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Toward Intelligent Flight Control 
Robert F .  Stengel, Fellow, ZEEE 

Abstract-Flight control systems can benefit by being de- 
signed to emulate functions of natural intelligence. Intelligent 
control functions fall in three categories. Declarative actions 
involve decision making, providing models for system monitor- 
ing, goal planning, and systemlscenario identification. Proce- 
dural actions concern skilled behavior and have parallels in 
guidance, navigation, and adaptation. Reflexive actions are 
more or less spontaneous and are similar to inner-loop control 
and estimation. Intelligent flight control systems will contain a 
hierarchy of expert systems, procedural algorithms, and com- 
putational neural networks, each expanding on prior functions 
to improve mission capability, to increase the reliability and 
safety of flight, and to ease pilot workload. 

INTRODUCTION 
UMAN pilots traditionally have provided the intel- H ligence to fly manned aircraft in numerous ways, 

from applying manual dexterity through informed plan- 
ning and coordination of missions. As aircraft character- 
istics have changed, and more importantly as the tech- 
nology has allowed, an increasing share of the aircraft’s 
intelligent operation has relied on proper functioning of 
electromechanical sensors, computers, and actuators. It 
has become possible to apply machine intelligence to flight 
control. The transition toward automating control intelli- 
gence has been evolutionary. In contemplating the effects 
of atmospheric turbulence, one of the Wright brothers 
wrote, “The problem of overcoming these disturbances 
by automatic means has engaged the attention of many 
ingenious minds, but to my brother and myself, it has 
seemed preferable to depend entirely on intelligent con- 
trol” [I] ,  [ 2 ] .  The Wright brothers’ piloting actions de- 
pended on proper interpretation of visual and inertial cues, 
demonstrating biological intelligent control, Later, panel 
displays of compass heading, pressure altitude, airspeed, 
aircraft attitude, and bearing to a radio station enhanced 
the intelligent behavior of human pilots. Stability aug- 
mentation systems that fed pitch rate to elevator or yaw 
rate to rudder could be considered the first intelligent sys- 
tems that did not rely on the human pilot, while automatic 
bombing and landing systems carried machine intelli- 
gence to the point of “hands-off flying for portions of the 
aircraft’s mission. 
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In a contemporary context, intelligent flight control has 
come to represent even more ambitious plans to 

make aircraft less dependent on proper human ac- 

enhance the mission capability of aircraft, 
improve performance by learning from experience, 
increase the reliability and safety of flight, and 
lower the cost and weight of aircraft systems. 

This paper presents concepts for intelligent flight con- 
trol in the contemporary context, that is, through the aid 
of what were once called “artificial” devices for sensing, 
computation, and control. Emphasis is placed on alter- 
natives for analysis and design of control logic rather than 
on the equipment that makes it possible (i.e., on software 
rather than hardware). There are many ways to partition 
and describe intelligent control. Here the intelligent con- 
trol function is separated into three parts to distinguish 
between control functions according to a cognitive/bio- 
logical hierarchy of declarative, procedural, and refexive 
functions. Declarative functions are performed by the 
control system’s outer loops, and reflexive functions are 
performed by its inner loops. An intermediate level of 
procedural functions have well defined input-output char- 
acteristics of a more complicated structure. Traditional 
design principles suggest that the outer-loop functions 
should be dedicated to a low-bandwidth, large-amplitude 
control commands, while the inner-loop functions should 
have high bandwidths and relatively lower amplitude ac- 
tions. There is a logical progression from the sweeping, 
flexible alternatives associated with satisfying mission 
goals to more local concerns for stability and regulation 
about a desired path or equilibrium condition. 

tions for mission completion, 

FOUNDATIONS FOR INTELLIGENT FLIGHT CONTROL 
Intelligent flight control design draws on two appar- 

ently unrelated bodies of knowledge. The first is rooted 
in classical analyses of aircraft stability, control, and 
flying qualities. The second derives from human psy- 
chology and physiology. The goal considered here is to 
find new control structures that are consistent with the 
reasons for flying aircraft, that bring flight control sys- 
tems to a higher level of overall capability. 

Aircrafr Flying Qualities and Flight Control 
An aircraft requires guidance, navigation, and control 

so that it can perform its mission. As suggested by Fig. 
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Fig. 1. Guidance, navigation, and control structure, distinguishing be- 
tween human-pilot and computer-based functions. 

1 ,  a human pilot can interact with the aircraft at several 
levels, and his or her function may be supplanted by elec- 
tromechanical equipment. The pilot performs three dis- 
tinct functions: sensing, regulation, and decision making. 
These three tasks exercise different human characteristics: 
the ability to see and feel, the ability to identify and cor- 
rect errors between desired and actual states, and the abil- 
ity to decide what needs to be done next. The first of these 
depends on the body’s sensors and the neural networks 
that connect them to the brain. The second relies on motor 
functions enabled by the neuromuscular system to execute 
leamed associations between stimuli and desirable ac- 
tions. The third requires more formal, introspective 
thought about the reasons for taking action, drawing on 
the brain’s deep memory to recall important procedures 
or data. Sensing and regulation are high-bandwidth tasks 
with little time for deep thinking. Decision making is a 
low-bandwidth task that requires concentration. Each of 
these tasks exacts a workload toll on the pilot. 

Pilot workload has become a critical issue as the com- 
plexity of systems has grown, and furnishing ideal flying 
qualities throughout the flight envelope is an imperative. 
It is particularly desirable to reduce the need to perform 
high-bandwidth, automatic functions, giving the pilot time 
to cope with unanticipated or unlikely events. In the fu- 
ture, teleoperated or autonomous systems could find in- 
creasing use for missions that expose human pilots to dan- 
ger. 

Research on the Jlying (or handling) qualities of air- 
craft has identified ways to make the pilot’s job easier and 
more effective, and it provides models on which auto- 
matic systems might be based. The first flying qualities 
specification simply stated, ‘‘(the aircraft) must be steered 
in all directions without difficulty and all time (be) under 
perfect control and equilibrium” [3], [4]. Further evolu- 
tion of flying qualities criteria based on dynamic model- 
ing and control theory has resulted in the widely used U.S.  
military specification [5] and the succeeding military 
standard, described in [6]. 

The development of control theoretic models of pilot- 
ing behavior proceeded in parallel with flying qualities 
research. Most of these models have dealt with reflexive, 
compensatory tracking tasks using simple time lag and 
transfer function models [7], [8] or Linear Quadratic 

Gaussian (LQG) optimal control models [9], [ 101. Some 
of the transfer function approaches go into considerable 
detail about neuromuscular system dynamics [ 1 11, [ 121. 
These models often show good correlation with experi- 
mental results, not only in compensatory tracking but in 
more procedural tasks. The progression of piloting ac- 
tions from single- to multi-input strategies as the com- 
plexity of the task increases is predicted in [ l  11, while 
test pilot opinion ratings are predicted by a “Paper Pilot” 
in [ 131. These results imply that computer based control 
laws can pelform procedural and rejexive tasks within 
the jit error of mathematical human pilot models. Models 
of the human pilot’s declarative actions have yet to re- 
ceive the same level of attention; however [14]-[17] in- 
troduce the types of decisions that must be made in aero- 
space scenarios, as well as likely formats for pilot-vehicle 
interface. 

Fig. 1 also portrays a hierarchical structure for stability 
augmentation, command augmentation, autopilot, and 
flight management system functions that can be broken 
into reflexive and declarative parts. Stability augmenta- 
tion is reflexive control provided by the innermost loop, 
typically implemented as a linear feedback control law 
that provides stability and improves transient response 
through an Estimation/Compensation block. Forward loop 
control provides the shaping of inputs for satisfactory 
command response through a ControUCompensation 
block, again employing linear models. The combination 
of control and estimation can be used to change the flying 
qualities perceived by the pilot, or it can provide a decou- 
pled system for simplified guidance commands [ 181-[20]. 
A basic autopilot merely translates the human pilot’s 
commands to guidance commands for constant heading 
angle, bank angle, or airspeed, while the Guidance block 
can be expanded to include declarative flight management 
functions, using inputs from Navigation sensors and al- 
gorithms. 

Intelligent functions have been added to flight control 
systems in the past. Gain scheduling and switching im- 
prove performance in differing flight regimes and mission 
phases. Control theory, heuristics, and reduced-order op- 
timization have been used to achieve near-optimal trajec- 
tory management in many flight phases (e.g., [21]-[23]). 
The Guidance, Navigation, and Control (GNC) Systems 
for Project Apollo’s Command/Service and Lunar Mod- 
ules provide an early example of intelligent aerospace 
control [24]-[26]. The state of the art of aircraft flight 
control systems has progressed to comparable levels and 
beyond, as represented by systems installed in modem 
transport and fighter aircraft (e.g., [27], [28]). 

