:QF ‘0,1.’ —2.1: . . . (ferromagnetic)

(external) (xii); } (s),

V=§F{ (x,+y2),-2x . . (diamagnetic) S

for the potential in external space due to the magnetism of the

globe and the uniform force of the field. Throughout the in

ternal space the force is (§ 610, foot-note) uniform, and its

potential must be of the form (72:. Choosing C so that at the

surface of the sphere (radius r) the external and internal poten

tials shall be equal, we find

S V=§F(’é—2)x . . . . . (ferromagnetic) l

V=-;,,F(:-:+2)w ...(diamagnetic) S

From this and (8) we find, for the force at any point in the

axis of 0:,

(internal)

g X=F(1+:_:) . . . (ferromagnetic)

(external) a! I i (10) ;

X= F(1-‘?) . . . (diamagnetic)

and a, _

X: F (1— %- F) . . (ferromagnetic)

(internal) (11),

X=F(1+§:—:) . . (diamagnetic S

For points in the axis of a: infinitely near one another 0:: r,

and (§ 629) we have

X(extcrnal)

X(internal),

Hence, by (10) and (1]),

:fi,

. . . (ferromagnetic)

all) F ‘12”
. . . (diamagnetic) J
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or (resolving for r)

r=a£/2(:t21) . . . (ferromagnetic)

8 2+“

2(1-a)‘

For great values of a: we have

7.: Y‘; (1+1) approximately (14)
~ 2 w '

(13).

r=a . . (diamagnetic)

Hence for such values of w as those discovered in soft iron by

Thalén 631 above) the value of 1' would be only greater by

about fin; part than that shown in fig. 4. The circles shown

in figs. 5 and 7 were described with radii chosen at random.

By measuring them in proportion to a in each case, I find that

the permeabilities of the inductively magnetized globes whose

influence on the lines of magnetic force is represented in those

diagrams to be respectively 2'3 and '48.

XXXIII. On the Forces experienced by Small Spheres under

Magnetic Influence; and on some of the Phenomena pre

sented by Diamagnett'c Substances.

[From the Cambridge and Dublin Mathematical Journal, May 1847.]

634. The circumstance that a magnet* attracts small pieces

of iron, is the phenomenon of magnetism which was first ob—

served; and an analogous action, presented by rubbed amber,

'first drew attention to the phenomena of electricity. Now it

has since been discovered that no mutual attraction or repulsion

between two bodies can result from magnetism in one, unless

the other he also magnetized, and that no electric force can

exist unless each body be electrically excited. Hence it ap

pears that the forces originally observed are the consequences

of a temporary magnetic or electric state induced in a neutral

body, when placed in the neighbourhood of a magnet or of an

electrified body.

* Originally a piece of magnetic iron-ore or loadstone. The term may now

he applied to any mass possessing permanent magnetism, and may even be

extended to a galvanic wire of any form.
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In the following paper the law of such phenomena with

reference to magnetism* is considered. It is easily shown

however that, by taking 2': 1 in the formulae obtained below,

the corresponding results for small insulated conductors, elec

trified by influence, may be obtained, although the physical

problems are entirely distinct.

635. We may commence by considering the case of a small

sphere of soft iron, or of any other substance susceptible of

magnetic induction; and it is easily shown that the formulae

expressing the results may be applied to the case of a small

cube by merely altering the value of a certain coefficient ; and

in general to the case of a small portion of matter of any

form, such that in whatever way it be turned, the resultant

axis of magnetization, for the whole mass, shall coincide with

the direction of the magnetizing force.

636. It is well known [and proved in § 609 above] that if

a small homogeneous sphere of soft iron, or of any other

substance susceptible of magnetic induction, be placed in the

neighbourhood of a magnet, it will become uniformly magnet

ized, throughout its mass, with an intensity numerically ex

pressed by multiplying the magnetizing force, by a coeificient

independent of the dimensions of the sphere. Thus if R denote

the resultant force of the magnet, or the force that it would

exert upon an imaginary unit of magnetism, at the position

occupied by the sphere, of which we suppose the dimensions

to be so small that R has sensibly the same value and direction

throughout; and if I: be the intensity of the induced magnet

ism; we have 3,‘

K=4;'R (1):

where 'i is a proper fraction (nearly equal to unity for soft iron)

depending on the capacity of the substance for magnetic in

duction.

* This has not been made the subject of a special investigation by any

writer, so far as I am aware, although the nature of the result, in the case

of magnetism, appears to be entirely understood by Mr. Faraday. Thus,

from § 2418 of his Experimental Researches [quoted below, in the text (§ 646)]

we might infer that a small sphere or cube of soft iron would in some cases be

“ urged along, and in others obliquely or directly across the lines of magnetic

force ;” and that all the phenomena would resolve themselves into this, that

such a portion of matter, when under magnetic action, tends to move from

places of weaker to places of stronger force.
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637. If the force R were rigorously constant in magnitude

and direction throughout the whole space S occupied by the

sphere, then there would be no resulting force tending to move

the sphere; as, for example, we may conceive it to be, without

committing an appreciable error, in the case of a ball of iron of

any ordinary dimensions magnetized by the terrestrial force.

In the investigation which follows we shall therefore have to

consider the small variation of R through the space S, but

although considering the effect of this small variation in caus

ing a moving force upon the magnetized sphere, we may neglect

the deviation from rigorous uniformity of magnetization which

it will produce.

638. Let X, Y, Z be the components of R at the point (z, y, z),

which may be taken as the centre of the small sphere. At any

point (a: +f), (y+ g), (z+h), in the sphere, we shall have, for

the components of the resultant force due to the magnet,

(1X (1X dX

X-t'fif‘l'gig'l'al"

dY dY dY
Y-i-Hf'i' Wail-Eh’

z+9£~f+ Z—j9+ {511.

By considering the efi‘ects of these forces upon the elements (as

for instance thin bars, in the direction of magnetization) into

which the magnetized sphere may be supposed to be divided, it

is easily shown [§ 500 above], as has also been done by Poisson,

that the components of the resulting force on the sphere are

given by the equations

F=gxozl+ xozm +qézgxmn,

G=gxozl+ gmozm +%€.Ko'.n,

H=€€~mozl+£§mozm + (Limo-.11,

where a is the volume of the sphere, and l, m, n the cosines

of the angles made by the direction of magnetization with the

axes. Now since this direction is that of the force R, we have
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X Y Z

l=—- , m=—, n=—

R R R

Hence, since I: : £—r'i.R, we have

34' (IX dX dX

LFVEE’FYW'ZHE)

31'

Ga’

81' dZ dZ dZ

d1’ (117 (11’
G- (XE+Y-(E+ZE) (2),

41:- E

639. Now if R be due to any magnet, or to a closed galvanic

current, Xdz: + Ydy + Zdz is necessarily a complete differential,

and therefore we have

dY_dZ dZ dX (IX 1”’ (3)

T;- "y" dx=?1;’ dy_d.1:

Modifying the second members of (2) by means of these equa

tions, we find

3i dX dY dZ 31' (IR

Bi dX dY dZ 3i (IR

31' dX dY dZ 31' dB

From these we deduce

Fdar+ Gdy+Hdz=gra-.RdR=d(gi<r.R‘) (5),

which expresses fully the result of equations (4).

640. The interpretation of this result shows that a sphere of

soft iron is urged in the direction in which the magnetizing

force increases most rapidly; the components of the force in

different directions being expressible by the differential coei‘fi

. . 3 . .

cients of the function §1~raR2. Thus 111 some cases it may

actually be urged across the direction of the magnetizing force.

For instance, if a ball of soft iron be placed symmetrically with

respect to the two poles of a horse-shoe magnet, and at some

distance from the line joining them, it will be urged towards
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this line in a direction perpendicular to it, although the mag

netizing force is parallel to it; or if the magnetizing force

be due to a straight galvanic wire, a ball of soft iron will be

attracted towards the wire, although the force on an imaginary

"magnetic point” is perpendicular to a plane through it and

the wire.

641. The positions of equilibrium of a small sphere acted

upon by the magnetic forces alone, will be points in the neigh

bourhood of which R2 is stationary in value, or points where

d(R’) : 0. This condition is satisfied by either R: 0, or

dR : 0. Hence the sphere will be in equilibrium at points

where the resultant magnetizing force vanishes; where it is a

maximum or minimum; or where it is stationary in value.

642. A position of stable equilibrium will be such that R2

diminishes in every direction from it; and hence, if there be

any point, external to the magnet, at which the resultant force

has a maximum value, it would be a position of stable equi

librium for a small ball of soft iron, and any other position of

equilibrium is essentially unstable.

643. According to Mr. .Faraday’s recent researches, it ap

pears that there are a great many substances susceptible of

magnetic induction, of such a kind that for them the value of

the coefiieient i is negative. These he calls diamagnetic sub

stances, and, in describing the remarkable results to which

his experiments conducted him with reference to induction

in diamagnetic matter, hev says: “ all the phenomena resolve

themselves into this, that a portion of such matter, when under

magnetic action, tends to move from stronger to weaker places

or points of force."* This is entirely in accordance with the

result obtained above; and it appears that the law of all the

phenomena of induction discovered by Faraday with reference

to diamagnetics may be expressed in the same terms as in the

case of ordinary magnetic induction, by merely supposing the

coefficient i to have a negative value.1'

644. In the case of a diamagnetic sphere, the consideration

of the stability or instability of equilibrium in different posi

' Experimental Researches, § 2418.

+ The law of induction in a mass of any form, whether of magnetic or

diamagnetic matter, may be stated as follows:—Let R be the magnetic

21
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tions, is extremely interesting. Thus, at a point where R2 is

a minimum, a. small sphere of diamagnetic matter will be in

stable equilibrium; and this is actually the case at any point

for which the force vanishes; even if we take into account the

weight of the sphere, it is readily shown that stable positions

of equilibrium may exist. Thus a hollow cylindrical bar

magnet (if sufiiciently powerful), held with its axis vertical,

would support a small diamagnetic sphere in a position of

stable equilibrium at a point in the axis, a little below the

lower end of the magnet. For, considering different points in

the axis, we perceive that there is one below the lower end (at

a distance : :7; 7 if a, the radius of the cylinder, be very great

compared with its thickness, and very small compared with its

length, and if the distribution of magnetism be uniform) at

which the resultant force is a maximum. If, on moving a

small diamagnetic sphere upwards from this position, we arrive

at a point where the force urging it upwards is greater than the

weight, and then let it move freely from rest, it will oscillate

about a position of stable equilibrium. It will probably be

impossible ever to observe this phenomenon, on account of the

difiiculty of getting a magnet strong enough, and a diamagnetic

substance sufliciently light, as the forces manifested in all cases

of diamagnetic induction hitherto examined are excessively

feeble.

645. A very curious phenomenon might readily be observed,

according to the results given above, by placing two bar-mag

nets, with similar poles, in the neighbourhood of a ball of soft

iron allowed to move in a horizontal straight line (or suspended

in such a manner that any motion which can take place is in

a circle of considerable radius). Thus if a pole, S, of a bar

magnet which we may regard for simplicity as very long and

thin, be held in the neighbourhood, the ball will be drawn

towards the point A, in which a perpendicular from S meets

the line of motion, and A will therefore be a position of stable

force upon a point within an infinitely small spherical surface, described

round a point P in the mass, resulting from the magnetism of all the matter

external to this surface. The intensity of the magnetism at P is equal to

*rriR, and its direction is that of the resultant force 1?.
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equilibrium. If new a pole S’, of an equally powerful magnet,

be presented and held at an equal distance in SA produced, A

will become an unstable position; and if the ball be placed in

SA . .

J2 7 it will

be repelled from A, although either magnet alone would cause

it to move towards this point.

646. The result obtained above affords the true explanation

of the phaenomenon observed by Faraday, that a thin bar or

needle of a. diamagnetic substance, when suspended between

the poles of a magnet, assumes a position across the line join

ing them. For such a needle has no tendency to arrange itself

across the lines of magnetic force ; but, as will be shown 684,

below] in a future paper, if it be very small compared with the

dimensions and distance of the magnet (as is the case, for instance,

with a bar of any ordinary dimensions, subject only to the earth's

influence), the direction it will assume, when allowed to turn

freely about its centre of gravity, will be that of the lines of

force, whether the material of which it consists be diamagnetic,

or magnetic matter such as soft iron: but Faraday’s result is

due to the rapid decrease of magnetic intensity round the poles

of the magnet, and to the length of the needle, which is con

siderable compared with the distance between the poles of

the magnet; and is thus explained by the discoverer himself.

(§ 2269.) “ The cause of the pointing of the bar, or any oblong

“ arrangement of the heavy glass is now evident. It is merely

“ a result of the tendency of the particles to move outwards, or

“into the positions of weakest magnetic action.* The joint

“ exertion of the action of all the particles brings the mass into

“ the position which, by experiment, is found to belong to it.”

its line of motion, at any distance from A less than

Sr. Ps'rrm's COLLEGE, May 13, 1847.

* The extreme feebleness of the diamagnetic action on account of which

any small sphere or cube of the matter will experience very nearly the same

force as if all the rest were removed, seems fully to justify this explanation.
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XXXIV. Remarks on the Forces experienced by Inductively

Magnetized Ferromagnetic or Diamagnetie Non-Crystalline

Substances.

[From the Philosophical Magazine, October 1850.]

THE remarkable law laid down by Faraday in his Memoir on

the Magnetic Condition of all Matter, that a small portion of

diamagnetie matter placed in the neighbourhood of a magnet

experiences a pressure urging it from places of stronger towards

places of weaker force, is a simple conclusion, derived from the

mathematical solution of the problem of determining the action

experienced by a small sphere of matter magnetized induc

tively, and acted upon in virtue of its induced magnetism.

Without entering upon the analytical investigation, which will

be found in 634...646 above] a paper “ On the Forces ex

perienced by small Spheres under Magnetic Influence; and on

some of the Phaenomena presented by Diamagnetic Substances,“E

I shall, in the present communication, state and explain briefly

the result, and point out some remarkable inferences which may

be drawn from it.

647. Let P be any point in the neighbourhood of a magnet,

and let P’ be a point at an infinitely small distance, which

may be denoted by a, from P. Let R denote the force which

_ a “ unit north pole ”1- if placed at P would experience, or, as

it is called, “the resultant magnetic force at P;” and let R’

denote the same with reference to P’. Then, if a small sphere

of any kind of non-crystalline homogeneous matter, naturally

unmagnetic, but susceptible of magnetization by influence, be

placed at P, it will experience a force of which the component

along PP’ is Av 1 R':_R1

2 a ,

' Cambridge and Dublin lllathematical Journal, May 1847.

1' That is, the end of an infinitely thin uniformly and longitudinally

magnetized bar of “unit strength" which is repelled on the whole from the

north by the magnetism of the earth ; “ unit strength ” being defined by the

following statement :—

If two infinitely thin bars be equally, and each uniformly and longitu

dinally, magnetized, and if, when an end of one is placed at a unit (an

inch, for example) of distance from an end of the other, the mutual force
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where 0- denotes the volume of the sphere, and A a coefficient

depending on the nature of the substance. This coefficient, A

[agreeing with the A, B, or C of 614...618 applied to an

isotropic substance] has a value a little less than 4% for soft

iron, and it has very small positive values for all ferromagnetic

substances containing little or no iron.

648. If it be true, as I think it must be, that the forces experi

enced by diamagnetic substances are occasioned by the influ

encing magnet magnetizing them inductively,* and acting upon

them when so magnetized, according to the established laws

of the mutual action of two magnets, the preceding result

will hold for all non-crystalline matter; and to apply A

to a diamagnetic substance it will be only necessary to give it

a negative value. [From § 630, § 628 (l 4), and § 627 we see that

the extreme negative value conceivably admissible is —S%_ -

Thus for every substance, whether ferromagnetic or diamag

netic, A is between + 3 and — —3~ -]

41r Sr

649. To interpret the result of § 647, we may remark, that by

the elementary principles of the differential calculus as applied

to the variation of a quantity depending on the position of a point

in space, it may be shown that the fraction 1% is greater

when the point P’ is chosen in a certain determinate direction

from P than in any other; that it is of equal absolute value,

but negative, if P’ be chosen in the opposite direction; and

between these ends is unity ; the magnetic strength of each is unity. The

force R, defined in the text, is of course equal and opposite to the force

that a “ unit south pole ” would experience if placed at P.

* The most natural explanation of the phaenomena which he had dis

covered is suggested by Faraday in his original paper on the subject, and

it is confirmed by the researches of subsequent experimenters, especially

those of Reich and Weber, who have made experiments to show that a

diamagnetic substance, under the influence of two magnets, will act upon

one in virtue of the magnetization which it experiences from the other.

The extreme feebleness of the polarity induced in diamagnetic substances

is proved by Faraday in a series of experiments forming the subject of his

last communication to the Royal Society; in which an attempt is made,

by very delicate means, to test the induced current in a helix due to

magnetization or demagnetization of a diamagnetic substance which it sur

rounds, but only negative results are obtained.
I
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that it vanishes if P’ be in a plane through P at right angles

to the line of those two directions. Hence it follows that the

resultant force upon the small sphere is along that line, in one

direction or the other, according as A is positive or negative,

and accordingly we draw the following c'onclusions :—

(1.) A small ferromagnetic sphere in the neighbourhood of

a magnet, will experience a force urging it in that direction in

which the " magnetic force ” increases most rapidly.

(2.) A small diamagnetic sphere, in the neighbourhood of a

magnet, will experience a force urging it in that direction in

which the magnetic force decreases most rapidly.

(3.) The absolute magnitude of the force in any case in

which the distribution of magnetic force in the neighbourhood

of the magnet is known, is the value which the expression in

§ 637 obtains when we give R a

a the value found by means

of the differential calculus, for a point P’ at an infinitely small

distance PP’ in the direction of the most rapid variation of the

magnetic force from P, the actual position of the ball.

650. It is deserving of special remark, that the direction of

the force experienced by the ball has no relation to the direction

of the lines of magnetic force through the position in which it

is placed. The mathematical investigation thus affords full

confirmation and explanation of the very remarkable observa

tion made by Faraday (§ 2418), that a small sphere or cube

of inductively magnetized substance is in some cases “urged

along, and in others obliquely or directly across the lines of

magnetic force.” It is in fact very easy to imagine, or actu

ally to construct, arrangements in which the resultant force

experienced by a ball of soft iron, or of some diamagnetic

substance, is perpendicular to the lines of the magnetizing

force. For instance, if a ball of soft iron be placed symme

trically with respect to the two poles of a horse-shoe magnet,

and at some distance from the line joining them, it will be

urged towards this line, in a direction perpendicular to it,

and consequently perpendicular to the lines of magnetizing

force in the space in which it is situated; and a ball of bis

muth, or of any other diamagnetic substance, similarly situated,

would experience a force in the contrary direction. Or again,
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if a ball of any substance be placed in the neighbourhood of

a long straight galvanic wire, it will be urged towards or from

the wire (according as the substance is ferromagnetic or dia

magnetic) in a line at right angles to it, and consequently

cutting perpendicularly the lines of force, which are circles

with their centres in the wire and in planes perpendicular

to it.

651. The preceding conclusions enable us to define clearly

the sense in which the terms “attraction” and “repulsion "

may be applied to the action exerted by a magnet on a ferro—

magnetic and a diamagnetic body respectively. A small sphere

of ferromagnetic substance, placed in the neighbourhood of

. a magnet, experiences in general, a force ; but the term attrac

tion, according to its derivation, means a force towards; and

if we apply it in any case, we must be able to supply an ob

ject for the preposition. Now, in this case the force is towards

places of stronger “magnetic force;” and hence the action

experienced by a ferromagnetic ball may be called an attrac

tion if we understand towards places of stronger force. Places

of stronger force are generally nearer the magnet than places

of weaker force, and hence small pieces of soft iron are

generally urged, on the whole, towards a magnet (in conse

quence of which no doubt the term “ attraction " came originally

to be applied) : but, as will be seen below, this is by no means

universally the case; balls of soft iron being, in some cases,

actually repelled from the influencing magnet; and the term

_“ attraction” can only be universally used with reference to

ferromagnetic substances, on the understanding that it is

towards places of stronger force. The term “repulsion,” the

reverse of “ attraction,” may, according to the same principles,

be applied universally to indicate the force with which a small

diamagnetic sphere is urged towards places of weaker force, or

repelled from places of stronger force.

652. The following passage, containing a statement of prin

ciples on some of which Faraday himself lays much stress, but

which have not, I think, been sufliciently attended to by

subsequent experimenters, is quoted from the article in the

Mathematical Journal already referred to. [Here comes quota

tion of § 646 above]
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653. It may be added to this, that the tendency of a bar,

whether of ferromagnetic or of diamagnetic substance, in a uni

form field of magnetic force, to take the direction of the lines

of force, depends on the effect of the mutual action of the parts

in altering the general magnetization of the bar,'and is con

sequently so excessively feeble for any known diamagnetic

substance that the most delicate experiments would in all pro

bability fail to render it sensible.*

654. Faraday’s law, stated at the commencement of these

remarks, may be illustrated by some very curious although

extremely simple experiments, which I shall now describe

briefly-I‘

655. The special apparatus required is merely a long light

arm (I have used one about four feet in length; but a much

shorter rod, if suspended by a finer or by a longer torsion

thread, would have answered equally well) suspended from a

“ torsion-head ” by means of a very fine wire, or thread of un

spun silk fibres attached to it near its middle; and a case

round it adapted to prevent currents of air from disturbing its

equilibrium, but allowing it sufficient angular motion in a

horizontal plane. A small ball of soft iron is attached to one

end of the arm (or hung from it by a fine thread, which, for

the sake of stability in many of the experiments, as for instance,

experiments 2 and 3 described below, must not be too long),

and a counterbalance is adjusted near the other end so as to

make the arm horizontal. If only a small angular motion

be allowed to the arm, the path of the ball will be sensibly

straight, and we may consider that, by the arrangement which

has been described, the ball is allowed to move with great

freedom in a straight line, but prevented from all other motion.

656. In making the experiments described below, it is con

venient to have two stops so arranged that the motion of the

arm may be kept within any desired limits, and manageable

* A very brief communication on this subject was laid before the British

Association at the meeting of 1848, and is published in the Report for that

year, under the title “ On the Equilibrium of Magnetic or Diamagnetic

Bodies of any form, under the Influence of Terrestrial Magnetic Force.”

1' These experiments were shown, in illustration of lectures on magnetism

in the Natural Philosophy Class in the University of Glasgow, during the

Session 1848-49.
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in such a way, that by means of them the arm may be rapidly

brought to rest in any position. In general, before com

mencing an experiment, the arm ought to be brought to rest

near one end of its course, and kept pressing very slightly

upon one of the stops by the torsion of the wire, which may

be suitably adjusted by the torsion-head, and the other stop

ought to be pushed away, so as to leave the arm free to move

in one direction.