Intelligent flight control’ is justified only if it materially 
improves the functions of aircraft, if it saves the time and/ 
or money required to complete a mission, or if it improves 
the safety and reliability of the system. A number of phil- 
osophical problems can be posed. Must machine intelli- 

‘As used here “intelligent flight control” subsumes “intelligent guid- 
ance, navigation, and control.” 
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gence be better than the human intelligence it replaces in 
order for it to be adopted? We accept the likelihood that 
humans will make mistakes; if a machine has the same 
likelihood of making a mistake, should it be used? Lack- 
ing firm knowledge of a situation, humans sometimes 
gamble; should intelligent machines be allowed to gam- 
ble? When is it acceptable for machine intelligence to be 
wrong (e.g., during learning)? If the control system 
adapts, how quickly must it adapt? Must learning occur 
on-line, or can it be delayed until a mission is completed? 
Which decisions can the machine make without human 
supervision, and which require human intervention? How 
much information should be displayed to the human op- 
erator? Should intelligent flight control ever be fully au- 
tonomous? The “right” answers depend on the applica- 
tion and the mission. 

Cognitive and Biological Paradigms for Intelligence 
Intelligence is the “ability involved in calculating, rea- 

soning, perceiving relationships and analogies, learning 
quickly, storing and retrieving information . . . classify- 
ing, generalizing, and adjusting to new situations” [29]. 
This definition does not deal with the mechanisms by 
which intelligence is realized, and it makes the tacit as- 
sumption that intelligence is a human trait. Intelligence 
relates not only to intellectuality and cognition but to per- 
sonality and the environment [30]. 

The debate over whether or not computers ever will 
“think” may never be resolved, though this need not re- 
strict our working models for computer-based intelligent 
control. One argument against the proposition is that 
computers deal with syntax (form), while minds deal with 
semantics (meaning), and syntax alone cannot produce 
semantics 13 11. Of course, a computer may mimic natural 
intelligence in a limited domain. Another contention is 
that thinking is ‘ ‘nonalgorithmic,” that the brain evokes 
consciousness through a process of natural selection and 
inheritance [32]. Consciousness is required for common 
sense, judgment of truth, understanding, and artistic ap- 
praisal, concepts that are not formal and cannot readily be 
programmed for a computer (i.e., they are not syntactic). 

Conversely, functions that are automatic or “mind- 
less” (i.e., that are unconscious), could be programmed, 
implying that computers have more in common with “un- 
intelligent” functions. Godel’s Theorem2 is offered in [33] 
as an example of an accepted proposition that may be con- 
sidered nonalgorithmic; the statement and proof of the 
theorem must themselves be nonalgorithmic and, there- 
fore, not computable. 

The notion that syntax alone cannot produce semantics 
is attacked as being an axiom that is perhaps true, but not 
knowable in any practical sense [34]; therefore, the pos- 
sibility that a computer can “think” is not ruled out. A 

further defense is offered in [35], which suggests that hu- 
man inference may be based, in part, on inconsistent ax- 
ioms. This could lead to rule-based decisions that are not 
logically consistent, that are affected by heuristic biases 
or sensitivities, that may reflect deeper wisdom, or that 
may be wrong or contradictory. 

More to our point, it is likely that a computer capable 
of passing a flying qualities/pilot workload/control theo- 
retic equivalent of the Turing test3 [36] could be built even 
though that computer might not understand what it is 
doing.4 For intelligent flight control, the principal objec- 
tive is improved control performance, that is, for im- 
proved input-output behavior. The computer can achieve 
the operative equivalent of consciousness in a limited do- 
main, even if it does not possess emotions or other human 
traits. 

From an information processing perspective, it is con- 
venient-as well as consistent with empirical data-to 
identify four types of thought: conscious, preconscious, 
subconscious, and unconscious [37]. Conscious thought 
is the thought that occupies our attention, that requires 
focus, awareness, reflection, and perhaps some rehearsal. 
Conscious thought performs declarative processing of the 
individual’s knowledge or beliefs. It makes language, 
emotion, artistry, and philosophy possible. Unconscious 
thought “describes those products of the perceptual sys- 
tem that go unattended or unrehearsed, and those memo- 
ries that are lost from primary memory through display or 
displacement” [37]. Within the unconscious, we may fur- 
ther identify two important components. Subconscious 
thought is procedural knowledge that is below our level 
of awareness but central to the implementation of intelli- 
gent behavior. It facilitates communication with the out- 
side world and with other parts of the body, providing the 
principal home for the learned skills of art, athletics, con- 
trol of objects, and craft. We are aware of perceptions if 
they are brought to consciousness, but they also may take 
a subliminal (subconscious) path to memory. Precons- 
cious thought is preattentive declarative processing that 
helps choose the objects of our conscious thought, oper- 
ating on larger chunks of information or at a more sym- 
bolic level. It forms a channel to long-term and implicit 
memory, and it may play a role in judgment and intuition. 

The central nervous system supports a hierarchy of in- 
telligent and automatic functions with declarative actions 
at the top, procedural actions in the middle, and rejexive 
actions at the bottom. We may assume that declarative 
thinking occurs in the brain’s cerebral cortex, which ac- 
cesses the interior limbic system for memory [38]-[40]. 
Together, they provide the processing unit for conscious 
thought. Regions of the cerebral cortex are associated with 
different intellectual and physical functions; the distinc- 

’Turing suggested that a computer could be considered “intelligent” if 
it could “converse” with a human in a manner that is indistinguishable 
from a human conversing with a human. 

4Searle describes such a computer as a “Chinese Room” that translates 
Chinese characters correctly by following rules while not understanding the 
language in  (311. 

’As summarized in [32]: Any algorithm used to establish a mathematical 
truth cannot prove the propositions on which it is based. Or another [33]: 
Logical systems have to be fixed up “by calling the undecidable statements 
axioms and thereby declaring them to be true,’’ causing new undecidable 
statements to crop up. 
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tion between conscious and preconscious function may 
depend on the activation level and duration in regions of 
the cerebral cortex. 

The working memory of conscious thought has access 
to the spinal cord through other brain parts that are ca- 
pable of taking procedural action (e.g., the brain stem for 
autonomic functions, the occipital lobes for vision, and 
the cerebellum for movement). Procedural action can be 
associated with subconscious thought, which supports 
voluntary automatic processes like movement and sens- 
ing. These voluntary signals are sent over the somatic 
nervous system, transmitting to muscles through the mo- 
tor neural system and from receptors through the sensory 
neural system. 

The spinal cord itself “closes the control loop” for re- 
jfexive actions long before signals could be processed by 
the brain. Nevertheless, these signals are available to the 
brain for procedural and declarative processing. We are 
all aware of performing some task (e.g., skating or riding 
a bicycle) without effort, only to waver when we focus on 
what we are doing. Involuntary regulation of the body’s 
organs is provided by the autonomic nervous system, 
which is subject to unconscious processing by the brain 
stem. “Bio-feedback” can be learned, allowing a modest 
degree of higher level control over some autonomic func- 
tions. 

Declarative, procedural, and reflexive functions can be 
built into a model of intelligent control behavior (Fig. 2). 
The Conscious Thought module governs the system by 
performing declarative functions, receiving information 
and transmitting commands through the Subconscious 
Thought module, which is itself capable of performing 
procedural actions. Conscious Thought is primed by Pre- 
conscious Zhought [4 11, which can perform symbolic 
declarative functions and is alerted to pending tasks by 
Subconscious Thought. These three modules overlie a bed 
of deeper Unconscious Thought that contains long-term 
memory. 

The Subconscious Thought module receives informa- 
tion from the Sensory System and conveys commands to 
the Muscular System through peripheral networks. Vol- 
untary Reflexive Actions provide low-level regulation in 
parallel with the high-level functions, responding to crit- 
ical stimuli and coordinating control actions. High- and 
low-level commands may act in concert, or one may block 
the other. Voluntary Reflexive Actions can be trained by 
high-level directives from Subconscious Thought, while 
the learning capabilities of involuntary Reflexive Action 
are less clear. Control actions produce Body motion and 
can affect an external Controlled System, as in piloting an 
aircraft. In learned control functions, Body motion helps 
internalize the mental model of Controlled System behav- 
ior. The Body and the Controlled Systems are both di- 
rectly or indirectly subjected to Disturbances; for exam- 
ple, turbulence would affect the aircraft directly and the 
pilot indirectly. The Sensory System observes External 
Events as well as Body and Controlled System motions, 
and it is subject to Measurement Errors. 

Events 
Controlled 

System 

Fig. 2. A Model of cognitive/biological control behavior. 

Human cognition provides paradigms for control sys- 
tem design. One important observation is that learning 
requires error or incompleteness. There is nothing new 
to be gained by observing a known process that is oper- 
ating perfectly. In a control context, any operation should 
be started using the best available knowledge of the pro- 
cess and the most complete control resources. Conse- 
quently, learning is not always necessary or even desir- 
able in a flight control system. Biological adaptation is a 
slow process, and proper changes in behavior can be made 
only if there is prior knowledge of alternatives. If adap- 
tation occurs too quickly, there is the danger that misper- 
ceptions or disturbance effects will be misinterpreted as 
parametric effects. Biological systems need rest, and this 
attribute may be an essential element of intelligence. For 
example, REM (rapid eye movement) sleep appears to be 
a time of learning, consolidating, and pruning knowledge5 
[42]. Computer systems could learn even when they are 
not functioning by reviewing past performance, perhaps 
in a repetitive or episodic way. 

Human biology provides structural paradigms for con- 
trol that are worth emulating in machines. First, there is 
a richness of sensory information that is hard to fathom, 
with millions of sensors providing information to the sys- 
tem. This results in high signal to noise ratio in some 
cases, and it allows symbolic/image processing in others. 
Those signals requiring high bandwidth, high resolution 
channel capacity (vision, sound, and balance) have short, 
dedicated, parallel runs from the sensors to the brain. 
Dissimilar but related sensory inputs facilitate interpre- 
tation of data. A single notion can be sensed by the eyes, 
by the inner ear, and by the “seat-of-the-pants” (i.e., by 

5“In REM sleep, the brain is barraged by signals from the brain stem. 
Impulses fired to the visual cortex produce images that may contain mate- 
rials from the day’s experiences, unsolved problems, and unfinished busi- 
ness.” [42] 
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Fig. 3 .  Intelligent flight control system structure. 

sensing forces on the body itself), corroborating each 
other and suggesting appropriate actions. When these sig- 
nals are made to disagree in moving-cockpit simulation of 
flight, a pilot may experience a sense of confusion and 
disorientation. 

There are hierarchical and redundant structures 
throughout the body. The nervous system is a prime ex- 
ample, bringing inputs from myriad sensors (both similar 
and dissimilar) to the brain, and performing low-level rea- 
soning as an adjunct. Many sensing organs occur in pairs 
(e.g., eyes, ears, inner ears), and their internal structures 
are highly parallel. Pairing allows graceful degradation 
in the event that an organ is lost. Stereo vision vanishes 
with the loss of an eye, but the remaining eye can provide 
both foveal and peripheral vision, as well as a degree of 
depth perception through object size and stadiametric pro- 
cessing. Our control effectors (arms, hands, legs, feet) 
also occur in pairs, and there is an element of “Fail-Op/ 
Fail-Op/Fail-Safe” design [43] in the number of fingers 
provided for manual dexterity. 

Structure for Intelligent Flight Control 
The preceding section leads to a control system struc- 

ture that overlays the cognitive/biological model of Fig. 
2 on the flight control block diagram of Fig. 1 and adds 
new functions. The suggested structure (Fig. 3) has super- 
blocks identifying declarative, procedural, and reflexive 
functions; these contain the classical GNC functions plus 
new functions related to decision making, prediction, and 
learning. The black arrows denote information flow for 
the primary GNC functions, while the gray arrows illus- 
trate the data flow that supports subsidiary adjustment of 
goals, rules, and laws. 

Within the super blocks, higher-level functions are 
identified as conscious, preconscious, and subconscious 
attributes as a working analog for establishing a compu- 
tational hierarchy. The new functions relate to setting or 
revising goals for the aircraft’s mission, monitoring and 
adjusting the aircraft’s systems and subsystems, identi- 
fying changing characteristics of the aircraft and its en- 
vironment, and applying this knowledge to modify the 
structures and parameters of GNC functions. 

In the remainder of the paper, declarative, procedural, 

and reflexive control functions are discussed from an 
aerospace perspective. In practice, the boundaries be- 
tween mission tasks may not be well defined, and there is 
overlap in the kinds of algorithms that might be applied 
within each group. A number of practical issues related 
to human factors, system management, certifiability , 
maintenance, and logistics are critical to the successful 
implementation of intelligent flight control, but they are 
not treated here. 

DECLARATIVE SYSTEMS 
Goal planning, system monitoring, and control mode 

switching are declarative functions that require reasoning. 
Alternatives must be evaluated, and decisions must be 
made through a process of deduction, that is, by inferring 
answers from general or domain-specific principles. The 
inverse process of learning principles from examples is 
induction, and not all declarative systems have this ca- 
pability. Most declarative systems have fixed structure and 
parameters, with knowledge induced off-line and before 
application; declarative systems that learn on-line must 
possess a higher level of reasoning ability, perhaps 
through an internal declarative module that specializes in 
training. Flight control systems that incorporate declara- 
tive logic can exhibit intelligent behavior by emulating 
the functions of an aircraft crew [47], [48]. 

Expert Systems 
Expert Systems are computer programs that use physi- 

cal or heuristic relationships and facts for interpretation, 
diagnosis, monitoring, prediction, planning, and design. 
In principal, an expert system replicates the decision mak- 
ing process of one or more experts who understand the 
causal or structural nature of the problem [44]. While hu- 
man experts may employ ‘‘nonmonotonic reasoning” and 
“common sense” to deduce facts that apparently defy 
simple logic, computational expert systems typically are 
formal and consistent, basing their conclusions on anal- 
ogous cases or well defined rules.6 

A rule-based expert system consists of data, rules, and 
an inference engine [46]. It generates actions predicated 
on its data base, which contains measurements as well as 
stored data or operator inputs. An expert system perfor” 
deduction using knowledge and beliefs expressed as pa- 
rameters and rules. Parameters have values that either are 
external to the expert system or are set by rules. An “IF- 
THEN” rule evaluates a premise by testing values of one 
or more parameters related by logical “ANDs” or 
“ORs,” as appropriate, and it specifies an action that sets 
values of one or more parameters. 

The rule base contains all the cause and effect relation- 
ships of the expert system, and the inference engine per- 

‘Expert systems can have tree or graph structures. In the former, there 
is a single root node, and all final ( l e a f )  nodes are connected to their own 
single branch. In the latter, one or more branches lead to individual nodes. 
Reasoning is consistent if an individual node is not assigned differing val- 
ues by different branches [45]. 
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forms its function by searching the rule base. Given a set 
of premises (evidence of the current state), the logical 
outcome of these premises is found by a data driven search 
(forward chaining) through the rules. Given a desired or 
unknown parameter value, the premises needed to support 
the fixed or free value are identified by a goal directed 
search (backward chaining) through the rules. Querying 
(or firing) a rule when searching in either direction may 
invoke procedures that produce parameter values through 
side effects. Side effects provide the principal means for 
taking measurements, making state estimates, invoking 
control logic, and commanding actuators. 

Both search directions are used in rule-based control 
systems [47]. Backward chaining drives the entire process 
by demanding that a parameter such as CONTROL CYCLE 
COMPLETED have a value of true. The inference engine 
works back through the rules to identify other parameters 
that allow this and, where necessary, triggers side effects 
(procedural or reflexive functions) to set those parameters 
to the needed values. Backward chaining also is invoked 
to learn the value of ABNORMAL BEHAVIOR DE- 
TECTED (true or false). Conversely, forward chaining 
indicates what actions can be taken as a consequence of 
the current state. If SENSOR MEASUREMENTS REA- 
SONABLE is true, and ALARM DETECTED is false, then 
failure identification and reconfiguration side effects can 
be skipped on the current cycle. 

Rules and parameters can be represented as objects or 
frames using ordered lists that identify names and attri- 
butes. Specific rules and parameters are represented by 
lists in which values are given to the names and attributes. 
The attribute lists contain not only values and logic, but 
additional information for the inference engine. This in- 
formation can be used to compile parameter rule associ- 
ation lists that speed execution [48]. Frames provide use- 
ful parameter structures for related productions, such as 
analyzing the origin of one or more failures in a complex 
control system [49]. 

Crew/Team Paradigms for Declarative Flight Control 
Logical task classification is a key factor in the devel- 

opment of rule-based systems. To this point, we have fo- 
cused on the intelligence of an individual as a paradigm 
for control system design, but it is useful to consider the 
hypothetical actions of a multi-person aircraft crew as 
well. In the process, we develop an expert system of ex- 
pert systems, a hierarchical structure that reasons and 
communicates like a team of cooperating, well-trained 
people might. This notion is suggested in [SO] and is car- 
ried to considerable detail in [51]-[53]. The Pilot’s As- 
sociate Program initially focused on a four task structure 
and evolved in the direction of the multiple crew member 
paradigm [54]-[56]. 

AUTOCREW is an ensemble of nine cooperating rule- 
based systems, each figuratively emulating a member of 
a World War I1 bomber crew: executive (pilot), co-pilot, 
navigator, flight engineer, communicator, spoofer (coun- 

1 
COMMUNICATOR 

Fig. 4. AUTOCREW configuration with pilot/aircraft interface (adapted 
from [52]). 

termeasures), observer, attacker, and defender (Fig. 4) 
[53]. The executive coordinates mission specific tasks and 
has knowledge of the mission plan. The aircraft’s human 
pilot can monitor AUTOCREW functions, follow its sug- 
gestions, enter queries, and assume full control if confi- 
dence is lost in the automated solution. The overall goal 
is to reduce the pilot’s need to regulate the system directly 
without removing discretionary options. AUTOCREW 
contains over 500 parameters and over 400 rules. 