657. Eapefiment 1.—Place a common bar-magnet with either

pole, the south, for instance, near the ball of soft iron in its

line of motion, but on that side towards which it is prevented

from moving by the stop. Taking another bar-magnet of

considerably greater strength than the former, bring its north

pole gradually near the fixed south pole of the other, in the

continuation of the line of motion of the iron ball. When

this north pole reaches a certain position, the arm will cease

to press on the stop, and if we push the north pole a little

nearer still, the arm will altogether leave the stop and take a

position of equilibrium, in which, after it is steadied (as may

easily be done by means of the stops), it will remain stable,

although the stops be removed entirely. If, by means of one

of the stops, the ball be pushed to any distance farther from

the magnets than this position of stable equilibrium, it will

return towards it when left free. If it be drawn a little nearer

by means of the other stop, and, when left for a few seconds,

it be found to continue pressing upon the stop, then, when

the stop is removed, the ball will return to that position of

stable equilibrium. If, however, it be very slowly drawn still

nearer the magnets, when it reaches a certain position it will

cease to press on the stop; and if after this it experience the

slightest agitation, or if it be drawn any nearer, it will leave

the stop and move up till it strikes the nearer magnet, in con

tact with which it will almost immediately come to rest. It

thus appears that there is a position of unstable equilibrium

for the ball between the former stable position and the nearer

magnet. It is easy to arrange the torsion-head so that the

torsion of the suspending-thread or wire may have as little

effect as we please, by finding, by successive trials, either of

these positions of equilibrium, subject to the condition that,
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when the magnets are removed, the torsion would not sensibly

disturb the arm from the position so found.

658. After the explanations which have been given above, it

is scarcely necessary to point out that the position of unstable

equilibrium, determined in this experiment, is a point where

the magnetizing force due to the south pole is destroyed by

that of the more distant but more powerful north pole; and

- that the position of stable equilibrium is one where the excess

of the magnetizing force due to the north pole, above that

which is due to the less powerful south pole, has a maximum

value with reference to points in the continuation, through the

less powerful pole, of the line joining the two poles. If the

poles were mathematical points, and the bars so long that their

remote ends could produce no sensible action on the ball, the

position of unstable equilibrium would of course be such that

its distances from the two poles would be directly as the square

roots of the strengths of the magnets ; and, by the solution of a

most simple “maximum problem,” it may be shown that the

stable position would be such that its distances from the poles

would be directly as the cube roots of the strengths.

659. Etpcr'lmnt 2.—Plaoe two equal bar-magnets symmetri

cally with reference to the line of motion, with similar poles

at equal distances on two sides, in a perpendicular to this line,

and, to make the best arrangement, let the lengths of the

magnets be in the continuations of the lines joining their poles.

Operating by means of the stops, in a manner similar to that

described for the preceding experiment, it is readily ascer

tained that there are two positions of stable equilibrium for

the ball at equal distances on two sides of the line joining the

poles, and that the middle point of this line is a position of

unstable equilibrium.

660. Here, again, the explanation is obvious. The positions

of stable equilibrium being such that, with reference to points

in the line of motion of the ball, the magnetizing force due

to the two similar poles may be a maximum, are readily found

to be at distances {T75 on the two sides of the line joining the

poles (the length of this line being denoted by a), if these be

mathematical points, and if the lengths of the bars be so great

that the distant poles produce no sensible effects.
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661. Experiment 3.—Hold a common horse-shoe magnet with

the line joining its poles perpendicular to the line of motion

of the ball, and, by a suitable management of the stops and

of the torsion-head, the existence of a force urging the ball

perpendicularly across the “lines of force” towards the middle

. point of the line joining the poles, may be easily made

manifest.

662. Experiments on diamagnetie substances, and on ferro

magnetic substances of feeble inductive capacity.—The phaano

mena discovered by Faraday relative to the action of magnets

on substances not previously known to be susceptible of mag

netic influence may be exhibited with great ease by means of

the apparatus described above. Small balls of the substances

to be experimented upon may be hung from one end of the

balance (the balhof soft iron being of course removed) by fine

threads of sutficient length to allow the arm, which may be of

any substance containing no iron, to be out of reach of any

sensible influence from the magnet employed. There is in these

cases no difliculty, regarding the length of the suspending-thread,

of the kind noticed above [§ 655] with reference to soft iron,

as the magnetic forces experienced are never strong enough

to produce lateral instability (that is, a want of stability in the

line of motion), even with the lightest of the substances ex

perimented on, unless the‘ suspending thread be far longer

than is necessary. In the experiments I have made, the

threads bearing the small balls have not been more than

four or five inches long. The diameters of the balls have

been from a quarter of an inch to an inch, or an inch and

a half. Instead of simple bar-magnets of steel, which are

not powerful enough to be convenient for these experiments,

I have used a bar electro-magnet of very moderate power,

consisting of a helix and soft iron core. This core is a cylin

der of about an inch in diameter and a foot and a half long,

with round ends (nearly hemispherical), which, when the core

is in its central position, extend about an inch beyond the

helix on each side. By these means the repulsion of balls of

diamagnetic substance, and the attraction of very feebly ferro

magnetic substances, may be shown with great facility.

663. For example, I may mention that I have hung a small
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apple, whole, by a thread three or four inches long, and

putting it at first at rest, pressing slightly (in virtue of torsion

produced by the torsion-head mentioned above, § 656) upon

one end of the soft iron core previously to the excitement of

the electro-magnet, I have found that as soon as the galvanic

current is produced, the apple is repelled away ; and, by push

ing forward the soft iron core, I have chased it across the field

through a space of four or five inches.

664. I have also used the same apparatus to show that a body

which is feebly attracted in air is repelled when immersed

below the surface of a sufliciently strong solution of sulphate

of iron in a small trough, so arranged that when, by the force

of torsion, the body immersed in the liquid is made to

press on a side of the trough, the electro-magnet may be

placed with one end of its core pressing on the outside of the

trough, close to the point where it is pressed upon by the

body within. Using small glass balls (which, when empty,

exhibit no sensible effects of the influence of the magnet), the

magnetic conditions of difl'erent liquids filling them may be

easily tested. Faraday’s beautiful experiments on the relative

magnetic capacities of solutions of sulphate of iron of difl'erent

strengths, or rather, other experiments to illustrate the same

principles, may be performed in an extremely convenient

manner, by filling a glass ball of this kind with a solution,

hanging it from one end of the arm, and, by a suitable ad

justment of the weight at the other, immersing it below the

surface of another solution contained in the trough. I have

found that whenever the difference of the strengths of the two

solutions was considerable, the ball immersed was attracted

or repelled by the external magnet, according as the solution

contained in the ball was stronger or weaker than the solution

surrounding it.

On the Stability of small Inductively Magnetized Bodies in

Positions of Equilibrium.

665. In thepaper [§§ 634 . . . 646] published in the Mathematical

Journal (referred to above), I pointed out that a small ball of
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either ferromagnetic or diamagnetic substance placed in the

neighbourhood of a magnet, and not acted upon by any non

magnetic force, is in equilibrium if it be in a situation where the

“resultant force” (that which was denoted by R) is either a

maximum or minimum, or “stationary” in value; that 9. dia

magnetic ball is in stable equilibrium if, and not in stable

equilibrium unless, it be situated where the force R is a mini

mum in absolute value; and that “if there be any point

“ external to the magnet, at which the resultant force has a

“ maximum value, it would be a position of stable equilibrium

“ for a small bar of soft iron, and any other position is essen

“ tially unstable.” Shortly after the publication of that paper,

I succeeded in proving that the resultant force cannot be an

absolute maximum at any point external to a magnet, and

consequently that no position of stable equilibrium for a ferro

magnetic ball, perfectly free from all constraint, can exist. I

have very recently found that there may be points where the

resultant force is an absolute minimum without being zero;

and therefore there may be positions of stable equilibrium

for a diamagnetic ball not included in the case of the force

vanishing, noticed in the previous paper. That case, however,

affords the simplest illustration that can be given of that most

extraordinary fact, that a solid body may be repelled by a

magnet, or magnets, into a position of stable equilibrium. If,

for instance, we take the arrangement (described for Exp. 2

above) of two bar-magnets, fixed with similar poles near one

another, we have obviously between these poles a point where

the resultant force vanishes, and towards which consequently

a small diamagnetic ball placed anywhere sufliciently near it

would be repelled It is easily shown that, actually under

the action of gravity, a ball of diamagnetic substance would

be in stable equilibrium a little below this position, without

any external support or constraint whatever, if only the

magnets were strong enough. It is, however, extremely im

probable that any attempt to realize this by experiment will

succeed, since, even in the most favourable cases, no diamag

netic repulsion upon a solid has yet been obtained which at

all approaches in magnitude to the weight of the body. Still

we must consider that a true theoretical solution of the cele
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brated physical problem"F suggested by “Mahomet’s collin”

has been obtained, which is not the least curious among the

remarkable consequences of Faraday’s magnetic discoveries.

On the relations of Ferromagnetic and Diamagnetie

Magnetization to the Magnetizing Force.

666. In the mathematical investigation by which the result

stated above was obtained, it is assumed that the magnetization

of the substance of the ball in each case is proportional to the

magnetizing force (although this assumption may of course be

avoided by merely supposing p. to have a value varying with

the force, which will not afi'ect either the investigation or the

form of the result). It appears to me very probable that this

assumption is correct for all known diamagnetic substances, and

for homogeneonsfeeblyfewomagnetie substances ; since [§ 606, 11.]

it is equivalent to an assumption that inductive magnetization

of a substance does not impair or in any way alter its suscep

tibility for fresh magnetization by means of another magnet

brought into its neighbourhood. This opinion cannot, how

ever, at present be regarded but as a mere conjecture, being

as yet unsupported by experiment. It is indeed directly

opposed to the following conclusion to which M. Pliicker arrives,

from some of his experimental researches :—-J’ai déduit de

“ a cette loi générale, savoir: que la diamagnétisme décroit

“ plus vite que le magnétisme quand la force de l’aimant dimi

" nue, ou quand la distance des poles augments :”1' but many

* It is, I believe, often thought that this problem is solved in the experi

ment in which a needle is attracted into a galvanic helix held with its

axis vertical; but I have convinced myself that the needle always touches

somewhere on the sides of the tube (if there be one round it) or on the

wire of the helix ; and I have also ascertained that, when a powerful helix is

used with, in place of the needle, a tin-plate [iron] cylinder, even if it be very

little less in diameter than the inner cylindrical surface of the helix, there

is never stable equilibrium without contact between them. The phsenomenon

of a solid body, hovering freely in the air, in stable equilibrium, without

any external support or constraint, has never, I am convinced, been witnessed

as the result of any electrical or magnetical experiment.

'1' Quoted from a paper in the French Annalee de Chimie et de Physique,

June 1850, bearing the title, "Sur le Magnétisme et le Diamaguétisme:

par M. Plllcker.” This paper appears to be a réaumé of the author's ex

perimental researches and discoveries regarding magnetic induction, of

which detailed accounts have been published in various communications to

Poggendortfs Annalen in the course of the last two years.
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of the curious phaenomena from which M. Pliicker was led

to this conclusion, and which he adduces in confirmation of

it, do not appear to me to support it, but rather to be con

nected with the peculiar magneto-inductive properties of crys

talline or quasi-crystalline structure which he discovered

subsequently;* and with respect to those which appear at

first sight really to support it, I have conjectured that they

may admit of explanation solely on the principle expressed in

Faraday’s law, quoted at the commencement of these remarks.

Thus, the experiments upon a. watch-glass containing mercury,

placed at different distances from a magnet, which show

that the resultant force experienced by the watch-glass, in

virtue of its own magnetization as a ferromagnetic substance,

and the contrary magnetization of the diamagnetic merciu‘y,

is sometimes increased by removing the whole to a slightly

greater distance from the magnet, do not prove that when the

magnetizing force is diminished the induced magnetization of

the mercury is diminished by a greater fraction of its former

amount than that of the watch-glass, but are most probably

' to be explained by the circumstance that the " field of force”

occupied by the mercury and watch-glass, when removed a

very short distance, is such that the mean value of the differ

ential coefiicient of the square of the force, with reference to

co-ordinates parallel to the direction of motion of the watch

glass, is greater than the mean value of the same function,

through the field occupied when the watch-glass is in contact

with the magnet. It is of course impossible to give more than

a general explanation such as this without some specific know

ledge of the distribution of magnetic force in the neighbour

hood of the actual magnet employed; but the phaenomena

described by M. Pliicker in this case are undoubtedly of a

kind that might be anticipated if a vertical bar-magnet be

used, especially if the upper pole, over which the watch-glass

is suspended, be flat. An electro-magnet with, for core, a

hollow cylinder of soft iron open at the ends, would even repel

the statement he makes at the commencement of §4 of the paper already

referred to. Yet he mentions his experiments on cylinders of charcoal as

the foundation on which he establishes, as a general law, the conclusion

quoted in the text.
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a small ferromagnetic body capable of moving along the axis,

in some positions, and attract it a little further off, since there

would be variations of force in this case precisely similar to

those explained with reference to points in the line of motion

of the ball in Experiment 2.

667. The most striking experiments adduced by M. Pliicker

to support his hypothesis, that “ diamagnetism increases more

rapidly than magnetism” when the magnetizing force is in

creased, are those in which the force experienced by a small

inductively magnetized body in a constant position is tested

for different strengths of the same electro-magnet, produced by

using a greater or less number of cells in the exciting battery.

At the recent Meeting of the British Association in Edin

burgh, I ventured to suggest that a change in the distribution

of magnetic force in the neighbourhood of the magnet, accom

pang/ing an increase or diminution in the strength of the gal

eanic current, might have contributed to produce some of the

singular phecnomena which had been observed ,' and that there

is some considerable change in the distribution of force in the

neighbourhood of an electro-magnet with a soft iron core in a '

state of intense magnetization when, for instance, the strength

of the current is doubled, seems extremely probable when we con

sider that a piece of soft iron in a state of intense magnetiza

tion cannot be expected to be as open to fresh magnetization as

it would be not magnetized in the first instance. On the

same occasion I remarked, that some experiments made by

Mr. Joule in connexion with his researches on changes of

dimensions produced in iron bars by magnetic influence, ap

peared to indicate diminished inductive capacities in states of

intense inductive magnetization.‘ At that time I was not

aware of the recent experimental researches of Gartenhauser

and Miiller on the magnetization of soft iron; but I have

since met with a number of Poggendorff’s Annalcn (1850,

No. 3, published last April) containing an account of these

researchesfi which completely confirms the second part of

' Phil. Mag. 1847, vol. xxx. pp. 76, 225. Also Sturgeon’s Annals, Aug.

1840.

+ "Ueber die‘ Magnetisirung von Eisenstiiben diirch den Galvanischen

Strom; von. J. Muller."
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the conjecture I had thrown out. WVhether or not, how

ever, the change in the distribution of force is of such a kind

as to account for the phaenomena by which M. Pliicker sup

ports the conclusion which has been quoted, it is impossible

to pronounce without a complete knowledge of the circum

stances. An axperimentum cmcis might be made by means of

an electro-magnet without a soft iron core.

668. In one respect M. Pliicker’s views receive a remark

able confirmation by Joule and by Gartenhauser and Muller’s

experiments, if it be true that a homogeneous diamagnetic

substance is inductively magnetizable to an extent precisely

proportional to the magnetizing force, or deviating less from

this proportionality than the magnetization of soft iron. For

if a complex body were made up consisting of a diamag

netic substance (either solid or in powder) and an extremely

small quantity of soft iron in very fine powder or filings,

spread uniformly through it ; a small ball of this body would,

when acted upon by a feeble magnetizing force, become on the

whole magnetized like a ferromagnetic, and would be urged

from places of weaker towards places of stronger force. If now

the magnetizing force were gradually increased, the “resultant

magnetic moment” of the complex body would at first in

crease, then, after attaining a maximum value, decrease to

zero, after which it would become “negative,” or the ball

would be on the whole magnetized like a diamagnetic, and

would be urged from places of stronger towards places of

weaker force. Such, if I mistake not, is the bearing which

M. Pliicker expects of any complex solid consisting of a

suitable mixture of ferromagnetic and diamagnetic substances;

but mere experiments on soft iron, such as those of Joule and

of Gartenhauser and Muller, do not render it probable that

a homogeneous feebly ferromagnetic substance, containing

no iron, or only a very small quantity and that chemically

combined, should have its capacity for fresh magnetization

diminished by the slight magnetization which the strongest

magnetizing force that could be applied would produce.*

Row, Guns Loon, Aug. 2], 1850.

‘ [The last sentence of this article is cancelled from thei‘eprint (Jnly 5,

1872).]

2 K
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XXXV. ABSTRACTS or we COMMUNICATIONS

[From the Rqoort of British Associationfor Belfast, 1852.]

On certain Magnetic Curves ; with applications to Problems in

the Theories of Heat Electricity, and Fluid Motion.

669. A method [§ 632 above], which had been given by the

author in the Cambridge Mathematical Journal for integrating

the difi'erential equations of the lines of force in any case of

symmetry about an axis, is applied in this communication to

the case of an infinitely small magnet placed with its axis

direct or reverse along the lines of force of a uniform magnetic

field. Diagrams [§ 632 above] containing the curves drawn

accurately, according to calculations founded on the result of

this investigation (corresponding to series of ten or twelve

different values given to the constant of integration), were ex

hibited to the Section Certain parts of these curves were

shown in a separate diagram [§ 632, fig. 4], as constituting

precisely the series of lines of electric force about an insulated

spherical conductor under the influence of a distant electrified

body; and the other parts, in a separate diagram [fig 6], as

constituting the lines of motion of a fluid mass in the neigh

bourhood of a fixed spherical solid, at considerable distances

from which the fluid is moving uniformly in parallel lines so

slowly as to cause no eddies round the obstacle. The circle

representing the section of the spherical conductor, in the

former of these diagrams, cuts the entire series of curves at

right angles, with the exception of one curve, which it cuts

through a double point at an angle of 45° to each branch. The

circle representing the section of the spherical obstacle in the

latter diagram, along with two infinite double branches consist

ing of the axial diameter produced externally in each direction,

constitutes the limiting curve of the series shown, and is not

intersected by any of them. A series of diagrams (deduced from

the former of these by describing a circle of the same size as

that shown in it, and drawing, on a smaller scale, as much of the

curves as lit; without this circle) was shown as representing the

disturbed lines of magnetic force about balls of ferromagnetic
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substance of different inductive capacities, placed in a uniform

magnetic field [one of these is shown in fig. 5 of § 632] ; and

another series, similarly derived from the latter (that is, the

one representing the lines of fluid motion about a spherical

obstacle), was shown as representing the disturbance caused

by the presence of diamagnetic balls of different inductive

capacities in a uniform magnetic field [one of these is shown in

fig. 7 of § 632]. These two series of diagrams are also accurate

representations of the lines of motion of heat in a large homo

geneous solid having heat uniformly conducted across it, dis

turbed by spherical spaces occupied by solid matter of greater

or less conducting power than the matter round them; the

two principal diagrams from which they are derived being the

corresponding representations for the cases of spherical spaces

occupied respectively by matter of infinitely great and infinitely

small conductivity. The author called attention to the remark

able resemblance which these diagrams bore to those which

Mr. Faraday had shown recently at the Royal Institution to

illustrate his views regarding the action of ferromagnetics and

diamagnetics in influencing the field of force in which they

are placed; and justified and illustrated the expression“ con

ducting power for the lines of force,” by referring to rigorous

mathematical analogies presented by the theory of heat.

On the Equilibrium of elongated Masses of Ferromagnetic Sub

stance in anifwm and varied Fields of Force.

The fact, first discovered experimentally by Gilbert, that a

bar of soft iron, held by its centre of gravity in a uniform

magnetic field, settles with its length parallel to the lines of

force, is not explained correctly when it is said to be merely due

to the property of magnetic induction in virtue of which the

bar of soft iron becomes temporarily a magnet like a permanent

magnet in its position of stable equilibrium. For exactly the

same statement would be applicable to a row of soft iron balls

rigidly connected by a non-magnetic frame; yet such an arrange

ment would not experience any directional tendency (since no

one of the balls in it would experience either a resultant force or

a. resultant couple from the force of the field), unless in virtue
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of changes in the states of magnetization of the balls induced

by their mutual actions. Hence the mutual action of the parts

of a row of balls, and as is easily shown, of a row of cubes, or

of a bar of any kind, must be taken into account before a true

theory of their directional tendencies can be obtained The

author of this communication, by elementary mechanical reason

ing founded on what is known with certainty regarding magnetic

induction and magnetic action generally, shows that an elongated

mass, in a uniform magnetic field, tends to place its length

parallel to the lines of force, whether its inductive capacity be

ferromagnetic or diamagnetic, provided it be non-crystalline, be

cause if ferromagnetic it becomes more, or if diamagnetic, less

intensely magnetized, if placed in such a position, than if placed

with its length across the lines of force. But for all substances,

whetherferromagneticor diamagnetic, possessing so little capacity

for induction as any of the known diamagnetics, this tendency,

depending as it does on the mutual action of the parts of the

elongated mass, is, and probably will always remain, utterly

imperceptible in experiment. All directional tendencies in

bars of diamagnetic substance which have yet been, and pro

bably all which can ever be discovered by experiment, are due

either to some magnecrystallic property of their substances, or

to the tendency of their ends or other moveable parts, fromplaces

of stronger towards places of weaker force, in varied magnetic

fields, or to these two causes combined, and in no respect to the

inductive effects of the mutual influence of their parts. To

consider the effects of a want of uniformity of the force, in a

varied field, on the equilibrium of a ferromagnetic bar, the

author quoted Faraday’s admirable statement of the law regard

ing the tendency of a ball or cube of diamagnetic substance, and

referred to former papers, in which he had proved that, when

applied to non-crystalline substances generally, with the proper

modification for the case of ferromagnetics, it expresses with

admirable simplicity the result of a mathematical investigation

involving some of the most remarkable principles in the theory

of attraction. From this it was shown, that if we conceive a

ferromagnetic mass to be divided into very small cubes, each of

these parts would, of itself, tend towards places of stronger

force, and therefore that the bearing of the whole mass in a
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varied field will be produced partly by this tendency and partly

by the tendency depending on the mutual inductive influence

which alone exists when the field is uniform. The author then

proceeded to illustrate these theoretical views by a series of ex

periments. In some of them a steel bar magnet was used, and

small soft iron wires, fixed in various positions on light wooden

arms, were shown to be sometimes urged on the whole from

places of stronger to places of weaker force by their tendency

to get into positions with their lengths along the lines of force.

In others, a ring electro-magnet, consisting of insulated copper

wire, rolled fifty times round as closely as possible to the

circumference of a circle of about 25 centimetres diameter,

fixed in a vertical plane at right angles to the magnetic

meridian, was used, and a single cube of soft iron, placed

in an excentric position on a long narrow pasteboard tray

centrally suspended in the field of force by unspun silk, was

attracted into the plane of the ring ; but a row of three or four

cubes placed touching one another in a line through the axis

of suspension, settled as far from the plane as possible, in virtue

of the tendency of an elongated mass to get its length along the

lines of force. Two cubes placed in contact are found to be

in stable equilibrium in the plane of the ring, or in oblique

positions, or as far from the ring as possible, according to the

greater or less distances at which they are placed in the tray,

from the point of suspension. A number of equal and similar

bars of a composition of wax and soft iron filings of different

ferromagnetic strengths, suspended successively with their

middle points in the centre of the magnet, settled in various

positions. Those of them which were of greatest ferromagnetic

capacity settled perpendicular to the plane of the ring or along

the lines of force ; others, with a smaller proportion of iron fil

ings, had positions of stable equilibrium both in the plane of

the ring and perpendicular to it ; and others, with a still smaller

proportion of iron filings, had their sole positions of stable

equilibrium in the place of the ring. The last-mentioned ex

periments illustrated very curiously the diminished proportion

borne by the effects of mutual influence of the parts to those of

a non-uniformity in the field of force, in similar bodies of

smaller ferromagnetic capacity. [Compare last two sentences

of § 670 below.]
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XXXVI. Remarques sur les oscillations d’aiguillcs non cristal

lise'es de faible pouvoir inductif paramagne'tique ou dia‘

magnétiques, et sur d’autres phénomènes magnétiques pro

duits par des corps cristallisés ou non cristallisés.