AUTOCREW was developed by defining each member 
expert system as a knowledge base, according to the fol- 
lowing principles: 

Divide each knowledge base into major task groups: 
time-critical, routine, and mission-specific. 
Order the task groups from most to least time-critical 
to quicken the inference engine’s search. 
Break major tasks into subtasks according to the de- 
tail necessary for communicating system functions. 
Identify areas of cooperation between knowledge 
bases. 

The five task group types for each crew member are: tasks 
executed during attack on the aircraft, tasks executed dur- 
ing emergency or potential threat, tasks ordered by the 
EXECUTIVE, tasks executed on a routine basis, and mis- 
sion-specific tasks. Routine and mission specific tasks are 
executed on each cycle; emergency tasks are executed 
only when the situation warrants. 

Operation of AUTOCREW was simulated to obtain 
comparative expert system workloads for two mission 
scenarios: inbound surface to air missile attack and hu- 
man pilot incapacitation [52] .  In addition to the overall 
AUTOCREW system, a functioning NAVIGATOR sen- 
sor management expert system was developed. Additional 
perspectives on intelligent flight management functions 
can be obtained from the literature on decision making by 
teams, as in [57]-[59]. Alternate approaches to aiding the 
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pilot in emergencies are given in 1601, 1611. Knowledge 
acquisition for the system presents an interesting chal- 
lenge, because traditional methods (e.g . , domain expert 
interviews) may not provide sufficiently detailed infor- 
mation for system design [62]. 

Reasoning Under Uncertainty 
Rule-based control systems must make decisions under 

uncertainty. Measurements are noisy, physical systems 
are subject to random disturbances, and the environment 
within which decisions must be made is ambiguous. For 
procedural systems, the formalism of optimal state esti- 
mation provides a rigorous and useful means of handling 
uncertainty [63]. For declarative systems, there are a 
number of methods of uncertainty management, including 
probability theory, Dempster-Shafer theory, possibility 
theory (fuzzy logic), certainty factors, and the theory of 
endorsements [64]. 

Bayesian belief networks [65], which propagate event 
probabilities up and down a causal tree using Bayes's rule, 
have particular appeal for intelligent control applications 
because they deal with probabilities, which form the basis 
for stochastic optimal control. We have applied Bayesian 
networks to aiding a pilot who may be flying in the vicin- 
ity of hazardous wind shear [66]. Fig. 5 shows a network 
of the causal relationships among meteorological phe- 
nomena associated with microburst wind shear, as well as 
temporal and spatial information that could affect the 
likelihood of microburst activity. A probability of occur- 
rence is associated with each node, and a conditional 
probability based on empirical data is assigned to each 
arrow. The probability of encountering microburst wind 
shear is the principal concern; however, each time new 
evidence of a particular phenomenon is obtained, proba- 
bilities are updated throughout the entire tree. In the pro- 
cess, the estimated likelihood of actually encountering the 
hazardous wind condition on the plane's flight path is re- 
fined. Unlike other applications of hypothesis testing, the 
threshold for advising a go-around during landing or an 
abort prior to takeoff is a very low probability-typically, 
0.01 or less-as the consequences of actually encounter- 
ing a strong microburst are severe and quite possibly fa- 
tal. 

The safety of aircraft operations near microburst wind 
shear will be materially improved by forward-looking 
Doppler radar, which can sense variations in the wind 
speed. Procedural functions that can improve the reliabil- 
ity of the wind shear expert system include extended Kal- 
man filtering of the velocity measurements at incremental 
ranges ahead of the aircraft 1671. 

Probabilistic reasoning of a different sort has been ap- 
plied to a problem in automotive guidance that may have 
application in future Intelligent VehicleIHighway Sys- 
tems 1681-[70]. Intelligent guidance for headway and lane 
control on a highway with surrounding traffic is based on 
worst-plausible-case decision making. It is assumed that 
the intelligent automobile (IA) has imaging capability as 

Shear Alert System 

Fig. 5 .  Bayesian belief network to aid wind shear avoidance (adapted from 
1671). 

I Controller Cmmand 1 
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Fig. 6.  Intelligent guidance for automative headway and lane control [69]. 

well as on-board motion sensors; hence, it can deduce the 
speed and position of neighboring automobiles. Each au- 
tomobile is modeled as a simple discrete-time dynamic 
system, and estimates of vehicle states are propagated us- 
ing extended Kalman filters [63]. There are limits on the 
performance capabilities of all vehicles, and IA strategy 
is developed using time to collide, braking ratios, driver 
aggressiveness, and desired security factors. Plausible 
guidance commands are formulated by minimizing a cost 
function based on these factors 1701. A general layout of 
the logic shown in Fig. 6, and a partial decision tree for 
lateral guidance is presented in Fig. 7. Both normal and 
emergency expert systems govern the process, supported 
by procedural calculations for situation assessment, traffic 
prediction, estimation, and control. Guidance commands 
are formulated by minimizing a cost function based on 
these factors 1701. 

Alternate plausible strategies for each neighboring au- 
tomobile are extrapolated, with predictions of both means 
and covariances. Expected values of plausibility, belief 
interval, and hazard functions are calculated, scores for 
feasible IA actions are computed, and the best course of 
action is decided, subject to aggressiveness and security 
factors, as suggested by Fig. 7. Deterministic and Monte 
Carlo simulations are conducted to demonstrate system 
performance and to fine-tune logical parameters. 

Each of the expert systems discussed in this section 
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Fig. 7. Partial decision tree used to model lateral behavior in intelligent 
automative control [69]. 

Change Change 

alternate failure scenarios. Learned parameter values then 
can be defined as “fuzzy functions” 1761 contained in 
rule premises. For example, a typical rule reads, “IF In- 
dicator 1 is near A and Indicator 2 is near B, THEN there 
is a good chance that Forward Collective Pitch Control is 
biased from nominal by an amount near C and that Failure 
Detection Delay is near D.”  

The second approach is to construct classijication or 
decision trees that relate attributes in the data to decision 
classes [52]. The problem is to develop an Expert Navi- 
gation Sensor Management System (NSM) that selects the 
best navigation aids from available measurements. Sev- 
eral aircraft paths were simulated, and the corresponding 
measurements that would have been made by GPS, Loran, 
Tacan, VOR, DME, Doppler radar, air data, and inertial 
sensors were calculated, with representative noise added. 
The simulated measurements were processed by extended 
Kalman filters to obtain optimal state estimates in 200 
simulations. Using the root-sum-square error as a deci- 
sion metric, Analysis of Variance (ANOVA) identifies the 
factors that make statistically significant contributions to 
the decision metric, and the Iterative Dichotomizer #3 

the training set by inductive inference. The ID3 algorithm 
quantifies the entropy content of each attribute, that is, 
the information gained by testing the attribute at a given 
decision node. It then defines a splitting strategy that min- 
imizes the number of nodes required to characterize the 
tree. 

performs deduction in a cyclical fashion based on prior 
logical structures, prior knowledge of parameters, and 
real-time measurements, It is clear that intelligent flight 

it is difficult to identify aeronautical applications where 
on-line declarative learning is desirable. Nevertheless, off- 
line induction is needed to formulate the initial declara- 
tive system and perhaps (in a manner reminiscent of REM 
sleep) to upgrade declarative logic between missions. 

control systems must deal with unanticipated events, but (ID3) algorithm [771-[791 extracts a decision tree from 

INDUCING KNOWLEDGE IN DECLARATIVE SYSTEMS 
In common usage, “learning” may refer a) to collect- 

ing inputs and deducing outputs and b) to inducing the 
logic that relates inputs and outputs to specific tasks. Here, 
we view the first process as the normal function of the 
intelligent system and the second as “learning.” Teach- 
ing an expert system the rules and parameters that gen- 
eralize the decision making process from specific knowl- 
edge is the inverse of expert system operation. Given all 
possible values of the parameters, what are the rules that 
connect them? Perhaps the most common answer is to in- 
terview experts in an attempt to capture the logic that they 
use, or failing that, to study the problem intensely so that 
one becomes expert enough to identify naturally intelli- 
gent solutions. These approaches can be formalized [71], 
[72], and they were the ones used in [67] and [68]. 
Overviews of alternatives for induction can be found in 
[451, [46l, V I ,  1741. 

Two approaches are considered in greater detail. The 
first is called rule recruitment [75], and it involves the 
manipulation of “dormant rules” (or rule templates). This 
method was applied in the development of an intelligent 
failure-tolerant control system for a helicopter. Each tem- 
plate possesses a fixed premise-action structure and refers 
to parameters through pointers. Rules are constructed and 
incorporated in the rule base by defining links and modi- 
fying parameter-rule-association lists. Learning is based 
on Monte Carlo simulations of the controlled system with 

Over 900 examples were used to develop the NSM de- 
cision tree, and performance was assessed at nearly 500 
points on two trajectories that differed from the training 
set. NSM correctly assessed the error class for each nav- 
aid type ( f 1 error class out of 23 possible ranges of RSS 
error) most of the time (see Fig. 5 of [52]). Differences 
between NSM and optimal navigation solutions were 
found to be minimal. 

PROCEDURAL SYSTEMS 
Most guidance, navigation, and control systems fielded 

to date are procedural systems using sequential algorithms 
on sequential processors. Although optimality of a cost 
function is not always a necessary or even sufficient con- 
dition for a “good” system, linear-optimal stochastic 
controllers provide a good generic structure for discussing 
procedural control. They are presented in state-space 
form, they contain separate control and estimation func- 
tions, and they provide an unusual degree of design flex- 
ibility. The optimal regulator effectively produces an ap- 
proximate stable inverse in providing desired response. 
The nonlinear inverse dynamic controller is a suitable de- 
sign alternative in some cases. 

Control and Estimation 
We assume that a nominal (desired) flight path is gen- 

erated by higher level intelligence, such as the human pilot 
or declarative machine logic, or as a stored series of way- 
points. The procedural system must follow the path, x* ( t )  
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in  to < t < tf  Control is exercised by a digital computer 
at time intervals of At. The n-dimensional state vector 
perturbation at time t k  is xk, and the m-dimensional con- 
trol vector perturbation is uk. The discrete time linear 
quadratic Gaussian (LQG) control law is formed as 1631, 

y: is the desired value of an output vector (g H,x, + 
Huxk), and fk is the Kalmanjlter estimate, expressed in 
two steps: 

ik(-) = w - ,  (+) + r u k - ,  

fk L? a,(+) = a,(-> + K[ik - Hoba2k(-)] ( 2 )  

the forward and feedback control gain matrices are C,  and 
C,. 9 and r are state-transition and control-effect mat- 
rices that describe the aircraft’s assumed dynamics. The 
estimator gain matrix is K and the measurement vector, 
zk, is a transformation of the state through Hobs. The gains 
C, and K result from solving two Riccati equations that 
introduce tradeoffs between control use and state pertur- 
bation and between the strengths of random disturbances 
and measurement error. CF, which provides proper steady 
state command response, is an algebraic function of C,, 
9, I’, and Hobs. All of the matrices may vary in time, and 
it may be necessary to compute K on-line. In the remain- 
der, it is not essential that C, and K be optimal (i.e., they 
may have been derived from eigen-structure assignment, 
loop sharing, etc.), although the LQR gains guarantee 
useful properties of the nominal closed-loop system 1631. 

The control structure provided by (1) and (2) is flexi- 
ble. It can represent a scalar feedback loop if z contains 
one measurement and u one control; or, it can address 
measurement and control redundancy with z and u dimen- 
sions that exceed the dimension of the state x. As an al- 
ternative, reduced-order modeling can be incorporated in 
the estimator. Assuming that 9 and r have the same di- 
mensions as the aircraft’s dynamic model (n  x n and 
n x m ) ,  the baseline estimator introduces nth-order com- 
pensation in the feedback control loop. 

The weights of the quadratic control cost function can 
be chosen not only to penalize state and control pertur- 
bations, but to produce output weighting, state rate 
weighting, and implicit model following, all without mod- 
ifying the dynamic model 1631. Integral compensation, 
low-pass $filter compensation, and explicit model follow- 
ing can be obtained by augmenting the system model dur- 
ing the design process, increasing the compensation or- 
der, and producing the control structures shown in Fig. 
8.  

These cost weighting and compensation features can be 
used together, as in the proportional integral/implicit- 
model-following controllers developed in [ 801. Implicit 
model following is especially valuable when an ideal 
model can be specified (as identified in flying qualities 
specifications and standards 151, [6]), and integral com- 
pensation provides automatic “trimming” (control that 
synthesizes u: corresponding to x; to achieve zero steady 

(a) Linear-Quadratic-Gaussian (LQG) Regulator. 

(b) Proporttonal-Filter LQG Regulator. 

(C) Proportional-Integral LQG Regulator. 

(d) Explicit-Model-Following LQG Regulator 

Fig. 8 .  Structured linear-quadratic-gaussian regulators 

state command error) and low-frequency robustness. 
Combining integral and filter compensation produces con- 
trollers with good command tracking performance and 
smooth control actions, as demonstrated in flight tests 
[81]-1831. The LQG regulator naturally introduces an in- 
ternal model of the controlled plant, a feature that facili- 
tates control design 1841. 

The estimator in the feedback loop presents an efficient 
means of dealing with uncertainty in the measurements, 
in the disturbance inputs, and (to a degree) in the air- 
craft’s dynamic model. If measurements are very noisy, 
the estimator gain matrix K is “small,” so that the filter 
relies on extrapolation of the system model to estimate the 
state. If disturbances are large, the state itself is more un- 
certain, and K is “large,” putting more emphasis on the 
measurements. Effects of uncertain parameters can be ap- 
proximated as “process noise” that increases the impor- 
tance of measurements, leading to a higher K .  If the sys- 
tem uncertainties are constant but unknown biases or scale 
factors, a better approach is to augment the filter state to 
estimate these terms directly. Parametric uncertainty in- 
troduces introduces nonlinearity; hence, an extended Kal- 
man3lter must be used 1631. 

Stability and Performance Robustness 
Controlled system robustness is the ability to maintain 

satisfactory stability and performance in the presence of 
parametric or structural uncertainties in either the aircraft 
or its control system. All controlled systems must possess 
some degree of robustness against operational parameter 
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variations. The inherent stability margins of certain al- 
gebraic control laws (e.g., the linear-quadratic (LQ) reg- 
ulator [63], [85]-[87]) may become vanishingly small 
when dynamic compensation (e.g., the estimator in a lin- 
ear-quadratic-Gaussian (LQG) regulator) is added [ 881. 
Restoring the robustness to that of the LQ regulator typ- 
ically requires increasing estimator gains (within practical 
limits) using the loop transfer recovery method [89]. 

Subjective judgments must be made in assessing the 
need for robustness and in establishing corresponding 
control system design criteria, as there is an inevitable 
tradeoff between robustness and nominal system perfor- 
mance [90]. The designer must know the normal operat- 
ing ranges and distributions of parameter variations, as 
well as the specification for system operability with failed 
components. Otherwise, the final design may afford too 
little robustness for possible parameter variations or too 
much robustness for satisfactory nominal performance. 
Robustness traditionally has been assessed deterministi- 
cally [91], [92]; gain and phase margins are an inherent 
part of the classical design of single-input/single-output 
systems, and there are multi-input/multi-output equiva- 
lents based on singular value analysis (e.g., [93]). A crit- 
ical difficulty in applying these techniques is relating sin- 
gular value bounds on return-difference and inverse- 
return-difference matrices to real parameter variations in 
the system. 

Statistical measures of robustness can use knowledge 
of potential variations in real parameters. The probability 
of instability was introduced in [94] and is further de- 
scribed in [95], [96]. The stochastic robustness of a lin- 
ear, time-invariant system, is judged using Monte Carlo 
simulation to estimate the probability distributions of 
closed-loop eigenvalues, given the statistics of the vari- 
able parameters in the system’s dynamic model. The 
probability that one or more of these eigenvalues have 
positive real parts is the scalar measure of robustness, a 
figure of merit to be minimized by control system design. 
Because this metric can take one of only two values, it 
has a binomial distribution; hence, the confidence inter- 
vals associated with estimating the metric from simulation 
are independent of the number or nature of the uncertain 
parameters [95]. 

Considerations of performance robustness are easily 
taken into account in Stochastic Robustness Analysis 
(SRA). Systems designed using a variety of robust control 
methods (loop transfer recovery, H, optimization, struc- 
tured covariance, and game theory) are analyzed in [97], 
with attention directed to the probability of instability, 
probability of settling time exceedence, probability of ex- 
cess control usage, and tradeoffs between them. The anal- 
ysis uncovers a wide range of system responses and 
graphically illustrates that gain and phase margins are not 
good indicators of the probability of instability.’ Incor- 

’Real parameter variations affect not only the magnitude and relative 
phase angle of the system’s Nyquist contour but its shape as well [ 6 3 ] .  
Therefore, the points along the contour that establish gain and phase mar- 
gin (Le., the corresponding Bode plot frequencies) are subject to change. 
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porating SRA into the design of an LQG regulator with 
implicit model following and filter compensation leads to 
designs that have high levels of stability and performance 
robustness [98]. 