[From the ‘ Comptes Rendus’ qfthe French Academy, 1854, first half-yeah]

“ GLASGOW, le 22 mars 1854.

670. “ J'ai lu aujourd’hui, dans les Comptes Rendus du 25 avril

de l'année dernière, un Extrait de trois Mémoires de M. Mat

teucci relatifs au magnétisme, qui renferment un grand nombre

d'observations intéressantes. J’y trouve la remarque que des

aiguilles prismatiques de bismuth non cristallisé oscillent entre

les pôles d’un aimant dans des temps égaux, lors même que

leurs poids sont difi‘érents, quand leurs longueurs sont les mêmes.

J’ai eu la pensée que la proposition serait encore vraie, lors

même que cette dernière condition ne serait point remplie, ou

du moins en y substituant cette autre condition moins absolue :

les longueurs des difl'e’rentes aiguilles ne doivent point depasser

une petite fraction de la distance comprise entre les deux pôles de

l'aimant.

“ Il me suffit, pour prouver cette proposition, de remonter

à. la raison donnée dès l'origine par M.‘ Faraday de l’action

éprouvée par une aiguille de bismuth non cristallisé placée

entre les deux pôles d'un aimant : savoir que cette action est la

résultante des tendances qu’éprouvent toutes les particules de

l'aiguille à se transporter des points ou la force magnétique est

la plus intense vers ceux où, elle est la plus faible ; j’applique ici

la théorie mathématique, présentée pour la première fois dans le

Journal de Mathématiques de Cambridge et de Dublin.‘

“ 11 est en effet démontré, dans cette investigation mathé

matique, qu'en désignant par y, un coefiicient exprimant

* Des forces qui agissent sur de petites sphères soumises à des influences

magnétiques; aperçu de quelques phénomènes présentés par les substances

diamagnétiques.

Cambridge and Dublin Mathematical Journal; mai 1847 [§§ 634...646

above].

Voyez aussi un article du Philosophical Magazine, octobre 1850, intitulé :

“ Remarques sur les forces qui agissent sur les substances i'erromagnétiques

ou diamagnêtiques non cristallisées magnétisées par induction ” [§§ 647. . .668

above].
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le pouvoir inductif de la substance (ce coefiicient, positif pour

les substances ferromagnétiques ou paramagnétiques, et négatif

pour les substances diamagnétiques, exprime parfaitement la dif

férence de propriétés, découverte par M. Faraday, et qui a servi

de base à, la division de tous les corps en deux classes, corps

paramagnétiques et corps diamagnétiques); par a le volume

d'une particule du corps ; par R la résultante des forces mag

nétiques qui s'exercent au point (x, y, 2) du champ magnétique

dans lequel il est placé, c'est-à-dire la force qui agirait sur un

pôle magnétique égal à l'unité, ou sur l'unité de magnflieme

boréal, ou de matière magnétique imaginaire, ou de fluide mag

mîtique qui se trouverait en ce point. La force à laquelle sera

effectivement soumise cette particule magnétisée par induction

sera la résultante des trois forces X, Y, Z données par les trois

équations [§ 639 (5) above]

I I I
X=èlwd ), Y=èpurd ), Z=§I4ad ).

“Supposons que l’origine O des coordonnées soit placée au

centre de la ligne qui joint les deux pôles de l’aimant, et que

l’axe des coordonnées X'OX coïncide avec cet axe du champ mag

nétique : la valeur de R2 sera un minimum au point O relative

ment aux divers points de la ligne X'OX, et un maximum

relativement aux points d'un plan équatorial qui lui serait per

pendiculaire. On a, d'après cela, pour des points placés à. une

distance infiniment petite du point O,

R’=R3+Aæ'—Bg'-Cz’;

R0 représente la valeur de R au point O, et A, B, C' sont trois

quantités positives.

“ Supposons maintenant qu’un petit corps (de volume a‘,

de masse m, de pouvoir inductif p) soit fixé à l’extrémité d'un

bras rectiligne infiniment léger OM (de longueur a), qui puisse

se mouvoir librement et uniquement autour de l’axe OZ, c’est

à-dire dans le plan YOX, et constitue ainsi ce qu'on nomme

un pendule magnétique simple ; l’équation de son mouvement

sera md’(a0)=

dt’

0 représentant l'angle MOX. Les expressions précédentes

nous donnent X:,wAx et 1/: _,wBy,

Ycos 0-Xsin 0,
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et comme on a. géométriquement

œ=acos0, y=asin0,

l'équation du mouvement devient

: —':Î‘:(A +B)sin0cos 0.

Comme l’équation est indépendante de a, nous en concluons

que : le mouvement angulaire est indépendant du rayon du cercle

dans lequel il s’efi'eetue, ou que les oscillations de difi‘e’rents pen

dules (définis comme nous l'avons fait) autour du centre du

champ magnétique sont isoehrones, bien que leurs longueurs

soient difl‘e’rentes.

“ La demi-période d'une oscillation infiniment petite est

77}

yo'(A+B) ’

ou, si p représente la densité du corps,

1r~/_P_ .

#(A +B)

(Il est évident que les oscillations d’un pendule magnétique

infiniment petit autour d’un point qui ne possède aucune pro

11'

'priété de maximum ou de minimum magnétique, se feront dans

des temps proportionnels aux racines carrées des longueurs, et

suivront ainsi les mêmes lois que le pendule ordinaire, simple

ou composé.)

“Ces conclusions sont applicables aux oscillations d’un

petit corps d’une nature quelconque non cristallisé. Si p, est

positif, c’est-à-dire si le corps est paramagne'tique, les posi—

tions d'équilibre stable correspondront à 6:0 ou 8:7, c'est

à-dire se trouveront sur l’axe. Si au contraire, p. est négatif,

c’est-à-dire si la matière est diamagnétique, les positions

d’équili’ore stable répondront à 9 :571- et 0: %'n-, et se trouveront

dans le plan perpendiculaire à. l'axe, dans le plan équatorial du

champ magnétique. '

“Si l’on assemble une série de particules le long de la.

ligne OM, et si le pouvoir inductif, paramagnétique ou diu

magnétique, est assez faible pour qu’elles n’exercent point une

influence sensible les unes sur-les autres, chacune d’elles sera

influencée comme si elle était isolée. Mais il a été démontré
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que si elles sont formées de la même substance, leur mouve

ment angulaire sera le même si on les dérange de leur position

d'équilibre de la même quantité angulaire, et qu’elles ne soient

pas unies l'une à l'autre par un lien rigide. Nous en concluons

que les oscillations d'une aiguille (c'est-à-dire d’une barre dont

la longueur est un multiple très-élevé des dimensions latérales)

d'une substance paramagnétique ou diamagnétique non cristal

lisée, autour d'un point fixe placé au centre du champ magnétique,

sont indépendantes de sa masse et de sa longueur, et que la.

p

#w+m'
“ Il est clair que les oscillations d'une barre cristallisée

ou non, seront indépendantes des dimensions latérales, pourvu

que celles-ci soient très faibles comparativement à sa longueur,

et qu'il n’y ait point d'influence inductive sensible exercée entre

ses diverses parties; et, par conséquent, que diverses aiguilles

prismatiques de la même longueur (même si cette longueur est

assez grande pour que les considérations précédentes soient in

applicables), et d'une substance semblable et disposée sembla

blement, soit qu'elle soit ou non cristallisée, oscilleront dans le

même temps, quel que soit leur poids. Ce n'est qu'à. des dif

férences dans l'arrangement cristallin semblables à. celles sur

lesquelles M. Matteucci a porté l'attention, et non pas à des

difl'érences de poids, qu’il faut attribuer les variations qu'il a

observées dans les périodes d'oscillations de diverses aiguilles

cristallise'es de même longueur.

"Les limites de la longueur d'une aiguille non cristalline

oscillant autour du centre d'un champ magnétique en deçà des

quelles on peut appliquer les résultats précédents avec une

suffisante approximation, dépendent des dimensions et de la.

forme de l'aimant, et en particulier de la disposition de ses

pôles. On peut observer qu’une aiguille paramagnétique d'une

trop grande longueur oscillera certainement plus rapidement

que la théorie ne l’indique, et qu’une aiguille diamagnétique

oscillera probablement d'autant plus lentement que sa longueur

sera plus grande, si sa longueur est telle que les équations pré

cédentes ne puissent représenter ses mouvements avec une

rigueur suffisante.

“La détermination des mouvements de barres cristallines

demi-période d'une petite oscillation est égal à. 7/
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ou de masses d’une forme quelconque, dans les circonstances »

indiquées par M. Matteucci, peut s’efi‘ectuer sans difiiculté en

appliquant la théorie de l'induction magnétique dans les corps

cristallins, dont les développements mathématiques ont été

soumis, en 1850, à l’Association britannique à. Édimbourg, et

qui a été publiée depuis dans le Philosophical Magazine. On

trouvera dans ce Mémoire,* et dans ceux que j’ai cités plus

haut, la preuve que les phénomènes de direction que présente

le bismuth cristallisé placé entre les pôles d'un aimant, et

observés par M. Matteucci, trouvent leur parfaite explication

dans la tendance que possèdent les molécules à se porter des

points ou l’intensité magnétique est la plus grande vers ceux où

elle est la plus faible; combinée avec la tendance directrice qui

dépend de ce dernier élément, et qui, ainsi que l'indique la

théorie, résulte d’une inégalité du pouvoir inductif dans les

diverses directions d’un cristal.

“ J’ai lieu d’espérer que les raisonnements et les dé

veloppements contenus dans ces Mémoires paraîtront suffisants

pour m’autoriser à exprimer une opinion contraire à celle que

M. Matteucci a avancée relativement aux phénomènes remar

quables qu'il a observés.

“Puisque j’ai occasion de parler du passage (Comptes

Rendus, t. XXXVI. p. 743) où M. Matteucci attribue à M.

Tyndall la découverte d'une inégalité dans la répulsion diamag

nétique présentée par les cristaux, suivant la position de l’axe

du cristal, je crois nécessaire de faire remarquer que cette im

portante découverte est due à M. Faraday. M. Tyndall en ren

dant compte de ses recherches sur ce sujet (Philosophical

Magazine, septembre 1851), cite les travaux antérieurs de M.

Faraday (Royal Society, novembre 1850). Dans le paragraphe

2839 de ce Mémoire, M. Faraday énonce cette loi comme une

conjecture en l’année 1848 (§ 2588) ; mais, faute d’expériences

suffisantes, il ne s’y appesantit point : il revient sur se sujet, a

propos du bismuth cristallisé, dans le paragraphe 2839 de ce

Mémoire, et réussit ensuite à. vérifier ses prévisions par l’ex

périence (§ 2841). Plus tard, au sujet du spath calcaire

(§ 2842), il dit notamment que si l’aæe optique est d’abord place’

‘ Sur la théorie de l’induction magnétique dans les substances cristallisécs

et non cristallisées. Philosophical Magazine; mars 1851 [55 647,..668 above.)
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parallèlement à l'axe magnétique, puis perpendiculairement à cet

axe, lo amps sera plus diamagiw’tique dans la première position

que dans la seconde, et indique les défauts de sa disposition par

suite desquels il ne peut vérifier cette proposition. M. Tyndall,

en disposant l'expérience avec plus de précautions, réussit à en

donner la démonstration expérimentale. Dans la communica

tion à. l'Association britannique que j'ai citée plus haut, j'ai

fait remarquer moi-même, dès le mois d'août 1850, qu'il doit

exister des difi'érences dans les pouvoirs inductifs des corps

cristallins suivant les diverses directions, et que c'était là. la

seule explication possible des phénomènes de direction cristalle

magnétique découverts par Plücker et Faraday, et dans cette

occasion je donnai les résultats particuliers au bismuth et au

spath calcaire que l'expérience a confirmés depuis. C'est

Poisson, le premier, qui a prévu les phénomènes cristallomag

nétiques, dus à une différence dans les pouvons inductifs dans

les différentes directions d’un corps cristallisé; mais il ne

chercha point à. vérifier la théorie qu’il émit alors, parce qu'il

ne connaissait point de corps auxquels elle pût être applicable.

Les expériences actuelles de M. Plücker et de M. Faraday ont

éte suggérées par le Mémoire que lut Poisson, à. l’Académie,

le 2 février 1842.

“ Quand le pouvoir inductif des substances est tel, que

les diverses parties exercent une action magnétique mutuelle

les unes sur les autres, on ne peut plus supposer, comme nous

l'avons fait, que l'aimant agit sur chaque particule comme

si elle était isolée. Le fer doux oñ‘re l’exemple d'une sub

stance pareille (le coefficient ,u. n'est, pour ce corps, qu'un peu

. , . 3 . . .
inférieur à Er ; cette mfluence mutuelle est 101 la cause de

phénomènes très-remarquables, surtout quand on fait les observa

tions sur des masses allongées. La Note ci-après se rapporte à

cette partie du sujet et aux expériences dont elle a été l'objet.

J'ajouterai ici la description d'une expérience analogue à, celle

que fit M. Matteucci avec des cubes de bismuth cristallisé,

fixés au bout d'une aiguille de sulfate de chaux dont les clivages

plans étaient perpendiculaires à la longueur: dans la position

d'équilibre stable, ces cubes étaient aussi raprochë’s quepossible des

pôles del'aimant. Fixez deux fines aiguilles de fer doux aux deux
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bouts d’une tige droite en bois (ou toute autre substance non sen

siblement magnétique) et perpendiculairement à cette tige, sus

pendue par un fil au centre du champ magnétique, entre les deux

pôles, et équilibrée de manière à. ce que le plan des aiguilles de

fer soit horizontal. Si la tige en bois n’est pas trop longue, elle se

placera pevpendiculairemem à la ligne des pôles, c'est-ardue que

les aiguilles de fer doux, pour être en équilibre stable, devront

être aussi loin guepossiblc des pôles de l’aimant. Cette expérience

peut être faite avec facilité, au moyen d’un simple aimant d’acier

en fer à. cheval. Le résultat observé est dû à la tendance qu'a

chacune des deux aiguilles de fer doux, en vertu des actions

mutuelles de ses différentes parties, à se placer parallèlement

à la direction des forces. Le résultat de M. Matteucci doit être

attribué à la tendance que possède chaque cube de bismuth, en

vertu de sa structure cristalline, à placer sonplan de clivage

perpendiciflairement à. la direction de la force.”

NoTE.—De l’équilibre des masses allongées de substancesfm'omagnétiques

dans (les champs de force magnétique constante et variable.

Le fait, découvert d’abord expérimentalement par Gilbert, qu’une

barre de fer doux, fixée à son centre de gravité dans un champ mag

nétique uniforme, se place parallèlement à la direction des forces, n’est

pas sufiisamment expliqué quand on l'attribue uniquement à la vertu

inductive que possède le fer doux de se transformer momentanément en

un aimant semblable à. un aimant permanent dans sa position d’équi

libre stable. Car la même explication devrait s’appliquer à une rangée

de sphères de fer doux assemblées à. l’aide de joints non magnétiques ;

cependant un tel assemblage ne présenterait point de phénomène de

direction (puisqu’aucune des sphères partielles ne recevrait l’action d’une

force ou d’un couple résultant magnétiques) a moins que les sphères

n’agissent les unes sur les autres, et qu’il ne se produise ainsi des

changements dans leur état magnétique. Il faut donc admettre qu’il

s’opère des actions mutuelles dans les différentes parties d’une rangée

de sphères ou de cubes, ou simplement dans une barre, si l'on veut

arriver à la vraie théorie des phénomènes de direction.

L’auteur de cette communication, a l'aide de raisonnements de mécan

ique élémentaire fondés sur les principes les mieux établis de l’inductiou

magnétique et de l’action magnétique en général, fait voir qu’une masse

allongée, ferromagnétique ou diamagnétique, placée dans un champ mag

nétique uniforme, tend à se placer parallèlement à. la direction des

forces, pourvu qu’elle ne soit point cristallisés : en effet, quand elle est

ferromagnétique, elle est moins facilement magnétisée, quand on la place
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dans la position ci-dessus, que dans la position perpendiculaire ; le con

traire a lieu quand elle est diamagnétique.

Mais pour toutes les substances, (les deux classes, qui possèdent un

aussi faible pouvoir inductif que certains corps diamagnétiques connus,

cette tendance qui résulte d'actions mutuelles intérieures ne peut être

vérifiée par l’éxperience. Toutes les tendances directrices des barres

diamagnétiques qui ont été jusqu'ici, et sans doute toutes celles qui

seront encore découvertes par expérience, sont dues soit à quelque pro

priété cristallomagnétique, soit à la tendance des extrémités ou des

autres portions mobiles à changer de place, de manière à ce que les

molécules occupent les positions d'intensité magnétique minimum, ou

à ces deux causes réunies, plutôt qu'aux efi'ets inductifs mutuels. En

étudiant les effets d'une force magnétique variable sur les positions

d'équilibre d'une barre ferromagnétique, l'auteur cite l’admirable ex

plication donnée par Faraday, de la loi relative aux tendances direc

trices d'une sphère ou d'un cube diamaguétiques, et rappelle que

précédemment il a fait voir, qu'appliquéc aux substances non cristal

lisées en général, aves les modifications convenables dans le cas où elles

sont ferromagnétiques, cette loi exprime avec une admirable simplicité

les résultats d'un travail mathématique comprenant quelques-uns des

principes les plus remarquables d'une théorie de l'attraction.

D'après cette loi, on voit qu'en supposant une masse ferromagnétique

divisée en cubes très-petits, chacune de ces parties tendrait d'elle-même

vers la position d'intensité maximum, et qu’ainsi la position de la masse

entière, dans la cas d'une force magnétique variable, serait due en

partie à cette tendance et en partie aux actions intérieurs mutuelles qui

agissent seules, quand la force est constante. L'auteur a cherché à. véri

fier, par l'expérience, ces vues théoriques. Il a employé un barreau d'acier

formant aimant et des fils minces de fer doux, fixés dans diverses positions

sur une tige en bois; la tige en bois se plaçait de façon que les fils

de fer ayant leur direction parallèle à. celle de la force, les molécules

fussent dans les positions d'intensité minimum. Dans une autre ex

périence, un anneau électromagnétique, formé de fils de cuivre isolés,

roulés cinquante fois autour d'un cercle d'un diamètre égal à 25 centi

mètres, était fixé dans un plan vertical perpendiculairement au méridien

magnétique; un simple cube de fer doux, placé excentriquement sur

un plateau de carton mince suspendu à son centre par un fil de soie

naturel dans le plan de la force, était attiré dans le plan de l'anneau ;

mais une suite de trois à quatre cubes placés au contact à la suite les

uns des autres en ligne droite le long de l'axe de suspension, se plaçait

aussi loin du plan que possible en vertu de la tendance d'une masse

allongée, à. placer sa plus grande dimension parallèlement à la direction

(le la force. Deux cubes placés au contact étaient en équilibre

stable dans le plan de l'anneau ou dans une position oblique, ou

aussi loin que possible de l'anneau, suivant la distance variable

à laquelle on les plaçait sur le plateau au point de suspension. Des
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barres égales et semblables, formées par un mélange do cire et do

limaille do for doux et de puissances diamagnétiques difi‘érentes, suspen

dues successivement par leur point milieu, sc fixaient dans des positions

diverses : cellos qui possédaient le plus grand pouvoir ferromagnétique

se plaqaient perpendiculairement an plan do l’anneau ou dans la direction

des forces ; les autres, cellos qui contenaient moins do fer, avaient leur

position d’équilibre a la fois dons lo plan do l’anneau et perpendicu

lairement a co plan ; et cellos qui en contenaient encore moins, étaient

en équilibre uniquement dans le plan do l’anneau.

Ces deruieres experiences font voir d’une facon tres-remarquable la

part qu’il faut faire, dans cet ordre do phénomenes, aux actions

mutuelles intérieures, et en meme temps a la variation de la force

[compare original, being last sentence of § 669]. Des mélanges do

sable et de limaillo de fer doux, placés dans des tubes do verre, feraient

le meme ofi‘et que les barreaux dont nous venous de parlor et vaudraient

peut-étre mieux dans certains cas.

XXXVII. Elementary Demonstrations of Prqaositions in the

Theory ofMagnotio Force.

[From the Philosophical Magazine, April 1855.]

671. Def. 1. The lines of force due to any magnet or electro

magnet, or combination of magnets of any kind, are the lines

that would be traced by placing the centre of gravity of a very

small steel needle, perfectly free to turn about this point, in

any position in their neighbourhood, and then carrying it

always in the direction pointed by the magnetic axis of the

needle.

Remark. Except in the case of symmetrical magnets, the

lines of force will generally be lines of double curvature.

Def. 2. The lines of component force in any plane are the

lines traced by placing the centre of a steel needle any

where in this plane, and carrying it always in this plane in

the nearest direction to that pointed by its magnetic axis; that

is, the direction of the orthogonal projection of the magnetic

axis on the plane ; or the direction that the steel needle would

point with its magnetic axis if placed with it in the plane, and

left free to turn about an axis through its centre of gravity

perpendicular to the plane.

67 2. Prop. I. If the line of component magnetic force througli

any point in a plane be curved at this point, the force will vary

in a line perpendicular to the line of force in its plane, increasing

in the direction towards the centre of curvature.
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Let EABF (Fig. 1) be a line of component force in the plane

of the diagram, and let_ GCDH be another near it, each and all

between them being curved in the same direction, the arrow

head on each indicating the way a north pole would be urged.

Let AC’, BD be lines drawn perpendicular to all the lines of

component force between these two. Because of the curvature

of these lines, the lines A0’ and BD (whether straight or curved)

must be so inclined to one another that the portion CD cut off

from the last shall be less than the portion AB cut off from

the first. Let a north pole of an infinitely thin, uniformly and

longitudinally magnetized bar, of which the south pole is at a

great distance from the magnets, be carried from D to 6’ along

the line of component force through these points, from G to A

perpendicularto all the lines of force traversed, from A to B

again along a line of force, and lastly, from B to D perpendi

cular to the lines of force. Work must be spent on it in

carrying it from O’ to D, and work is gained in passing it from

A to B. Then, because no work is either gained or spent in

carrying it from C to A or from B to D, the work gained in

moving along AB cannot exceed the work spent in the first part

of the motion, or else we should have [compare § 622 above] a

perpetual development of energy from no soureef" by simply let

* [Note added March 26, l855.]-lt might be objected, that perhaps the

magnet, in the motion carried on as described, would absorb heat, and con

vert it into mechanical efl'ect, and therefore that there would be no absurdity

in admitting the hypothesis of a continued development of energy. This

objection, which has occurred to me since the present paper was written, is

perfectly valid against the reason assigned in the text for rejecting that

hypothesis; but the second law of the dynamical theory of heat (the prin

ciple discovered by Carnot, and introduced by Clausius and myself into the

dynamical theory, of which, after Joule's law, it completes the foundation)

shows the true reason for rejecting it, and establishes the validity of the

remainder of the reasoning in the text. In fact, the only absurdity that

would be involved in admitting the hypothesis that there is either more or

less work spent in one part of the motion than lost in the other, would be

the supposition that a thermo-dynamic engine could absorb heat from matter

in its neighbourhood, and either convert it wholly into mechanical effect, or

convert a part into mechanical effect and emit the remainder into a body at a

higher temperature than that from which the supply is drawn. The inves

tigation of a new branch of theme-dynamics, which I intend shortly to

communicate to the Royal Society of Edinburgh, shows that the magnet (if

of magnetized steel) does really experience a cooling effect when its pole is

carried from A to B, and would experience a heating effect if carried in the

reverse direction. But the same investigation also shows that the magnet

must absorb just as much heat to keep up its temperature during the motion

of its pole with the force along AB, as it must emit to keep from rising in

temperature when its pole is carried against- the force, along DC.