Adaptation and Tolerance to Failures 
Adaptation always has been a critical element of sta- 

bility augmentation. Most aircraft requiring improved sta- 
bility undergo large variations in dynamic characteristics 
on a typical mission. Gain scheduling and control inter- 
connects initially were implemented mechanically, pneu- 
matically, and hydraulically; now the intelligent part is 
done within a computer, and there is increased freedom 
to use sophisticated scheduling techniques that approach 
full nonlinear control [81], [99]. It becomes feasible not 
only to schedule according to flight condition but to ac- 
count for differences in individual aircraft. Flight control 
systems that adapt to changes due to wear and exposure, 
and that report changes for possible maintenance action, 
can now be built. 

Tolerance to system failures, such as plant alterations, 
actuator and sensor failures, computer failure, and power 
supply/transmission failure, is an important issue. Mul- 
tiple failures can occur, particularly as a consequence of 
physical damage, and they may be intermittent. Factors 
that must be considered in designing failure-tolerant con- 
trols include: allowable performance degradation in the 
failed state, criticality and likelihood of the failure, ur- 
gency of response to failure, tradeoffs between correct- 
ness and speed of response, normal range of system un- 
certainty, disturbance environment, component reliability 
vs. redundancy, maintenance goals, system architecture, 
limits of manual intervention, and life cycle costs [43]. 

One approach to failure tolerance is parallel redun- 
dancy: two or more control strings, each separately ca- 
pable of satisfactory control, are implemented in parallel. 
A voting scheme is used for redundancy management. 
With two identical channels, a comparator can determine 
whether or not control signals are identical; hence, it can 
detect a failure but cannot identify which string has failed. 
Using three identical channels, the control signal with the 
middle value can be selected (or voted), assuring that a 
single failed channel never controls the plant. In any vot- 
ing system, it remains for additional logic to declare un- 
selected channels failed. Given the vectorial nature of 
control, this declaration may be equivocal, as middle val- 
ues of control vector elements can be drawn from different 
strings. 

Parallel redundancy can protect against control system 
component failures, but it does not address failures of 
plant components. Analytical redundancy provides a ca- 
pability to improve tolerance to failures of both types. The 
principal functions of analytical redundancy are failure 
detection, failure identijkation, and control system re- 
configuration. These functions use the control computer’s 
ability to compare expected response to actual response, 
inferring component failures from the differences and 
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changing either the structure or the parameters of the con- 
trol system as a consequence [47]. 

Procedural adaptation and failure tolerance features will 
evolve outward, to become more declarative in their su- 
pervision and more reflexive in their implementation. 
Declarative functions are especially important for differ- 
entiating between normal and emergency control func- 
tions and sensitivities. They can work to reduce trim drag, 
to increase fatigue life, and to improve handling and ride 
qualities as functions of turbulence level, passenger load- 
ing, and so on. Gain scheduling control can be viewed as 
fuzzy control, suggesting that the latter has a role to play 
in aircraft control systems [loo]-[ 1021. Reflexive func- 
tions can be added by computational neural networks that 
approximate nonlinear multivariate functions or classify 
failures. 

Nonlinear Control 
Aircraft dynamics are inherently nonlinear, but aero- 

dynamic nonlinearities and inertial coupling effects gen- 
erally are smooth enough in the principal operating re- 
gions to allow linear control design techniques to be used. 
Control actuators impose hard constraints on operation 
because their displacements and rates are strictly limited. 
Nonlinear control laws can improve control precision and 
widen stability boundaries when flight must be conducted 
at high angles or high angular rates and when the control 
actuator limits must be challenged. 

The general principles of nonlinear inverse control are 
straightforward [103]. Given a nonlinear system of the 
form, 

(3) 
where C(x) is square ( m  = n)  and nonsingular, the con- 
trol law 

x = f ( x )  + G ( X ) U  

U = + G-lv (4) 

( 5 )  

In general, G(x) is not square ( m  # n) ;  however, given 

inverts the system, since 

x = f ( x )  + G ( x ) [ - G - ' f ( x )  + G-lvl = v 

where v is the command input to the system. 

an m-dimensional output vector, 

y Hx (6) 
it is possible to define a nonlinear feedback control law 
that produces output decoupling of the elements of y or 
their derivatives such that y(' = v .  The vector y(' con- 
tains Lie derivatives of y, 

(7) 
where d is the relative degree of differentiation required 
to identify a direct control effect on each element of y. 
G * (x) and f * (x) are components of the Lie derivatives, 
and G*(x) is guaranteed to be structurally invertible by 
the condition that defines relative degree [ 1041. The de- 
coupling control law then takes the form 

y'm = = * f (4 + G*(X)U 

u -[G*(x)]- '~*(x) + [C* (X ) ] - 'U  (8) 

Fig .  9. Decoupling nonlinear inverse control law 

The control law is completed by feeding y back as appro- 
priate to achieve desired transient response and by prefil- 
tering v to produce the desired command response [ 1051. 
Because the full state is rarely measured and measure- 
ments can contain errors, it may be necessary to estimate 
x with an extended Kalman filter, substituting P for x in 
control computations. 

Evaluating G*(x) andf*(x) requires that a full, d-dif- 
ferentiable model of aircraft dynamics be included in the 
control system; hence the statement of the control law is 
simple, but its implementation is complex (Fig. 9). 
Smooth interpolators of the aircraft model (e.g., cubic 
splines) are needed. Feedforward neural networks with 
sigmoidal activation functions provide a good means of 
representing this model, as they are infinitely differenti- 
able and allow for adaptation [ 1061, [ 1071. 

There are limitations to the inverse control approach 
[ 1081. The principal concerns are pointwise singularity of 
G * (x), the effects of control saturation, and the presence 
of the nonlinear equivalent of nonminimum phase (NMP) 
zeros in aircraft dynamics. The command vector (6) has 
a direct effect on the definition of G*(x). In [105], the 
singular points of G * (x) are found to be outside the flight 
envelope of the subject aircraft for all command vectors. 
When saturation of a control effector occurs, the control 
dimension must be reduced by one; hence, the command 
vector is redefined to exclude the least important element 
of y in [ 1051. The command vector is returned to original 
dimension when the control effector is no longer satu- 
rated. 

Whether or not NMP zero effects are encountered de- 
pends on the command vector definition and on the phys- 
ical model. Some command vector definitions for aircraft 
control produce no NMP zeros [ 1051. When NMP zeros 
occur in conventional aircraft models, they are due to 
small force effects (e.g., lift due to elevator deflection and 
pitch rate), and it may be possible to neglect them. 

REFLEXIVE SYSTEMS 

Inner-loop control is a reflexive function. To date, most 
inner loops have been designed as procedural pointwise 
linear control structures. Computational neural networks 
may extend prior results to facilitate nonlinear control and 
adaptation. Neural networks can be viewed as nonlinear 
generalizations of sensitivity, transformation, and gain 
matrices. Consequently, compensation dynamics can be 
incorporated by following earlier models and control 
structures. Nonlinear proportional-integral and model- 
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following controllers, as well as nonlinear estimators, can 
be built using computational neural networks. 

Computational Neural Networks 
Computational neural networks are motivated by in- 

put-output and learning properties of biological neural 
systems, though in mathematical application the network 
becomes an abstraction that may bear little resemblance 
to its biological model. Computational neural networks 
consist of nodes that simulate the neurons and weighting 
factors that simulate the synapses of a living nervous sys- 
tem. The nodes are nonlinear basis functions, and the 
weights contain knowledge of the system. Neural net- 
works are good candidates for performing a variety of re- 
flexive functions in intelligent control systems because 
they are potentially very fast (in parallel hardware imple- 
mentation), they are intrinsically nonlinear, they can ad- 
dress problems of high dimension, and they can learn from 
experience. From the biological analogy, the neurons are 
modeled as switching functions that take just two discrete 
values; however, “switching” may be softened to “sat- 
uration, ” not only to facilitate learning of the synaptic 
weights but to admit the modeling of continuous, differ- 
entiable functions. 

The neural networks receiving most current attention 
are static expressions that perform one of two functions. 
The first is to approximate multivariate functions of the 
form 

Y = h(x)  (9) 
where x and y are input and output vectors and h ( a )  is the 
(possibly unknown) relationship between them. Neural 
networks can be considered generalized spline functions 
that identify efficient input-output mappings from obser- 
vations [ 1091, [ 1101. The second application is to classib 
attributes, much like the decision trees mentioned earlier. 
(In fact, decision trees can be mapped to neural networks 
[ 1 111 .) The following discussion emphasizes the first of 
these two applications. 