\
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ting the cycle of motion be repeated over and over again: and the

work spent along DC cannot exceed that gained from A to B, or

else we might have a perpetual development of energy from no

 

Fro. 1.

source, merely by reversing the motion described, and so repeat

ing. The work spent and gained in the motions along DC’ and

AB respectively must therefore be exactly equal. Hence the

mean intensity of the force along CD, which is the shorter of the

two paths, must exceed the mean intensity of the force along

the other; and therefore the intensity of the force increases

from P in the perpendicular direction towards which the

concavity 0f the line through it is turned.

673. Prop. II. The augmentation of the component forcein

any plane at an infinitely small distance from any point, towards

the centre of curvature of the line of the component force

through it, bears to the whole intensity at this point the ratio

of the infinitely small distance considered, to the radius of

curvature.

If, in the diagram for the preceding proposition, we suppose

AB and CD to be infinitely near one another, and each in

finitely short, they will be infinitely nearly arcs of circles with

infinitely nearly equal radii. Hence the difference of their

lengths must bear to either of them the ratio of the distance

between them to the radius of curvature. But the mean

intensities along these lines must, according to the preceding

demonstration, be inversely as their lengths, and hence the

excess of the mean intensity in CD above the mean intensity

in AB must bear to the latter the ratio of the excess of the

length of AB above that of CD to the latter length; that is, as

has been shown, the ratio of the distance between AB and CD

to the radius of curvature.

674. Prop. III. The total intensity does not vary from any
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point in a magnetic field to a point infinitely near it in a direc

tion perpendicular to the plane of curvature of the line of force

through it.

675. Prop. IV. The total intensity increases from any point

to a point infinitely near it in a direction towards the centre of

curvature of the line of force through it, by an amount which

bears to the total intensity itself, the ratio of the distance be

tween these two‘ points to the radius of curvature.

These two propositions follow from the two that precede

them by obvious geometrical considerations.

They are equivalent to asserting, that if X, Y, Z denote the

components, parallel to fixed rectangular axes, of the force

at any point whose co-ordinates are (m, y, z), the expression

Xdac+ Ydy + Zdz must be the differential of a. function of

three independent variables.

Examination of the Action experienced by an infinitely thin

uniformly and longitudinally Magnetized Bar, placed in a

non-unifomn Field of Force, with its length direct along a

Line of Force.

676. Let SN be the magnetized bar, and ST, NT’ straight

lines touching the line of force in which, by hypothesis, its ex
tremities lie, and P a point on it, midway between them. i The

resultant force on the bar will be the resultant of two forces

pulling its ends in the lines ST, NT’. If these two forces were

equal (as they would be if the intensity of the field did not

vary at all along a line of force, as for instance when the lines

of force are concentric circles, as they are when simply due to

a current of electricity passing along a straight conductor; or

if P were in a situation between two dissimilar poles symmetri

cally placed on each side of it), the resultant force would

clearly bisect the angle between the lines TS, T’N, and would

therefore be perpendicular to the bar and to the lines of force

in the direction towards which they are curved; that is (Prop.

IV.), would be from places of weaker to places of stronger

force, perpendicularly across the lines of force. On the other

hand, if the line of force through P has no curvature at this

point, or no sensible curvature as far from it as N and S, the

2 L
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lines NT and ST’ will be in the same straight line, and the

resultant force on the bar will be simply the excess of the

force on one end above that on the other acting in the direc

tion of the greater; and since in this case (Prop. IV.) there is

s P N 

Pl

no variation of the intensity of the force in the field in a.

direction perpendicular to the lines of force, the resultant force

experienced by the bar is still simply in the direction in which

the intensity of the field increases, this being now a direc

tion coincident with a line of force. Lastly, if the intensity

increases most rapidly in an oblique direction in the field, from

P in some direction- between PS and PP’, there must clearly

be an augmentation (a “component” augmentation) from P

towards P’ ; and therefore (Prop. IV.) the line through P must

be curved, with its concavity towards P’, and also a “com

ponent" augmentation from N towards S,-and therefore the

end S must experience a greater force than the end N. It

follows that the magnet will experience a resultant force along

some line in the angle SNP', that is, on the whole from places

of weaker towards places of stronger force, obliquely across the

lines of force.

677. Prop. V. (Mechanical Lcmma.)-—Two forces infinitely

nearly equal to one another, acting tangentially in opposed direc

tions on the extremities of an infinitely small chord of a circle,

are equivalent to two forces respectively along the chord and

perpendicular to it through its point of bisection, of which the

former is equal to the difference between the two given forces

and acts on the side of the greater; and the latter, acting

towards the centre of the circle, bears to either of the given

forces the ratio of the length of the arc to the radius.
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The truth of this proposition is so obvious a consequence of

“the parallelogram of forces,” that it is not necessary to give a

formal demonstration of it here.

678. Prop. VI. A very short, infinitely thin, uniformly and

longitudinally magnetized needle, placed with its two ends in

one line of force in any part of a magnetic field, experiences a

force which is the resultant of a longitudinal force equal to the

difference of the forces experienced by its ends, and another

force perpendicular to it through its middle point equal to the

difi'erence between the force actually experienced by either end,

and that which it would experience if removed, in the plane of

curvature of the line of force, to a distance equal to the length

of the needle, on one side or the other of its given position.

NS being the bar as before, let I denote the intensity of the

force in the field at the point occupied by N, I’ the intensity at

S, J the intensity at P on the hue of force midway between S

and N, and J’ the intensity

at a point P’, at a distance

PP’ equal to the length of

the bar, in a direction per

pendicular to the line of

force. Then if m denote

the strength of magnetism

of the bar, ml and 1211’ will

be the forces on its two

extremities respectively. Hence by the mechanical lemma,

the resultant of these forces will be the same as the resul

tant of a force 'm(I— I’) acting along the bar in the direction

SN, and a force perpendicular to it towards the centre of cur

vature, bearing the same ratio to either ml or mI', or to ml

(which is their mean, and is infinitely nearly equal to each

of them), as NS to the radius of curvature, or (by Prop. II.) the

ratio of the excess of the intensity at P’ above that at P to the

intensity at either, that is the ratio of J’—J to J, and therefore

itself equal to m(J'—J). The bar therefore experiences a

force the same as the resultant of m(I— I’) acting along it from

S towards N, and m(J’-J) perpendicularly across it towards

P’, through its middle point.

679. 001'. The direction of the resultant force on the bar is

 



532 A Mathematical Theory of Magnetism. [XXXVIL

that in which the total intensity of the field increases _most

rapidly; or, which is the same, it is perpendicular to the sur- .

face of no variation of the total intensity.

Prop. VII. The resultant force on an infinitely small magnet

of any kind placed in a magnetic field, with its magnetic axis

along the lines of force, is in the line of most rapid variation

of the total intensity of the field, and is equal to the magnetic

moment of the magnet multiplied by the rate of variation of

the total intensity per unit of distance ; being in the direction

in which the force increases when the magnetic axis is “ direct,”

(that is, in the position it would rest in if the magnet were free

to turn about its centre of gravity).

Car. 1. The resultant force experienced by the magnet will

be in the contrary direction, that is, the direction in which the

total intensity of the field diminishes most rapidly, when it is

held with its magnetic axis reverse along the lines of force of

the field.

680. C01‘. 2. A ball of soft iron, or of any non-crystalline para

magnetic substance, held anyhow in a non-uniform magnetic

field, or a ball or small fragment of any shape, of any kind of

paramagnetic substance whether crystalline or not, left free to

turn about its centre of gravity, will experience a resultant force

in the direction in which the total intensity of the field increases

most rapidly, and in magnitude equal to the magnetic moment

of the magnetization induced in the mass multiplied by the

rate of variation of the total intensity per unit distance in the

line of greatest variation in the field. For such a body in such

a position is known to be a magnet by induction, with its

magnetic axis direct along the lines of force.

681. Car. 3. A ball of non-crystalline diamagnetic substance.

held anyhow in a magnetic ‘field, or a small bar or fragment of

any shape of any kind of diamagnetic substance, crystalline or

non-crystalline, held by its centre of gravity, but left free to

turn about this point, experiences the same resultant force as a

small steel or other permanent magnet substituted for it, and

held with its magnetic axis reverse along the lines of force. For

Faraday has discovered, that a large class of natural substances

in the stated conditions experience no other action than a ten

dency from places of stronger tmvards places of weaker force, quite
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irrawectz've of the directions the lines of force may have, and he

has called such substances diamagnetics.

682. Car. 4. A diamagnetic, held by its centre of gravity but

free to turn about this point, must react upon other magnets

with the same forces as a steel or other magnet substituted in

its place, and held with its magnetic axis reverse along the

lines of force due to all the magnets in its neighbourhood.

683. Car. 5. Any one of a row of balls or cubes of diamag

netic substance held in a magnetic field with the line joining

their centres along a line of force, is in a locality of less intense

force than it would be if the others were removed ; but any one

ball or cube of the row, if held with the line joining their centres

perpendicularly across the line of force, is in a locality of more

intense force than it would be if the others were removed.

684. Car. 6. When a row of balls or cubes, or a. bar, of per

fectly non-crystalline diamagnetic substance, is held obliquely

across the lines of force in a magnetic field, the magnetic axis of

each ball or cube, or of every small part of the substance, is nearly

in the direction of the lines of force, but slightly inclined from

this direction towards the direction perpendicular to the length

of the row or bar. Hence, since the magnetic axis of every

part differs only a little from being exactly reverse along the

lines offorce, the direction of the resultant of the couples with

which the magnets, to which the field is due, act on the parts

of the row or bar must be such as to turn its length along the

lines of force.

685. Cor. 7. The positions of equilibrium of a row of balls or

cubes rigidly connected, or of a bar of perfectly non-crystalline

diamagnetic substance, free to move about its centre of gravity

in a perfectly uniform field of force, are either with the length

along or with the length perpendicularly across the lines of

force : positions with the length along the lines of force are

stable ; positions with the length perpendicularly across the

lines of force are unstable.

686. Car. 8. The mutual influence and its effects, referred to

in Cors. 5, 6, 7, is so excessively minute, that it cannot possibly

have been sensibly concerned in any phaenomena that have yet

been observed; and it is probable that it may always remain

insensible, even to experiments especially directed to test it.
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For the influence of the most powerful electro-magnets induces

the peculiar magnetic condition of which diamagnetics are

capable, to so slight a degree as to give rise to only very feeble,

scarcely sensible, mutual force between the diamagnetic and the

magnet; and therefore the magnetizing influence of a neigh

bouring diamagnetic, which could scarcely, if at all, be observed

on a piece of soft iron, must be insensibly small on another

diamagnetic.

687. Cor. 9. All phaenomena of motion that have been ob

served as produced in a diamagnetic body of any form or sub

stance by the action of fixed magnets or electro-magnets, are

due to the resultant of forces urging all parts of it, and couples

tending to turn them; the force and couple acting on each

small part being sensibly the same as it would be if all the

other parts were removed.

688. Car. 10. The deflecting power (observed and measured

by \Veber) with which a bar of non-crystalline bismuth, placed

vertically as core in a cylinder electro~magnet (a helix convey

ing an electric current), urges a magnetized needle on a level

with either of its ends, is the reaction of a tendency of all parts

of the bar itself from places of stronger towards places of

weaker force in its actual field.

The preceding investigation, leading to Props. VI. and VII.,

is the same (only expressed in non-analytical language) as one

which was first published in the Cambridge and Dublin Blathe

matical Journal, May 1846 638...640 above]. The chief

conclusions now drawn from it, with particulars not repeated,

were stated in a paper entitled “ Remarks on the Forces

experienced by inductively magnetized Ferromagnetic or

Diamagnetic Substances,” in the Philosophical Magazine for

October 1850 [Article XXXIV. above].

GLASGOW COLLEGE, March 15, 1855.
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XXXVIII. CORRESPONDENCE wrrn Psorsssoa TYNDALL.

Letter to Professor Tyndall on the “ Magnetic Medium,” and on

the Efleets of Cmnpress'ion.

[From the Philosophical Magazine, April 1855.]

[Editorial.]-The following letter was received a few days

ago. It was not written for publication, but the subject to

which it refers being of general interest at present, I ven

tured to suggest to Professor Thomson the desirableness of

having the letter printed. This he at once agreed to. With the

exception of a paragraph relating to matters of a purely private

nature, the letter appears as I received it.

Join: TYNDALL.

March 24, 1855.

2 Connor, Gnasoow, March 12, 1855.

689. MY DEAR SIB,—Allow me to thank you for the abstract

of your letter on magnetism, and the copy of your letter to Mr.

Faraday, which I have recently received from you, and have

read with much interest. I am still strongly disposed to believe

in the magnetic character of the medium occupying space, and

I am not sure but that your last argument in favour of the

reverse bodily polarity of diamagnetics may be turned to

support the theory of universally direct polarity. There is no

doubt but that the medium occupying interplanetary space,

and the best approximations to vacuum which we can make,

have perfectly decided mechanical qualities, and among others,

that of being able to transmit mechanical energy in enormous

quantities (a platinum wire, for instance, kept incandescent by

a. galvanic current in the receiver of an air-pump, emits to the

glass and external bodies the whole mechanical value of the

energy of current spent in overcoming its galvanic resistance).

Some of these properties differ but little from those of air or

oxygen at an ordinary barometric pressure. Why not, then,

the magnetic property? (of which we know so little that we

have no right to pronounce a negative). Displace the inter

planetary medium by oxygen, and you have a slight increase

of magnetic polarity in the locality with a drawing in of the

lines of force. Displace it with a piece of bismuth or a piece
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of wood, and a slight decrease of magnetic polarity through the

locality takes place, accompanied by a pushing out of the lines

of force. A state of strain by compression may enhance, in

the direction of the strain, that quality of the substance by

which it lessens the magnetizability of the space from which it

displaces air or “ tether ;” just as a similar state may enhance,

in the direction of compression, the augmenting power of a

paramagnetic substance.

690. By the bye, a long time ago (rather more than a year after

the Edinburgh meeting of the British Association) I repeated

with much pleasure some of your compression experiments, and

found a piece of fresh bread instantly affected by pressure, so -

as always to turn the compressed line perpendicular to the

lines of force, to whatever form the fragment was reduced. A

very slight squeeze between the fingers was quite enough to

produce this property, or again to alter it so as to make a new

line of compression set equatorially. I repeated it a few days

ago with the same results, and got a ball of bismuth, too, to

act similarly. I remember formerly finding the bread attracted

as a whole, instead of being repelled, as I expected from your

results. I suppose, however, this must have resulted from

some ferruginous impurities, which it may readily have got

either in the course of the experiments with it, or in the

baking. I mean to try this again.‘

691. I do not quite admit the argument you draw from your

compression experiments regarding the effect of contiguity of

particles, because in fact we know nothing of the actual state of

the molecules of a strained solid. You have made out a most

interesting fact regarding their magnetic bearings; but experi

ments are neither wanted, nor can be made, to show any

sensible efi'ect whatever of the mutual influence of a row of

small pieces of bismuth placed near one another, or touching

one another. It is perfectly easy to demonstrate that it must

be such as to impair the “diamagnetization” of each piece

when the line of the row is parallel to the lines of force, and to

enhance it when that line is perpendicular to the lines of force,

* Prof. Thomson’s supposition is correct; pure bread is repelled by a

magnetic pole. I may remark that I am at present engaged in the further

examination of the influence of compression, and have already obtained

numerous instructive results.-J. T.
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but in each case to so infinitesimally minute a degree, as to be

wholly inappreciable to the most refined tests that have ever

been applied. For let the lines of force be parallel to the line

shown in the figure, and act on a steel needle in the manner

there represented. Then, whatever hypothesis be true for

8—)7l

% BE!
diamagnetism, there is not a doubt but that each piece is acted

on, and consequently reacts, precisely as a piece of steel very

feebly magnetized, with its magnetic axis reverse to that of a

steel needle free to turn, substituted for it, would do. Each

piece of bismuth therefore acts as a little magnet, having its

polarity as marked in the diagram, would do. Hence the

magnetizing force by which the middle fragment is influenced

is less than if the two others were away (this being such a.

force as would be produced by a north pole on the left-hand

side of the diagram, and a south pole on the right). It is easily

seen, similarly, that if the line joining the centres be perpen

dicular to the lines of force, the magnetizing force on the space

occupied by the middle fragment is increased. Corresponding

assertions are true for the terminal fragments, although the

disturbing effect will be less on them in each case than in

the middle one. Hence the dia- '

 

magnetization of each will be en- % M

feebled in the former case and "

enhanced in the latter, by the pre- @r

sence of the others. It follows, .1

according to the principle of super

position of magnetizations, that if the line of the row be placed

obliquely across the lines of force, the magnetic axis of each

particle, instead of being exactly parallel to the lines of force,

will be a little inclined to them, in the angle between their

direction and the direction transverse to the bar. The magnets

causing the force of the field must act on the little diamagnets,

each with its axis thus rendered somewhat oblique, so as to

produce on it a statical couple (as shown ‘by the arrow-heads),
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and the resultant of the couples thus acting on the fragments

will, when all these are placed on a frame, or rigidly connected,

tend to turn the whole mass in such a direction as to place the

length of the bar along the lines of force. Still, I repeat, this

action, although demonstrated with as much certainty as the

parallelogram of forces, is so excessively feeble as to be abso

lutely inappreciable. A fragment of bismuth, of any shape

whatever, held in any position whatever in any kind of

magnetic field, uniform or varying most intensely, only exhibits

the resultant action of couples on all its small parts if crystal

line, and of forces acting always according to Faraday’s law on

them if the field in which it is placed be non-uniform. Some

phaenomena that have been observed are to be explained by the

resultant of forces from places of stronger to places of weaker

intensity in the field, others by the resultant of couples depend

ing on crystalline structure, and others by the resultant of such

forces and couples co-existing; and none observed depend at

all on any other cause.

692. I gave a very brief summary of these views (which I

had explained somewhat fully and illustrated by experiments

on paramagnetics of suflicient inductive capacity to manifest

the effects of mutual influence, at the meeting at Belfast) as an

abstract of my communication, for publication in the Report of

the Belfast meeting of the British Association, where you may

see them [§ 669 above] stated, I hope intelligibly. The experi

ments on the paramagnetics are very easy, and certainly exhibit

some very curious phaenomena, illustrative of the resultant

effects due to the attractions experienced by the parts in virtue

of a variation of the intensity of the field, and to the couples

they experience when their axes are diverted from parallelism to

the lines of force by mutual influence of the magnetized parts.

693. I had no intention of entering on this long disquisition

when I commenced, but merely wished to try and briefly point

'out, that the assertions I have made regarding mutual influence

are demonstrable in every case without special experiment, are

confirmed amply by experiment for paramagnetics, and are

absolutely incontrovertible, as well as incapable of verification

by experiment or observation on diamagnetics.—Believe me,

yours very truly, WILLIAM THOMSON.

Prior. TYNDALL.
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On Reciprocal Molecular Induction: Letter from Professor

Tyndall to Professor W. Thomson, RRS.

[From the Philosophical Magazine, December 1855.]

Rover. Issrrru'nou, Nov. 26, 1855.

694. MY DEAR SIR,—The communication from Professor

\Veber which appears in the present number of the Philoso

phical Magazine, has reminded me, almost too late, of your own

interesting letter on the same subject published in the April

number of this Journal. A desire to finish all I have to say

upon this question at present induces me to make the following

remarks, which, had it not been for the circumstance just

alluded to, might have been indefinitely deferred.

\Vith reference to the mutual action of a row of bismuth par—

ticles, you say that “it is perfectly easy to demonstrate that

“ it must be such as to impair the ‘ diamagnetization ’ when the

“ line of the row is parallel to the lines of force” (the “ must,”

you will remember, is put in italics by yourself). From this

you infer, that in a uniform field of force a bar of bismuth

would set its length along the lines of force. Further on it is

stated that this action is “demonstrated with as much certainty

“ as the parallelogram of forces ;” and you conclude your letter

by observing that “ the assertions which I [yourself] have made

“ are demonstrable in every case without special experiment, . . .

“ and are absolutely incontrovertible, as well as incapable of

“ verification by experiment or observation on diamagnetics.”

Most of what I have to say upon this subject condenses

itself into one question.

Supposing a cylinder of bismuth to be placed within a helix,

and surrounded by an electric current of sufiicient intensity;

can you say, with certainty, what the action of either end of

that cylinder would be on an external fragment of bismuth

presented to it?

If you can, I, for my part, shall rejoice ‘to learn the process

by which such certainty is attained: but if you cannot, it will,

I think, be evident to you that the verb “mast” is logically

“ defective.”

We know that magnetized iron attracts iron : we know that
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magnetized iron repels bismuth: this, so far as I can see, is

your only experimental ground for assuming that magnetized

bismuth repels bismuth, and‘ yet you affirm that an action

deduced from this assumption “is demonstrated with as much

“ certainty as the parallelogram of forces.” Do I not state the

question fairly? I can, at all events, answer for my earnest

wish to do so.

It is needless to remind one so well acquainted with the

mental experience of the scientific inquirer, that the very letters

which you attach to your sketch, page 291 [§ 691 above], may

tempt us to an act of abstraction—a forgetfulness of a possible

physical difference between the n of iron and the n of bismuth

—-which may lead us very wide of the truth. The very term

“ pole” often pledges us to a theoretic conception without our

being conscious of it. You are also well aware of the danger

of shutting the door against experimental inquiry on an un

promising subject; and when you apparently do this in your

concluding paragraph, I simply accept it as a strong way of

expressing your personal conviction, that the action referred to

is too feeble to be rendered sensible by experiment.—Believe

me, dear Sir, most truly yours, JOHN TYNDALL.

On the Reciprocal Action of Diamagrwtic Particles: Letter from

Professor Thomson to Professor Tyndall.

[From the Philosophical Magazine, January 1856.]

GLASGOW COLLEGE, Dec. 24, 1855.

695. MY DEAR SIR,—-I have been prevented until to-day, by

a pressure of business, from replying to the letter you addressed

to me in the number of the Philosophical Magazine published at

the beginning of this month.

You ask me the question, “ Supposing a cylinder of bismuth

“ to be placed within a helix, and surrounded by an electric

“ current of sufficient intensity; can you say, with certainty,

" what the action of either end of that cylinder would be on an

“ external fragment of bismuth presented to it 2”

696. In answer, I say that the fragment of bismuth will be re

pelled from either end of the bar provided the helix be infinitely
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long, or long enough to exercise no sensible direct magnetic action

in the locality of the bismuth fragment. I can only say this

with the same kind of confidence that I can say the different

parts of the earth’s atmosphere attract one another. The con

fidence amounts in my own mind to a feeling of certainty. In

every case in which the forces experienced by a little magnetized

steel needle held with its axis reverse along the lines of force,

and a fragment of bismuth substituted for it in the same

locality of a magnetic field, have been compared, they have

been found to agree. In a vast variety of cases, a fragment of

bismuth has been found to experience the opposite force to that

experienced by a little ball of iron, that is, the same force as

a little steel magnet held with its axis reverse to the lines of

force; and in no case has a discrepance, or have any indica

tions of a discrepance, from this law been observed. I feel,

therefore, in my own mind a certain conviction, that even when

the action is so feeble that no force can be discovered at all on

the bismuth by experimental tests, such in regard to sensi

bility as have been hitherto applied, the bismuth is really

acted on by the same force as that which a little reverse magnet,

if only feeble enough, would experience when substituted in

its place. Now there is no doubt of the nature of the force

experienced by the steel magnet, or by a little ball of soft iron,

in the locality in which you put the fragment of bismuth.

One end of a magnetized needle will be attracted, and the other

end repelled by the neighbouring end of the bismuth bar; and

the attraction or the repulsion will preponderate according as the

attracted or the repelled part is nearer. There is then certainly

repulsion when the steel magnet is held in the reverse direc

tion to that in which it would settle if balanced on its centre of

gravity. In every case in which any magnetic force at all can

be observed on a fragment of bismuth, it is such as the steel

magnet thus held experiences. Therefore I say it is in this‘

case repulsion. But it will be as much smaller in proportion

to the force experienced by the steel magnet, as it would be if

an iron wire were substituted for the bismuth core. Yet in

this case the repulsion on the bismuth is very slight, barely

sensible, or perhaps not at all sensible when the needle exhibits

most energetic signs of the forces it experiences. You know
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yourself, by your own experiments, how very small is even the

directive agency experienced by a steel magnet placed across

the lines of force due to the bismuth core. You may judge

how much less sensible would be the attraction or repulsion it

would experience as a whole, if held along the lines of force ;

and then think if the corresponding force experienced by a

fragment of bismuth substituted for it is likely to be verified

by direct experiment or observation. I think you will admit

that it is “ incapable of verification," as well as “ incontro

vertible ” by any collation of the results of experiments hitherto

made on diamagnetios. As to the concluding paragraph of my

letter which you quote, you do me justice when you say you

accept it as an expression of my “ personal conviction that the

“ action referred to is too feeble to be rendered sensible by

“ experiment.” I will not maintain its unqualified application

to all that can possibly be done in future in the way of experi

mental research to test the mutual action of diamagnetics

under magnetic influence. On the contrary, I admit that no

real physical agency can be rightly said to be “incapable of

“ verification by experiment or observation ;” and I will ask you

to limit that expression to experiments and observations hitherto

made, and to substitute for the concluding paragraph of my letter

the following statement [§ 686 above], written for publication

three days later, and published in the same number of the Maga

zine as that to which you communicated my letter (Phil. Mag.,

April 1855, p. 247). “The mutual influence” between rows of

balls or cubes of bismuth in a magnetic field, “ and its effects "

in giving a tendency to a bar of the substance to assume a

position along the lines of force, “ are so excessively minute,

“ that they cannot possibly have been sensibly concerned in any

“ phaznomena that have yet been observed; and it is probable

" that they may always remain insensible, even to experiments

“ especially directed to test them.”--I remain, my dear Sir, yours

very truly, ‘ WILLIAM THOMSON.

DR. TYNDALL.
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XXXIX. Inductive Susceptibility of a Polar Magnet.

[March 1872. Not hitherto published]

697. It is probable that every loadstone or steel magnet, or

polar magnet of any kind, whatever degree of intrinsic mag

netization it may possess, has also a susceptibility for magnetic

induction, according to which, under the influence of other

magnets brought into its neighbourhood, it will experience

inductive magnetization temporarily superimposed upon its in

trinsic magnetization. Hitherto experiment has given us little

or no definite knowledge on this subject, or indeed generally

on the relation between magnetic retentiveness and magnetic

susceptibility. Waiting for more complete experimental in

vestigation of the magnetic properties of matter, I shall assume

as a typical magnetic solid, a rigid body possessing any degree

of intrinsic magnetization in any direction, with perfect re

tentiveness ; and having inductive quality defined by three

principal magnetic susceptibilities along three principal rect

angular axes of inductive capacity, in any given directions

through it. The “rigid polar magnets ” which we have hitherto

considered are intrinsic magnets of zero susceptibility; and it

now becomes necessary to define intrinsic magnetization for a

substance of which the susceptibility is not zero.

698.. Def. The intrinsic magnetization of a body is the re

sultant (§ 605) of the three intensities of magnetization found

by cutting three infinitely thin bars from directions in it agree~

ing with its principal inductive axes, and testing them in a

uniform magnetic field of air by measuring the couples which

they experience when held at right angles to the lines of force.

Before going on with the general problem of magnetic induc

tion, we may consider the following particular case of it, merely

as an illustration of this definition :—

699. Problem.——A solid sphere of uniform material, having

a, a’, p,” for its three principal magnetic susceptibilities, and

possessing intrinsic magnetization of intensity?! in the direc

tions specified with reference to the principal inductive axes

by the direction-cosines l, l', l", is placed in air with no dis

turbing body in its neighbourhood: it is required to find its
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actual magnetization. Let —E, —E’, —f”, be the components

of induced magnetization in the directions of the three principal

axes; the required magnetization will be the resultant of

11-5. ir-s', ir-s" (1);

and therefore the problem is solved when E, E’, E” are deter—

mined. From the footnote to § 609, it follows immediately that

the resultant force at any point within the sphere has for its

components, in the directions of the principal axes,

{gel-s. -“:.}'<i1'-e'>. -“—,"<il"-s"> <2). _

Now —f, —E’, —E' are the intensities of induced magnetiza

tion due separately to these three components of magnetizing

force, and therefore (§ 610, Def. 2)

saga-o. ref-Jules’), s"=#"";"<i1"-s"> (3).

Solving these for E, E’, 5', we have

4%‘11 4;" a’ “gun”

E= 4n, 7 ‘g’ = I ’ $0= I! r

,u. 41rp. 411'}!

H"? 1+ 3 1+ 3

and therefore (components of the whole magnetization)

'1 it’ it"

iz-g= ' , il’—£’= ,, (‘r-g": , (5).

4i in 4"!‘1+ 3 1+ 3 1+ 3

.

x1. General Problem of Magnetic Induction.

[March 1872. Not hitherto published]

700. This problem is (§ 628) identical with the three general

problems—electro-static induction through a heterogeneous in

sulating solid,—thermal or electric conduction through a hetero

geneous conducting solid,—and (proved below, 751...759)

the flow of a frictionless incompressible liquid through a hetero

geneous porous solid. ‘

701. Let all space be occupied with matter of given permea

bilities, w, a’, w", along three principal inductive axes (l, m, n),

(1’, m’, n’), (1", m", n"), (§ 611) through any point (z, y, z).
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Let there be intrinsic magnetization (a, B, 'y) at (x, y, z) ; and

let constant electric currents be maintained having a, v, w for

components of intensity at (as, 3/, z); subject to the condition

F

@ “0) ig+j_;+‘fzw=o (1).

Let E, '11, § be the components of induced magnetization at

(m, y, z). Then 1-1, a’, a", (l, m, n), (l', m’, n’), (l”, m", n"),

a, B, 'y, u, 'v, w, being given for every point (2:, 3/, 2), it is re‘

quired to find f, 17, g. This is the general problem of magnetic

induction. In it a, B, 7 are absolutely arbitrary functions of

(w, y, 2); their values being zero in any part of space destitute

of intrinsic magnetization: and u, v, w are arbitrary functions

of (x, y, 2), subject only to the condition (1) ; their values being

zero throughout any portion of space through which there is no

electric current.

702. Let Q, 6, 3) be the components of the resultant mag

netic force according to the polar definition (§ 517, Postsmpl),

calculated from the given intrinsic magnetization on the sup

position of no induced magnetism; and F, G, H the components

of the unambiguous resultant force (§ 551) calculated from the

given electric currents. By § 545 and § 517 (m), (n), and

(k), (l), we have

as} d6 d33_ _
H+~+";—4’TP ‘

’ 11$ d@_ (14f d3)_ 11% dél__
dy_dz_0’ dz_d;r__o’ dx_dy_0 (2)’

where =—(ggr % %5)

(IF dG (1H

%+FJ+E—0 (3)

dy dz_ ’dx_dz_7r’ dy d1:

Equations (2) suflice to determine if, 6, Q) from the data

a, B, (y, by expressing that they are the differential coefficients

of a function, and that that function is the potential of a distri

bution of imaginary magnetic matter having —— (g

for its density at (m, 1, 2), which we denote by p. Similarly

2 M
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equations (3) determine F, G, H by virtually expressing that

they are the components of the resultant magnetic force due to

the given distribution of electric currents (n, '0, w), and are

therefore directly calculable from the data by the formulae

(1)) of § 517 with F, G, H instead of X, Y, Z.

703. Let now

r=s+a Q=s+a _H=s+H <4)

The quantities L Q, 11 satisfy the equations

d5 d2 dLL
Elf-i“ 54-35-4117’,

(5);

dll dQ dF dH dG dF
-——— ‘=41ru, -—*—;=41rv, *A——=4rrw

dy dz dz da: da: dy

and these equations suffice to determine E, Q, _I_[ fully, by

virtually expressing that they are the sums of the two sets of

components explicitly expressed in terms of the data, by the

formulae referred to in the preceding section. As we shall see

immediately that we require from the data respecting intrinsic

magnetization and electric currents nothing but the values

of L Q, E, we may simply regard these quantities as express

ing the necessary data in this respect; and it is important to

remark that they are unconditionally arbitrary for every point

(z, y,

7 04. Let now the potential of the distribution of imaginary

magnetic matter corresponding to the induced magnetism

(E, 1;, t‘) be denoted by "1D ; that is to say, let % be the function

of (x, y, 2) which through all space satisfies the equation

are d’til d”fi=41r(§+do+d§) (6);

dac'+dy’+dz' d2: It (72

and let §=—%§, =—€§, %=—‘%B (7)

We shall see immediately that our problem is reduced to the

determination of the single function ‘B; and we shall have

simple equations [§ 705 (10)] giving explicitly the required

components of induced magnetization E, 17, g, in terms of the

differential coefficients of this function.

705. Let I, I’, I" denote the components of the resultant

of E, Q, 11, and §, 5’, g”, the components of the resultant of

ct, fi, %, along the principal inductive axes. We have
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H

I =l_E_+mQ+nLI, I'=l'E+m'Q_+n'fl, I"=l"_ll+m"Q+n"fl

E =lI+l'l'+l"I", Q =1nI+m'I'+m"l", I_l=nI+ n'l'+n"l"

s=ls+ms+~a salsa/awe. s"=l";e+m"s+~"%

l
r (s).

g=I§+ZI§I+ZII I!7 £=7n§+m!§I+m/I§II, J‘

The three principal magnetic susceptibilities (§ 629) being

w'—- l a:"— 1

Mr 41:- '

m-l

41r

7 7

the component intensities of induced magnetization along the

principal inductive axes (to be denoted, § 712 below, by

S, 8’, 8") are—

—l as’1.1 ,_ —l , , ,,_

S=FU+§L 3- 41,, (I+§), 3
1:" — l

41r

(I”+ S’) (9)

Hence taking components along the axes of (x, 3/, z), and multi

plying by 471', we have

41'E==(I+§)l +==’(I'+§’)l' +w"(1”+§")l" —£—£E

4m7=“(I+§)m+w'(l'+§')m'+w"(I"+§”)m"-Q_B

41r§=w<1+§>~ +m'<1'+s'>~'+w"<1"+s">n" 4-2.

(10).

706. These three equations, together with the three equations

by which Qt‘, I}, % might, according to 518, 482, 483, be

expressed in terms of E, 17, g, suffice to determine the six

unknown quantities E, 1], Q‘, i, E}, % ; but, by (7) and (6) intro

ducing ‘R we may eliminate those six unknown quantities, and

obtain a single equation for the one unknown quantity ‘B, thus:

—Taking disc of the first of the three equations (10), dyi of the

second, and 6% of the third, adding and using (6) and (7), we find

d('zz+vs'r+-/'5"1") d(12~'m+u/5’m’+i’5"m")+d(1r£-n+d§’)i'+s"5"n")

dx + dy 4:

11¢ -_'1z-arkwr'm a(g- '11» _ arm'- i’F'm") d(f_l—Im-41w- r"I"n")

= a: + d]; + a: ——"'
(11).

Substituting in this for §, §', §" their values by (8), then

for j, 3}, z by (7), and for I, I’, I" their values by (8), we

have explicitly a linear dilferential equation of the second

order with second member a known function of (sc, 3/, z), to

determine the unknown function E
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707. The coei‘ficients of (g, g , under the symbols

d d d (13/ dz

(1, a , a; are related in the ordinary symmetrical manner

to the coefficients which appear in the quadratic function

81T[u(l§+mf§+n2)’+ =11’;+m'll +n’%)'+w”(l"g¥+m"£ +n"2)’] (12)

when expanded; and it is unnecessary to write them out ex

plicitly. A similar remark is applicable to the coefficients of

E, Q, LI under differentiation in the second member. Denot

ing (12) by Q1), and the same function of F, G, H by Q, so that

using again the notation of (8) for brevity, we have

masses/sews”) <13)

and Q=élfl(w11+m’I”-|-m”l”’) (14),

we see at once that the differential equation (1 1) may be written

short, thus- d (1GB ,1 (1Q d day I

rays; 213+; 22”’

, d dQ. d dQ d dQ

where p =p-(a @FQ 8-2 322)

Equations (10), similarly written short, are as follows :—

s=§_%+§§-4—1,<r_+s>

3% +§%-;1;<Q+zo (16)

(15).

§=§%+‘%—%,(LI+2)

When, by the integration of (15), 9B is determined, equations

(16) give explicitly E, r), f, the components of the required

magnetization.

708. I shall conclude with two slightly different demonstra

tions that, provided the permeabilities are everywhere positive,

as (§ 631) we believe they must be for every substance in

nature, there is one, and only one, value of ‘II for every point

(w, 3/, 2) if (15), with any given arbitrary function of (w, '1, z) for

its second member, be satisfied for every point of space. The

first demonstration, to which I now proceed, is the more con»

venient for the magnetic or 700) electric subject which we
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have had hitherto under consideration ; the second will be

added on account of convenience for the hydro-kinetic analogy.

709. First demmwtratimt of Dctcr'm'inacy and Singlemss.—Let

3%, Q’, 3" be any three real quantities, arbitrary functions of

(x, y, 2). Consider the function

13=l[=(§—§)'+='(§'-$')’+'="(§”-Z§")’] (17),
Sr

and the triple integral

s=flflndwdydz (18)

(Compare 503, 561, 206, 732, and 753...763.) The function 18

is necessarily positive, except in the particular case of § =3,

§'=§', g": 3%", when it is zero. Remembering that §, §',

” . . (1% (1'6 011] . . . _
§ are hnear functions of H , a; , 71;, with given functions

of (x, (1/, z) for their coefficients, apply the calculus of variations

to assign Ti, so that E’ may be a minimum. Using for brevity

the notation (7) of § 704, we have

_ 1119 m (113 d’fl dfJ (17B

8”"(E8E+Eii18fii+fi%8F-?)'

Hence, following the usual process of integration by parts, ac_

cording to the calculus of variations, we find for the condition

that E may be a minimum,

d (in d an d did (1%
a scrim d1} dz az=°

Now if we put

E=EI+EIII+EIIIZ én=gm+grmr+gflmrg él=gn+gilnl+giflnn

which imply that (20)

§i=£l+§flm+§lm §i’=@l’+é¥lm’+§ln', §‘1”=El”+§flm”+£(n”

and look to equations (13) and (8) of § 707, we see that Q is the

same quadratic function of 5-3, Z]-§H, Z-él, that Q

is of 5, I}, %. Hence g2, ‘(g are linear functions of

5-33, 13-;5, z-g ; and if we denote by j the same quad

ratic function of g, é’d, 31 that Q is of g, I}, %, that is to say,

'f t1 We.Pu g=s_l;—r(flg’+mlgill+wflgillj)
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we have

d¥=@_£1§, it3=¢iQ_i3,_, Q3=dQ_d_3i (22).

age a; an dig: an age: as as dgjl

Hence (19) becomes

ddQQ ddQ ddQ_g1_d.-3 dds? 4973 (23),
7.156354% nae-ax mien m‘faz an

which, expanded in terms of ‘3B, is a linear partial differential

equation of the second order, with right-hand member a known

arbitrary function of (as, y, The fulfilment of this equation

through all space is the sole condition which ‘E must fulfil to

make E a minimum. Now it is possible to assign ‘33 so as to

make E a minimum, and therefore there exists a function T3

which satisfies equation (23) through all space. This is an

obvious extension of Theorem 1, § 206. Demonstration 2 of

§ 206 extended in an obvious manner proves that no function

differing at any point from one function which satisfies (23)

through all space, can satisfy (23) through all space. Hence

the solution of this equation is determinate and free from all

ambiguity or multiplicity of values.

710. The extension of § 206, 2, gives the following useful

theorems :——Let % be a function of (ac, y, satisfying (23)

through all space; let an be any function whatever of (x, y, z) ;

let A§, A§’, A§”, E(A) be the values of 5, 5’, §", E, when

A13 is substituted for V; and let E+ AE' be the value of E

when ‘33 + A?) is substituted for "0. Then

Theorem I.

iii;ildtdtdz(“§A§+"'§’A§’+G"§"A§">=0 (24);

proved by the ordinary integration by parts of § 199, (a), (b),

as extended in 206, Demonstrations 1 and 2, and now further

extended.

Theorem II. - AE=E(A) (25).

This very important theorem is an instant consequence of

Theorem I.

As E(A) is necessarily positive, a function 73, which satisfies

(23), has the unique characteristic that every function differing

from it gives a larger value to E.

711. The first member of (23) is identical with the first
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member of (15). ‘Va may make the second member of (23)

equal to the second member of (15), by taking

B=-l+—1'—(I+nl+hm+hm), ‘B’:—I'+%(I‘+u'l'+b'm’+h1’n'), B":-I"+5U"+u"l"+h"m"+in"n") 26),

where u, b, in are any three quantities such that

du an dln_
d—x+fi+a—o (27)

This we see at once by remarking that

47fg=wgll+wlzlll'+m"gvl", etc. etc.,

da ('28);
and 41r 3;; =::Il+=s’I’l’+z"I"l", etc. etc.,

and taking account of (8) and (5). Hence 709, 710, with the

values (26) for 3%, 2t’, 2i", prove that there exists a function ‘E

satisfying the inductive equation (16) through all space; that

this solution makes the triple integral E (l 8) a minimum; that if

‘ll be a function satisfying (15), and NB any function whatever,

‘33 + A‘B substituted for it augments the value of E’ by the

necessarily positive value of the triple integral found by substi

tuting A? for it ; and, therefore, that no function differing from

one which satisfies (l 5) can also satisfy it.

7 l 2. Preliminary to Second Demonstration ofDeterminaey and

Singleness.—First, it will be convenient to put the inductive

equations (11) and (16) into a different form, a form suitable to

the uniform reckoning of “resultant magnetic force," accord

ing to the “ electro-magnetic definition ” (§ 517, Postscript).

Remembering (§§ 702, 704) that Jf, 05, '35 and 5, I), 1% are the

components of the resultant forces calculated separately, ac

cording to the polar definition, from the intrinsic and induced

magnetizations respectively, we see [§ 517 (r)] that

él+§+41r(e+€), $+Z3 +41r(/3+r), §+%+41P(Y+£),

are the components of the resultant force of intrinsic and in

duced magnetizations together, according to the electro-magnetic

definition. To these we must add F, G, H to find for the

whole system (of inducing intrinsic magnetization and electric

currents, and induced magnetization) the components of the

resultant magnetic force, according to the electro-magnetic
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definition. Calling these X, Y, Z, and taking advantage of the

short notation (4), we have

X=£+a+41ro+aY=Q+ia+41rw+a Z=a+z+41ro+o (‘29)

Take now components of forces and of magnetizations along the

principal inductive axes. Thus we have

s=I+§+41r(A+s), S'=I'+§'+41r(A'-+S'), s"=1"+§"+41r(A"+s") (30),

where S=Xl+ Ym-l-Zn, etc., implying X=Sl+S'l’+S"l", etc. (31),

A=al+Bm+yn, etc., implying a=Al+A'l’+A"l", etc. (32),

and 3=§l+17m+{n, etc., implying §=Sl+9r'l'+$”l", etc. (33) ;

and I, I', I", 5, §’, S’ have still the same significance as that

indicated in (8), 705, above. Now by (9) we have

41rs=(==-1)(1+§), 41r$'=(a'—1)(1'+§'), 41rS"=(m"—1)(I”+§”) (34).

Hence eliminating a, 9/, S’ from (30),

S=fl(l+§)+41rA, S'=m'(I'+§')-|-41rA, S"=m”(l"+§”)+4m4" (35).

Put now

I+41ré-=C, Iii-411x217: C’, I”+41r§,,=C'” (36),

and let

01+ o'z'+ o"z"='fi, Cm+ C'm'+ c"m"=fi, 011+ o'n’+ 0%": 17,

implying } (37).

O’: lF+ "JG-(41F, 0': l’F-l-m'EH-n'lil, C": l"l7l+m"é + a”?

By (3 5) we have

S , S’ , ,, S” ,,

s=;-0, s=;-c. §=;”—0 (38>

Hence

g=gl+gl’+gl"-T, Z}=€m+-f—,m’+;m"-E, Z=gn+i:;n’+§'n"_fi (39)_

1 S’ S" 5”’

713. Now let o=§r(;+;+7) (40).

[Compare (13) of § 707 Substituting for S, S’, S" their values

by (31), we have in Q a quadratic function of X, Y, Z (corre

sponding in the electro-magnetic formulae to the function Q

of j, I), % in the polar formulae). Now (39) becomes

g=4sgqi 3g=4,rg§3,-o, z=41rZg-fi (41).
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Eliminating of, Q, g by the condition that °¥dw + @dy + %dz

is a complete differential, we have

ddQ 11:10 11117 46 ddQ auQ_1di‘ afi ddQ ddQ 1111711?

@E'Efifi; H‘EI)’ a: ax Inez-“(dz a; ' HHFHH=G 3-6 (‘2%

three linear partial differential equations in X, Y, Z, equivalent '

to two independent equations, because i of the first added to

dat

i of the second and g of the third constitutes an equation in

which each member is identically zero. Also, by (29), (5), (7),

and (6), we have dX dY dZ__

a+@+ dz '

These four, (42) and (43,) equivalent to three independent equa

tions, in which F, fi, F are arbitrarily given functions of x, 3/, 2,

determine fully and unambiguously the unknown X, Y, Z

through all space, as will be proved immediately by the pro

mised fresh demonstration. But first it may be remarked that

one obvious way of dealing with them leads us back to our former

analysis, thus :—The three equations (42) simply express that

dQ 1 — da 1 — dQ I —

(Zr-5F)d"’+(fi-&G)dy +(dZ_4_1rH)dz

is a complete differential. Hence their most general integral is

dQ_— d‘e dQ_-— we dQ_— do

where Q so far denotes an arbitrary function of x, 3/, z. The

first members here are merely short expressions for the linear

functions of X, Y, Z which appear in (39) with S, S’, S" elimi

nated by (31). Solved for X, Y, Z, equations (44) give expres

sions which are the same as (29) with f, 1;, § eliminated by

(10), and j, 1;], g by (7); and eliminating by them X, Y, Z

from (43) we have an equation for ‘"6 identical with (11), which

(§ 708) determines ‘I! unambiguously through all space._

714. Second Proof of Dcterminatencss and Singlencss.—Let

K, K’, K" be any three arbitrarily given functions of w, y, z;

and put

0 (43).

all

Consider the problem of finding X, Y, Z so as to make Q51 a

minimum, subject to (43). Denoting by R an indeterminate
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multiplier, according to the ordinary method of the calculus of

variations, make

‘° ‘° °° (is-1i’)2 (EV-K')" (sum/)1 ax dY dZ

‘{mf_wj_wdxdydz[ a + a, + a, +2x(dx+dy+E)] (4s)

unconditionally a minimum. The resultant equations are

dQ(S-K)_ 1 dlt dQ(S-K)_ 1 d/\ dQ(S-K)_ 1 ax

dX ‘4725’ (11’ ‘5%’ dz 775

where for a moment Q(S—K) denotes the function integrated

in (45). If we eliminate the unknown quantity A. from these

by differentiation, we have three linear partial differential

equations of the second order, equivalent to two, which with

(43) determine the unknown functions X, Y, Z. Considera

tions corresponding perfectly to those of 206, 709, 710, show

that these equations can be satisfied through all space by real

finite functions X, Y, Z, and that they cannot be satisfied by

any functions differing in any part of space from one set of

three functions which satisfy them. \Ve have also, of course,

theorems precisely corresponding to Theorems I. and IL, (24)

and (25) of§ 710.