An N-layer feedforward neural network (FNN) repre- 
sents the function by a sequence of operations, 

r ( k )  = (4 ( k - 1 )  ( k - I )  A (!i) s [W r ] = s [ 1 7 ‘ k ’ ] ,  k = 1 to N 

(10) 
where y = r ( N )  and x = do). W‘k - I )  is a matrix of weight- 
ing factors determined by the learning process, and s ( ~ ) [  * ]  
is an activation function vector whose elements normally 
are identical, scalar, nonlinear functions ui (7;) appearing 
at each node: 

One of the inputs to each layer may be a unity threshold 
element that adjusts the bias of the layer’s output. Net- 
works consisting solely of linear activation functions are 
of little interest, as they merely perform a linear transfor- 

(a) Single-InpuVSingle-Output Network. 

(b) Double-Input/Single-Output Network 

Fig. 10. Two feedforward neural networks. 

Fig. 10 represents two simple feedforward neural net- 
works. Each circle represents an arbitrary, scalar, nonlin- 
ear function a;(*) operating on the sum of its inputs, and 
each arrow transmits a signal from the previous node, 
multiplied by a weighting factor. A scalar network with a 
single hidden layer of four nodes and a unit threshold ele- 
ment [Fig. 10(a)] is clearly parallel, yet its output can be 
written as the series 

y = aouo(bG + CO) + a l u l ( b l x  + C I )  

+ a2u2(b2x + c2) + a3a3(b3x + c3) (12) 

illustrating that parallel and serial processing may be 
equivalent. 

Consider a simple example. Various nodel activation 
functions, ui, have been used, and there is no need for 
each node to be identical. Choosing uo(.)  = ( e ) ,  uI  = 

( u3 = ( o ) ~ ,  (9) is represented by the trun- 
cated power series, 

u2 = ( 

y = ao(bG + co) + a l  (blx + c , ) ~  

+ a2(b2x + ~ 2 ) ~  + a3(b3x + c , ) ~ .  (13) 

It is clear that network weights are redundant (i.e., that 
the ( a ,  b,  c) weighting factors are not independent). Con- 
sequently, more than one set of weights could produce the 
same functional relationship between x and y .  Training 
sessions starting at different points could produce differ- 
ent sets of weights that yield identical outputs. This sim- 
ple example also indicates that the unstructured feedfor- 
ward network may not have compact support (i.e., its 
weights may have global effects) if its basis functions do 
not vanish for large magnitudes of their arguments. 

The sigmoid is commonly used as the artificial neuron. 
It is a saturating function defined variously as u(7)  = 
1/(1 + e P 9 )  for output in (0,  1) or u(q)  = 
(1 - e-2q)/(1 + e - 2 q )  = tanh 17 for output in (-1, 1). 
Recent results indicate that any continuous mapping can 
be approximated arbitrarily closely with sigmoidal net- 
works containing a single hidden layer ( N  = 2) [112], 

mation H ,  thus limiting (9) to the form, y = H x .  [ 1131. Symmetric functions like the Gaussian radial basis 
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fiinction ( a ( q )  = e-?’) have better convergence properties 
for many functions and have more compact support as a 
consequence of near orthogonality [ 1091, [ 1 141. Classical 
B-splines [ 1151 could be expressed in parallel form, and 
it has been suggested that they be used in multilayered 
networks [ 1 161. Adding hidden layers strengthens the 
analogy to biological models, though additional layers are 
not necessary for approximating continuous functions, and 
they complicate the training process. 

In control application, neural networks perform func- 
tions analogous to gain scheduling or nonlinear control. 
Consider the simple two-input network of Fig. 10(b). The 
scalar output and derivative of a single sigmoid with unit 
weights are shown in Fig. 1 1 .  If u is a fast variable and 
t i  is a slow variable, choosing the proper weights on the 
inputs and threshold can produce a gain schedule that is 
approximately linear in one region and nonlinear (with an 
inflection point) in another. More complex surfaces can 
be generated by increasing the number of sigmoids. If u 
and u are both fast variables, then the sigmoid can rep- 
resent a generalization of their nonlinear interaction. 

For comparison, a typical radial basis function pro- 
duces the output shown in Fig. 12. Whereas the sigmoid 
has a preferred input axis and simple curvature, the RBF 
admits more complex curvature of the output surface, and 
its effect is more localized. The most efficient nodal ac- 
tivation function depends on the general shape of the sur- 
face to be approximated. There may be cases best handled 
by a mix of sigmoids and RBF in the same network. 

The cerebellar model articulation controller (CMAC) is 
an alternate network formulation with somewhat different 
properties but good promise for application in control sys- 
tems [ 1171, [ 1181. The CMAC performs table lookup of 
a nonlinear function over a particular region of function 
space. CMAC operation can be split into two mappings. 
The first maps each input into an association space a.  
The mapping generates a selector vector a of dimension 
n A ,  with c nonzero elements (usually ones) from overlap- 
ping receptive regions for the input. The second mapping, 
(R, goes from the selector vector a to the scalar output y 
through the weight vector w ,  which is derived from train- 
ing: 

y = wTa. (14) 

Training is inherently local, as the extent of the receptive 
regions is fixed. The CMAC has quantized output, pro- 
ducing “staircased” rather than continuous output. A re- 
cent paper proposes to smooth the output using B-spline 
receptive regions [ 1 191. 

The FNN and CMAC are both examples of static ner- 
works, that is, their outputs are essentially instantaneous: 
given an input, the speed of output depends only on the 
speed of the computer. Dynamic networks rely on stable 
resonance of the network about an equilibrium condition 
to relate a fixed set of initial conditions to a steady-state 
output. Bidirectional Associative Memory (BAM) net- 
works 11201 are nonlinear dynamical systems that sub- 

(a) Sigmoid. 

(b) x-Derivative of Sigmoid. 
Fig. 1 1 .  Example of  sigmoid output with two inputs 

171 1 

~ 

sume Hopfield networks [ 121j, Adaptive Resonance The- knowledge in the weights-that connect them; however, the 

(a) Radial Basis Function (RBF). 

2 v - 4  

(b) x-Derivative of RBF. 
Fig. 12. Example of  radial basis function output with two inputs. 

ory (ART) networks [ 1221, and Kohonen networks [ 1231. 
Like FNN, they use binary or sigmoidal neurons and store 
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“neural circuits” take time to stabilize on an output. 
While dynamic networks may operate more like biologi- 
cal neurons, which have a refractory period between dif- 
fering outputs, computational delay degrades aircraft con- 
trol functions. 

Although neural networks performing function approx- 
imation may gain little from multiple hidden layers, net- 
works used for classification typically require multiple 
layers, as follows from the ability to map decision trees 
to neural networks [ l l l ] .  The principal values of per- 
forming such a mapping are that it identifies an efficient 
structure for parallel computation, and it may facilitate 
incremental learning and generalization. 

Neural networks can be applied to failure detection and 
identijication (FDI) by mapping data patterns (or feature 
vectors) associated with failures onto detectodidentifica- 
tion vectors (e.g., [124]-[126]). To detect failure, the 
output is a scalar, and the network is trained (for example) 
with “1 ” corresponding to failure and “0” correspond- 
ing to no failure. To identify specific failures, the output 
is a vector, with a training value of “1” in the ith element 
corresponding to the ith failure mode and zeros else- 
where. For M failure modes, either M neural networks 
with scalar outputs are employed or a single neural net- 
work with M-vector output is used; there are evident 
tradeoffs related to efficiency, correlation, and so on. The 
data patterns associated with each failure may requirefea- 
lure extraction, preprocessing that transforms the input 
time series into a feature vector. In [124], this was done 
by computing two dozen Fourier coefficients of the input 
signal in a moving temporal window. As an alternative, 
the feature vector could be specified as a parity vector 
11271, and the neural network could be used for the de- 
cision making logic in FDI. When assessing the efficiency 
of neural network FDI logic, feature extraction must be 
considered part of the total process. 

Rejlexive Learning and Adaptation 
Training neural networks involves either supervised or 

unsupervised learning. In supervised learning, the net- 
work is furnished typical histories of inputs and outputs, 
and the training algorithm computes the weights that min- 
imize fit error. FNN and CMAC require this type of train- 
ing. In unsupervised learning, the internal dynamics are 
self-organizing, tuning the network to home on different 
cells of the output semantic map in response to differing 
input patterns [ 1281. Dynamic networks learn rapidly and 
are suitable for pattern matching, as in speech or character 
recognition. The remaining discussion focuses on super- 
vised learning, which is more consistent with control 
functions. 

Backpropagation learning algorithms for the elements 
of W@) typically involve a gradient search (e.g., [129], 
[ 1301) that minimizes the mean-square output error 

& = [rd - r(N)]T[rd - 
where rd is the desired output. The error gradient with 
respect to the weight matrix is calculated for each input- 

output example presented to the network, and the weights 
are updated by 

6 is the learning rate, and d is a function of the error be- 
tween desired and actual outputs. For the output layer, 
the error term is 

where the prime indicates differentiation with respect to 
r .  For interior layers, the error from the output layer is 
propagated from the output error using 

Search rate can be modified by adding momentum or con- 
jugate-gradient terms to (16). 