715. Now let K==:O', K’=:='C', K”: 1:"0" (48).

This, as is easily seen from (3 7) and (40), gives

dQ(S-K)__dQ 1-, do(s-K)_dQ_1_ dQ(s-K)__(@_l_ .
dX “Zr-471’ dY _d_Y 5G’ dZ “dz 41rH(49)'

and the equations obtained by eliminating X from (47) become

identical with (42). It is thus proved that equations (42) and

(4 3) determine X, Y, Z unambiguously through all space.

\Vith the particular values of K, K’, K" assumed in (48), we

see by (38) that (45) becomes

(£,=8ln_fldxdyddwg’+w'§"+=="§ml (50);

and therefore the problem of magnetic induction is reduced to

making this configurational function a minimum, subject to the

c‘mdltwn %,+%+Z€=o (43) of§ 713 repeated.

716. Going back to the first proof of determinacy and single

ness, and particularizing the values of 3, Q’, $1’ of (26) by

taking

=_(47ra+r_l)a : _(47TB+Q)7 =_ (“l-7+2)

(47),
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which in virtue of (5) satisfies (27), the sole condition obliw

gatory on u, h, m, we make the function 18 of (17) equal to

S! SI: "2

g1?)easily proved from (8), (32), (36), and (38). Thus we have

1 an on a S, Sr. Sn,

E=§;/-ac/-ao/-ac 57-4-7)

and the problem of magnetic induction is reduced to making

this configurational function a minimum, subject to the con

dition that $11.1: + Eidy + Zdz is a complete differential, S, S’, 8''

being expressed by equations (38) and (8) in terms of (,5, E, g,

the unknown quantities, and O', C’, C’ three arbitrarily given

functions of at, 3/, z.

717. A curious relation between the configurational functions

(50) and (53) is proved thus :—Attending to (7) and remember

ing that Q is a quadratic function of at, I), %, put

_,(m can‘ as Q is)
da: dgl': dy d1] dz dig

for it in (50) and perform integrations by parts. We thus find

fill/.1timetill/lame is. 3%) (54),

or by (13) and (15)

sléflfi/_:drdydz(w§'+w'§l’+a"§'u)=gfififidxdydzmp' (55).

Now taking (53) substitute in it, for S, S’, S", their values

by (38). ‘Va have immediately

E= Bl, { f ffldradaaswca + =1'(s'=+0'*>+=:"<§"'+0">]

Hf] fidxaydaa§o+s50+ago") } (56).

For C’, C", 0'", taking their values by (36), and attending to

(8), (28), and (32), we have

E§C+GI§ICI+zVI§WCII= =I§+WIII§I+ GIIIII§IY+41T(§A+§IAI+§IIAII)

=4w(c¥§§ +3.31% + +41r(§w+Z3B+z~/)

Putting in the second member for at, 3'3, % their values,
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-—% , etc, remembering that p : -(

tegrating by parts as usual, we find

f w j w i Q dxdeddegt0+e'§'0'+="§"6"3

=4"/.J...l-.d”"”d“‘(d?@ mQJFF-zfif’F-“L/Jfi" (5”

the last step being simply an introduction of the notation of

(15). Using this in (56), attending to (55) and (50), and

transposing, we find

da dB d7

, and ll].

¢,+E=%rfldedydzao'+s'oe+e"0") (58).

Compare § 569 (7), (8); § 717 (55), (58); § 731 (99), (100).

718. The triple integral (53) denoted by E is of great import

ance, as being the expression for the whole kinetic energy in the

hydro-kinetic analogue (Chapter XI. below). On account of

the correspondence by opposites, which I perceived some years

ago (§§ 733...739, below) between the forces experienced by

solids held at rest in a moving liquid, and the forces experienced

by magnetized matter in the corresponding cases of the magnetic

analogue, I conclude that the diminution of the value of E

produced by motion of any portion of matter, surrounded by

space of uniform and isotropic permeability and not traversed

by electric currents, is equal to the work required to effect the

motion. Before proceeding to prove this proposition it is con

venient to notice that the triple integral may be put into

several other forms, each having a characteristic quality suit

able for a class of applications.

719. These transformations will be simplified by, in the first

place, substituting for electric currents, if there are any, distribu

tions of intrinsic magnetization giving the same contributions to

the values of S, S’, S"; which may be done in an infinite variety

of ways, as we see by the following considerations :—

For every closed circuit substitute (§ 548) an open mag

netic shell producing the same potential as the circuit through

out space, except the portion occupied by the magnetized

substance of the shell. The resultant force of the shell,
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reckoned in the magnetized substance according to the electro

magnetic definition (§ 517, Postscript), will throughout space he

the same as that of the circuit. The values of S, S’, S”, will

be everywhere unchanged if the whole magnetized substance

thus introduced be placed in space of zero susceptibility (or

unit permeability), and be itself of zero susceptibility. But

this cannot be if there are circuits completely imbedded in

matter of other than zero susceptibility ; if, for instance,

part of the given system consists of an electric circuit through

the aperture of a soft iron ring. Hence to avoid loss of gener

ality we must suppose some part, if not the whole, of the

intrinsic magnetization, which we are now introducing, to be

placed in portions of space having in the original data, sus

ceptibility different from zero. The magnetizing force in these

portions of space will be altered by the substitution of mag

netization for electric current, but to make the whole external

effect the same, we have only to add in them an intrinsic man

netization equal to the inductive magnetization lost by the

change.

720. As an illustration we may consider the familiar case of

Ampere’s electro-dynamic solenoid 505, footnote), with a soft

iron core ;—what is commonly called a bar electro-magnet.

First, suppose there to be no soft iron core. We may do away

with the current and substitute a uniformly and longitudinally

magnetized bar of steel, with flat ends, occupying the whole

internal space of the cylinder. This will, at every external

point, give the same resultant force as the solenoid; and its

resultant force, according to the electro-magnetic definition, will

throughout its substance be the same as the resultant force of

the solenoid throughout the cylindrical space between planes

cutting it perpendicularly through its ends. In the substance

of the steel magnet, the resultant force, according to the polar

definition, will (§ 479) be merely the resultant of the force

calculable from positive and negative planes of imaginary mag

netic matter coincident with its two ends; and this is what

would be the magnetizing force due to the intrinsic magnetiza

tion of the steel if (§ 697) we attribute magnetic susceptibility

to its substance, without depriving it of its intrinsic magnetiza

tion. It is of very small amount except very near the ends of
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the bar, and is, throughout the interior, opposite in direction to

the resultant force of the solenoid. To pass then from the case

of a. bar electro-magnet with core of soft iron or other substance

susceptible of magnetic induction, to an arrangement producing

the same external effects with intrinsic magnetization of the

core instead of electric currents round it; we may first give to

the core the intrinsic mgnetization of the steel magnet we have

just been considering, and superimpose upon this so much more

of intrinsic magnetization as shall bring the whole magnetiza

tion of the core up to the resultant of the inductive magnetiza

tion which it has from the electric currents, and the uniform

longitudinal magnetization which we attributed to the steel

magnet. The core thus intrinsically magnetized and still retain

ing its magnetic susceptibility, will act the same upon all other

magnets, and experience the same action from them, as the given

electro-magnet. The same result may be also attained without

attributing intrinsic magnetization to the core, in any case in

which it is completely surrounded by matter of zero suscepti

bility; as is the case with an ordinary bar electro-magnet or

horse-shoe electro-magnet, unless its ends be connected by an

armature of soft iron or other susceptible substance (the sub

stance of the electric conductor being supposed to be of zero-mag

netic susceptibility). For, in any such case the substance of the

magnetic shells may be placed altogether outside the core of

the electro-magnet, by hollowing them so that they may pass

clear of the core round either end of it; or some of them round

one end and some round the other so as to enclose the core

among them. Then by supposing the substance of the shells

to be of zero inductive susceptibility, we have a system in

which the core is inductively magnetized in virtue of the

intrinsic magnetization of the shells, to precisely the same

degree as it was under the influence of the electric currents.

The external resultant force is the same as that of the electro—

magnet, being composed of a constituent due to the shells which

is the same as that due to the electric currents, and a con

stituent due to the magnetization of the core, identical in the

two cases.

721. Supposing then electric currents done away with by the

process of § 719, we may simply take the data to be ;—at any
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point (as, y, z), intrinsic magnetization (a, B, 7), and inductive

permeabilities ar, w’, or” along principal inductive axes (l, m, n),

(l', m’, n’), (l", m", n"). Thus (35) becomes

S=a(£+§)+41rA, S'=::'(£I+§I)+4TFA’, S”=z”(£”+§”)+41r1lll

where i, i’, 5'' denote the components along the principal

inductive axes, of the resultant of at}, 05, 3). Hence for

% in (40) we may put (35+ § + 47rg)S, and so for the other

terms. Now by the elementary formula. for transformation of

rectangular components, we have

(£+§)S+(E'+§')S'+(E”+§”)S”=(éi+e’5)X+(@+1i])Y+(3i-tz)Z (60);

and because (4} + (flair + (E + Bhlg/ + (Z) + %)¢lz is a complete

dX dY dZ
differential and d—x+;,—y-+E : 0, we have

ff [:0 [adzdydZ[(J+<;)X+(Q5+m)Y-i-(§)+E)Z]=0 (61)‘

Thus (53) becomes

E=§fw/mfwdzdydz(§+1:ig+€;,sl) (62)

This is one of the transformed expressions promised in § 718.

722. To find the others, substitute for S, B“, S” their values

by (59) ; and then remarking that, by the transformation of

rectangular components,

(E+§)A+(3‘E'+§’)A’+(3E"+§")A"=(él+§6¢+(®+35)fi+(3i+£)7 (63),

we find

15:3,[00[wf0dxdydz[(gf+§)a+(®+3l)fl+(3s)+Z)7+4:A’+4T3’+4'-fl:] (64)

Remarking that (C1) + éQda: + (Q5 + ffi)dy + (a) + %)dz is a com

plete difi'erential, put

cgf+g=-g, a+n=-‘:,;V, sa+z=-%,§ (65)

Then integrating by parts in (64) as usual, we find

Leif“, f” In da'dydz [- Vp+41r(€+‘i—,,2+§)] (66);
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where [as in 702 (2)]

_ d d,8 dy_1gd® (1g;
P__(d—: afiwhaidfitg’razl (67*

Next,'using in (66) the second of these expressions for p, and

performing a set of integrations by parts : then putting

dH _ dEI _

I él—-—.E’ ——-,Z-y—’ Zl—*z; (68),

and performing another set of integrations by parts, we find

the following two formulae for E :--

E=1_[m foo/w (Izdydz[-(éf+§)éf—(®+7j)05%§i+2)§i+16H<§+§+§)] (69);

81.

u

5

_l déE dB 51% _ (IE (I17 (if

where o'-Z;,(TL_+Ty-i-E)—-(ZIE+W+E) (71).

Lastly, replacing in (70) p and o' by the first formula of (67) and

the second of (71), integrating by parts, and using (68), we find

E=§f f /_:dwyd{(a+as +(/3+"l)('§+(7 +0.1; + “(4' +‘%'+1143] <10) be

which might have been had directly from (64) by taking the

term big, 4- 118 + £7 alone, and properly modifying the integral

of it. Each of the three expressions (62), (64), (66), is remark

able as giving E by triple integration limited to space occupied

by intrinsically magnetized matter: (although the integrations

are marked as extending through all space, the evanescence

of a, ,8, ry, A, A’, A”, and p, wherever there is no intrinsic

magnetization, limits the triple integrals to space where there

is intrinsic magnetization). On the other hand, the expres

sions (70) and (70) bis are remarkable as giving E by triple

integration through space occupied by matter possessing mag~

netization, whether intrinsically or by induction; that is to

say, through those portions of space where there is intrinsic

magnetization, and those portions where the permeability differs

from unity. In (53) and (69) the integration extends generally

through all space.

723. Forces experienced by matter under magnetic infiucnra—

“'8 shall still suppose, without loss of generality 719), the
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*\

electric currents in the given system to be done away with, and

a proper distribution of induced magnetization to be substituted

for them. Let B be a portion of matter altogether surrounded

by space of zero susceptibility or unit permeability. The

force and couple experienced by B, regarded as a rigid body,

is determinable by an application of 500, when the whole

magnetization (intrinsic and induced) of every part of B, and

the resultant force at every point of its volume due to magnet

ization elsewhere, are known; or, vice rcrsd, when the magnet—

ization of all other matter and the resultant force of B at every

point of it are known.

724. I shall conclude by adapting to our present case, in

which part of the magnetization varies in virtue of magnetic

induction, the method of § 502 for expressing the resultant of

magnetic force on a rigid body, in terms of variations of a

function of its co-ordinates, which in § 503 was worked out

for the case of intrinsic (or rigid) magnetization alone. First,

for a moment let the induced magnetization become rigid, and

all the given matter unsusceptible of magnetic induction.

Suppose the whole magnetized substance to be divided into

infinitely small bars lying each in the direction of the magnet

ization, whether intrinsic or induced, or intrinsic and induced;

and let W denote the amount of work which would be undone

in separating these rigidlymagnetized bars to infinite distances

from one another. By (7) of§ 569 we have

w=ifldwdydzvo+<r>

725. Let now B denote any portion of the magnetized matter

completely surrounded by space of zero susceptibility ; and let

A, prefixed to any function of x, y, z, or to any configurational

function of the system, denote augmentation produced by in

finitesimal motion of B. The work required to produce this

motion will be A W; and we have by (72)

AW=§[ldrdydZ[VA(P+v)+(P+¢)A-VJ <73)

(72).

Now apply Poisson’s equation

d‘V d’V d’V
dx‘ + dy’ + dzg =_41r(P+o-) (74),,

2N
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and we find, by two steps of integration by parts, 7

I” I” foo daxlydz<p-}-o')AV=fno I” foo dazdgdzVAQa-i-o') (75).

Hence instead of (73) we may write

AW=f f I dIdydzVA(p-I—U) (76).

726. Consider now (part. of the second member of this equa

t' co co co
Ion) f I f dxdydz VA0'.

Put in it [§ 722 (71)]

A0‘: H
dA§ ,_

d1: dy +70F) (‘ 7);

and perform integrations by parts as usual. We find

fl/lflewe=flflfleee(%e+%ee1!) (a

The second member of this expressed [§ 712 (33)], in terms of

components along the principal axes of permeability, becomes

_ff:dxdydz(JA$+J’AS’+ Jms") (79),

where J, J', J" denote the I + s, etc., of § 721, being the

components of — Q’, — Q’, — if! along these axes. We have

d2: d dby (9) y ‘ m,_1
__w—1 ,_1:r’—-1 ,_

5-7’, 3-71’ 5-1;

727. Remembering (§ 725) that A prefixed to any function

of x, y, z denotes the augmentation which the function experi

ences when B is moved in any manner as a rigid body with its

magnetization unchanged, while (80) expresses the actually

varying inductive magnetization, we see that, throughout the

volume of B,

J cr-l ,_J' , m-l , ,,_J"

GAE-k -—4—;rAfi7 + 4n- AXJ, -4—7r

where A1 denotes augmentation produced by giving the actual

motion to B, and moving all other magnetized matter as if

rigidly connected with it, the axes of x, y, 2 being held fixed.

Hence (79) is equal to

J’ (80).

A8»: Adi-$431.1" (s1).
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_4_11-r/-mf.w I'mdxdydzuJlAm+J'¢Afl,+J”,A=,,)]_

1 w co co _

.f...""dyd‘[<“-WW1“<e'—1>J'A1J'+<=1"—1>J"A.J"1 (82),

where 1:: must be regarded as equal to unity through all space

except that occupied by B. Now using the notation of § 730

(93), we have

(1V dP av dP dV1 I I r I! n, n _ .

Gang“ J A,J + w J a"! )_ WA,H+—(WA.Z.J+JT_VAE (83),

dd; dig- dz

and rectangular transformation gives

dV dV dV dV dV dV

Using these in the second term of (82) and performing integra

tions by parts, we reduce that term to

JA,J+J'A,J'+J"A,J"=

°°°°°° ddPddPddPld'Vd’Vd’V
fafmindxdyd‘ilx .4K+@d9Z+$ dV_4;(dz1+dy*+dz1) A‘V(85)‘

d d

dx dy E

By (94) and (74) this becomes simply

f °° f °° / ‘” dxdydzaA,V (86),

where a' must be regarded as zero through all space except that

occupied by B.

728. Now from the definitions of A and A, it follows that

A10- : Aa'; and

Alf-w [_:f_:dxdydzf(x,y,z)=0 (87),

where f (x, y, 2) denotes any function dependent on the

configuration of the magnetized matter. Hence by taking

f (at, y, z) :aV we see that

fmfmfmdrdydzaA,V=-[w/wfwdxdydzVAo- (88).

Substituting the second member of this equation for the second

term of (82), and going back through (79) to (78) : then

transposing and halving, we find

f m f m f w dzdydzVAa: _817J w [w [a dxdydz(J'Aw-l-J"A=:'+J"’Aw”) (s9).
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Finally, using this in (76), we find

AW=f° f m [a dzdydz[VAp—%r(J’Aw+J"Au’+J”’Am”)] (90).

729. Now to prove § 718 : let 8 denote variation due to any

motion of B as a rigid body, the magnetization of every portion

of matter varying (according to its actual susceptibility) with

the varying magnetizing force to which it is subjected. The

work required to effect the motion of B, being infinitesimal,

will be the same as if (according to the hypothesis of § 725)

the actual magnetization were everywhere rigid. Hence if

@ - 0 denote the work undone in removing B to an infinite

distance from all other bodies possessing either intrinsic mag

netization or magnetic susceptibility different from zero (that

is to say, permeability differing from unity), and G a constant

so far as the present variation is concerned [to be arbitrarily

assigned later (§ 731)], we have

s¢=AW (91 ).

730. Taking the variation of (66), § 722, we have

sag-1,] f ] dxdydz(V8p+p8V) (92),

-e0 ’@ ‘w A’, A”!

as the term of the triple integral depending on ?+-;1-+?

does not vary. Now putting

=%r(=J'+a'J"+="J"') (93),

we have, by (15),

d dP d 111’ d (IP

I’- —(E JZZV) (94)

da: dy dz

Hence

an” _mmm dPd'dV dPdSV dPd8V

Loaf-w wdxdydzpis‘V_]_mf_m/_mdzdydz(—d£1lr dz Q’ dy dV dz )

dz dy dd_z

As P is a quadratic function of % 7 g , (27V, the expression

under the integral sign here is clearly a symmetrical function

dV dV dV (18V dBV dBV ' , ,

of 2;, 2;?’(E7fl11d'fi) 71,-, dz ;andwe maywrite it

thus :—
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dP d8V+ dP d8V dP (151/

(IV dz: Q’ dy dV dz
d?‘- dy ‘1%

01V dP dV dP dV dP 1 I , n

_E —W+H8W+E8W—4T£J'8G+J ‘8w +J '8w") (95).

d- d- d—

dx dy dz

731. Taking the first triple term alone and performing inte

grations by parts, we have

‘‘° °‘’ ‘‘° dV dP dV dP dV dPfJ-Jsdxdydla dH'+ZFSd§_V+$8E’)_

d2: dy dz

°°°°°° ddP ddP ddP "we

j-JJ-frdl’dfllfidfl ‘Tm! EdLT')-/J_Jj”d”dzW96)’

da: dy dz

Hence (92) becomes

8E=-/ m f m f m dxdydz Van-‘Ff “0 f a f m drdydz(J*8w+J,s3,,-,'+Jn8w") (91).

Comparing this with (90), and remarking that, according to

the definitions of A and 8 725, 729), we have Ap: 8p,

Aw : 8w, Aw’: 8w’, and Aw": 8w", we see that

-8E=AW (98),

which proves § 718. In virtue of (98), (6 6), and (91) we may put

ei=1bfmfwfm dxdydzVp (99).

By § 566 we see that this implies assigning to C of § 729 a

value equal to the work which, after B has been removed to an

infinite distance, must be undone to divide into infinitely thin

bars every part of the system’ possessing intrinsic magnetization

and separate these bars to infinite distances from one another;

their directions having been so chosen that when uninfiuenced

the magnetism of each is longitudinal. Thus we see that the

function @ expressed by (99) is the “ mechanical value " of the

given magnetic system, according to the definition of § 567

extended to include material susceptible of magnetic induction

along with intrinsically magnetized matter. It may be either

negative or positive. ‘Vere there no magnetic susceptibility in

* Not omitting B though infinitely distant, if it has intrinsic magnetization.
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any of the material concerned, it would be identical with the

Q5 of 569, 570, and therefore essentially positive.

By (66) we have

®+E=21rf dwdydz(€+A-w—?+:7) (100).

Compare § 717 (55), (58). For the particular case of zero sus

ceptibility (or unit permeability) throughout the system, Qi and

E have the same significations as in § 569 above.

732. The expressions (62), (64), (66), (69), (70), (70) bis for

E, and (99) for 6, depend on the exclusion of electric currents

by which (§ 721) we simplified the formula for magnetic

induction; but as (§ 719) this simplification did not involve

any loss of generality, it is in reality proved that the con

figurational function E, expressed by the formula

00 w w , /g S”,

E=‘T17J_mf_m/_wdxdydz(%+€—,+7) [(53) of § 716 repeated]

not involving the exclusion of electric currents, represents by

its variations the forces experienced by detached portions of

any system composed of intrinsically magnetized polar mag

nets, electromagnets, and inductively magnetized matter;

thus :—The augmentation of this function produced by any

motion of a rigid portion or portions of such a system, through

space occupied by matter of zero susceptibility, is equal to the

work gained by permitting the motion.



XLI. HYDRQKINETIC ANALOGY FOR THE MAGNETIC

INFLUENCE OF AN IDEAL EXTREME DIAMAGNETIC.

On the Forces experienced by Solids immersed in a Moving

Liquid.

[From the Proceedings of the Royal Society of Edinburgh for Feb. 1870.]

733. Cyclic irrotational motion,* [V. M. 60 (z)] once esta

blished through an aperture or apertures, in a moveable solid

immersed in a liquid, continues for ever after with circulation

or circulations unchanged, [V. M. § 60 (11)] however the solid be

moved, or bent, and whatever influences there may be from other

bodies. The solid, if rigid and left at rest, must clearly continue

at rest relatively to the fluid surrounding it to an infinite dis

tance, provided there be no other solid within an infinite distance

from it. But if there be any other solid or solids at rest within

any finite distance from the first, there will be mutual forces

between them, which, if not balanced by proper application of

force, will cause them to move. The theory of the equilibrium

of rigid bodies in these circumstances might be called Kinetico

statics; but it is in reality a branch of physical statics simply.

For we know of no case of true statics in which some if not

all of the forces are not due to motion ; whether, as in the case

of the hydrostatics of gases, thanks to Clausius and Maxwell,

we perfectly understand the character of the motion, or, as in

the statics of liquids and elastic solids, we only know that

‘The references V. M. g are to the author's paper on Vortex Motion,

recently published in the Transactions (1869), which contains definitions of

all the new terms used in the present article. Proofs of such of the proposi

tions now enunciated as require proof are to be found in a continuation of that

paper. [They are found in §§ 759...?63, below.]
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some kind of molecular motion is essentially concerned. The

theorems which I now propose to bring before the Royal So

ciety regarding the forces experienced by bodies mutually in

fluencing one another through the mediation of a moving liquid,

though they are but theorems of abstract hydrokinetics, are of

some interest in physics as illustrating the great question of

the 18th and 19th centuries :—Is action at a distance a reality,

or is gravitation to be explained, as we now believe magnetic

and electric forces must be, by action of intervehing matter?

734. I. (Proposition) Consider first a single fixed body with

one or more apertures through it ; as a particular example, a piece

of straight tube open at each end. Let there be irrotational

circulation of the fluid through one or more such apertures. It

is readily proved [from V.M. § 63, Exam. (2.)]* that the velocity

of the fluid at any point in the neighbourhood agrees in magni

tude and direction with the resultant electro-magnetic force,

at the corresponding point in the neighbourhood of an electro

magnet replacing the solid, constructed according to the fol

lowing specification. The “core” on which the conductor is

wound, is to be of any material having extreme diamagnetic

inductive capacityj and is to be of the same size and shape

as the solid immersed in the fiuid. The conductor is to form

an infinitely thin layer or layers, with one circuit going'round

each aperture. The whole strength of current in each circuit

reckoned in absolute electro-magnetic measure, is to be equal

to the circulation of the fluid through that aperture divided by

411-. The resultant electromagnetic force at any point will be

numerically equal to the resultant fluid velocity at the cor

responding point in the hydrokinetic system.

735. Thus, considering, for example, the particular case of a

straight tube open at each end, let the diameter be infinitely

small in comparison with the length. The “circulation” will

exceed by but an infinitely small quantity the product of the

velocity within the tube into the length. In the neighbour

‘ Or from Helmholtz's original integration of the hydrokinetic equations.

1' Real diamagnetic substances are, according to Farmlay's very expressive

language, relatively to lines of magnetic force, worse conductors than air.

The ideal substance of extreme diamagnetic inductive capacity is a. sub

stance which completely shmla of lines of magnetic force, or which is per

fectly impervious to magnetic force [or of zero “permeability,” (§ 629)].
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hood of each end, at distances from it great in comparison with the

diameter of the tube and short in comparison with the length,

the stream lines will be straight lines radiating from the end.

The velocity, outwards from one end and inwards towards the

other, will therefore be inversely as the square of the distance

from the end. Generally at all considerable distances from the

ends, the distribution of fluid velocity will be the same as that

of the magnetic force in the neighbourhood of an infinitely thin

bar longitudinally magnetized uniformly from end to end.

736. Merely as regards the comparison between fluid velocity

and resultant magnetic forces, Euler’s fanciful theory of magnet

ism 573) is thus curiously illustrated. This comparison,

which has been long known as part of the correlation between

the mathematical theories of electricity, magnetism, conduction

of heat, and hydrokinetics, is merely kinematical, not dynamical.

When we pass, as we presently shall, to a strictly dynamical

comparison relatively to the mutual force between two hard

steel magnets, we shall find the same law of mutual action

between two tubes, with liquid flowing through each, but with

this remarkable difference, that the forces are opposite in the two

cases; unlike poles attracting and like poles repelling in the

magnetic system, while in the hydrokinetic analogue there is

attraction between like ends and repulsion between unlike ends.

737. II. (Proposition) Consider two or more fixed bodies, such

as the one described in Prop. I. The mutual actions of two

of these bodies are equal, but in opposite direction, to those

between the corresponding electro-magnets. The particular

instance referred to above shows us the remarkable result, that

through fluid pressure we can have a system of mutual action,

in which like attracts like with force varying inversely as the

square of the distance. Thus, considering tubes open at each

end, with fluid flowing through them, if the exit ends be placed

in the neighbourhood of one another, and the entering ends be

at infinite distances, the mutual forces resulting will be simply

attractions according to this law. The lengths of the tubes on

this supposition are infinitely great, and therefore, as is easily

proved from the conservation of energy, the quantities flowing

out per unit of time are but infinitesimally affected by the

mutual influence. [When any change is allowed in the relative
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positions of two tubes by which work is done, a diminution of

kinetic energy of the fluid is produced within the tubes, and at

the same time an augmentation of its kinetic energy in the

external space. The former is equal to double the work done;

the latter is equal to the work done; and so the loss of kinetic

energy from the whole liquid is simply equal to the work

done]

738. III. Proposition 11. holds, even if one of the bodies con

sidered be merely a solid, with or without apertures; it" with

apertures, having no circulation through them. In such a case

as this, the corresponding magnetic system consists of a. magnet

or electro-magnet, and a merely diamagnetic body, not itself a

magnet, but disturbing the distribution of magnetic force around

it by its diamagnetic influence. Thus, for example, a spheri

cal solid at rest in the field of motion due to a fixed body

through apertures in which there is cyclic irrotational motion,

will experience from fluid pressure a resultant force through

its centre equal and opposite to that experienced by a sphere of

infinite diamagnetic capacity, similarly situated in the neigh

bourhood of the corresponding electro-magnet. Therefore, ac

cording to Faraday’s law for the latter, and the comparison

asserted in Prop. 1., it would experience a force from places of

less towards places of greater fluid velocity, irrespeotively of

of the direction of the stream lines in its neighbourhood; a

result easily deduced from the elementary formula for fluid

pressure in hydrokinetics.

739. I have long ago shown [§ 646 above] that an elongated

diamagnetic body in a uniform magnetic field tends, as tends

an elongated ferromagnetic body, to place its length along the

lines of force. Hence a long solid, pivoted on a fixed axis

through its middle in a uniform stream of liquid, tends to place

its length perpendicularly across the direction of motion; a

known result (Thomson and Tait’s Natural Philosophy, § 335).

Again, two globes held in a uniform stream with the line join

ing their centres perpendicular to the stream, require force to

prevent them from mutually approaching one another. In the

magnetic analogue, two spheres of diamagnetic or ferromagnetic

inductive capacity repel one another when held in a line at

right angles to the lines of force. A hydrokinetic result similar
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to this applied to the case of two equal globes, is to be found

in Thomson and Tait’s Natural Philosophy, § 332.

740. IV. (Proposition) If the body considered in IIL, § 738

[be an infinitely small globe,‘ and] be acted on by force applied

so as always to balance the resultant of the fluid pressure, cal

culated for it according to II. and III. for whatever position it

may come to at any time, and if it be influenced, besides, by

any other system of applied forces, superimposed on the former,

it will move just as it would move, under the influence of the

latter system of forces alone, were the fluid at rest, except in

so far as compelled to move by the body’s own motion through

it. A particular case of this proposition was first published

many years ago, by Professor James Thomson, on account of

which he gave the name of “vortex of free mobility” to the

cyclic irrotational motion symmetrical round a straight axis.

[Additima Sept. 14, 1872.—The same proposition holds for a

globe of any dimensions, in a field of fluid motion consisting

of circulation or circulations with infinitely fine rigid endless

curve or curves for core, and no other rigid body in the liquid.

Demonstration to appear in the Proceedings of the Royal Society

of Edinburgh for 1871-2.]

Extracts from two Letters to Professor Frederick Guthrie.

[From the Philosophical Magazine for June 1871.]

GLASGOW, Nov. 14th, 1870.

I HAVE to-day received the Proceedings of the Royal Society

containing your paper “On Approach caused by Vibration,”

which I have read with great interest. The experiments you

describe constitute very beautiful illustrations of the known

theorem for fluid pressure in abstract hydrokinetics, with which

I have been much occupied in mathematical investigations

connected with vortex-motion. _

741. According to this theorem, the average pressure at any

point of an incompressible frictionless fluid originally at rest,

* [The proposition as originally published without limitation is obviously

false, although that it is so I have only perceived to-day.—Sept. ‘2, 1872.]
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but set in motion and kept in motion by solids moving to and

fro, or whirling round in any manner, through a finite space of

it, is equal to a constant diminished by the product of the

density into half the square of the velocity. This immediately

explains the attractions demonstrated in your experiments;

for in each case the average square of velocity is greater

on the side of the card nearest the tuning-fork than on the

remote side. Hence obviously the card must be attracted by

the fork as you have found it to be ; but it is not so easy at

first sight to perceive that the square of the average velocity

must be greater on the surfaces of the tuning-fork next to the

card than on the remote portions of the vibrating surface.

Your theoretical observation, however, that the attraction must

be mutual, is beyond doubt valid, as we may convince ourselves

by imagining the stand which bears the tuning-fork and the

card to be perfectly free to move through the fluid. If the

card were attracted towards the tuning~fork, and there were

not an equal and opposite force on the remainder of the whole

surface of the tuning-fork and support, the whole system would

commence moving, and continue moving with an accelerated

velocity in the direction of the force acting on the card—an

impossible result. It might, indeed, be argued that this result

is not impossible, as it might be said that the kinetic energy

of the vibrations could gradually transform itself into kinetic

energy of the solid mass moving through the fluid, and of the

fiuid escaping before and closing up behind the solid. But

“common sense” almost suflices to put down such an argu

ment, and elementary mathematical theory, especially the

theory of momentum in hydrokinetics explained in my article

on “ Vortex-motion," negatives it.

742. The law of the attraction which you observed agrees per

fectly with the law of magnetic attraction in a certain ideal case

which may be fully specified by the application of a principle

explained in a short article 733...740] communicated to the

Royal Society of Edinburgh in February last, as an abstract

of an intended continuation of my paper on “ Vortex-motion.”

Thus, if we take as an ideal tuning-fork two globes or disks

moving rapidly to and fro in the line joining their centres, the

corresponding magnet will be a bar with poles of the same name
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as its two ends and a double opposite pole in its middle. Again,

the analogue of your paper disk is an equal and similar dia

magnetic of extreme diamagnetic inductive capacity 734].

The mutual force between the magnetic and the diamagnetic

will be equal and opposite to the corresponding hydrokinetic

force at each instant. To apply the analogy, we must suppose

the magnet to gradually vary from maximum magnetization to

zero, then through an equal and opposite magnetization back

through zero to the primitive magnetization, and so on periodi

cally. The resultant of fluid pressure on the disk is not at

each instant equal and opposite to the magnetic force at the

corresponding instant, but the average resultant of the fluid

pressure is equal to the average resultant of the magnetic force.

Inasmuch as the force on the diamagnetic is generally repul

sion from the magnet, however the magnet be held, and is

unaltered in amount by the reversal of the magnetization, it

follows that the average resultant of the fluid pressure is an

attraction on the whole towards the tuning-fork, into whatever

position the tuning-fork be turned relatively to it. .

lVov. 23, 1870.

7 43. . . . There are, no doubt, curiously close analogies

between some of the circumstances of motion in contiguous

fluids of different densities and the distribution of magnetic

force in a. field occupied by substances of different inductive

capacities. Thus, if in a great space occupied by frictionless

incompressible liquid denser in some portions than in others, a

solid he suddenly set in motion, the lines of the fluid motion

first generated agree perfectly [compare 751...763 below]

with the permanent lines of magnetic force in a. correspond

ingly heterogeneous medium under the influence of a bar

magnet, to be substituted for the moveable solid and placed

with its magnetic axis in the line of the solid’s motion. As to

amounts, the fluid velocity multiplied into the density is simply

equal to the resultant magnetic force at each point, if the

particular definition [the “electromagnetic definition” (§ 517,

P0stsm'pt)] of the resultant magnetic force in a medium of

heterogeneous inductive capacity, given in the foot-note to

[§ 516 above] § 48 of my paper on the “ Mathematical Theory
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of Magnetism,“ be adopted. But here the analogy ends;

the rigidity in virtue of which a solid moveable in a fluid

medium differing from it in magnetic inductive capacity keeps

its form, does not exist [contrast § 751 below] in the hydro

kinetic analogue. . . .

Report of an Address on the Attractions and Repulsions due to

Vibration, observed by Guthrie and Schellbach.

[From the North British Daily Mail for Dec. 15, 1870 ; and Proceedings of

the Philosophical Society of Glasgow for Dec. 14, 1870.]

744. The speaker began by stating that interesting papers

had recently appeared in the Proceedings of the Royal Society

and the Philosophical Magazine, by Professor Guthrie, in which

some very curious hydrokinetic phenomena were described.

From hints and suggestions in his paper, it seems that Mr.

Guthrie connected in his own mind these phenomena with

possibilities of explaining some of the more recondite actions

in nature; and he (the speaker) believed that what gave the

great charm to these investigations for Mr. Guthrie himself,

and no doubt also for many of those who heard his expositions

and saw his experiments, was, that the results belong to a class

of phenomena to which we may hopefully look for discover

ing the mechanism of magnetic force, and possibly also the

mechanism by which the forces of electricity and of gravity

are transmitted. The speaker, however, did not lay any stress

at present upon the possibility of applying these results directly

to explain magnetism. He believed, on the contrary, that the

true kinetic theory of magnetism (and the ultimate theory of

magnetism is undoubtedly kinetic) [compare § 290 and § 546,

foot-note] involves quite a different class of motions from those

to which the beautiful phenomena discovered by Mr. Guthrie

are due. He rather wished to point out the close connexion

that existed between the laws of some of these actions and

the laws of magnetism, which, while involving some remark

* Philosophical Transactions, June 21, 1849. Published in Part I. for

1851.
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able coincidences, involves certain contrasts decisive against

any hypothesis, such as the ingenious one [§ 573] of Euler,

explaining magnetism by fiuid motion directly comparable

with that which forms the subject of the present communica

tion.

745. One of the most brilliant steps made in philosophical

exposition of which any instance existed in the history of

science, was that [§ 634 foot-note, and § 643] in which Faraday

stated, in three or four words, intensely full of meaning, the

law of the magnetic attraction or repulsion experienced by

inductively magnetized bodies. He pointed out that a small

globe or cube of soft iron tended in a certain direction when

free to move in the magnetic field ; while small detached frag

ments of inductively magnetized substances of the kind which

he called dia-magnetic, tended in the contrary direction; and

that the precise specification of the direction in which the

diamagnetic tended was from places of stronger to places of

weaker force.

746. By means of diagrams, the speaker then showed the

action of magnets upon small pieces of soft iron in various posi

tions in the several cases in which the magnetic force is due

to a bar magnet, a horse-shoe magnet, and two bar magnets

placed side by side with their similar poles in the same direc

tion. A diagrammatic illustration of “ the lines of magnetic

force,” in the case of a bar magnet, was also given. In the case

of the horse-shoe magnet, it was pointed out that the small globe

of soft iron would have a position of stable equilibrium in the

line joining the poles, if free to move in the horizontal line

bisecting at right angles that line; this stable position being

the point of greatest force. The attraction experienced would

be towards this point; so that if the globe were placed inside

this point—that is to say, nearer the bend of the magnet——

it would seem to be repelled on the whole by the mass of steel

while moving towards the place of strongest force. In the

case of two bar-magnets placed side by side [§ 645] with their

similar poles in the same direction, it was pointed out that, for

each pair of similar poles, there is a zero, or place of no force,

mid-way between the two bars, and nearly in the line joining

the ends. A globe of soft iron moveable midway between the
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two bars is repelled, as it were, from each of the points of zero

force, and finds a position of maximum force, which is one of

stable equilibrium, on either side of either of the zeros. Fara

day’s law 634, foot-note] showed that the soft iron was

attracted from places of weaker to places of stronger force,

quite irrespectively of the directions of the lines of force. He

thus summed up a great variety of very curious and puzzling

phenomena in one sentence.

747. This expression is perfectly applicable to small bodies

at rest in an irrotationally moving fluid ; with the substitution

of “ stream lines,” instead of Faraday’s “lines of magnetic force,”

and “ greater or smaller fluid velocity,” instead of “stronger or

weaker magnetic force.”

748. Mathematicians were content to investigate the general

expression of the resultant force experienced by a globe of soft

iron in all such cases; but Faraday, without mathematics,

divined the result of the mathematical investigation 638,

639, and 67l...681] ; and, what has proved of infinite

value to the mathematicians themselves, he ‘has given them an

articulate language in which to express their results. Indeed,

the whole language of the magnetic field and “lines of force ”

is Faraday’s. It must be said for the mathematicians that they

greedily accepted it, and have ever since been most zealous in

using it to the best advantage.

749. Suppose a tube sunk in a. perfect fluid, and the fluid

by some means set to enter the one end and flow out by the

other, the particles of it would follow the lines of magnetic

force. The magnetic field of force in the neighbourhood of a

bar magnet corresponded exactly with the straight tube taking

water in at one end and discharging it at the other. If two

such tubes were presented with like ends to each other, they

attracted, but with unlike ends, they repelled,—thus acting

differently from two magnets placed in similar relative positions.

But, except in being precisely opposite in direction, the resul

tant action between the supposed tubes and that between two

bar magnets follows rigorously the same law, both as to magni

tude and as to line of action. This conclusion, and some

others, containing the explanation of most of the experiments

now to be shown to the Society, had been worked out mathe- .
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matically by the speaker, and communicated by him to the

Royal Society of Edinburgh.*

750. It had been found by Faraday that the lines of magnetic

force were diverted outwards from itself by a die-magnetic body

placed in the field. If a body existed of extreme dia-ma *

netic inductive capacity, the lines of magnetic force would pass

altogether round it, and none of them through it. This is pre

cisely the phenomenon, with reference to stream lines, which is

met with in the hydro-kinetic analogue. The speaker then drew

attention to some small egg-shells which were suspended so as

to move freely, each in a horizontal circle. By slightly waving

the hand in front of the egg-shells they were attracted, and the

same phenomenon was produced by holding in their neighbour

hood a vibrating tuning- fork. This corresponded to the beha

viour of a dis-magnetic in the magnetic field, only that the

direction of the motion was opposite. By means of a very

delicate anemometer it was shown that the phenomena were

independent of currents of air. The speaker showed that

in whatever position, with one exception, the fork was held,

the attraction was produced. The magnetic analogue to this

fork would be a non-magnetic frame substituted for the tuning

fork, and bearing two small magnets laid across the ends, with

similar poles pointing towards each other. In this case there

would be a zero point in the middle, between the near poles.

The same is true of the fluid velocity in the case of the tuning

fork. It would repel the suspended eggs from the zero point ;

' but the experiment was one of too great delicacy for a lecture—

room. Some very interesting experiments upon flames had

been made by Mr. Tatlock, his assistant, which the speaker

had much pleasure in showing to the Society. A vibrating

fork was supported horizontally, and the flame of a candle

brought near the vibrating ends. All that part of the flame on

a level with the fork was repelled, and bent down in the oppo

site direction, as if by a current of air. On the vibration being

stopped, the flame at once assumed its upright form. A tall

flame, obtained from ordinary coal gas, was next brought into

* Proceedings, Royal Society, Edinburgh, February 1870 [§§ 733...740,

above].

2 o
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proximity to the vibrating fork, when the middle part of the

flame was drawn out towards the fork, the upper and lower

parts being repelled. In concluding, the speaker remarked,

that it would be very wrong if he were to say that these

experiments on the hydro-kinetic analogue contained a direct

opening up of the question of the mechanism of magnetic

forces. They did not go any way towards explaining magnetic

forces; but it was impossible to look upon them without feel

ing that they suggested the possibility of some very simple

dynamical explanation.



XLII. GENERAL HYDROKINETIC ANALOGY FOR

INDUCED MAGNETISM.

lvebruary 1872. [Compare § 743 above.]

751. Imagine an infinitely fine-grained porous solid per

meated by a frictionless incompressible liquid. The con

stitution of the supposed porous material will, for brevity,

be designated as molecular, and although we might suppose

it to depend on perforations in all directions, and every

where opening into one another all through a continuous

rigid solid, it will generally be more convenient to imagine it

as made up of two classes of constituents ;—(l) small detached

rigid particles or molecules, each somehow held absolutely at

rest, unless we find it convenient to apply force to it and move

it; (2) closed infinitely fine curves of solid matter. It will be

convenient to suppose each molecule to be a ring (that is to

say a solid with at least one perforation through it) ; or at all

events to suppose a. considerable proportion of the molecules

through any finite portion of space to be annular. This sup

position gives the foundation (§§ 573...583) for the hydro

kinetic analogue to a permanent polar magnet. Thus (§ 57 4)

cyclic irrotational motion [“ Vortex Motion,” § 59 (f) and §

60 (z)] through an infinitesimal solid ring constitutes a perfect

analogy for an infinitely small portion of a permanent polar

magnet. Again, when the kinematic analogy for a linear closed

current (§ 535) is desired, we shall suppose an infinitely fine

closed curve, which to avoid circumlocution I shall call an

ityoid (Royal Society of Edinburgh, Dec. 18, 1871), of solid

material to be placed, threading through among the inter

stices of the molecules and everywhere infinitely near the

line of the electric current, but not in any case passing through

the perforation of an annular molecule. By using a temporary
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membrane drawn across such an ityoid (“ Vortex Motion,” § 62)

to generate cyclic irrotational motion, with no circulation

through any other aperture than that of the ityoid itself, a per

fect hydrokinetic analogue to the electro-magnetic efi'ect of a

fixed linear current of constant strength is obtained. An infi

nite number of ityoids placed infinitely near one another, no~

where in contact, but everywhere leaving sufficient interstices

for the liquid to flow among them, gives the foundation for the

hydrokinetic analogue to a solid electro-magnet (§ 535).

752. Let any cylindrical or prismatic portion of the supposed

porous solid, terminated by planes perpendicular to the cylin

drical surface or sides, be fixed in a tube of impermeable mate

rial fitting close to it all round, but leaving its ends free. This

porous plug will constitute an obstruction, but not an absolute

barrier, against the flow of a liquid through the tube. Imagine

now two perfectly fitting frictionless pistons to be placed on

the tube at any distance on the two sides of the plug, and let

the whole space bounded by the pistons, the tube, and the im

permeable constituents of the porous solid, be occupied by

frictionless incompressible liquid. Let the liquid be set in

motion by force applied to either or both the pistons. The

motion will be determinate in every part of the fluid according

to the condition [Thomson and Tait’s Natural Philos0phy,§ 317

Exam. p. 3] that the kinetic energy is less than that of any

other motion of the liquid consistent with the given motion of

the pistons. If the lengths of the clear portions of tube between

the pistons and the two ends of the obstructing plug be very

great in comparison with the diameter of the tube, it is easily

seen that however coarse or heterogeneous be the porous mate

rial, the motion of the liquid will be sensibly uniform and in

parallel lines through all the distant parts of the tube. But if

the porous material be infinitely fine-grained and homogeneous

as to the average structure of all equal and similar finite por

tions, the motion of the liquid will be uniform and in parallel

lines at all finite distances on each side of the plug. If, as an

extreme case, the plug be a continuous solid, with an infinite

number of infinitely fine cylindrical perforations parallel to its

length, the velocity of the liquid through it would be uniform,

and would be to the velocity through the clear portions of the
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tube, in the inverse ratio of the areas traversed, that is to say,

in the ratio of the sectional area of the clear tube to the sum of

the sectional areas of the perforations. The mass of the fluid

in the perforations at any instant, would be to the mass in an

equal length of the clear tube, as the sectional area of the tube

to the sum of the sectional areas of the perforations ; and

therefore the kinetic energy of the whole motion in the per

forations would be to the kinetic energy in an equal length of

the clear tube, in the inverse ratio of the areas, that is

to say, in the ratio of the whole sectional area of the tube

to the sum of the sectional areas of the perforations. Hence,

generally the greater the obstruction offered by a plug con~

sisting of any kind of porous material, the greater will be

the ratio of the kinetic energy of the liquid permeating through

it, to that of the liquid moving freely in an equal length of

clear tube; and (borrowing the word “ permeability” from Le

Sage), we may say that the permeability of the plug is inversely

as the kinetic energy of the liquid permeating through it, when

the velocity of the fluid in the clear parts of the tube is given.