The CMAC network learning algorithm is similar to 
backpropagation. The weights and output are connected 
by a simple linear operation, so a learning algorithm is 
easy to prescribe. Each weight contributing to a particular 
output value is adjusted by a fraction of the difference 
between the network output and the desired output. The 
fraction is determined by the desired learning speed and 
the number of receptive regions contributing to the out- 
put. 

Learning speed and accuracy for FNN can be further 
improved using an extended Kalman jilter [ 1061, [ 1071, 
[ 13 11. The dynamic and observation models for the filter 
are 

Wk = W k - l  + 4 k - 1  

where wk is a vector of the matrix Wk’s elements, h ( * )  is 
an observation function, and q k  and I tk  are noise pro- 
cesses. If the network has a scalar output, then zk is scalar, 
and the extended Kalman filter minimizes the fit error be- 
tween the training hypersurface and that produced by the 
network (15). The fit error can be dramatically reduced 
by considering the gradients of the surfaces as well [ 1061, 
[ 1071. The observation vector becomes 

h ( W k ,  rk) 

-(%, r.1 

with concomitant increase in the complexity of the filter. 
The relative significance given to function and derivative 
error during training can be adjusted through the mea- 
surement-error covariance matrix used in filter design. 

Recursive estimation of the weights is useful when 
smooth relationships between fit errors and the weights 
are expected, when the weight-vector dimension is not 
high, and when local minima are global. When one of 
these is not true, it may speed the computation of weights 
to use a random search, at least until convergent regions 
are identified. Such methods as simulated annealing or 
genetic algorithms can be considered (and the latter has 

I+.; (21) 
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philosophic appeal for intelligent systems) [ 1321-[ 1341. 
The first of these is motivated by statistical mechanics and 
the effects that controlled cooling has on the ground states 
of atoms (which are analogous to the network weights). 
The second models the reproduction, crossover, and mu- 
tation of biological strings (e.g., chromosomes, again 
analogous to the weights), in which only the fittest com- 
binations survive. 

Statistical methods can go hand in hand with SRA to 
train robust neural networks. Following 1981, the random 
search could be combined with Monte Carlo variation of 
system parameters during training, numerically minimiz- 
ing the expected value of$t error rather than a determin- 
istic fit error. 

Problems that may be encountered in neural network 
training include proper choice of the input vector, local 
vs. global training, speed of learning and forgetting, gen- 
eralization over untrained regions, and trajectory-depen- 
dent correlations in the training sets. We envision an aero- 
dynamic model that spans the entire flight envelope of an 
aircraft, including poststall and spinning regions. The 
model contains six neural networks with multiple inputs 
and scalar outputs, three for force coefficients and three 
for moment coefficients (for example, the pitch moment 
network takes the form C,,, = g(x, u ) ,  where x represents 
the state and u the control). If input variables are not re- 
stricted to those having plausible aerodynamic effect, false 
correlations may be created in the network; hence, atti- 
tude Euler angles and horizontal position should be ne- 
glected, while physically meaningful terms like elevator 
deflection, angle of attack, pitch rate, Mach number, and 
dynamic pressure should be included 11071. 

The aircraft spends most of its time flying within nor- 
mal mission envelopes. Unless it is a trainer, the aircraft 
does not normally enter poststall and spinning regions; 
consequently, on-line network training focuses on normal 
flight and neglects extreme conditions. This implies not 
only that networks must be pretrained in the latter regions 
but that normal training must not destroy knowledge in 
extreme regions (which may be required in an emergency) 
while improving knowledge in normal regions. There- 
fore, radial basis functions appear to be a better choice 
than sigmoid activation functions for adaptive networks. 

Elements of the input vector may be strongly correlated 
with each other through the aircraft’s equations of mo- 
tion; hence, networks may not be able to distinguish be- 
tween highly correlated variables (e.g., pitch rate and 
normal acceleration). This is problematical only when the 
aircraft is outside its normal envelope. Pretraining should 
provide inputs that are rich in frequency content, that span 
the state and control spaces, and that are as uncorrelated 
as possible. Generalization between training points may 
provide smoothness, but it does not guarantee accuracy. 

Control Systems Based on Neural Network5 
Neural networks can find application in logic for con- 

trol, estimation, system identification, and physical mod- 

Aircraft 

State Extended 
Kalman Filter 

(a) Neural Network for Modeling and Adaptation. 

Aircraft 

State Extended 
Kalman Filter 

(b) Neuril Networks for Modeling, Adaptation, and Control. 

Kalman Filter 

(c) Neural Networks for Control Alone. 

Fig.  13. Adaptive control structures using neural networks. 

eling. In addition to work already referenced, additional 
examples can be found in [135]-11401. Fig. 13(a) illus- 
trates an application in which the neural network forms 
the aircraft model for a nonlinear inverse control law. The 
aircraft model of Fig, 9 is implemented with a neural net- 
work that is trained by a dedicated (weight) extended Kal- 
man filter (the thick gray arrow indicating training). The 
extended Kalman filter for state estimation is expanded to 
estimate histories of forces and moments as well as the 
usual motion variables. 

It is possible to conduct supervised learning on-line 
without interfering with normal operation because the state 
Kalman filter produces both the necessary inputs and the 
desired outputs for the network training algorithm. There 
is no need to provide an ideal control response for train- 
ing, as the form of the control law is fixed. Procedural 
and reflexive functions are combined in this control im- 
plementation, under the assumption that the direct expres- 
sion of inversion is the most efficient approach. 

Fig. 13(b) shows a logical extension in which the in- 
verse control law is implemented by neural networks. In- 
version is an implicit goal of neural network controllers 
[ 1351, [ 1361, and the formal existence of inversion net- 
works has been explored [141]. Although Fig. 13(b) im- 
plies that the inversion networks are pretrained and fixed, 
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they, too, can be trained with the explicit help of the net- 
work that models the system [136]. Here, it is assumed 
that the control networks have been pretrained, as no de- 
sired output has been specified. 

If a desired control output is specified [Fig. 13(c)], then 
the formal model of the aircraft is no longer needed. The 
control networks learn implicit knowledge of the aircraft 
model. Referring to Fig. 8 and (1)  and (2), control and 
estimation gains, state transition and control-effect ma- 
trices, and measurement transformations can be imple- 
mented as static neural networks with either off-line or on- 
line learning. 

It can be useful to divide control networks into separate 
feedback and forward parts, as this may facilitate training 
to achieve design goals. A feedback neural network has 
strongest effect on homogeneous modes of motion, while 
a forward neural network is most effective for shaping 
command (forced) response. This structure is adopted in  
11391, where the forward and feedback networks are iden- 
tified as reason and instinct networks. In pretraining, it is 
plausible that the feedback network would be trained with 
initial condition responses first, to obtain satisfactory 
transient response. The forward network would be trained 
next to achieve desired steady states and input decou- 
pling. A third training step could be the addition of com- 
mand-error integrals while focusing on disturbance inputs 
and parameter variations in training sets. 

Once baselines have been achieved, it  could prove use- 
ful to admit limited coupling between forward and feed- 
back networks to enable additional nonlinear compensa- 
tion. In adaptive applications, networks would be 
pretrained with the best available models and scenarios to 
establish satisfactory baselines; on-line training would 
slowly adjust individual systems to vehicle and mission 
characteristics. 

Including the integral of command-vector error as a 
neural network input produces a proportional-integral 
structure [ 1401, while placing the integrator beyond the 
network gives a proporrionaljlrer structure (Fig. 8). The 
principal purpose of these structures is, as before, to as- 
sure good low and high-frequency performance in a clas- 
sical sense. Extension of neural networks to state and 
weight filters is a logical next step that is interesting in its 
own right as a means of more nearly optimal nonlinear 
estimation. 

CONCLUSION 

Intelligent flight control systems can do much to im- 
prove the operating characteristics of aircraft, and they 
provide an interesting, practical, and well documented 
framework within which intelligent control concepts can 
be developed. An examination of cognitive and biological 
models for human control of systems suggests that they 
exhibit a declarative, procedural, and reflexive hierarchy 
of‘ functions; this structure can be applied to aircraft con- 
trol. Top level aircraft control functions are analogous to 
conscious and preconscious thoughts that are transmitted 

to lower level subsystems through subconscious, neural, 
and reflexlike activities. Human cognition and biology 
also suggest models for automated learning and adapta- 
tion, not only during operation but between periods of 
activity. 

The computational analogs of the three cognitive/bio- 
logical paradigms are expert systems, stochastic control- 
lers, and neural networks. Expert systems organize deci- 
sion making efficiently, stochastic controllers optimize 
estimation and control, and neural networks provide rapid, 
nonlinear, input-output functions. It appears that many 
control functions at all levels could be implemented as 
neural networks. While this may not always be necessary 
or even desirable using sequential processors, mapping 
declarative and procedural functions as neural networks 
may prove useful as a route to new algorithms for the 
massively parallel flight control processors of the future. 
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