753. If we were only occupied with hydrokinetios it would

be natural to call the permeability of the clear parts of the tube

unity. This would make unity the measure of perfect permea

bility, and would give always a proper fraction for the measure

of the permeability of a porous solid. But in view of the

magnetic analogy it is more convenient to call the permeability

of some particular porous material unity, and to define the

permeability of any other material as the number by which we

must multiply the kinetic energy of the fluid permeating

through a plug of it, to find the kinetic energy in a plug

of equal length of the standard material fixed in the same

tube. And further, for the magnetic analogy (compare § 732

above) it is convenient to attribute to the supposed liquid such

a density that 4w times the kinétic energy of liquid permeating

a solid of unit permeability, reckoned per unit volume of the

whole space occupied by porous solid and liquid shall be equal

to half the square of the “ flux ;” the word flux being borrowed

from Fourier’s theory of the conduction of heat and adapted to

the use we have to make of it by the following definition :—

75 4. The component flux in any direction is the whole volume
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of the liquid traversing a plane perpendicular to this direction

per unit of area per unit of time. In the complicated motion of

the liquid through the insterstices of the ‘porous solid, the com

ponent velocity perpendicular to any plane may be in contrary

directions at different points of the plane; but in reckoning

the flux we must take the excess (positive or negative) of the

quantity crossing in the direction called positive above that

which crosses in the direction called negative. By considering

a tetrahedral portion of space (whether clear or occupied by

porous solid) bounded by three mutually rectangular planes

and a fourth plane cutting them all, we see immediately that

the composition of fluxes follows the ordinary law of the com

position of velocities or the composition of forces; an elemen

tary proposition due to Fourier.

755. Let X, Y, Z denote, for any possible motion of the

liquid, the components of flux at any point (as, y, z) referred

to rectangular co-ordinates. X, Y, Z must 540) fulfil the

equation 01X dy dz

3+9???) (1),

called the “ equation of continuity.”

756. In general the permeability of a porous solid may be

supposed to be different in different directions. When it is so

the structure is of course to be called aeolotropic (Thomson

and Tait’s Natural Philosophy,§ 676, quoted above, § 604,

foot-note). Still denoting by X, Y, Z the components of flux '

in three directions at right angles to one another, denote by

Q the kinetic energy per unit of volume, which must be a quad

ratic function of X, Y, Z. Hence, by the ordinary analysis of

quadratic functions, we see that there are three determinate

directions (I, m, n), (l', m’, n’), (1", m", n”), at right angles to one

another, to be called (according to analogy of ordinary usage)

the principal axes of permeability, and three determinate con

stants zzr, w’, w", to be called the principal permeabilities, in

terms of which we have the following expression for Q :—

1 IX 1211’ nZ ' l'X m'Y n'Z ' ("X " " ’0:87p + ‘7+ >+( + 5+ )+( +mj+n 11(2)

757. Now let us suppose the whole of space to be occupied

by a rigid porous solid of infinitely fine-grained texture, with
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different degrees of permeability and zeolotropic quality in

different parts ; and let a frictionless incompressible liquid

initially at rest fill all the interstices. In a portion M of the

porous solid (to represent the “inducing magnet” in the mag

netic analogue), let some of the constituent molecules be an

nular, and let the apertures of some of the rings be temporarily

closed by infinitely thin flexible and extensible membranes.

(It is a matter of indifference whether there be other rings or

not either in M or elsewhere.) Let impulsive pressure be

applied to these membranes, uniform on each, but not neces—

sarily of equal values for the different membranes; and in

stantly let all the membranes be dissolved. The motion of the

fluid will be everywhere irrotational and determinate [“ Vortex

Motion,” § 62 and § 62 (0)], and will be of the class called

polycyclic [“ Vortex Motion,” § 60 The kinetic energy

of the whole fluid motion produced will [Thomson and Tait's

Natural Philosophy, § 317 (3)] be less than that of any other

motion consistent with the incompressibility of the fluid, having

the same normal component velocity at each point of the sup—

posed membrane surfaces. A partial application of the same

theorem shows that if we leave out of account the fluid motion

within any surface S, completely enclosing M, and consider the

normal component velocity as given at each point of this sur

face, the kinetic energy of the fluid motion through the rest of

space will be less than that of any other motion with the same

normal component velocity at each point of S.

758. To find the analytical expression of this condition let

‘ f/fdasdydz denote integration through all space except that

enclosed by S. Then X, Y, Z must, subject to equation (1), be

such functions of x, y, z as to make ff/Qdasdyclz a minimum.

Hence, 7\ denoting an indeterminate multiplier, we have

U] sodmdydz+i(%+%'+dgf) =0 (3).

Applying the usual process of integration by parts to the terms

involving 7\, we find

Q/ffdzdydzk + ‘51?; + ":21 = [1218) (lax +Mr+ 1282)

Fax as as
AjjjdniyllcQTLfiX + d-ya Y+ ‘17152).
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where ffdS denotes integration over the whole bounding surface

of the space included in the triple integral, and l, m, n are the

direction-cosines of the normal. For the infinitely distant

parts of the boundary the double integral vanishes, as by hypo

thesis there is no motion there; and for the boundary of M

(which is the remainder of the boundary of the space included

in the triple integral) the double integral vanishes, because the

condition that the normal component velocity is given over the

boundary of M, requires that

l8X+m8Y+ n8Z=0.

Hence as Q involves only X, Y, Z, and not their differential

coeflieients, the variational equation (3) gives

dQ d)t dQ an dQ an

aria’ EFT’ 212:? (4)‘y Z

These equations, with (1) and (2), 755, 756, and

lX+ mY+nZ=N (5),

for every point of the boundary of M, where N denotes the

given normal component velocity, suffice to determine X, Y, Z

for every point of space external to M. Comparing them with

equations (43), (42), and (40) of 713, we see that they are

simply the equations of the magnetic induction through space

external to M, due to any distribution of magnetization or of

electric currents within M ; if a‘, w’, as” be the three principal

magnetic permeabilities, and (l, m, n), (l', m’, n’), (l', m", n") the

principal axes at any point (x, y, z); X, Y, Z the components '

of the resultant force at the same point according to the

electro-magnetic definition; and N its normal component at

any point of a surface M, which completely encloses the

inducing magnet.

759. Considering next the fluid motion within the space M,

and its electro-magnetic analogue, we see from equations (42)

of § 713, that

1519129 2:12 11 d_Q d da d (IQ 6
dy dZ dz dY’ dz dX_d5 dz’ 21E Iii/T1}, 8X ( )’

where they are not zero are equal to the component intensities

of the electric fiow (§ 539), at (.L‘, y, z), in a determinate distri

bution of electric currents, which, with the magnetism induced

by it throughout space, produces resultant electro-rnagnetic
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force (X, Y, Z) at any point (x, y, Suppose now any

motion to be given (§ 751) to solid material in space external

to M, or any cyclic irrotational motion of the liquid to be

generated by the aid of membranes temporarily stopping aper

tures of solids in the space external to M ; this will alter the

motion already existing by compounding with it the motion

which the supposed actions external to ll! would produce of

themselves in the liquid if given motionless. Now from (4) it

follows that throughout M, the values of the functions (6)

are zero for the second supposed component of the motion.

Hence, throughout M the functions (6) being linear functions

of the flux components, remain unchanged in the altered motion

of the liquid. It follows that their values through any portion

of space, throughout which the molecular constitution of the

solid matter is completely given, are determinable from the

cyclic constants of the fluid motion through all the rings in this

part of space, independently of the molecular constitution, or of

circulations through apertures in other parts of space. From

this, lastly, we see that if M be moved in any manner, transla

tionally or rotationally, with all its parts kept rigidly connected,

and the axes of co-ordinates moving along with it, and if it be

brought to rest in an altered position, the values of the functions

(6) will be the same as they were before the motion. This

motion of M as a rigid body implies, of course, motions and

changes of molecular arrangement in the solid matter of

surrounding space which are altogether arbitrary, subject only

to the condition of making way for M.

760. The analogy may be further extended to include the re

sultant force experienced by the inducing magnet, or by any

moveable solid portion of matter experiencing its inductive in

fluence. To do this, consider the effect of any variation of the

solid matter concerned in the hydrokinetic analogue. First, it

must be remarked that the effect of the change in the molecular

, distribution of the solid matter in the space M upon the motion

of the fluid, cannot be determined from mere knowledge of the

change which it produces in that average quality of the material

which I have defined above (§ 752) as its permeability. For

without changing the permeability we may so alter the molecu

lar arrangement within M as to change to any degree we please
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the flux of the fluid in this space, and therefore also the fluid

motion through space external to M. Conceive, for instance,

an infinitesimal molecular change to be produced which,

without altering the “permeability” of the group, shall very

much contract infinitesimal apertures through which there is

circulation. This may be done either by altering the shapes

of infinitesimal molecular rings, or by bringing other molecules

towards the apertures of rings so as to obstruct passage through

them. The circulation through each aperture remains (“ Vortex

Motion,” § 59) constant, but it is clear that the whole kinetic

energy may be diminished as much as we please by the sup

posed process.

761. Let now A denote the solid matter in any portion of space

which may be either the whole of M or altogether external to

M. Let the permeability outside of A be uniform through

some finite space‘ all round it. Keeping A rigid throughout,

alter its position infinitesimally; keep the permeability un

changed in the space immediately contiguous with it, by forces

applied to surrounding molecules obliged to give way to it

during its motion; and keep all other portions of solid matter

in external space rigidly connected with one another. The

work done by forces applied to A and_ the surrounding mole

cules to produce their supposed motions must be equal to the

augmentation experienced by the integral f Q [in f m QOLrdg/dz.

This is the same as the amount of work required to give the

corresponding motion to the portion of matter corresponding

to A in the magnetic analogue; a consequence of § 731,

with the consideration that both in the hydrokinetic system

and the magnetic analo e the values of i fl—iég etc
° g“ ’ dzdY dy dz’ "

are (§ 759) not altered by the supposed change of A’s position.

762. The necessarily complicated character of the dynamical

action required to produce the supposed motion of A and re

arrangement of the surrounding molecules disappears altogether

in the case in which a finite shell of space contiguous with A all

round is free from solid molecules. In this case the (general

ized) component forces required to give any infinitesmal motion

whatever to A (compare § 502), will be simply the differential
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co-eificients of Q with reference to the corresponding co

ordinates; and the forces required to balance A in any posi

tion, will be equal and opposite to these forces. Hence the

force required to balance A in this case of the hydrokinetic

system will be equal and opposite to the force required to bal

ance a rigid body corresponding to A in the magnetic analogue.

In the latter, the analogue to the space round A, clear of solids,

but traversed by liquid, may [notwithstanding the different

convention (§ 753) more generally adopted] be air. This par

ticular convention being adopted for an instant, the magnetic

analogue for all portions of space occupied by the “porous

solid,” described in § 751 above, or by continuous finite solid

substance, will be die-magnetic material of any permeability

from unity (that of air) to zero (that of ideal substance of ex

treme dia-magnetic quality). The analogue of M may be either

a real ordinary electro-magnet consisting of an electric current,

or distribution of currents through solid conductors of die-mag

netic material ; or an ideal polar-magnet 697) of dia-magnetic

inductive quality. But it is to be remarked that by choosing

air for the magnetic analogue of space unobstructed by solids

in the hydrokinetic system, we exclude all ferro-magnetic in

duction from the analogy.

763. Using now the general proposition of § 761, and making

the proper particular suppositions iegarding the moveable body

A, we not only prove Propositions II. and III. of 737, 738,

but extend their application to real bodies of any degrees of

die-magnetic inductive capacity instead of the ideal bodies of

“extreme” dia-magnetic quality (zero magnetic permeability)

imagined in those propositions.
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tion on :1, § 77.

Conducting surfaces external and ternal,

§ 97.

Conductors, insulated, § 71.

of electricity, § 68.

Conditions to which the distributions of

galvanism in solid and superficial

electromagnets is subject, investigation

of, §§ 539-546.

Cone, area of segment cut from a spheri

cal surface of a small, § 86.

orthogonal and oblique segments of

a small, § 85.

the solid angle of a, § 81.

Cones, definitions regarding, § 80.

Contact electricity, new proof of, § 400.

Coulomb’s experiments, § 25.

Crystalline and non-crystalline bodies,

theory of magnetic induction in, §§

604-624.

Cyclic irrotational motion, § 733.

' Dsusrrv, electric, § 330.

l Diamagnetics, repulsion of, §§ 643-646.

' Diamagnetic particles, reciprocal action

of, §§ 695, 696.

Dielectric, §§ 36, 447.

Dip, line of, § 441.

l Distribution of electricity on a circular

segment of a sphere, §§ 231-248.

Distribution of electricity, mechanical

value of, §§ 695, 696.

of magnetic matter necessary to

represent the polarity of a given

magnet, §§ 473, 474.

Distributions of magnetism, solenoidal

and lamellar, §§ 504-523.

of matter, mechanical value of, §§

561-563.

ELncrmcIrY, atmospheric, §§ 249-301.

on the elementary laws of statical,

§§ 2550.

conductors of, § 68.

non-conductors of, § 67.

of a charged conductor rests entirely

on its surface, § 68.

——- two kinds of, § 58.
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Electric current, strength of, § 532.

‘ accumulator, on a uniform,

§§ 408-411.

& equilibrium, g 66.

 

ea m an, §§ ll20.
‘ machines founded on induction and

convection, §§ 416-425. Fnniinnv’s researches, § 27. _ as

Electrical density at any point of a. \x on electrostatical induction

charged surface, §§ 69, 93, 138. § 36, etc. ‘ 1i

forces, superposition of, § 63. \ \ specific inductive capacity,

influence on an internal spherical §46, etc. "

conducting surface, §§ 102-105. \ Law, experimental illustrations of,

5 on plane conducting sur §§ 65 6 .

face of infinite extent, §§ 106-112

romagnetic a d netic magneti, §§ 2 , 296-301 tion, relations f, to the magnetizinghow experiments may be made force, §§ 664-66 .

for ascertaining the, § 254 262. Ferromagnetics, attraction of, §§ 634-642.

Electrified bodies, law of force between, Field of magnetic force, or field of force,

§ 64. § 605.

\surface, repulsion on an element of

an, § 88.

orce at a point due to a

onductor
magnet, § 605.t a] tt F analogy of, %§ t7)fi0‘~7g3.t_ l_ ' s, mu u a me orces experience y in no we y mgno; or repulsion between two, §§ 128~ netized ferromagnetic or diamagnetic

- ' nn- Btallin btan s,rmks ,

Llectroinete and electrostaticalmeasure- §§o64c71?653. es“ 8 ce 8 M on

11191111, report on, §§ 341-390. \\ by matter under magnetic 1n

—‘ cl ification of, §§ 343~385 flllence, §§ 723-732

Electmmeter, definition of, § 341 --~ -\ by soli immersed in a mov~

\ absolute, §§ 307-30 , 339, 358, 363 ing liquid, § 733, etc.

\ e§“°-l-?t°’§§§§é‘i‘é?37ti5 357 “Fr Haney" electric’ “94

g, I ‘\ electrosc pic, § 305, cot-note. GALVANOMETER, § 341.

\ 1011s ran e, §§ 383, 384 \ mirror, § 350.
\ "a d . §s79-3s2. Gauss, §§ 187, 481.

E‘ m 16, §§ 263, 277, 368-378. Green, essay on the application of

1315530magnet’ definiti‘m of, § 434- msthematical lyeis to the theories

fireinztzafi 524—554- of electricity an magnetism, §§ 25,

a I réciali 2.537 106, l63,_167, 481..

‘\ lohd § 53,8 - \ pote’nzial atf a point, § 37, foot-note.
Mics}??? We for-c9 required to produce meigtgob; 133M022’ {3329116 expen

gate; a mamas?’ at 735°???" "oment of gt: 3 ’ ' ‘ -

E1 ’ a 20-340.
itrfifrm B°nl1et’sg01(lleaf_,§387- HARais on the law of electric force

388- nenberger’s modification of, § Heiiaminiption of, § 26,

. e , '

$812251‘?h” force, and variations of ! Hea routlatilcngleneltxon ZSLB§§§§ 337 Potential, relations between, 11101 a lectri m ,- e’ o _

\ _ ; ach n , § 4.9

" fery, me pmdueed by a Dsniell’s bat- I! IDIOSTATIU elec

"-i-tmphojgurement of the, §§ 305319 ‘ i

mnta,

tl‘ometers, § 385.
. , mages, electric, §§ 127, 208-230.

d. ‘3 reciprocal, § 427. . ‘ Imaginary electri
"vision of surfaces into, § 79. \ '

In» elect].

cal points, § 116.
I agnetic matter, §§ 463-475

my § 66‘ inducer magnetism '

m a plate, §§ 150-162.

A



Index. 591

Induction, magnetic, §§ 604, 624.

plate, § 357.

' Inductive action, curved lines of, § 39.

capacity of _ a substance, principal,

§ 61 l.

Inductively magnetized bodies in posi

tions of equilibrium, on the stability

of, § 665.

ferromagnetic or diamagnetic

non-crystalline substances, remarks on

the forces experienced by, §§ 647-653.

Insulated sphere subjected to the in

fluence of an electrical point, §§ 89-95.

Inverse problems of magnetism, §§ 584

601.

Intensity of magnetization, §§ 461, 462.

Isothermal surface, § 1.

Isotropic, § 604, foot-note.

Lumen, § 481. ‘

Lamellar distribution of magnetism, cha

racteristic of, § 514.

Laws of statical electricity, on the

elementary, § 25.

of magnetic forces, §§ 452-453.

Lamé’s Memoir on Isothermal Surfaces,

§ 20.

Lettres de ill. William Thomson, A.M.,

Liouville, éxtraits de, §§ 208-220.

Lines of electric force, §§ 39, 251, 256.

of magnetic force, § 605.

of force, diagrams of, §§ 632, 633.

Liouville, sur un propriété de la couche

électrique en equilibre a la surface

d'un corp conducteur, § 163.

note on the subject of electric images,

§§ 221, 230.

Lightning, on some remarkable effects

of, observed in a farm house near

~Monimail, § 301.

Leyden phial, capacity of a, § 51, etc.

MAGNET, definition of :1, § 434.

Magnetic agency of the earth on a

magnet, § 438.

axis, §§ 440, 494.

centre, § 494.

field, § 605.

force at any point, total, § 605.

—-- the characteristic of mag

netism, §§ 432, 433.

axioms of, § 606.

induction, determination of the con

ditions of, § 610.

general problem of, §§ 700-732.

laws of, § 607.

Magnetic induction, a principal axis of,

§ 61 1.

inductions, superposition of, § 607.

moment, § 458-460.

—- polarity, §§ 443-447.

shell, §§ 506-512.

solenoid, § 505, 507, 509, 51].

strength, g 454-456.

—- susceptibility, § 610.

—— permeability, s§ 625-627.

—— analogues of, §§ 625-631, 751

756.

Magnetism, mathematical theory of,

430, etc.

Magnetization, direction of, § 462.

intensity of, § 461.

—— intrinsic, § 698.

Magnetized matter, mutual actions be

tween any given portions of, § 476-501.

Mathematical theory of electricity, actual

progress in the, § 74.

of electricity, objects of the,

{In

§ 73.

Measurement by electrometer, interpre

tation of, § 336.

Mechanical theory of electricity, demon

stration of a fundamental proposition

in the, §§ 149-155.

value of a distribution of electricity

on a. group of insulated conductors, §

138.

Mouse-mill replenisher, § 426.

Mutual action between two magnets

consists of a. force and a couple,496-501.

between two magnets ex

pressed in terms of a function of their

relative position, §§ 502-505.

Nronorsos’s revolving doubler, § 429.

OnRs'rEn, § 524.

PLANE cbuducting surface, electrical in

fluence on a, §§ 106-112.

Pllicker’s hypothesis, § 666.

Polar magnet, § 549.

inductive susceptibility of a,

§§ 697-699.

mechanical values of, §§ 564

572.

Polarity, § 443.

Poles of a magnet, §§ 443, 549.

Poison, Memoirs of, on the mathematical

theory, § 25.

theory of magnetic induction, § 604.

quotations from, regarding magne
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Index.

crystallic action, with explanations, §§

620, 621.

Potential at a point, § 37, foot-note.

at any point in the neighbourhood

of or within an electrified body, § 129,

foot-note.

electric, § 335.

-— of a magnetic shell at any point, §

512.

of a closed galvanic circuit of any

form, §§ 555-560.

Potentials, equality and difference of, §

249, foot note.

Potential-Equalizer, §§ 422-426.

Proof plane, §§ 25, foot-note, 35, 330.

QUANTITIES of electricity, measurement ,

of, § 328. .

REPLENISHER, §§ 352, 418-421, 427-429.

Resultant electric force at a point, de- \

finition of, § 65.

due to a uniform spheri

cal shell, vanishes for any interior

point, § 78.

Solenoidal distribution of magnetism,

characteristic of, § 513.

Statement of the principles on which the

mathematical theory of electricity is

founded, § 57, etc.

Stratum of air between two parallel or

nearly parallel plane or curved metallic

surfaces maintained at difi'erent poten

tials, g 338.

Strength of electric current, § 532.

Superficial density of magnetic matter,

§§ 471, 472.

Surface of the earth, § 250; generally

negatively electrified, § 252.

TELEGRAPH wire insulated in the axis of

a cylindrical conductingsheath, electro

static capacity of, §§ 54, etc.

Terrestrial electrification, extremely rapid

variations of, § 259.

—- magnetism, on the electric currents

by which the phenomena of, may be

produced, §§ 602, 603.

Thalén, magnetic susceptibility of iron,

§ 630.

at any point in an in

sulating fluid, § 331.

magnetic force at any point, §§ 479,

515.

SPECIFIC inductive capacity, § 45, etc.

Spherical conductors, geometrical in

vestigations with reference to the dis

tribution of electricity on, § 75, etc.

geometrical investigations

regarding, §§ 113-127.

conducting surface, electrical in

fluence on an internal point of a, § 102.

surfaces of which the density varies

inversely as the cube of the distance

“"“fiFm a gTen point, attraction of, § 90. -

Page 45, line 5,]ar our read one.

41,

The earth, a great magnet, § 436.

The earth’s action on a magnet, sensibly

a couple, §§ 439, 442.

Theory of electricity, on certain definite

integrals suggested by problems in the,

§§ 166-185.

of magnetic force, elementary de

monstrations of propositions in the,

§ 669.

Tyndall, Professor, correspondence with,

§§ 694-696.

UNIT strength, § 647, foot-note.

VARLxv’s instrument for generating

electricity, § 428.

Volta connexion by flame, §§ 412-415.

ERRATA.

18 from bottom, after instant 1' inert on a conductor.

,, 59, ,, 6, dale comma aflcr density.

,, 272, ,, 14,101 aluminium read platinum.

., 358. n S from bottom, for neutralized read unneutxallzed.
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